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Alice Bob



Alice Bob

Happy Birthday, Bob!



Alice Bob

Thanks Alice!



Alice Bob

You’re muted.



Alice Bob

Oh, sorry –
Thanks, Alice!



Alice Bob

I have a gift for you.



Alice Bob

Oh! That’s very nice 
of you. 



Alice Bob

There’s a problem, 
though.



Alice Bob

It’s a qubit.



Alice Bob

No worry. I have a 
quantum computer 

here – just tell me the 
amplitudes of the 

qubit! 



Alice Bob

The amplitudes are 
transcendental numbers… 

I don’t think our Zoom 
call can last that long.



Alice Bob

We only have the Free
version of Zoom, it 
lasts 45 minutes…



Alice Bob

Do you still have half 
of the EPR pair I gave 
you in person before 

the pandemic?

!"# = 1
2 00 + |11⟩



Alice Bob

I do, in fact! 
That seems like 

so long ago.

!"# = 1
2 00 + |11⟩



Alice Bob

Then there’s a way I 
can get your gift qubit.

!"# = 1
2 00 + |11⟩



Quantum Teleportation

Classical communication
channel

! = # 0 + &|1⟩ !"# = 1
2 00 + |11⟩

Quantum teleportation allows Alice to send ! to Bob using preshared entanglement and 
classical communication.

Shared before protocol begins.
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Quantum Teleportation

Quantum circuits:

• Each horizontal wire represents a qubit

• Time runs from left to right

• Initial state of qubits is written on left hand side
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Quantum Teleportation

Quantum circuits:

• Each horizontal wire represents a qubit

• Time runs from left to right

• Initial state of qubits is written on left hand side
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Quantum Teleportation

Claim: At the end of protocol, Bob has + .
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Quantum Teleportation

Claim: At the end of protocol, Bob has + .

In the
case a=o, b

-
- 1

,

state after measurement

is 10,1 > ① (al#
t floes ) .

→ Bob applies X
to

his qubit -

→ Bob 's qubit
is in

the

state

b 2107+9111=143 .
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Quantum Teleportation

Claim: At the end of protocol, Bob has + .
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Quantum Teleportation

Claim: At the end of protocol, Bob has + .
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Quantum Teleportation

Claim: At the end of protocol, Bob has + .

Quantum teleportation does not allow Alice to instantaneously send + to Bob.
Alice needs to communicate classical bits to Bob!



Alice Bob

Alrighty… let me apply 
the CNOT… then 

Hadamard….



Alice Bob

I just measured my 
qubits and I got - = 0

and . = 1.



Alice Bob

Let me apply a bitflip 
to my qubit… and that 

should do it!



Alice Bob

Best. Birthday Present. 
Ever!!!



Alice Bob

Best. Birthday Present. 
Ever!!!



Alice Bob

Best. Birthday Present. 
Ever!!!

FIN



Quantum Circuit Model



Quantum gates

• A * qubit-quantum gate is a 2!×2! unitary matrix -

• Common single-qubit quantum gates:
• . – identity
• / – bitflip: 0 ↔ 1
• 1 – Hadamard: 

• Two-qubit gates:
• 2345 – controlled NOT operation: 2345 6, 8 = |6, 8 ⊕ 6⟩

Phase gates
:: 0 ↦ |0⟩, 1 ↦ − 1
=: 0 ↦ |0⟩, 1 ↦ >|1⟩
5: 0 ↦ |0⟩, 1 ↦ ?

!"#
$ |1⟩

0 ↦ 1
2 0 + |1⟩

1 ↦ 1
2 0 − |1⟩



Quantum circuits

…
.

+
n qubit input

2 qubit gates

1 qubit gate

• A quantum circuit @ consists of an ordered 
collection of 1- and 2-qubit gates A", A#, … applied 
to subsets of qubits. 

• Output of circuit @ on input |!⟩ is equal to 

A$⋯A#A"|!⟩



Measurements

…
.

+
n qubit input

2 qubit gates

1 qubit gate

• At end of computation, if final state is

D = ∑&% 6

can perform measurement to get classical 
outcome of computation. 

• Measurement is probabilistic: obtains outcome 
6 ∈ {0,1}& with probability &% #.

• Measurement is destructive: measuring in middle 
of quantum computation will disturb the state.

We can also allow intermediate measurements (like in quantum teleportation), 
but for now let’s assume that measurements happen at the very end.



Universal and non-universal gate sets

…
.

• Every I-qubit unitary - can be implemented as a quantum circuit consisting of single-qubit gates and 
CNOT. 

• In worst case, such a circuit requires ≈ 4& gates. 

• Can use arbitrary single-qubit gates A ∈ ℂ#×#.

…
.

=



Universal and non-universal gate sets

…
.

• In practice, we can only use gates from a fixed, finite set (depending on your hardware).

• A set Λ of gates is universal if any unitary (on any number of qubits) can be approximated arbitrarily 
well by a circuit consisting of gates from Λ.

• A unitary - N-approximates another unitary O if: max|)⟩ - ! − O|!⟩ ≤ N

…
.

≈
#1

#2

#3
4#, 4$, 4%, … ∈ Λ

!



Universal and non-universal gate sets
• Ex: Λ = Clifford ∪ 5 is a universal gate set!

• Clifford= gates generated by 1, =, 2345

, = 1
2
1 1
1 −1

/ = 0 1
1 0 0 = 1 0

0 −1

" = 1 0
0 :

; = 1 0
0 <

$&'
(

=>?; Clifford gates

Non-Clifford



Universal and non-universal gate sets
• Ex: Λ = Clifford is not universal gate set.

• Clifford= gates generated by 1, =, 2345

, = 1
2
1 1
1 −1

/ = 0 1
1 0 0 = 1 0

0 −1

" = 1 0
0 :

=>?; Clifford gates

Fact #1: Clifford circuits (with all zeroes input) can 
be efficiently simulated on classical computers 
(Gottesman-Knill Theorem).

Fact #0: Clifford circuits are not even universal for 
classical computation.



Universal and non-universal gate sets
• Ex: Λ = Clifford is not universal gate set.

• Clifford= gates generated by 1, =, 2345

• Pauli = gates generated by /, : ⊆ Clifford

• I-qubit Pauli unitaries: tensor products of ., /, _, :

, = 1
2
1 1
1 −1

/ = 0 1
1 0 0 = 1 0

0 −1

" = 1 0
0 :

=>?; Clifford gates

Pauli gates

Fact #2: Clifford circuits/unitaries are equivalently
defined in terms of their behavior on Pauli 
matrices. 

X ⑤
X

x# 2- ⑦
I . . .
} Pauli



Universal and non-universal gate sets
• Ex: Λ = Clifford is not universal gate set.

• Clifford= gates generated by 1, =, 2345

• Pauli = gates generated by /, : ⊆ Clifford

• I-qubit Pauli unitaries: tensor products of ., /, _, :

, = 1
2
1 1
1 −1

/ = 0 1
1 0 0 = 1 0

0 −1

" = 1 0
0 :

=>?; Clifford gates

Pauli gates

Fact #2: Clifford circuits/unitaries are equivalently 
defined in terms of their behavior on Pauli matrices. 

For all Pauli unitaries @ = @#⊗@$⊗⋯⊗@)

for all C-qubit Clifford unitaries =, there exists 
another Pauli unitary @′ = @#′ ⊗@$′ ⊗⋯⊗@)′
such that

@= = =@′

Ex:

-
-
-

-

-

- - --

X H = HE

EE = FEI



Computing classical functions, quantumly

How to compute `: 0,1 & → 0,1 $ using a quantum circuit?

Can call classical functions as a subroutine using classical oracles: define the unitary -+ on I + c
qubits: for all 6 ∈ 0,1 &, d ∈ 0,1 $, 

-+ 6, d = |6, d ⊕ ` 6 ⟩

Ex: ` = AND, ` = NOT
-

} is a
unitary

.

bitwise
XOR .

Hang laine ? = ( a. b ,
c⑦ ab )

.

U not
= (NOT .



Computing classical functions, quantumly

How to compute `: 0,1 & → 0,1 $ using a quantum circuit?

Can call classical functions as a subroutine using classical oracles: define the unitary -+ on I + c
qubits: for all 6 ∈ 0,1 &, d ∈ 0,1 $, 

-+ 6, d = |6, d ⊕ ` 6 ⟩

Ex: ` = AND, ` = NOT

$E #3|0*⟩

|F ⟩8
'

it.. .



Computing classical functions, quantumly

How to compute `: 0,1 & → 0,1 $ using a quantum circuit?

Can call classical functions as a subroutine using classical oracles: define the unitary -+ on I + c
qubits: for all 6 ∈ 0,1 &, d ∈ 0,1 $, 

-+ 6, d = |6, d ⊕ ` 6 ⟩

Size j classical circuit computing `⟹ There is a size 4(j) quantum circuit computing -+.

#3



Computing classical functions, quantumly

Magic starts happening when classical oracles are queried on a superposition of inputs. 

Deutsch’s Problem: Given `: 0,1 → 0,1 , determine using one quantum query to -+ whether 
• YES case: ` 0 ≠ ` 1
• NO case: ` 0 = ` 1

$E
H

H

H
|1⟩

|0⟩

-



Computing classical functions, quantumly

Magic starts happening when classical oracles are queried on a superposition of inputs. 

Deutsch’s Problem: Given `: 0,1 → 0,1 , determine using one quantum query to -+ whether 
• YES case: ` 0 ≠ ` 1
• NO case: ` 0 = ` 1

$E
H

|−⟩

|+⟩

circuit equivalent to



Computing classical functions, quantumly

Magic starts happening when classical oracles are queried on a superposition of inputs. 

Deutsch’s Problem: Given `: 0,1 → 0,1 , determine using one quantum query to -+ whether 
• YES case: ` 0 ≠ ` 1
• NO case: ` 0 = ` 1

H
|−⟩

|+⟩

circuit equivalent to
Case 1: G 0 = G 1 = 0

$E =



Computing classical functions, quantumly

H
|−⟩

|+⟩
circuit equivalent to

$E
H

|−⟩

|+⟩

Case 1: G 0 = G 1 = 0



Computing classical functions, quantumly

Magic starts happening when classical oracles are queried on a superposition of inputs. 

Deutsch’s Problem: Given `: 0,1 → 0,1 , determine using one quantum query to -+ whether 
• YES case: ` 0 ≠ ` 1
• NO case: ` 0 = ` 1

Case 2: G 0 = 0, G 1 = 1

$E =



Computing classical functions, quantumly

H
|−⟩

|+⟩
circuit equivalent to

$E
H

|−⟩

|+⟩

Case 2: G 0 = 0, G 1 = 1



Grover Search



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

Classical query complexity: Ω(2&)

Quantum query complexity: O( 2&)



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

For boolean functions, we can use different oracle (called phase oracle): for all 6 ∈ 0,1 &

O+ 6 = −1 + % |6⟩

XOR oracles and phase oracles are equivalent!



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

H⊗H|0)⟩ &I '

Grover iterate

? 2) times… &I '

Grover iterate

Assume there exists a unique  6∗ such that ` 6∗ = 1.



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

H⊗H|0)⟩ &I '

Grover iterate

? 2) times… &I '

Grover iterate

Assume there exists a unique  6∗ such that ` 6∗ = 1.

H⊗H|0)⟩ = It >
④ ^

= Ira § 1×2 . } Is> -



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

H⊗H|0)⟩ &I '

Grover iterate

? 2) times… &I '

Grover iterate

Assume there exists a unique  6∗ such that ` 6∗ = 1.

' = 2|J⟩⟨J| − L

”diffusion operator”, “inversion about the mean”,…

} unitary -



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

Assume there exists a unique  6∗ such that ` 6∗ = 1.

J = #
$!∑|F⟩

|F∗⟩

Starting state of algorithm

J = #
$!∑|F⟩

|F∗⟩

After one Grover iterate

&I '

Grover iterate

nm

Ei
,
a



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

Assume there exists a unique  6∗ such that ` 6∗ = 1.

J = #
$!∑|F⟩

|F∗⟩

Starting state of algorithm

J = #
$!∑|F⟩

|F∗⟩

after ) 2% iterates

&I '

Grover iterate!



Unstructured search

Search problem: Given black-box access to `: 0,1 & → 0,1 , find 6 such that ` 6 = 1.

What if there are 5 solutions 6 such that ` 6 = 1?

• If 5 is known before hand, run 4 #&
- queries.

• If 5 is unknown, then using more clever algorithm, can still find solution in 4 #&
- queries!



Quantum lower bound for unstructured 
search
Grover’s algorithm is optimal (in terms of query complexity) for solving the unstructured search 
problem: Ω 2& queries are needed!

Bennett, Brassard, Bernstein, Vazirani proved this using a hybrid argument. Suppose there was a p-
query algorithm for unstructured search, for p ≪ 2&.

…
.

(N (O
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Quantum lower bound for unstructured 
search
Grover’s algorithm is optimal (in terms of query complexity) for solving the unstructured search 
problem: Ω 2& queries are needed!

Bennett, Brassard, Bernstein, Vazirani proved this using a hybrid argument. Suppose there was a p-
query algorithm for unstructured search, for p ≪ 2&.
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Quantum lower bound for unstructured 
search
Grover’s algorithm is optimal (in terms of query complexity) for solving the unstructured search 
problem: Ω 2& queries are needed!

Bennett, Brassard, Bernstein, Vazirani proved this using a hybrid argument. Suppose there was a p-
query algorithm for unstructured search, for p ≪ 2&.

…
.

(N (O

&I &I )

(P….

|0)⟩
|0⟩
|0⟩

|0⟩



Generalizations of Grover search

• Quantum Counting

• Amplitude Amplification


