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BQP

Language 𝐿 ⊆ 0,1 ∗ is in Bounded-Error Quantum Polynomial Time (BQP) if there exist a family of 
circuits 𝐶", 𝐶#, … that are uniformly generated and satisfy:

• 𝐶$ ≤ 𝑂(𝑛%)
• For all 𝑥 ∈ 0,1 $

• If 𝑥 ∈ 𝐿 ⟹ Pr 𝐶$ 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑥 ≥ #
&

• If 𝑥 ∉ 𝐿 ⟹ Pr 𝐶$ 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑥 ≤ "
&

…
.

𝐶!

|𝑥!⟩

|𝑥"⟩

|0⟩

|0⟩

…
.

(Completeness)

(Soundness)



BQP

Problems in BQP:

• All problems in BPP

• Factoring, Discrete Logarithm
• Simulating quantum systems.

Canonical BQP-complete (promise) problem:

QCIRCUIT: given classical description of quantum circuit 𝐶, decide whether 𝐶 accepts on the all 
zeroes input with probability at least #

&
or at most "

&
.



QMA

Language 𝐿 ⊆ 0,1 ∗ is in Quantum Merlin-Arthur (QMA) if there exist a family of verifier circuits 
𝐶", 𝐶#, … that are uniformly generated and satisfy:

• 𝐶$ ≤ 𝑛%

• For all 𝑥 ∈ 0,1 $

• If 𝑥 ∈ 𝐿 ⟹ ∃ 𝜓 , Pr 𝐶$ 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑥 ⊗ |𝜓⟩ ≥ #
&

• If 𝑥 ∉ 𝐿 ⟹ ∀ 𝜓 , Pr 𝐶$ 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑥 ⊗ |𝜓⟩ ≤ "
&

…
.

𝐶!

|𝑥!⟩

|𝑥"⟩

|0⟩

|𝜓⟩

…
.

Quantum witness

(Completeness)

(Soundness)



QMA

Problems in QMA:

• All problems in BQP

• All problems in NP
• Finding minimum energy states of quantum systems (the Local Hamiltonians problem)

Canonical QMA-complete (promise) problem:

Q-VER-CIRCUIT: given classical description of quantum circuit 𝐶, decide if 

• There exists a quantum state |𝜓⟩ such that 𝐶 accepts 𝜓 ⊗ |0⋯0⟩ with probability at least #
&
, or 

• All states |𝜓⟩ are accepted with probability at most "
&
.



Local Hamiltonians problem

(𝑘, 𝛼, 𝛽)-Local Hamiltonians problem: given classical description of measurements 𝐻", 𝐻#, … , 𝐻'
on 𝑛 qubits where each 𝐻(
• Acts on 𝑘 qubits
• Is a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),

decide whether there exists a quantum state |𝜓⟩ such that
• YES case: ∑𝑝( ≤ 𝛼
• NO case: ∑𝑝( ≥ 𝛽
where 𝑝( = Pr measuring 𝜓 using 𝐻( yields “Reject”]

𝐻!
𝐻"

𝐻#
𝐻$

𝐻%



Local Hamiltonians problem

(𝑘, 𝛼, 𝛽)-Local Hamiltonians problem: given classical description of measurements 𝐻", 𝐻#, … , 𝐻'
on 𝑛 qubits where each 𝐻(
• Acts on 𝑘 qubits
• Is a two-outcome measurement (with outcomes labelled “Accept” and “Reject”),

decide whether there exists a quantum state |𝜓⟩ such that
• YES case: ∑𝑝( ≤ 𝛼
• NO case: ∑𝑝( ≥ 𝛽
where 𝑝( = Pr measuring 𝜓 using 𝐻( yields “Reject”]

𝐻!
𝐻"

𝐻#
𝐻$

𝐻%
The (𝑘, 𝛼, 𝛽)-Local Hamiltonians problem is 
QMA-complete for 𝑘 = 3, 𝛽 − 𝛼 ≥ !

&'() *



QMA-completeness of Local Hamiltonians

𝐶

Instance of Q-VER-CIRCUIT Instance of 3-Local Hamiltonians

3-Local Measurements 𝐻!, 𝐻", … , 𝐻+ where

Assume that WLOG completeness and soundness errors are exponentially small.

• YES case: there exists a quantum state |𝜓⟩ such that 
∑𝑝, ≤ exp(−𝑛)

• NO case: for all quantum states |𝜓⟩, ∑𝑝, ≥ Ω !
-!

where 𝑝, = Pr measuring 𝜓 using 𝐻, yields “Reject”]
𝑇 gates

𝑛 qubits



QMA-completeness of Local Hamiltonians

𝐶

Instance of Q-VER-CIRCUIT

𝑇 gates

𝑛 qubits

Let |𝜃⟩ be such that 𝐶 accepts
𝜃 ⊗ |0⋯0⟩ with probability at 

least 1 − exp(−𝑛).

𝜓 =
1
𝑇 + 1

T
./0

-

𝑡̂ ⊗ |𝜓.⟩ “history state”

where

• 𝜓0 = 𝜃 ⊗ |0⋯0⟩

• 𝜓. = 𝐺.|𝜓.1!⟩ for 𝑡 ≥ 1

Witnesses of YES instances of Q-VER-CIRCUIT
are mapped to witnesses of YES instances of 
3-Local Hamiltonians in the following way:

∑Pr measuring 𝜓 using 𝐻, yields “Reject”] ≤ exp(−𝑛)



Mixed States



Probabilistic mixtures of pure quantum states

• Up till now, we’ve represented quantum states as unit vectors in ℂ). These are called pure states.

• Describing a quantum system using a pure state |𝜓⟩ indicates that state of the system is 
determined.

• Ex: taking a qubit in the |0⟩ state, and applying 𝐻 to it. 

• What if someone flips a coin and hands you either |0⟩ or |+⟩ depending on the coin? If you do not 
see the coin, then the state given to you is a mixed state. We can describe this as a probabilistic 
mixture:

1
2
, |0⟩ ,

1
2
, |+⟩



Density matrices

• A 𝑑-dimensional density matrix is a matrix 𝜌 ∈ ℂ)×) such that 
• 𝜌 is positive semidefinite
• 𝑇𝑟 𝜌 = 1

• Density matrices describe mixed states.

• A pure state 𝜓 ∈ ℂ) corresponds to density matrix |𝜓⟩⟨𝜓|.

• A mixture 𝑝", |𝜓"⟩ , … , (𝑝+, |𝜓+⟩) corresponds to density matrix ∑( 𝑝( 𝜓( ⟨𝜓(|



Density matrices

• Ex: |0⟩, |1⟩

• Ex: "
#
, |0⟩ , "

#
, |+⟩



Density matrices

• Ex: "
#
, |0⟩ , "

#
, |1⟩

• Ex: "
#
, |+⟩ , "

#
, |−⟩



Projective measurements

𝑀 = 𝑀", 𝑀#, … ,𝑀+ is a 𝑘-outcome projective measurement if

• Each 𝑀( is a Hermitian projection matrix, i.e., 𝑀(
, = 𝑀( and 𝑀(

# = 𝑀(

• 𝑀" +𝑀# +⋯+𝑀+ = 𝐼

Measuring a pure state |𝜓⟩ using 𝑀 yields

• outcome 𝑖 with probability 𝑀( 𝜓 #

• Post-measurement state -! .
-! . "



Projective measurements

𝑀 = 𝑀", 𝑀#, … ,𝑀+ is a 𝑘-outcome projective measurement if

• Each 𝑀( is a Hermitian projection matrix, i.e., 𝑀(
, = 𝑀( and 𝑀(

# = 𝑀(

• 𝑀" +𝑀# +⋯+𝑀+ = 𝐼

Measuring a pure state |𝜓⟩ using 𝑀 yields

• outcome 𝑖 with probability 𝑀( 𝜓 #

• Post-measurement state -! .
-! . "

Ex: measuring according to orthonormal basis 𝐵 = 𝑏/ , … , |𝑏)0"⟩ corresponds to projectors 
𝑀( = |𝑏(⟩⟨𝑏(|



Density matrices

• Density matrices encode everything that is physically relevant about a probabilistic mixture of 
pure states.

• Unitary evolution: 𝜌 ↦ 𝑈𝜌𝑈,

• Measurement: Let 𝑀 = 𝑀", 𝑀#, … ,𝑀+ denote a 𝑘-outcome projective measurement. Then 
measuring 𝜌 with 𝑀 yields outcome 𝑖 with probability 𝑇𝑟 𝑀( 𝜌

• Post-measurement state: 𝜌 ↦ -!1-!
23 -! 1



Density matrices

• Ex: 𝜓 = 𝛼 0 + 𝛽 1 , 𝜌 = |𝜓⟩⟨𝜓|, measure using standard basis.

• Ex: 𝜌 = 4
#
, measure using basis 𝐵 = 𝑏/ , |𝑏"⟩



Quantum One-Time Pad

• Classical one-time pad: Fix message 𝑚 ∈ 0,1 $. Let 𝑠 be uniformly random 𝑛-bit string. Marginal 
distribution of 𝑚⊕ 𝑠 is uniformly random.



Quantum One-Time Pad

• Classical one-time pad: Fix message 𝑚 ∈ 0,1 $. Let 𝑠 be uniformly random 𝑛-bit string. Marginal 
distribution of 𝑚⊕ 𝑠 is uniformly random.

• Quantum one-time pad: Fix qubit 𝜓 ∈ ℂ#. Sample uniformly random bits 𝑎, 𝑏 ∈ {0,1}. Apply 
𝑍5𝑋6 to |𝜓⟩.

• The ensemble  "
7
, 𝑍5𝑋6|𝜓⟩ looks uniformly random.



Quantum One-Time Pad

• Classical one-time pad: Fix message 𝑚 ∈ 0,1 $. Let 𝑠 be uniformly random 𝑛-bit string. Marginal 
distribution of 𝑚⊕ 𝑠 is uniformly random.

• Quantum one-time pad: Fix qubit 𝜓 ∈ ℂ#. Sample uniformly random bits 𝑎, 𝑏 ∈ {0,1}. Apply 
𝑍5𝑋6 to |𝜓⟩.

• The ensemble  "
7
, 𝑍5𝑋6|𝜓⟩ looks uniformly random.

• Corresponding density matrix: 

1
4

𝜓 𝜓 + 𝑋|𝜓⟩⟨𝜓|𝑋 + 𝑍|𝜓⟩⟨𝜓|𝑍 + 𝑍𝑋|𝜓⟩⟨𝜓|𝑋𝑍 =
𝐼
2



Density matrices of multiple systems

• Given two quantum systems described by density matrices 𝜌, 𝜎, their joint system is described by 
the density matrix 𝜌⊗ 𝜎.

• 𝑛 copies of 𝜌 is abbreviated 𝜌⊗$

• Not all density matrices on multiple systems can be written as 𝜌"⊗𝜌#⊗𝜌&⊗⋯.

• But doesn’t mean entangled! For example, 𝜌 = "
#
|00⟩⟨00 + "

#
11⟩⟨11| is a mixture of classical 

states; has classical correlations.



Traces and partial traces

• 𝑇𝑟 𝜌 ⊗ 𝜎 = 𝑇𝑟 𝜌 ⋅ 𝑇𝑟 𝜎

• Given density matrix 𝜌9: on systems 𝐴𝐵, can obtain density matrix on system 𝐴 only via the 
partial trace:

𝜌9 = 𝑇𝑟: 𝜌9:

• 𝑇𝑟: ⋅ denotes “tracing out” (a.k.a. marginalizing over) the 𝐵 subsystem.

• Partial trace 𝑇𝑟: ⋅ defined as 𝑇𝑟: |𝑎", 𝑏"⟩⟨𝑎#, 𝑏#| = 𝑎# 𝑎" ⋅ |𝑏"⟩⟨𝑏#| for all vectors 
𝑎" , 𝑎# , 𝑏" , |𝑏#⟩.



Density matrices

• Ex: 𝜌 = |0⟩⟨0| ⊗ + ⟨+|

• Ex: 𝜌 = 𝐸𝑃𝑅 𝐸𝑃𝑅



Distinguishability of density matrices

Given two density matrices 𝜌 and 𝜎 of the same dimension, we can measure how close they are via 
the trace distance: 

𝐷 𝜌, 𝜎 =
1
2 𝜌 − 𝜎 " =

1
2𝑇𝑟( 𝜌 − 𝜎 )

Operational meaning: Trace distance 𝐷 𝜌, 𝜎 is equivalently defined as maximum probability of 
distinguishing between 𝜌, 𝜎 using ANY possible quantum operation (measurements or unitaries).



Distinguishability of density matrices
Nice properties:

1. Nonnegative: 𝐷 𝜌, 𝜎 ≥ 0, and achieves 0 if and only if 𝜌 = 𝜎.

2. Symmetric: 𝐷 𝜌, 𝜎 = 𝐷(𝜎, 𝜌)

3. Triangle inequality: 𝐷 𝜌, 𝜎 ≤ 𝐷 𝜌, 𝜏 + 𝐷 𝜏, 𝜎

4. Convex: 𝐷 ∑( 𝑝( 𝜌(, 𝜎 ≤ ∑( 𝑝( 𝐷 𝜌(, 𝜎

5. Does not increase when tracing out systems: 𝐷 𝜌9, 𝜎9 ≤ 𝐷 𝜌9:, 𝜎9:

6. Unitarily invariant: 𝐷 𝑈𝜌𝑈,, 𝑈𝜎𝑈, = 𝐷 𝜌, 𝜎



Density matrices

• Ex: 𝜌 = "
#
0,0 0,0 + "

#
|1,1⟩⟨1,1| 𝜎 = "

#
0,1 0,1 + "

#
|1,0⟩⟨1,0|



Alice Bob

Enjoy the rest of the 
workshop!

FIN


