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Hour 1

* Basic postulates of Quantum Mechanics & Dirac Notation
* Quantum vs classical bits

* Composite quantum systems



Starting point

Quantum information theory is a generalization of
classical probability theory where probabilities can be
negative, or even complex numbers.
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* Consider a physical system S with d distinguishable states, numbered 0,1, ...,d — 1

* There is also an observer E external to the system




Starting point

* Consider a physical system S with d distinguishable states, numbered 0,1, ...,d — 1
* There is also an observer E external to the system

* There are two things that can occur:
 Measurement: the external observer E can measure the state of S
* |solated evolution: the system S can change, without interacting with the external observer E




Classical physics

* Initially, the observer E assigns a state to the system S.

* According to classical physics, we can model the state of the system S as a probability distribution
over d states, represented as a column vector:

S0 Foralli,s; =0
= . € ]:Rd
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Classical physics

* If the observer measures (i.e. “observes”) the system S, then E obtains a measurement outcome
i with probability s;, and then the state of the system S gets updated to

If the observer measures again, then
gets state i with probability 1

1 [ i'th position (nothing has changed).




Classical physics

* If the system S undergoes isolated evolution (i.e. “following the laws of physics”), then the state
of the system S gets updated via multiplication by a stochastic matrix

A dXd matrix A is stochastic if entries are
So So nonnegative, and each column sums to 1.
S = [l S’ =
Sqg—1 Sq_1 e Stochastic matrices map probability vectors to

probability vectors.




Quantum physics

* Initially, the observer E assigns a state to the system S.

* According to quantum physics, we can model the state of the system S as a complex unit vector in
C%, represented as a column vector:

@o
lY) = ( : ) |a0|2 4o 4 |ad_1|2 =1 The a’s are called amplitudes.
Ad-1



Quantum physics

 Initially, the observer E assigns a state to the system S.

« According to quantum physics, we can model the state of the system S as a complex unit vector in C%,
represented as a column vector:

24y

lY) = ( : ) lag|? + -+ |lag_1]> =1 The a’s are called amplitudes.
Aa-1

* The d distinguishable states (also called “classical states”) are represented by

1 0 0 This forms an orthogonal basis
|0) = O 1) = 1 |d —1) = 0 for C4, called the standard basis.

0 0 1



Quantum physics

Initially, the observer E assigns a state to the system S.

According to quantum physics, we can model the state of the system S as a complex unit vector in C¢,
represented as a column vector:

24y

lY) = ( : ) lag|? + -+ |lag_1]> =1 The a’s are called amplitudes.
Aa-1

The d distinguishable states (also called “classical states”) are represented by

1 0 0 This forms an orthogonal basis
|0) = O 1) = 1 |d —1) = 0 for C4, called the standard basis.
0 0 1

A general quantum state is a superposition of classical basis states:

[Y) = apl0) + ay|1) + -+ ag_4]|d — 1)



Dirac notation

* The |y) notation is called Dirac notation, used to represent quantum states.

* Mathematically, |y) (“ket vector”) is a column vector.



4y = (%) = (1,0)

Dirac notation ,
Y7 = (}%, ;JS)

* The |y) notation is called Dirac notation, used to represent quantum states.

* Mathematically, |y) (“ket vector”) is a column vector. <ﬂ - (/’b B + > >
— )
* The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:
a
) = (%) Wl = (", f7) = a*(0] + (1]
“ket psi” “bra psi” a*, B* are complex conjugates of a, .

* Example: duals of the standard basis vectors: (0| = (1,0) and (1| = (0,1)



Dirac notation

The |y) notation is called Dirac notation, used to represent quantum states.
Mathematically, [)) (“ket vector”) is a column vector.

The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:

W)= () Wl = (a", %) = a*(0] + f*(1]

“bra psi”

“ket psi” a*, f* are complex conjugates of a, 3.

Example: duals of the standard basis vectors: (0|

(1,0) and (1] = (0,1) / J

The inner product between a column vector |) = a|0) + £|1) and a row vector (8] = y (0] + & (1] is - 0

@19 =y ol + §<u1)(lod +Blev )= 2&2 %fgpliis
49 A -

Notation is helpful for quickly identifying scalars, row and column vectors in complicated-€xpressions.

Naming: "bra” + “ket” = “bracket” _ 7‘
— o+ gﬂ \



Dirac notation - alg « ¢ = 5y
J@\/@W‘ 1@y < Ylov t ol1? - é?)

* Outer products: [Y){0] is a matrix (oLY 04(?)

wxole ()05 (pred

A
. § 1) \("f OX'DI* o(g [7<
“("7*(>“7>L5/<%§<> *gy |4 Kol *
cp Rt

* Matrix M = |)(8], and vector |¢). Then matrix-vector multiplication becomes:

Migse [E7<1 P> = 19> <Ol o wenr,

\o@r
AN \/e_c& oc AN

* Every matrix M with matrix entries {Mij} can be written as M = 3,; ; M;; |i){j|



Quantum physics

 If the observer measures the system S, then E obtains a measurement outcome i with probability
|a;|?, and then the state of the system S gets updated (gets ”collapsed”) from |) to the classical

. p(f) o
e (1) - e (d)

* If the observer measures again, then it gets state |i) with probability 1.

This is called the Born Rule.

——
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Quantum physics

* If the system S undergoes isolated evolution (i.e. “following the laws of physics”), then the state
of the system S gets updated via multiplication by a unitary matrix

/ « UT denotes the Hermitian conjugate of U:
|l/)) = |l/) ) — Ull/)) transposing the matrix, then complex-conjugating
every entry: the (i, j)'th entry of UT is U};.

= s
\\ Xf:(?;>
><7«*-L
£ S \f: (1) 0

Y e

« A dxd complex matrix U is unitaryif U1 = = UT K= < O ’>

1

Lyt



Quantum physics

Equivalent definitions of a unitary matrix:

° U_1=U1-

1/\/
* U maps unit vectors to unit vectors
N

|

e U preserves the inner product between vectors

ks > 7
o g7 o= Ul e ulf

Y ; 7/ <+1
oLy = YED = <“"\L£§‘¢

7



Unitary evolution of a qubit
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Unitary evolution of a qubit
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Hadamard gate



Unitary evolution of a qubit

1)
ST W) = =30 + 1)
. A 2
J \
-I ‘\
| 1 10)
-\ /
\ /
‘\. /’
Before

L]
. - ~.

.
 am o

"bitflip” gate



Unitary evolution of a qubit
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Measuring in different bases

)
51/”’
[ i - A \\5 5(
By default, observer measures with respect to standard basis {|0), 1), ..., |d — 1)} JW\MS €
N~
Observe can also measure a state [} € C% with respect to arbitrary basis B = {|by), ..., |bg—1)}:
* Get outcome |b;) with probability [(1p|b;)]?. i.e. square overlap with |b;)

\/\/\_,-\

_—

* State gets collapsed to |b;). i.e. state is projected to | b;)

{( .



Measuring in different bases

Obtain |+) with probability |[(]|+)|?
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Measuring in different bases

Obtain |—) with probability |(1/J|—)|2
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Quantum vs classical bits



Quantum vs classical bits

* |s there an essential difference between a quantum bit and a classical bit? For example, does
allowing negative or complex amplitudes actually make a discernible difference?

1 1 1 1
° EX|+>—E|O>+\/—§|1> versus |_>_\/_E|O _\/_§|1>
What happens when we

|1) |1) measure these two states?
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Quantum vs classical bits

* |4+) and |—) states are orthogonal to each other. To see this using the Dirac notation:

(=l+)= 0

* In quantum mechanics, orthogonal states are perfectly distinguishable from one another.



Quantum vs classical bits

* Suppose we had an unknown state |) that was either |+) or |—).
How could the observer tell the difference?

-—
. -_—

Y e g owm ®



| . ‘ b . i ~ |+>
Quantum vs classical bits .
J \
* Suppose we had an unknown state |) that was either |+) or |—). ! '
How could the observer tell the difference? | 110)
\ /
\ /
. . 11 1 N
Before measuring, apply a unitary H = \/5(1 _1)

* Also known as the Hadamard gate
e Unitaries can be thought as change-of-basis operators

_ | L _l( o7 t Hm): [o?
o H|_|_)_ H (Ez/h?% (Lti\) =y H 4 L
./.
. |
* Measuring the rotated state now tells us what |i) originally was! \‘ K

.
" am g o



Quantum vs classical bits

* Takeaway: Minus signs in the amplitudes matter!

* More precisely, relative phases between the classical basis states
matter. —

* On the other hand, global phases don’t matter.

. —_— .
* There is no guantum process (unitary + measurement) to

distinguish between |Y) and —|y), or in fact a|) for any
complex number a of norm 1.

e This is because U(—|y)) = —U|y), and measurements at the
end destroy sign information, because we’re taking the absolute
value of the amplitudes!

* amon o= ®



Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to
incompatible bases.



Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to
incompatible bases.

Def: Bases A = {|ay), ..., |ag—1)} and B = {|by), ..., |by—1)} are compatible if A and B are the same
up to permutatiomand giobal phases. —

« Ex:A =1{|0),|1)}and B ={ |1) , i|0) }are compatible.

Otherwise, they are incompatible. 1
. . |+) = —=([0) + 1))
« Ex: A ={|0),|1)}and B = { |+), |—)} are incompatible. V2
v—/\’ . 1
|—-) = —2(|0) — (1))

N



Heisenberg Uncertainty Principle

Def: A state |p) € C% is determined in a basis B = {|by), ..., |bg_1)} if measuring according to B
yields a fixed state |b;) with probability 1.

HUP for Qubits (simplest version): A qubit state |y) € C? cannot be simultaneously determined in
twoineempatible bases. —_—

47 V7
N\

%\W



Heisenberg Uncertainty Principle

Def: Var(|y),A) = 4 p,y - p1, Where p; = probability of obtaining outcome |a;) when measuring |)
with respect to basis A.

HUP for Qubits (quantitative): Let A = standard basis, B = diagonal basis. For all |[{) € C?,

Var(|y),A) + Var(|y),B) = 1.



Quantum Zeno Effect

”

Quantum version of the idiom “A watched pot never boils.

Intermediate measurements can drastically change
the outcome of a quantum experiment:

<< 1
Experiment A (pot left alone) o

1. Qubit starts in |0) state. /

2. Repeatk = [%] times:

cosf —sinf :
1. Apply@/\r (sinH cos 0 )to qubit.

3. Measure qubit in standard basis.




Quantum Zeno Effect

Quantum version of the idiom “A watched pot never boils.”

Intermediate measurements can drastically change
the outcome of a quantum experiment:

Experiment A (pot left alone)

1. Qubit starts in |0) state.

2. Repeatk = [%] times:

cosf —siné

sin@ cos@ ) to qubit.

1. Apply Rg = (

3. Measure qubit in standard basis.

Experiment B (watched pot)
1. Qubit starts in |0) state.
2. Repeatk = [%] times:
1. Apply Rg to qubit.
2. Measure in standard basis.

3. Measure qubit in standard basis.




1. Qubit starts in |0) state.

Quantum Zeno Effect 2. Repeatk = [G] times

1. Apply Rg to qubit.

_ 3. Measure qubit in standard basis.
cosf —sinf

sind  cosB ) is a rotation by angle 6.

R =

n
* If |3p) = cosa |0) + sina |1), then Rg|y) = cos (a + 0) |0) + sin(a + 0) |1) L\/
S (

* Experiment A (pot left alone): final state is R’g,lO) ~ 4> .
&
\ AN
goh 4y wih ko

PR e,
??rn\ﬂd'\v %
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1. Qubit starts in |0) state.

2. Repeatk = [%] times:

Quantum Zeno Effect

1. Apply Rg to qubit.

2. Measure in standard basis.
cosf@ —sinf

sind  cosB ) is a rotation by angle 6. 3. Measure qubit in standard basis.

+ R =

* If |3p) = cosa |0) + sina |1), then Rg|y) = cos (a + 0) |0) + sin(a + 0) |1)

w$A L z
* Experiment B (watched pot): g 9(3/} 57 v (- os O
< (os® 7D> t $ind 4> 1y s §\f‘lS‘

> > Ke 1O O or s

. 1> in kjm‘eﬁ} < h. 9@: D(%>'©2:319>

¢ iguu LN /
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Composite guantum systems



Composite guantum systems

* The state of a qubit is a unit vector in the space C?.
* Also called the Hilbert space of a qubit.

* Hilbert space = complex vector space with inner product.



Composite guantum systems

* The state of a qubit is a unit vector in the space C?.
* Also called the Hilbert space of a qubit.

* Hilbert space = complex vector space with inner product.

* The Hilbert space of 2 qubits is the tensor product space C> @ C?
« C? has orthonormal basis {|0), | 1)}.

* The tensor product space C?> ® C? = C* is 4-dimensional, with orthonormal basis

1 0 0 0
I0>®|o>=<8> |0>®|1>=<(1)> I1>®|0>=<2> '1>®|1>:<8>
_ — 0 = - 0 0 1

L Y
'Shorthandrli%=Ii,j)=|i¢>|j>=l%>®|j).g ey = loveldr

* This basis represents the classical states of the two qubits.



. W) o)
Composite guantum systems v
)

 Tensor product of vectors: if |1)) = «|0) + B|1), and |@) = y|0) + §|1), then \
the state of the two qubits together is !

) Q o)

1) ® |g) = (Ouow 61> @(7 oy + 3125
= ad o) 4w § o0+ Y ILe < gf 141>

(@2




Composite guantum systems

* A two qubit state |)) is a unit vector in C* @ C2:

|l/)> — Zi,j aij |l> ® |]> / Zi,j |aij|2 =1

* General two-qubit states cannot be written as a tensor product state

) # lo) ® |6) 4

for one-qubit states |@), |8) € CZ.

 States that cannot be written in product form are called entangled.
Otherwise, they are unentangled.



Composite guantum systems

e Ex: |EPR) = %(|o> ® |0) + |1) ® |1)) is entangled.

_—— S [—

Ry F |97 e (9

. Ex: 1)) = %(|00) +]01) + |10) + |11)) is unentangled.

|

4y = > \r7



Composite guantum systems

* Taking inner products in C?> ® C?: let |a), |b), |c), |d) € C?

N

(al ® (b)) (Ic) ® |d)) = (alc) - (bld)

MM/\

* Let |l/)> = Zi,j aij |l,]> and |6) == Zi,jlgij |l,]>Then

($16) = (Z ™ <1;)1\ LZ Ei |

T2 Ay




Measurements

* Measuring two-qubit states ) = Ya;;]ij) € C* @ C*:

2
« Obtain classical outcome (i, ) € {0,1}? with probability |al-j| .

* The post-measurement state of |) is then |, j)



Partial Measurements & A O

* What if we only want to measure the first qubit? ;

To compute probability of obtaining outcome i € {0,1}:

State gets projected to basis states where the first qubit is in the state |i).

/ iy Unnormalized state
=) aylij)
Jj

Probability p; is squared length of |y’), which is Zj|al-j|2.

The post-measurement state is [¢)') renormalized:

1 1
1Y) = \/fz] a;; i) =) ®




Partial Measurements

Ex: measure first qubit of [y) =\/§|OO)+£I01)—\E|11)
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Unitaries on multiple qubits

« Two-qubit systems in isolation undergo evolution via unitary operators acting on C*> ® C?.

e Tensor product of unitaries: &#4 %

* Let U,V be one-qubit unitaries. /7\
* Applying U to the left qubit and V to the right qubit, from the U 6 V
perspective of the larger system, corresponds to the unitary U Q V. A~ ——

* Matrix representation: T et

. U= (u11 u12) V= (V11 V12)
U1 U/’ VUVy1 Uopop Matrix representation depends on

how you label your rows/columns!

U1V ule) : :
e URXRV = ( is a 4X4 matrix o
® Uz1V  uzV 0,2y = [ /

0
0



Unitaries on multiple qubits

« Ex: [P) = |0>®|0>'U=V:x/i§(1 —11)

\/\/\M

(u@ov)w = W): <U\Lb>>@(\/m>: 7 &k

— ’\_ (tb &> + lO)i>’lL L1/D>1L
Z— )

—

. Ex: |¢>=§(|02)+|03>—|10>—I11>): U=V=le(i —11)
( 7 /

Y7 = =Y @ 7 -

(UeV) (o) = @\/7>@[vw>) - veler-



Unitaries on multiple qubits

+ Ex: [Y) = \f|00>+\fI01> fl11> v=v=5( 1 —11)



Unitaries on multiple qubits

* In general, two-qubit unitaries are not product operators; they are entangling.

* Ex: CNOT (“controlled-NOT”) acts on 2-qubits: for all x € {0,1}

CNOT|x) ® |0) = |x) & |x) CNOT flips a target qubit, based on control qubit.
CNOT|x) ® |1) = [x) @ |x D 1)
Ctrl Tgt j\

c Exlp) = [H) ®10). CNOTR) = (ot %b<too7* 1)

_\, o)t 1i>>
_ \ (CI\)O/( looj S CA)b/( [j_/oﬁ) - \FZ/(LO 7 l

<.  —_—

-

* Explicit matrix representation of CNOT (not that useful)



The No-Cloning Theorem

Classical bits are easily copied. Quantum information is different.

Informal Statement: “There is no quantum Xerox machine”.

Formally: there is no unitary U acting on two qubits such that

U(l) ® 10) = 1) ® [¥)
N\

for all one-qubit states |i). ancilla qubit



The No-Cloning Theorem

Proof: try to copy |0) versus |+)

W [y 107 = [o7 o7
Wity ley = 2l

e P gy

) L)
Lot



The exponentiality of QM

* The joint state of n qubits is represented as a ¢ jis

vector in (C2)®n" = ¢2";
S W~

|l/)>: x |%) \¢
xe;}na X ¢¢

_—

* Each additional qubit doubles the dimensionality of the Hilbert space.

* Applying a unitary U to an n-qubit state |y)) appears to be doing exponentially many
computations in parallel:

Ulp) = ) a Ul
YT xéfpa)n
\/\/f



The exponentiality of QM, redux

* Nature is doing an incredible amount of work for us.
* However, this extravagance is hidden behind the veil of measurement.
* We can only access the exponential information stored in [) in a limited way.

* This leads to a fundamental tension in quantum information:

The exponentiality vs fragility of quantum states

ad

._
* This tension makes quantum information and

computation subtle, mysterious, and extremely interesting.



