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Quantum Teleportation

O

Classical communication

channel
1
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Shared before protocol begins.

Quantum teleportation allows Alice to send |y) to Bob using preshared entanglement and
classical communication.



Quantum Teleportation

Quantum circuits:
* Each horizontal wire represents a qubit
* Time runs from left to right

* Initial state of qubits is written on left hand side
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Quantum Teleportation

Claim: At the end of protocol, Bob has ).

Quantum teleportation does not allow Alice to instantaneously send [y) to Bob.
Alice needs to communicate classical bits to Bob!



Quantum Circuit Model



Quantum gates

* A k qubit-quantum gate is a YA VA unitary matrix U

 Common single-qubit quantum gates:

e [ —identity Phase gates
« X - bitflip: |0) & |1) 1 Z:10) — |0),
* H—Hadamard: |0) » —(]0) + |1)) P:10) » |0),
V2
1) > —=(10) = [1) T:10) = 10),
V2

* Two-qubit gates:
* CNOT - controlled NOT operation: CNOT |x,a) = |x,a @ x)

1) » —|1)
1) - i|1)
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Quantum circuits

2 qubit gates

/ \ * A guantum circuit F consists of an ordered

collection of 1- and 2-qubit gates G4, G, ... applied
to subsets of qubits.

n qubit input

)

e Output of circuit F on input |y) is equal to

G -+ G2G1 [P)

]
\

1 qubit gate



Measurements

2 qubit gates

/ \ * At end of computation, if final state is
|§0> = Z,Bx |x>

n qubit input
1y

can perform measurement to get classical
outcome of computation.

Rl RIRIR

* Measurement is probabilistic: obtains outcome
x € {0,1}"™ with probability | 8, |?.

]
\

1 qubit gate  Measurement is destructive: measuring in middle
of qguantum computation will disturb the state.

We can also allow intermediate measurements (like in quantum teleportation),
but for now let’s assume that measurements happen at the very end.



Universal and non-universal gate sets

* Every n-qubit unitary U can be implemented as a quantum circuit consisting of single-qubit gates and
CNOT.

* In worst case, such a circuit requires = 4™ gates.

* Can use arbitrary single-qubit gates G € C?*2,




Universal and non-universal gate sets

* |In practice, we can only use gates from a fixed, finite set (depending on your hardware).

* Aset A of gates is universal if any unitary (on any number of qubits) can be approximated arbitrarily
well by a circuit consisting of gates from A.

* Aunitary U e-approximates another unitary V if: maxp [|U[) — V[)|| < €

Gy, Gy, Gs, . € A



Universal and non-universal gate sets

* Ex: A = Clifford U {T} is a universal gate set!

 C(lifford= gates generated by {H, P, CNOT}
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Universal and non-universal gate sets

o ——

Ex: A = Clifford is not universal gate set.

 C(lifford= gates generated by {H, P, CNOT}

———————————————————————————————————————

CNOT Clifford gates\
1
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*=({ o 2=(5 )
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Fact #0: Clifford circuits are not even universal for
classical computation.

Fact #1: Clifford circuits (with all zeroes input) can
be efficiently simulated on classical computers
(Gottesman-Knill Theorem).



Universal and non-universal gate sets

* Ex: A = Clifford is not universal gate set. Fact #2: Clifford circuits/unitaries are equivalently
defined in terms of their behavior on Pauli
 Clifford= gates generated by {H, P, CNOT} matrices.

* Pauli = gates generated by {X, Z} € Clifford

* n-qubit Pauli unitaries: tensor products of {I,X,Y, Z}

———————————————————————————————————————
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Universal and non-universal gate sets

* Ex: A = Clifford is not universal gate set. Fact #2: Clifford circuits/unitaries are equivalently
defined in terms of their behavior on Pauli matrices.

 C(lifford= gates generated by {H, P, CNOT}
For all Pauli unitaries W =W; Q W, K - Q W,

* Pauli = gates generated by {X, Z} € Clifford o o .
for all n-qubit Clifford unitaries C, there exists

another Pauliunitary W' =W,"Q W,' Q --- Q W,
* n-qubit Pauli unitaries: tensor products of {I,X,Y, Z} Y 1 QW & QW

such that
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Computing classical functions, quantumly

How to compute f:{0,1}" — {0,1}"" using a quantum circuit?

Can call classical functions as a subroutine using classical oracles: define the unitary U onn + m
qubits: for all x € {0,1}"*,b € {0,1}',

Utlx, b) = |x,b @ f(x))

Ex: f = AND, f = NOT
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Computing classical functions, quantumly

How to compute f:{0,1}" — {0,1}"" using a quantum circuit?

Can call classical functions as a subroutine using classical oracles: define the unitary Ur onn + m
qubits: for all x € {0,1}"*,b € {0,1}',

Utlx, b) = |x,b @ f(x))

Size s classical circuit computing f = There is a size O(s) quantum circuit computing Uy.



Computing classical functions, quantumly

Magic starts happening when classical oracles are queried on a superposition of inputs.

Deutsch’s Problem: Given f:{0,1} — {0,1}, determine using one quantum query to U whether
* YES case: f(0) # f(1)
* NOcase: f(0) = f(1)

10)
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Computing classical functions, quantumly
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Computing classical functions, quantumly

Magic starts happening when classical oracles are queried on a superposition of inputs.

Deutsch’s Problem: Given f:{0,1} — {0,1}, determine using one quantum query to Ur whether
* YES case: f(0) # f(1)
* NOcase: f(0) = f(1)

Case2:f(0)=0,f(1) =1
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Computing classical functions, quantumly
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Case2: f(0)=0,f(1) =1

circuit equivalent to
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Grover Search



Unstructured search

Search problem: Given black-box access to f:{0,1}"* - {0,1}, find x such that f(x) = 1.

Classical query complexity: Q(2™)

Quantum query complexity: O(v/2™)



Unstructured search

Search problem: Given black-box access to f:{0,1}"* - {0,1}, find x such that f(x) = 1.

For boolean functions, we can use different oracle (called phase oracle): for all x € {0,1}"

Velx) = (—1)7®)|x)

XOR oracles and phase oracles are equivalent!



Unstructured search

Search problem: Given black-box access to f:{0,1}" — {0,1}, find x such that f(x) = 1.

Assume there exists a unique x* such that f(x*) = 1.
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Unstructured search

Search problem: Given black-box access to f:{0,1}" — {0,1}, find x such that f(x) = 1.

Assume there exists a unique x* such that f(x*) = 1.
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Grover iterate Grover iterate

"diffusion operator”, “inversion about the mean”,...

—ﬂ— = 2|s)¥s|—1



Unstructured search

Search problem: Given black-box access to f:{0,1}" — {0,1}, find x such that f(x) = 1.

Assume there exists a unique x* such that f(x*) = 1.
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Starting state of algorithm After one Grover iterate



Unstructured search

Search problem: Given black-box access to f:{0,1}" — {0,1}, find x such that f(x) = 1.

Assume there exists a unique x* such that f(x*) = 1.
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Starting state of algorithm after 0(\/ 2") iterates



Unstructured search

Search problem: Given black-box access to f:{0,1}"* - {0,1}, find x such that f(x) = 1.

What if there are T solutions x such that f(x) = 1?

* If T is known before hand, run O (\/%) gueries.

: : : _— . ,2" :
e If T is unknown, then using more clever algorithm, can still find solution in O ( ?> queries!



Quantum lower bound for unstructured
search

Grover’s algorithm is optimal (in terms of query complexity) for solving the unstructured search
problem: Q(\/Z") qgueries are needed!

Bennett, Brassard, Bernstein, Vazirani proved this using a hybrid argument. Suppose there was a Q-
query algorithm for unstructured search, for Q < v2m.
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Quantum lower bound for unstructured
search
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Generalizations of Grover search

* Quantum Counting

* Amplitude Amplification




