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Mixed States



Probabilistic mixtures of pure quantum states

• Up till now, we’ve represented quantum states as unit vectors in ℂ!. These are called pure states.

• Describing a quantum system using a pure state |#⟩ indicates that state of the system is 
determined.

• Ex: taking a qubit in the |0⟩ state, and applying & to it. 

• What if someone flips a coin and hands you either |0⟩ or |+⟩ depending on the coin? If you do not 
see the coin, then the state given to you is a mixed state. We can describe this as a probabilistic 
mixture:

1
2 , |0⟩ , 12 , |+⟩



Density matrices

• A +-dimensional density matrix is a matrix , ∈ ℂ!×! such that 
• , is positive semidefinite
• ./ , = 1

• Density matrices describe mixed states.

• A pure state # ∈ ℂ! corresponds to density matrix |#⟩⟨#|.

• A mixture 2#, |##⟩ , … , (2$, |#$⟩) corresponds to density matrix ∑% 2% #% ⟨#%|
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Density matrices

• Ex: |0⟩, |1⟩

• Ex: #
& , |0⟩ , #

& , |+⟩
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Density matrices

• Ex: #
& , |0⟩ , #

& , |1⟩

• Ex: #
& , |+⟩ , #

& , |−⟩

maximally

= Ilo>Col t { 11×11 = (
"

ok %) = I. I mixed
state

.

= I Itxtl + I l -K - I

=
'al : it etat:

= If
'

! %) -

- E'



Projective measurements

8 = 8#, 8&, … ,8$ is a 9-outcome projective measurement if

• Each 8% is a Hermitian projection matrix, i.e., 8%
' = 8% and 8%

& = 8%
• 8# +8& +⋯+8$ = ;

Measuring a pure state |#⟩ using 8 yields
• outcome < with probability 8% # &

• Post-measurement state (! )
(! ) "



Projective measurements

8 = 8#, 8&, … ,8$ is a 9-outcome projective measurement if

• Each 8% is a Hermitian projection matrix, i.e., 8%
' = 8% and 8%

& = 8%
• 8# +8& +⋯+8$ = ;

Measuring a pure state |#⟩ using 8 yields
• outcome < with probability 8% # &

• Post-measurement state (! )
(! ) "

Ex: measuring according to orthonormal basis = = >* , … , |>!+#⟩ corresponds to projectors 
8% = |>%⟩⟨>%|



Density matrices

• Density matrices encode everything that is physically relevant about a probabilistic mixture of 
pure states.

• Unitary evolution: , ↦ @,@'

• Measurement: Let 8 = 8#, 8&, … ,8$ denote a 9-outcome projective measurement. Then 
measuring , with 8 yields outcome < with probability ./ 8% ,

• Post-measurement state: , ↦ (!,(!
-. (! ,
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Density matrices

• Ex: # = A 0 + B 1 , , = |#⟩⟨#|, measure using standard basis.

• Ex: , = /
&, measure using basis = = >* , |>#⟩
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Quantum One-Time Pad

• Classical one-time pad: Fix message C ∈ 0,1 0. Let D be uniformly random E-bit string. Marginal 
distribution of C⊕ D is uniformly random.



Quantum One-Time Pad

• Classical one-time pad: Fix message C ∈ 0,1 0. Let D be uniformly random E-bit string. Marginal 
distribution of C⊕ D is uniformly random.

• Quantum one-time pad: Fix qubit # ∈ ℂ&. Sample uniformly random bits G, > ∈ {0,1}. Apply 
J1K2 to |#⟩.

• The ensemble  #
3 , J

1K2|#⟩ looks uniformly random.

Zo = I2-1=2×0
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Quantum One-Time Pad

• Classical one-time pad: Fix message C ∈ 0,1 0. Let D be uniformly random E-bit string. Marginal 
distribution of C⊕ D is uniformly random.

• Quantum one-time pad: Fix qubit # ∈ ℂ&. Sample uniformly random bits G, > ∈ {0,1}. Apply 
J1K2 to |#⟩.

• The ensemble  #
3 , J

1K2|#⟩ looks uniformly random.

• Corresponding density matrix: 

1
4 # # + K|#⟩⟨#|K + J|#⟩⟨#|J + JK|#⟩⟨#|KJ = ;
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Density matrices of multiple systems

• Given two quantum systems described by density matrices ,, M, their joint system is described by 
the density matrix ,⊗ M.

• E copies of , is abbreviated ,⊗0

• Not all density matrices on multiple systems can be written as ,#⊗,&⊗,5⊗⋯.

• But doesn’t mean entangled! For example, , = #
& |00⟩⟨00 + #

& 11⟩⟨11| is a mixture of classical 
states; has classical correlations.

✓ Independent ! "

-
-

-

It p
-
- Iz , then p

= I÷3 ident
aim.

- -

f- G ④
T . ⇒p is

PAB entangled .

~

2 qubit
density
matrix



Traces and partial traces

• ./ , ⊗ M = ./ , ⋅ ./ M

• Given density matrix ,67 on systems P=, can obtain density matrix on system P only via the 
partial trace:

,6 = ./7 ,67

• ./7 ⋅ denotes “tracing out” (a.k.a. marginalizing over) the = subsystem.

• Partial trace ./7 ⋅ defined as ./7 |G#, >#⟩⟨G&, >&| = G& G# ⋅ |>#⟩⟨>&| for all vectors 
G# , G& , ># , |>&⟩.
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Traces and partial traces

• Every mixed state , on a system P is also the result of taking a partial trace of a pure state # 67
on systems P=: 

,6 = ./7 # # 67

• Such a pure state # is called a purification of ,. 

• Purifications of density matrices are not unique.
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Density matrices

• Ex: , = |0⟩⟨0| ⊗ + ⟨+|

• Ex: , = QRS QRS
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Distinguishability of density matrices

Given two density matrices , and M of the same dimension, we can measure how close they are via 
the trace distance: 

T ,, M = 1
2 , − M # =

1
2./( , − M )

Operational meaning: Trace distance T ,, M is equivalently defined as maximum probability of 
distinguishing between ,, M using ANY possible quantum operation (measurements or unitaries).
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Distinguishability of density matrices
Nice properties:
1. Nonnegative: T ,, M ≥ 0, and achieves 0 if and only if , = M.

2. Symmetric: T ,, M = T(M, ,)

3. Triangle inequality: T ,, M ≤ T ,, W + T W, M

4. Convex: T ∑% 2% ,%, M ≤ ∑% 2% T ,%, M

5. Does not increase when tracing out systems: T ,6, M6 ≤ T ,67, M67

6. Unitarily invariant: T @,@', @M@' = T ,, M



Density matrices

• Ex: , = #
& 0,0 0,0 + #

& |1,1⟩⟨1,1| M = #
& 0,1 0,1 + #

& |1,0⟩⟨1,0|
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Quantum Complexity Theory



The Complexity Zoo

NP

PSPACE

P



The Complexity Zoo

NP

PSPACE

P
BQP

QMA



BQP

Language X ⊆ 0,1 ∗ is in Bounded-Error Quantum Polynomial Time (BQP) if there exist a family of 
circuits Z#, Z&, … that are uniformly generated and satisfy:
• Z0 ≤ [(E9)
• For all \ ∈ 0,1 0

• If \ ∈ X ⟹ Pr Z0 G``a2bD \ ≥ &
5

• If \ ∉ X ⟹ Pr Z0 G``a2bD \ ≤ #
5

…
.

!!

|"!⟩
|""⟩

|0⟩

|0⟩

…
.

(Completeness)

(Soundness)

whey assume completeness
and soundness

errors are

expc - scull; by repeating

circuit poly (n)
times and

taking MAJ .



BQP

Problems in BQP:
• All problems in BPP
• Factoring, Discrete Logarithm
• Simulating quantum systems.

Canonical BQP-complete (promise) problem:
QCIRCUIT: given classical description of quantum circuit Z, decide whether Z accepts on the all 
zeroes input with probability at least &5 or at most #5.
-



QMA

Language X ⊆ 0,1 ∗ is in Quantum Merlin-Arthur (QMA) if there exist a family of verifier circuits 
Z#, Z&, … that are uniformly generated and satisfy:
• Z0 ≤ E9
• For all \ ∈ 0,1 0

• If \ ∈ X ⟹ ∃ # , Pr Z0 G``a2bD \ ⊗ |#⟩ ≥ &
5

• If \ ∉ X ⟹ ∀ # , Pr Z0 G``a2bD \ ⊗ |#⟩ ≤ #
5

…
.

!!

|"!⟩
|""⟩

|0⟩

|%⟩

…
.

Quantum witness

(Completeness)

(Soundness)

= quantum analogue of NP (or MA ) .

wlog ,
can assume

completeness (soundness error

is exponentially
small . ( Marriot -

Watrous

amplification ) ,



QMA

Problems in QMA:
• All problems in BQP
• All problems in NP
• Finding minimum energy states of quantum systems (the Local Hamiltonians problem)

Canonical QMA-complete (promise) problem:
Q-VER-CIRCUIT: given classical description of quantum circuit Z, decide if 

• There exists a quantum state |#⟩ such that Z accepts # ⊗ |0⋯0⟩ with probability at least &5, or 

• All states |#⟩ are accepted with probability at most #5.



Local Hamiltonians problem

(9, A, B)-Local Hamiltonians problem: given classical description of measurements &#, &&, … , &:
on E qubits where each &%
• Acts on 9 qubits
• Is a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),
decide whether there exists a quantum state |#⟩ such that
• YES case: ∑2% ≤ A
• NO case: ∑2% ≥ B
where 2% = Pr measuring # using &% yields “Reject”]
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Local Hamiltonians problem

(9, A, B)-Local Hamiltonians problem: given classical description of measurements &#, &&, … , &:
on E qubits where each &%
• Acts on 9 qubits
• Is a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),
decide whether there exists a quantum state |#⟩ such that
• YES case: ∑2% ≤ A
• NO case: ∑2% ≥ B
where 2% = Pr measuring # using &% yields “Reject”]

&! &" &#
&$

&%
The ((, *, +)-Local Hamiltonians problem is 
QMA-complete for ( = 3, + − * ≥ !

&'() *



QMA-completeness of Local Hamiltonians

!

Instance of Q-VER-CIRCUIT Instance of 3-Local Hamiltonians

3-Local Measurements &!, &", … , &+ where 

Assume that WLOG completeness and soundness errors are exponentially small.

• YES case: there exists a quantum state |%⟩ such that 
∑3, ≤ exp(−8)

• NO case: for all quantum states |%⟩, ∑3, ≥ Ω !
-!

where 3, = Pr measuring % using &, yields “Reject”]M gates

8 qubits



QMA-completeness of Local Hamiltonians

!

Instance of Q-VER-CIRCUIT

M gates

8 qubits

Let |N⟩ be such that O accepts
N ⊗ |0⋯0⟩ with probability at 

least 1 − exp(−8).

% = 1
M + 1T./0

-
V̂ ⊗ |%.⟩ “history state”

where

• %0 = N ⊗ |0⋯0⟩

• %. = W.|%.1!⟩ for V ≥ 1

Witnesses of YES instances of Q-VER-CIRCUIT
are mapped to witnesses of YES instances of 
3-Local Hamiltonians in the following way:

∑Pr measuring % using &, yields “Reject”] ≤ exp(−8)



Alice Bob

Enjoy the rest of the 
workshop!
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