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Hour 1

• Basic postulates of Quantum Mechanics & Dirac Notation

• Quantum vs classical bits

• Composite quantum systems



Quantum information theory is a generalization of 
classical probability theory where probabilities can be 

negative, or even complex numbers.

Starting point
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• Consider a physical system ! with d distinguishable states, numbered  0, 1, … , & − 1
• There is also an observer ( external to the system
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Starting point

• Consider a physical system ! with d distinguishable states, numbered  0, 1, … , & − 1
• There is also an observer ( external to the system
• There are two things that can occur:

• Measurement: the external observer ! can measure the state of "
• Isolated evolution: the system " can change, without interacting with the external observer !

! "



Classical physics

• Initially, the observer ( assigns a state to the system !.
• According to classical physics, we can model the state of the system S as a probability distribution

over & states, represented as a column vector:

! "
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⋮

)"#$
∈ ℝ"

For all ., )% ≥ 0
)! +⋯+ )"#$ = 1



Classical physics

• If the observer measures (i.e. “observes”) the system !, then ( obtains a measurement outcome 
. with probability )%, and then the state of the system ! gets updated to 

! "
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↦ )& =

0
⋮
1
⋮
0

!’th position

!

If the observer measures again, then 
gets state # with probability 1 
(nothing has changed).



Classical physics

• If the system ! undergoes isolated evolution (i.e. “following the laws of physics”), then the state 
of the system ! gets updated via multiplication by a stochastic matrix

! "

) =
)!
⋮

)"#$
↦ )& = 3

)!
⋮

)"#$

• A $×$ matrix & is stochastic if entries are 
nonnegative, and each column sums to 1.

• Stochastic matrices map probability vectors to 
probability vectors.



Quantum physics

• Initially, the observer ( assigns a state to the system !.
• According to quantum physics, we can model the state of the system S as a complex unit vector in 
ℂ", represented as a column vector:

|6⟩ =
8!
⋮

8"#$
8! ' +⋯+ 8"#$ ' = 1 The 8’s are called amplitudes.



Quantum physics

• Initially, the observer ! assigns a state to the system ".
• According to quantum physics, we can model the state of the system S as a complex unit vector in ℂ!, 

represented as a column vector:

• The d distinguishable states (also called “classical states”) are represented by

• A general quantum state is a superposition of classical basis states: 

$ = &" 0 + &# 1 +⋯+ &!$#|, − 1⟩

|6⟩ =
8!
⋮

8"#$
8! ' +⋯+ 8"#$ ' = 1

|0⟩ =
1
0
⋮
0

|1⟩ =
0
1
⋮
0

|$ − 1⟩ =
0
0
⋮
1

⋯

The 8’s are called amplitudes.

This forms an orthogonal basis 
for ℂ!, called the standard basis.



Quantum physics

• Initially, the observer ! assigns a state to the system ".
• According to quantum physics, we can model the state of the system S as a complex unit vector in ℂ!, 

represented as a column vector:

• The d distinguishable states (also called “classical states”) are represented by

• A general quantum state is a superposition of classical basis states: 

$ = &" 0 + &# 1 +⋯+ &!$#|, − 1⟩
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|0⟩ =
1
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1
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0
0
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The 8’s are called amplitudes.

This forms an orthogonal basis 
for ℂ!, called the standard basis.
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Dirac notation
• The / notation is called Dirac notation, used to represent quantum states.
• Mathematically, / (“ket vector”) is a column vector.
• The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:

• Example: duals of the standard basis vectors:  ⟨0| = 1,0 and ⟨1| = 0,1

6 = (
) ⟨6| = 8∗, :∗ = 8∗⟨0| + :∗⟨1|

“ket psi” “bra psi” %∗, '∗ are complex conjugates of %, '.
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Dirac notation
• The / notation is called Dirac notation, used to represent quantum states.
• Mathematically, / (“ket vector”) is a column vector.
• The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:

• Example: duals of the standard basis vectors:  ⟨0| = 1,0 and ⟨1| = 0,1
• The inner product between a column vector / = 2 0 + 4|1⟩ and a row vector ⟨5| = 6 ⟨0| + 7 ⟨1| is 

• Notation is  helpful for quickly identifying scalars, row and column vectors in complicated expressions.
• Naming: ”bra” + “ket” = “bracket”

6 = (
) ⟨6| = 8∗, :∗ = 8∗⟨0| + :∗⟨1|

“ket psi” “bra psi” %∗, '∗ are complex conjugates of %, '.
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Dirac notation

• Outer products: / ⟨5| is a matrix

• Matrix 8 = |/⟩⟨5|, and vector 9 . Then matrix-vector multiplication becomes:

• Every matrix 8 with matrix entries 8"# can be written as 8 = ∑",#8"# |#⟩⟨;|
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Quantum physics

• If the observer measures the system !, then ( obtains a measurement outcome . with probability 
8% ', and then the state of the system ! gets updated (gets ”collapsed”) from |6⟩ to the classical 

state |.⟩.

• If the observer measures again, then it gets state |.⟩ with probability 1.

! "

!

This is called the Born Rule.

-
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Measuring a qubit

|0⟩

|1⟩

/ = 2
3 0 + 1

3 |1⟩

Before

/ = |0⟩

|1⟩After, w/ prob. 8 ' = '
+

|0⟩

/ = |1⟩After, w/ prob. : ' = $
+

-
-

I



Quantum physics

• If the system ! undergoes isolated evolution (i.e. “following the laws of physics”), then the state 
of the system ! gets updated via multiplication by a unitary matrix

• A &×& complex matrix = is unitary if =#$ = =,

! "

|"⟩ ↦ |"′⟩ = '|"⟩ • >% denotes the Hermitian conjugate of >: 
transposing the matrix, then complex-conjugating 
every entry: the #, ; ’th entry of >% is >#"∗ .
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Quantum physics

Equivalent definitions of a unitary matrix:

• =#$ = =,

• = maps unit vectors to unit vectors

• = preserves the inner product between vectors

A
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Unitary evolution of a qubit

|0⟩

|1⟩
/ = |1⟩

Before

|0⟩

|1⟩

After

! = 0 1
1 0

”bitflip” gate
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Unitary evolution of a qubit

|0⟩

|1⟩
/ = |1⟩

Before

|0⟩

|1⟩

After

% = 1
2
1 1
1 −1

Hadamard gate
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Unitary evolution of a qubit

|0⟩

|1⟩
/ = 1

2 0 + |1⟩

Before

|0⟩

|1⟩

After

! = 0 1
1 0

”bitflip” gate



Unitary evolution of a qubit

|0⟩

|1⟩
/ = 1

2 0 + |1⟩

Before

|0⟩

|1⟩

After

( = 1 0
0 −1

”phase flip” gate



Measuring in different bases

By default, observer measures with respect to standard basis  0 , 1 , … , |& − 1⟩

Observe can also measure a state 6 ∈ ℂ" with respect to arbitrary basis > = ?! , … , |?"#$⟩ :

• Get outcome |?%⟩ with probability 6 ?% '.

• State gets collapsed to |?%⟩. 

i.e. square overlap with ?%

i.e. state is projected to ?%

orthosis!tri

-

=
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Measuring in different bases

|0⟩

|1⟩
/ = − 2

3 0 + 1
3 |1⟩

Before

|0⟩

|1⟩
Obtain |+⟩ with probability ⟨6|+⟩ '

|+⟩

|−⟩

+ = 1
2 0 + |1⟩ − = 1

2 0 − |1⟩
Diagonal Basis

/ = |+⟩

|−⟩

-
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Measuring in different bases

|0⟩

|1⟩
/ = − 2

3 0 + 1
3 |1⟩

Before

|0⟩

|1⟩
|+⟩

|−⟩

Diagonal Basis

|+⟩

/ = |−⟩

Obtain |−⟩ with probability ⟨6|−⟩ '

+ = 1
2 0 + |1⟩ − = 1

2 0 − |1⟩
pr

-

- z - I - f, + II. I?



Quantum vs classical bits



Quantum vs classical bits

• Is there an essential difference between a quantum bit and a classical bit? For example, does 
allowing negative or complex amplitudes actually make a discernible difference? 

• Ex: + = $
' 0 + $

' |1⟩ versus      − = $
' 0 − $

' |1⟩

|0⟩

|1⟩
+

|0⟩

|1⟩

−

What happens when we 
measure these two states?

( in Std basis )
.

measurement
outcomes

are
the

same .



Quantum vs classical bits

• + and − states are orthogonal to each other. To see this using the Dirac notation:

• In quantum mechanics, orthogonal states are perfectly distinguishable from one another. 

⟨− + = O .



Quantum vs classical bits
• Suppose we had an unknown state 6 that was either + or − . 

How could the observer tell the difference?

• Before measuring, apply a unitary @ = $
'
1 1
1 −1

• Also known as the Hadamard gate
• Unitaries can be thought as change-of-basis operators

• @ + = $
' @ 0 + @|1⟩ = $

' + + |−⟩ = |0⟩
• Similarly, @ − = ⋯ = |1⟩
• Measuring the rotated state now tells us what 6 originally was!

• In quantum mechanics, orthogonal states are perfectly 
distinguishable from one another. 

|0⟩

|1⟩
+

−



Quantum vs classical bits
• Suppose we had an unknown state 6 that was either + or − . 

How could the observer tell the difference?

• Before measuring, apply a unitary @ = $
'
1 1
1 −1

• Also known as the Hadamard gate
• Unitaries can be thought as change-of-basis operators

• @ + =

• @ − =

• Measuring the rotated state now tells us what 6 originally was!

|0⟩

|1⟩
+

−

0 = ? +

1 = ? −
H ( Idot treks) = # (tho? t HH) = 107

112 .



Quantum vs classical bits

• Takeaway: Minus signs in the amplitudes matter!
• More precisely, relative phases between the classical basis states 

matter.

• On the other hand, global phases don’t matter.
• There is no quantum process (unitary + measurement) to 

distinguish between |6⟩ and −|6⟩, or in fact 8|6⟩ for any 
complex number 8 of norm 1.

• This is because =(−|6⟩) = −=|6⟩, and measurements at the 
end destroy sign information, because we’re taking the absolute 
value of the amplitudes!

|0⟩

|1⟩
+

−
-

-

it>
,
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Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to 
incompatible bases. 



Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to 
incompatible bases. 

Def: Bases 3 = C! , … , |C"#$⟩ and > = ?! , … , |?"#$⟩ are compatible if 3 and > are the same 
up to permutation and global phases.
• Ex: 3 = { 0 , |1⟩} and > = { 1 , . 0 } are compatible.

Otherwise, they are incompatible.
• Ex: 3 = { 0 , |1⟩} and > = { + , − } are incompatible.

+ = 1
2 0 + |1⟩

− = 1
2 0 − |1⟩

--

--



Heisenberg Uncertainty Principle

Def: A state 6 ∈ ℂ" is determined in a basis > = ?! , … , |?"#$⟩ if measuring according to >
yields a fixed state |?%⟩ with probability 1. 

HUP for Qubits (simplest version): A qubit state 6 ∈ ℂ' cannot be simultaneously determined in 
two incompatible bases.
o

-

Eso
. .



Heisenberg Uncertainty Principle

Def: FCG 6 , 3 = 4 I! ⋅ I$, where I% = probability of obtaining outcome |C%⟩ when measuring |6⟩
with respect to basis 3.

HUP for Qubits (quantitative): Let 3 = standard basis, > = diagonal basis. For all 6 ∈ ℂ', 

FCG 6 , 3 + FCG 6 , > ≥ 1.



Quantum Zeno Effect

Quantum version of the idiom “A watched pot never boils.”

Intermediate measurements can drastically change
the outcome of a quantum experiment:

Experiment A (pot left alone)

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '()⌉ times:

1. Apply C) = cos 5 − sin 5
sin 5 cos 5 to qubit.

3. Measure qubit in standard basis.

you
K2

.

O



Quantum Zeno Effect

Quantum version of the idiom “A watched pot never boils.”

Intermediate measurements can drastically change
the outcome of a quantum experiment:

Experiment A (pot left alone) Experiment B (watched pot)

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '()⌉ times:

1. Apply C) = cos 5 − sin 5
sin 5 cos 5 to qubit.

3. Measure qubit in standard basis.

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '()⌉ times:

1. Apply C) to qubit.

2. Measure in standard basis.

3. Measure qubit in standard basis.

y
intermediate2 measurement

.



Quantum Zeno Effect

• L- = cos ; − sin ;
sin ; cos ; is a rotation by angle ;.

• If 6 = cos 8 0 + sin 8 |1⟩, then L- 6 = cos 8 + ; 0 + sin 8 + ; |1⟩

• Experiment A (pot left alone): final state is L-. 0

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '()⌉ times:

1. Apply C) to qubit.

3. Measure qubit in standard basis.

-
n

↳
veto?
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Quantum Zeno Effect

• L- = cos ; − sin ;
sin ; cos ; is a rotation by angle ;.

• If 6 = cos 8 0 + sin 8 |1⟩, then L- 6 = cos 8 + ; 0 + sin 8 + ; |1⟩

• Experiment B (watched pot):

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '()⌉ times:

1. Apply C) to qubit.

2. Measure in standard basis.

3. Measure qubit in standard basis.

measure

103 → Ro lose cos 0103 + sino (⇒ → get lol w - p .
coto

get
117 up .

Sino .

I O
'

.

pj[ever measuring IH in k tries ) E k . E = 01¥ ) . 07,0¥.

Very
small.



Composite quantum systems



Composite quantum systems
• The state of a qubit is a unit vector in the space ℂ'.

• Also called the Hilbert space of a qubit. 

• Hilbert space = complex vector space with inner product.



Composite quantum systems
• The state of a qubit is a unit vector in the space ℂ'.

• Also called the Hilbert space of a qubit. 

• Hilbert space = complex vector space with inner product.

• The Hilbert space of 2 qubits is the tensor product space ℂ'⊗ℂ'
• ℂ' has orthonormal basis 0 , |1⟩ . 

• The tensor product space ℂ'⊗ℂ' ≅ ℂ/ is 4-dimensional, with orthonormal basis 

• Shorthand: .T = ., T = . T = |.⟩ ⊗ T .

• This basis represents the classical states of the two qubits. 

0 ⊗ 0 =
1
0
0
0

0 ⊗ 1 =
0
1
0
0

1 ⊗ 0 =
0
0
1
0

1 ⊗ 1 =
0
0
0
1

-
-

- - -
-

f f dh t b

) 1oz > = 107×0117 .



Composite quantum systems
• Tensor product of vectors: if 6 = 8 0 + : 1 , and U = V 0 + W 1 , then 

the state of the two qubits together is

) *

) ⊗ *
6 ⊗ U =
-

( No> t GHS) ④ (z lost HIS)
= at 10,0) t x 8 10,13 t B 811,03 t Bf

1413
.



Composite quantum systems
• A two qubit state 6 is a unit vector in ℂ'⊗ℂ':

• General two-qubit states cannot be written as a tensor product state

for one-qubit states U , ; ∈ ℂ'.

• States that cannot be written in product form are called entangled. 
Otherwise, they are unentangled. 

6 = ∑%,1 8%1 . ⊗ |T⟩ ∑%,1 |8%1|' = 1

6 ≠ U ⊗ |;⟩

←
-

←



Composite quantum systems
• Ex: (ZL = $

' 0 ⊗ 0 + 1 ⊗ |1⟩ is entangled.

• Ex: 6 = $
' 00 + 01 + 10 + |11⟩ is unentangled. 

-
-

-

-
-

IEP R2 t 147×0147

I
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Composite quantum systems
• Taking inner products in ℂ'⊗ℂ': let C , ? , [ , & ∈ ℂ'

• Let 6 = ∑%,1 8%1 ., T and ; = ∑%,1 :%1 ., T . Then

⟨C| ⊗ ⟨?| ( [ ⊗ |&⟩) = ⟨C [ ⋅ ? &

⟨6|;⟩ =

The

nut m -

kami .
IIe...

= hijpij .

commemorate



Measurements
• Measuring two-qubit states 6 = ∑8%1|.T⟩ ∈ ℂ'⊗ℂ':

• Obtain classical outcome ., T ∈ 0,1 ' with probability 8%1
'
.

• The post-measurement state of 6 is then ., T



Partial Measurements
• What if we only want to measure the first qubit?

• To compute probability of obtaining outcome . ∈ 0,1 :
• State gets projected to basis states where the first qubit is in the state |.⟩.

• Probability I% is squared length of 6′ , which is  ∑1 8%1
'

.

• The post-measurement state is 6′ renormalized:

6% = 1
I%
^

1
8%1 |.T⟩ = . ⊗ 1

I%
^

1
8%1 |T⟩

6%& =^
1
8%1 |.T⟩ Unnormalized state

147 = ( EP RS .

①arm O
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Partial Measurements

Ex: measure first qubit of 6 = '
+ 00 + $

2 01 − $
2 |11⟩

-

outcome 141oz = Fg too > t ft 1017 .

prob of outcome = 1/14 ! > 1/2 = It to = E -

post - measurement = f¥ . 14J > = to > ④ (ft lo > +Ftth)
state

outcome
't : prob of

outcome -

- tf .

post - measurement : 11,1 ) .
state



Unitaries on multiple qubits
• Two-qubit systems in isolation undergo evolution via unitary operators acting on ℂ'⊗ℂ'.

• Tensor product of unitaries: 

• Let =, F be one-qubit unitaries.

• Applying = to the left qubit and F to the right qubit, from the 
perspective of the larger system, corresponds to the unitary =⊗ F. 

• Matrix representation: 

• = = _$$ _$'
_'$ _'' , F = `$$ `$'

`'$ `''

• =⊗ F = _$$F _$'F
_'$F _''F is a 4×4 matrix

Matrix representation depends on 
how you label your rows/columns!

9 9
U ⑦ V
-

4x4 matrix .

1913 = ( Yg)←



Unitaries on multiple qubits
• Ex: 6 = 0 ⊗ 0 ,= = F = $

'
1 1
1 −1

• Ex: 6 = $
' 00 + 01 − 10 − |11⟩ , = = F = $

'
1 1
1 −1

-

-

( Uxov ) = @④two) -_ ( un ) ④ (via)
-

- it> ⑤ It>

✓ = { ( 10,031-10,17+(1,031-11,13) .

T T T 9

147 =
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Unitaries on multiple qubits

• Ex: 6 = '
+ 00 + $

2 01 − $
2 |11⟩, = = F = $

'
1 1
1 −1



Unitaries on multiple qubits
• In general, two-qubit unitaries are not product operators; they are entangling.

• Ex: CNOT (“controlled-NOT”) acts on 2-qubits: for all a ∈ {0,1}

• Ex: 6 = + ⊗ 0 . CNOT 6 =

• Explicit matrix representation of CNOT (not that useful)

JKLM N ⊗ 0 = N ⊗ |N⟩
JKLM N ⊗ 1 = N ⊗ |N ⊕ 1⟩

CNOT flips a target qubit, based on control qubit.

Ctrl Tgt

-

f

g

CNOT Ie ( too> t 1107)

= tz ( CNOT too>
t CNOT 1107) = (1007+1113)

= (EPR )
.



The No-Cloning Theorem

• Classical bits are easily copied. Quantum information is different.

• Informal Statement: “There is no quantum Xerox machine”.

• Formally: there is no unitary , acting on two qubits such that

• for all one-qubit states ) .

,( ) ⊗ 0 ) = ) ⊗ |)⟩

ancilla qubit



The No-Cloning Theorem

Proof: try to copy 0 versus +

U to > 107 = 10767 .

Ult> 107 = It > It> .

mm
-

⇐ Kol)(It > ios) (
okol )fHHt7 )
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The exponentiality of QM
• The joint state of f qubits is represented as a 

vector in ℂ' ⊗4 ≅ ℂ'!:

• Each additional qubit doubles the dimensionality of the Hilbert space. 

• Applying a unitary = to an f-qubit state 6 appears to be doing exponentially many 
computations in parallel:

/ = P
*∈ ,,- !

2* |N⟩

= 6 = ^
5∈ !,$ !

85 =|a⟩

- ✓

- -

-
on

-



The exponentiality of QM, redux
• Nature is doing an incredible amount of work for us. 

• However, this extravagance is hidden behind the veil of measurement. 

• We can only access the exponential information stored in ) in a limited way.

• This leads to a fundamental tension in quantum information:

The exponentiality vs fragility of quantum states

• This tension makes quantum information and 
computation subtle, mysterious, and extremely interesting.


