Crash Course in
Quantum Computing

Hour 1: Quantum Information Fundamentals
BIU Winter School on Cryptography 2021

Lecturer: Henry Yuen



Hour 1

* Basic postulates of Quantum Mechanics & Dirac Notation
* Quantum vs classical bits

* Composite quantum systems



Starting point

Quantum information theory is a generalization of
classical probability theory where probabilities can be
negative, or even complex numbers.
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Starting point

* Consider a physical system S with d distinguishable states, numbered 0,1, ...,d — 1
* There is also an observer E external to the system

* There are two things that can occur:
 Measurement: the external observer E can measure the state of S
* |solated evolution: the system S can change, without interacting with the external observer E




Classical physics

* Initially, the observer E assigns a state to the system S.

* According to classical physics, we can model the state of the system S as a probability distribution
over d states, represented as a column vector:
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Classical physics

* If the observer measures (i.e. “observes”) the system S, then E obtains a measurement outcome
i with probability s;, and then the state of the system S gets updated to

If the observer measures again, then
gets state i with probability 1

1 [ i'th position (nothing has changed).




Classical physics

* If the system S undergoes isolated evolution (i.e. “following the laws of physics”), then the state
of the system S gets updated via multiplication by a stochastic matrix

A dXd matrix A is stochastic if entries are
So So nonnegative, and each column sums to 1.
S = [l S’ =
Sqg—1 Sq_1 e Stochastic matrices map probability vectors to

probability vectors.




Quantum physics

* Initially, the observer E assigns a state to the system S.

* According to quantum physics, we can model the state of the system S as a complex unit vector in
C%, represented as a column vector:

@o
lY) = ( : ) |a0|2 4o 4 |ad_1|2 =1 The a’s are called amplitudes.
Ad-1



Quantum physics

 Initially, the observer E assigns a state to the system S.

« According to quantum physics, we can model the state of the system S as a complex unit vector in C%,
represented as a column vector:

24y

lY) = ( : ) lag|? + -+ |lag_1]> =1 The a’s are called amplitudes.
Aa-1

* The d distinguishable states (also called “classical states”) are represented by

1 0 0 This forms an orthogonal basis
|0) = O 1) = 1 |d —1) = 0 for C4, called the standard basis.

0 0 1



Quantum physics

Initially, the observer E assigns a state to the system S.

According to quantum physics, we can model the state of the system S as a complex unit vector in C¢,
represented as a column vector:

24y

lY) = ( : ) lag|? + -+ |lag_1]> =1 The a’s are called amplitudes.
Aa-1

The d distinguishable states (also called “classical states”) are represented by

1 0 0 This forms an orthogonal basis
|0) = O 1) = 1 |d —1) = 0 for C4, called the standard basis.
0 0 1

A general quantum state is a superposition of classical basis states:

[Y) = apl0) + ay|1) + -+ agz_4]|d — 1)



Dirac notation

* The |y) notation is called Dirac notation, used to represent quantum states.

* Mathematically, |y) (“ket vector”) is a column vector.



Dirac notation

The |y) notation is called Dirac notation, used to represent quantum states.

Mathematically, [)) (“ket vector”) is a column vector.

The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:

) = (%) Wl = (a", %) = a*(0] + f*(1]

“ket psi” “bra psi” a*, B* are complex conjugates of a, .

Example: duals of the standard basis vectors: (0| = (1,0) and (1| = (0,1)



Dirac notation

The |y) notation is called Dirac notation, used to represent quantum states.

Mathematically, [)) (“ket vector”) is a column vector.

The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:

) = (%) Wl = (a", %) = a*(0] + f*(1]

“ket psi” “bra psi” a*, B* are complex conjugates of a, .

Example: duals of the standard basis vectors: (0| = (1,0) and (1| = (0,1)
The inner product between a column vector |) = a|0) + £|1) and a row vector (8] = y (0| + & (1] is

(0) =

Notation is helpful for quickly identifying scalars, row and column vectors in complicated expressions.

Naming: "bra” + “ket” = “bracket”



Dirac notation

* Outer products: [Y){0] is a matrix

* Matrix M = |){60], and vector |¢). Then matrix-vector multiplication becomes:

* Every matrix M with matrix entries {Mij} can be written as M = 3,; ; M;; |i){j|



Quantum physics

 If the observer measures the system S, then E obtains a measurement outcome i with probability
|a;|?, and then the state of the system S gets updated (gets ”collapsed”) from |) to the classical
state |i).

* If the observer measures again, then it gets state |i) with probability 1.

This is called the Born Rule.
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Quantum physics

* If the system S undergoes isolated evolution (i.e. “following the laws of physics”), then the state
of the system S gets updated via multiplication by a unitary matrix

/ « UT denotes the Hermitian conjugate of U:
|l/)) = |l/) ) — Ull/)) transposing the matrix, then complex-conjugating
every entry: the (i, j)'th entry of UT is U};.

« A dxd complex matrix U is unitaryif U= = UT




Quantum physics

Equivalent definitions of a unitary matrix:

° U_1=U1'

* U maps unit vectors to unit vectors

e U preserves the inner product between vectors



Unitary evolution of a qubit
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Unitary evolution of a qubit
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Unitary evolution of a qubit
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Unitary evolution of a qubit
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Measuring in different bases

By default, observer measures with respect to standard basis {|0), 1), ..., |d — 1)}
Observe can also measure a state [} € C% with respect to arbitrary basis B = {|by), ..., |bg—1)}:

* Get outcome |b;) with probability [{(y|b;)|?. i.e. square overlap with |b;)

* State gets collapsed to |b;). i.e. state is projected to | b;)



Measuring in different bases

Obtain |+) with probability |[(]|+)|?
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Measuring in different bases

Obtain |—) with probability |(1/J|—)|2
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Quantum vs classical bits



Quantum vs classical bits

* |s there an essential difference between a quantum bit and a classical bit? For example, does
allowing negative or complex amplitudes actually make a discernible difference?

1 1 1 1
° EX|+>—E|O>+\/—§|1> versus |_>_\/_EIO>_\/_§|1>
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Quantum vs classical bits

* |4+) and |—) states are orthogonal to each other. To see this using the Dirac notation:

(—I+) =

* In quantum mechanics, orthogonal states are perfectly distinguishable from one another.



Quantum vs classical bits

* Suppose we had an unknown state |) that was either |+) or |—).
How could the observer tell the difference?
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Quantum vs classical bits

How could the observer tell the difference?

_ : _ 11 1
Before measuring, apply a unitary H = \/5(1 _1)

* Also known as the Hadamard gate
e Unitaries can be thought as change-of-basis operators

H|+) =

H|-) =

Measuring the rotated state now tells us what [y) originally was!

Suppose we had an unknown state |) that was either |+) or |—).
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Quantum vs classical bits

* Takeaway: Minus signs in the amplitudes matter!

* More precisely, relative phases between the classical basis states
matter.

* On the other hand, global phases don’t matter.

* There is no guantum process (unitary + measurement) to

distinguish between |Y) and —|y), or in fact a|) for any
complex number a of norm 1.

e This is because U(—|y)) = —U|y), and measurements at the
end destroy sign information, because we’re taking the absolute
value of the amplitudes!
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Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to
incompatible bases.



Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to
incompatible bases.

Def: Bases A = {|ay), ..., |ag—1)} and B = {|by), ..., |by—1)} are compatible if A and B are the same
up to permutation and global phases.

« Ex:A =1{|0),|1)}and B ={ |1) , i|0) }are compatible.

Otherwise, they are incompatible. 1
. . |+) = —=([0) + 1))
« Ex: A ={|0),|1)}and B = { |+), |—)} are incompatible. V2
1
|—-) = —2(|0) — (1))

N



Heisenberg Uncertainty Principle

Def: A state |p) € C% is determined in a basis B = {|by), ..., |bg—1)} if measuring according to B
yields a fixed state |b;) with probability 1.

HUP for Qubits (simplest version): A qubit state |y) € C? cannot be simultaneously determined in
two incompatible bases.



Heisenberg Uncertainty Principle

Def: Var(|y),A) = 4 p,y - p1, Where p; = probability of obtaining outcome |a;) when measuring |)
with respect to basis A.

HUP for Qubits (quantitative): Let A = standard basis, B = diagonal basis. For all |[{) € C?,

Var(|y),A) + Var(|y),B) = 1.



Quantum Zeno Effect

”

Quantum version of the idiom “A watched pot never boils.

Intermediate measurements can drastically change
the outcome of a quantum experiment:

Experiment A (pot left alone)

1. Qubit starts in |0) state.

2. Repeatk = [%] times:

cosf —siné

sin@ cos@ ) to qubit.

1. Apply Rg = (

3. Measure qubit in standard basis.




Quantum Zeno Effect

Quantum version of the idiom “A watched pot never boils.”

Intermediate measurements can drastically change
the outcome of a quantum experiment:

Experiment A (pot left alone) Experiment B (watched pot)

1. Qubit starts in |0) state. 1. Qubit starts in |0) state.

T .
2. Repeatk = [%] times: 2. Repeatk = [g] times:

1. Apply Ry to qubit.
cosf —sinf PPIY fo 10 G

sin@ cos@ ) to qubit.

1. Apply Rg = ( 2. Measure in standard basis.

3. Measure qubit in standard basis. 3. Measure qubit in standard basis.



1. Qubit starts in |0) state.

Quantum Zeno Effect 2. Repeatk = [G] times

1. Apply Rg to qubit.

_ 3. Measure qubit in standard basis.
cosf —sinf

sind  cosB ) is a rotation by angle 6.

 Ro = (
* If |3p) = cosa |0) + sina |1), then Rg|y) = cos (a + 0) |0) + sin(a + 0) |1)

* Experiment A (pot left alone): final state is R’g,lO)



1. Qubit starts in |0) state.

2. Repeatk = [%] times:

Quantum Zeno Effect

1. Apply Rg to qubit.

2. Measure in standard basis.
cosf@ —sinf

sind  cosB ) is a rotation by angle 6. 3. Measure qubit in standard basis.

 Ro = (
* If |3p) = cosa |0) + sina |1), then Rg|y) = cos (a + 0) |0) + sin(a + 0) |1)

* Experiment B (watched pot):



Composite guantum systems



Composite guantum systems

* The state of a qubit is a unit vector in the space C?.
* Also called the Hilbert space of a qubit.

* Hilbert space = complex vector space with inner product.



Composite guantum systems

* The state of a qubit is a unit vector in the space C?.
* Also called the Hilbert space of a qubit.

* Hilbert space = complex vector space with inner product.

* The Hilbert space of 2 qubits is the tensor product space C> @ C?
« C? has orthonormal basis {|0), | 1)}.

* The tensor product space C?> ® C? = C* is 4-dimensional, with orthonormal basis

1 0 0 0
I0>®|o>=<8> |0>®|1>=<(1)> I1>®|0>=<2> '1>®|1>:<8>
0 0 0 1

* Shorthand: [ij) = [i, /) = |D}|j) = |i) & [j).

* This basis represents the classical states of the two qubits.



. W) o)
Composite guantum systems
)

 Tensor product of vectors: if |1)) = «|0) + B|1), and |@) = y|0) + §|1), then \
the state of the two qubits together is !

) Q o)

) ® lo) =



Composite guantum systems

* A two qubit state |)) is a unit vector in C* @ C2:

) = %y i 1) @ 1)) %o lagl? =1
* General two-qubit states cannot be written as a tensor product state
V) # lp) Q |6)

for one-qubit states |@), |8) € CZ.

 States that cannot be written in product form are called entangled.
Otherwise, they are unentangled.



Composite guantum systems

. Ex: |EPR) = %(|o> ® 0) + |1) ® |1)) is entangled.

. Ex: 1)) = §(|oo> +]01) + |10) + |11)) is unentangled.



Composite guantum systems

* Taking inner products in C?> ® C?: let |a), |b), |c), |d) € C?

(al ® (b)) (Ic) ® |d)) = (alc) - (bld)

* Let |l/)> = Zi,j C(l'j |l,]> and |9) == Zi,jlgij |l,]>Then

(¥|9) =



Measurements

* Measuring two-qubit states ) = Ya;;]ij) € C* @ C*:

2
« Obtain classical outcome (i, ) € {0,1}? with probability |al-j| .

* The post-measurement state of |) is then |, j)



Partial Measurements

What if we only want to measure the first qubit?

To compute probability of obtaining outcome i € {0,1}:

State gets projected to basis states where the first qubit is in the state |i).

i = ), ayli)

Probability p; is squared length of |¢’), which is Zj|al-j|2.

The post-measurement state is [¢)') renormalized:

1 s 1 .
1Y;) =ﬁzjaij lij) = i) ®ﬁzjaij I

Unnormalized state



Partial Measurements

Ex: measure first qubit of ) = \EIOO) + \E |01) — \Eﬂl)



Unitaries on multiple qubits

« Two-qubit systems in isolation undergo evolution via unitary operators acting on C*> ® C?.

e Tensor product of unitaries: C% ¢

* Let U,V be one-qubit unitaries.

* Applying U to the left qubit and V to the right qubit, from the
perspective of the larger system, corresponds to the unitary U Q V.

* Matrix representation:

. U= (U11 ulZ),V _ (V11 7712)

Upr1 Upyp VUVy1 Uopop Matrix representation depends on

how you label your rows/columns!
u11V U12V

u21V UZ2V

'U®V=( )isa4><4matrix



Unitaries on multiple qubits

* Ex: [Y) = |0>®|0>'U=V:%§G —11)

. Ex: |¢)=§(|00)+|01>—|10>—I11>); U=V=Jiz(1 —11)



Unitaries on multiple qubits

+ Ex: [Y) = \f|00>+\fI01> fl11> v=v=5( 1 —11)



Unitaries on multiple qubits

* In general, two-qubit unitaries are not product operators; they are entangling.

* Ex: CNOT (“controlled-NOT”) acts on 2-qubits: for all x € {0,1}

CNOT|x) ® |0) = |x) & |x) CNOT flips a target qubit, based on control qubit.
CNOT|x) ® |1) = |x) ® |x D 1)
Ctrl Tgt

« Ex:[)) = [+) ® [0). CNOTy) =

* Explicit matrix representation of CNOT (not that useful)



The No-Cloning Theorem

Classical bits are easily copied. Quantum information is different.

Informal Statement: “There is no quantum Xerox machine”.

Formally: there is no unitary U acting on two qubits such that

U(l) ® 10) = 1) ® [¥)
N\

for all one-qubit states |i). ancilla qubit



The No-Cloning Theorem

Proof: try to copy |0) versus |+)



The exponentiality of QM
* The joint state of n qubits is represented as a 51 j‘s 5‘ ¢ gs

vector in (C2)®n" = ¢2";

W= ) al) %&5‘5 515%

x€{0,1}"

* Each additional qubit doubles the dimensionality of the Hilbert space.

* Applying a unitary U to an n-qubit state |y)) appears to be doing exponentially many
computations in parallel:

Ulp) = ) apUlx)
x€{0,1}"



The exponentiality of QM, redux

* Nature is doing an incredible amount of work for us.
* However, this extravagance is hidden behind the veil of measurement.
* We can only access the exponential information stored in [) in a limited way.

* This leads to a fundamental tension in quantum information:

The exponentiality vs fragility of quantum states

ad

._
* This tension makes quantum information and

computation subtle, mysterious, and extremely interesting.



