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BQP

Language L € {0,1}" is in Bounded-Error Quantum Polynomial Time (BQP) if there exist a family of
circuits {Cy, C5, ... } that are uniformly generated and satisfy:

* |Gyl < 0(n°)
* Forallx € {0,1}"

2
d Ifx € L — PI‘[Cn aCceptS JC] 2 E (Completeness)
* If x € L = Pr|C,, accepts x] < % (Soundness)
|%1)
|x2)
|0)
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BQP

Problems in BQP:
e All problems in BPP
* Factoring, Discrete Logarithm

e Simulating quantum systems.

Canonical BQP-complete (promise) problem:

QCIRCUIT: given classical description of quantum circuit C, decide whether C accepts on the all
: : . 2 1
zeroes input with probability at least 30" at most 3



QMA

Language L € {0,1}" is in Quantum Merlin-Arthur (QMA) if there exist a family of verifier circuits
{Cy, Cy, ... } that are uniformly generated and satisfy:

e |C,| < n

* Forallx € {0,1}"

« If x € L = 3|yP), Pr[C, accepts |x) Q |[YP)] =

(Completeness)

WlRrWIN

* Ifx & L = V|y),Pr[C, accepts |x) ® |P)] <

(Soundness)

|%1)

|x2)

Quantum witness [¥)
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QMA

Problems in QMA:
e All problems in BQP

e All problems in NP
* Finding minimum energy states of quantum systems (the Local Hamiltonians problem)

Canonical QMA-complete (promise) problem:

Q-VER-CIRCUIT: given classical description of quantum circuit C, decide if

* There exists a quantum state |) such that C accepts |) @ |0 --- 0) with probability at least g, or

 All states |1) are accepted with probability at most %



Local Hamiltonians problem

(k, a, B)-Local Hamiltonians problem: given classical description of measurements {H, H,, ..., H,, }
on n qubits where each H;

* Acts on k qubits
* |s a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),

decide whether there exists a quantum state |1)) such that
* YEScase:)p; < «a

* NOcase:)p; =p

where p; = Pr[measuring|y) using H; yields “Reject”]

¥¥#¢ ¢¢¢¢¢¢



Local Hamiltonians problem

(k, a, B)-Local Hamiltonians problem: given classical description of measurements {H,, H,, ...,

on n qubits where each H;

* Acts on k qubits

* |s a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),

decide whether there exists a quantum state |1)) such that

* YEScase:)p; < «a
* NOcase:)p; =

where p; = Pr[measuring|y) using H; yields “Reject”]

The (k, a, §)-Local Hamiltonians problem is

1
MA- I f = —-—a >
Q completefork =3, —a = oLy ()

Hpn}



QMA-completeness of Local Hamiltonians

Instance of Q-VER-CIRCUIT Instance of 3-Local Hamiltonians

3-Local Measurements {H,, H,, ..., H,,} where
1 qubits * YES case: there exists a quantum state |1)) such that
) e

NO case: for all quantum states [), Y':p; = Q (7_13)

T gat
gates where p; = Pr[measuring|y) using H; yields “Reject”]

Assume that WLOG completeness and soundness errors are exponentially small.



QMA-completeness of Local Hamiltonians

Instance of Q-VER-CIRCUIT Witnesses of YES instances of Q-VER-CIRCUIT
are mapped to witnesses of YES instances of

3-Local Hamiltonians in the following way:

n qubits "

T
= f ® o M 124
1Y) m;| ) Q [P) history state

where

v

a

T gates
* o) =10) ® 0 0)

* i) = Gele-q) fort =1
Let |@) be such that C accepts

|0) @ |0 --- 0) with probability at
least 1 — exp(—n). Y Pr[measuring|y) using H; yields “Reject”] < exp(—n)



Mixed States



Probabilistic mixtures of pure guantum states

Up till now, we’ve represented quantum states as unit vectors in C¢. These are called pure states.

Describing a quantum system using a pure state |1) indicates that state of the system is
determined.

Ex: taking a qubit in the |0) state, and applying H to it.

What if someone flips a coin and hands you either |0) or |+) depending on the coin? If you do not
see the coin, then the state given to you is a mixed state. We can describe this as a probabilistic

mixture:
(z)- )



Density matrices

A d-dimensional density matrix is a matrix p € C4*¢ such that
* pis positive semidefinite
e Tr(p) =1

Density matrices describe mixed states.

A pure state |i) € C4 corresponds to density matrix [y)}{1|.

A mixture {(p1, |¥1)), -, (Pr, Wk )} corresponds to density matrix };; p; [ ;]



Density matrices

. Ex: |0), |1)

8 (510), (50 14)



Density matrices

- & (510)). G/ 10)



Projective measurements

M = {M{,M,, ..., M} } is a k-outcome projective measurement if
* Each M; is a Hermitian projection matrix, i.e., Ml-T = M; and Ml-2 = M;
s M+ My, + -+ M, =1

Measuring a pure state |1) using M yields

« outcome i with probability || M;|y)||?

M;|y)

* Post-measurement state
|M;|P)|?



Projective measurements

M = {M{,M,, ..., M} } is a k-outcome projective measurement if
* Each M; is a Hermitian projection matrix, i.e., Ml-T = M; and Ml-2 = M;

« My +My+ -+ M, =1

Measuring a pure state |1) using M yields

« outcome i with probability || M;|y)||?

M;|y)

* Post-measurement state
|M;|P)|?

Ex: measuring according to orthonormal basis B = {|by), ..., |b4—1)} corresponds to projectors
M; = |b;){b;|



Density matrices

* Density matrices encode everything that is physically relevant about a probabilistic mixture of
pure states.

« Unitary evolution: p = UpUT

* Measurement: Let M = {M{, M,, ..., M.} denote a k-outcome projective measurement. Then
measuring p with M yields outcome i with probability Tr(M; p)

M;pM;
Tr(M; p)

* Post-measurement state: p =



Density matrices

* Ex: [yY) = a|0) + B|1), p = |Y) ]|, measure using standard basis.

* Ex:p = é, measure using basis B = {|by), |b1)}



Quantum One-Time Pad

* Classical one-time pad: Fix message m € {0,1}". Let s be uniformly random n-bit string. Marginal
distribution of m @ s is uniformly random.



Quantum One-Time Pad

* Classical one-time pad: Fix message m € {0,1}". Let s be uniformly random n-bit string. Marginal
distribution of m @ s is uniformly random.

 Quantum one-time pad: Fix qubit 1)) € C2. Sample uniformly random bits a, b € {0,1}. Apply
Z%XP to |y).

* The ensemble {G,Z“th/)))} looks uniformly random.



Quantum One-Time Pad

Classical one-time pad: Fix message m € {0,1}". Let s be uniformly random n-bit string. Marginal
distribution of m @ s is uniformly random.

Quantum one-time pad: Fix qubit |1)) € C2. Sample uniformly random bits a, b € {0,1}. Apply
Z%XP to |y).

The ensemble {G,Z“th/)))} looks uniformly random.

Corresponding density matrix:

1 I
7 (D@ XWX + ZIPYPIZ + ZX [Y)YIXZ) = 5



Density matrices of multiple systems

Given two quantum systems described by density matrices p, g, their joint system is described by
the density matrix p @ o.

n copies of p is abbreviated p®™

Not all density matrices on multiple systems can be writtenas p; @ p, & p3 & ---.

But doesn’t mean entangled! For example, p = %|OO)(OO ‘+%‘ 11)(11]| is a mixture of classical
states; has classical correlations.



Traces and partial traces

Tr(p ® o) = Tr(p) - Tr(o)

Given density matrix p4p on systems AB, can obtain density matrix on system A only via the
partial trace:

pa=Trg(pap)

Trg(-) denotes “tracing out” (a.k.a. marginalizing over) the B subsystem.

Partial trace Trg(-) defined as Trg(|ay, b1){a,, b,|) = {(a,|a;) - |by){b,| for all vectors
lay), laz), |by), |by).



Density matrices

« Ex:p = 00| ® |+)(+]

* Ex: p = |EPR){EPR|



Distinguishability of density matrices

Given two density matrices p and o of the same dimension, we can measure how close they are via
the trace distance:

1 1
D(p,o) =7 llp—ally =5Tr(lp - al)

Operational meaning: Trace distance D(p, o) is equivalently defined as maximum probability of
distinguishing between p, o using ANY possible quantum operation (measurements or unitaries).



Distinguishability of density matrices

Nice properties:

1. Nonnegative: D(p,0) = 0, and achieves 0 if and only if p = &.

2. Symmetric: D(p,0) = D(ao, p)

3. Triangle inequality: D(p,0) < D(p,t) + D(7,0)

4. Convex: D(X; p; pi,0) < Xipi D(pi, 0)

5. Does not increase when tracing out systems: D(p4,04) < D(p4p, 045)

6. Unitarily invariant: D(UpU‘L, UO'UT) = D(p,0)



Density matrices

+ Ex:p =[0,00,0] +[1,1¢1,1| 0 =210,1¢0,1] +3]1,01,0]



~

Enjoy the rest of the
workshop!
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