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Hour 1

• Basic postulates of Quantum Mechanics & Dirac Notation

• Quantum vs classical bits

• Composite quantum systems



Quantum information theory is a generalization of 
classical probability theory where probabilities can be 

negative, or even complex numbers.

Starting point



Starting point

• Consider a physical system 𝑆 with d distinguishable states, numbered  0, 1, … , 𝑑 − 1
• There is also an observer 𝐸 external to the system

𝐸 𝑆



Starting point

• Consider a physical system 𝑆 with d distinguishable states, numbered  0, 1, … , 𝑑 − 1
• There is also an observer 𝐸 external to the system

• There are two things that can occur:
• Measurement: the external observer 𝐸 can measure the state of 𝑆
• Isolated evolution: the system 𝑆 can change, without interacting with the external observer 𝐸

𝐸 𝑆



Classical physics

• Initially, the observer 𝐸 assigns a state to the system 𝑆.

• According to classical physics, we can model the state of the system S as a probability distribution
over 𝑑 states, represented as a column vector:

𝐸 𝑆

𝑠 =
𝑠!
⋮

𝑠"#$
∈ ℝ"

For all 𝑖, 𝑠% ≥ 0
𝑠! +⋯+ 𝑠"#$ = 1



Classical physics

• If the observer measures (i.e. “observes”) the system 𝑆, then 𝐸 obtains a measurement outcome 
𝑖 with probability 𝑠%, and then the state of the system 𝑆 gets updated to 

𝐸 𝑆

𝑠 =
𝑠!
⋮

𝑠"#$
↦ 𝑠& =

0
⋮
1
⋮
0

𝑖’th position

𝑖

If the observer measures again, then 
gets state 𝑖 with probability 1 
(nothing has changed).



Classical physics

• If the system 𝑆 undergoes isolated evolution (i.e. “following the laws of physics”), then the state 
of the system 𝑆 gets updated via multiplication by a stochastic matrix

𝐸 𝑆

𝑠 =
𝑠!
⋮

𝑠"#$
↦ 𝑠& = 𝐴

𝑠!
⋮

𝑠"#$

• A 𝑑×𝑑 matrix 𝐴 is stochastic if entries are 
nonnegative, and each column sums to 1.

• Stochastic matrices map probability vectors to 
probability vectors.



Quantum physics

• Initially, the observer 𝐸 assigns a state to the system 𝑆.

• According to quantum physics, we can model the state of the system S as a complex unit vector in 
ℂ", represented as a column vector:

|𝜓⟩ =
𝛼!
⋮

𝛼"#$
𝛼! ' +⋯+ 𝛼"#$ ' = 1 The 𝛼’s are called amplitudes.



Quantum physics

• Initially, the observer 𝐸 assigns a state to the system 𝑆.
• According to quantum physics, we can model the state of the system S as a complex unit vector in ℂ!, 

represented as a column vector:

• The d distinguishable states (also called “classical states”) are represented by

• A general quantum state is a superposition of classical basis states: 

𝜓 = 𝛼" 0 + 𝛼# 1 +⋯+ 𝛼!$#|𝑑 − 1⟩

|𝜓⟩ =
𝛼!
⋮

𝛼"#$
𝛼! ' +⋯+ 𝛼"#$ ' = 1

|0⟩ =

1
0
⋮
0

|1⟩ =

0
1
⋮
0

|𝑑 − 1⟩ =

0
0
⋮
1

⋯

The 𝛼’s are called amplitudes.

This forms an orthogonal basis 
for ℂ!, called the standard basis.



Quantum physics

• Initially, the observer 𝐸 assigns a state to the system 𝑆.
• According to quantum physics, we can model the state of the system S as a complex unit vector in ℂ!, 

represented as a column vector:

• The d distinguishable states (also called “classical states”) are represented by

• A general quantum state is a superposition of classical basis states: 
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for ℂ!, called the standard basis.



Dirac notation
• The 𝜓 notation is called Dirac notation, used to represent quantum states.

• Mathematically, 𝜓 (“ket vector”) is a column vector.



Dirac notation
• The 𝜓 notation is called Dirac notation, used to represent quantum states.

• Mathematically, 𝜓 (“ket vector”) is a column vector.

• The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:

• Example: duals of the standard basis vectors:  ⟨0| = 1,0 and ⟨1| = 0,1

𝜓 = (
) ⟨𝜓| = 𝛼∗, 𝛽∗ = 𝛼∗⟨0| + 𝛽∗⟨1|

“ket psi” “bra psi” 𝛼∗, 𝛽∗ are complex conjugates of 𝛼, 𝛽.



Dirac notation
• The 𝜓 notation is called Dirac notation, used to represent quantum states.

• Mathematically, 𝜓 (“ket vector”) is a column vector.

• The dual/Hermitian conjugate of column vectors (i.e. row vectors), are called “bra vectors”:

• Example: duals of the standard basis vectors:  ⟨0| = 1,0 and ⟨1| = 0,1
• The inner product between a column vector 𝜓 = 𝛼 0 + 𝛽|1⟩ and a row vector ⟨𝜃| = 𝛾 ⟨0| + 𝛿 ⟨1| is 

• Notation is  helpful for quickly identifying scalars, row and column vectors in complicated expressions.

• Naming: ”bra” + “ket” = “bracket”

𝜓 = (
) ⟨𝜓| = 𝛼∗, 𝛽∗ = 𝛼∗⟨0| + 𝛽∗⟨1|

“ket psi” “bra psi” 𝛼∗, 𝛽∗ are complex conjugates of 𝛼, 𝛽.

𝜃 𝜓 =



Dirac notation

• Outer products: 𝜓 ⟨𝜃| is a matrix

• Matrix 𝑀 = |𝜓⟩⟨𝜃|, and vector 𝜙 . Then matrix-vector multiplication becomes:

• Every matrix 𝑀 with matrix entries 𝑀"# can be written as 𝑀 = ∑",#𝑀"# |𝑖⟩⟨𝑗|



Quantum physics

• If the observer measures the system 𝑆, then 𝐸 obtains a measurement outcome 𝑖 with probability 
𝛼% ', and then the state of the system 𝑆 gets updated (gets ”collapsed”) from |𝜓⟩ to the classical 

state |𝑖⟩.

• If the observer measures again, then it gets state |𝑖⟩ with probability 1.

𝐸 𝑆

𝑖

This is called the Born Rule.



Measuring a qubit

|0⟩

|1⟩

𝜓 =
2
3 0 +

1
3 |1⟩

Before

𝜓 = |0⟩

|1⟩After, w/ prob. 𝛼 ' = '
+

|0⟩

𝜓 = |1⟩After, w/ prob. 𝛽 ' = $
+



Quantum physics

• If the system 𝑆 undergoes isolated evolution (i.e. “following the laws of physics”), then the state 
of the system 𝑆 gets updated via multiplication by a unitary matrix

• A 𝑑×𝑑 complex matrix 𝑈 is unitary if 𝑈#$ = 𝑈,

𝐸 𝑆

|𝜓⟩ ↦ |𝜓′⟩ = 𝑈|𝜓⟩
• 𝑈% denotes the Hermitian conjugate of 𝑈: 

transposing the matrix, then complex-conjugating 
every entry: the 𝑖, 𝑗 ’th entry of 𝑈% is 𝑈#"∗ .



Quantum physics

Equivalent definitions of a unitary matrix:

• 𝑈#$ = 𝑈,

• 𝑈 maps unit vectors to unit vectors

• 𝑈 preserves the inner product between vectors



Unitary evolution of a qubit

|0⟩

|1⟩
𝜓 = |1⟩

Before

|0⟩

|1⟩

After

𝑋 = 0 1
1 0

”bitflip” gate



Unitary evolution of a qubit

|0⟩

|1⟩
𝜓 = |1⟩

Before

|0⟩

|1⟩

After

𝐻 =
1
2
1 1
1 −1

Hadamard gate



Unitary evolution of a qubit

|0⟩

|1⟩

𝜓 =
1
2

0 + |1⟩

Before

|0⟩

|1⟩

After

𝑋 = 0 1
1 0

”bitflip” gate



Unitary evolution of a qubit

|0⟩

|1⟩

𝜓 =
1
2

0 + |1⟩

Before

|0⟩

|1⟩

After

𝑍 = 1 0
0 −1

”phase flip” gate



Measuring in different bases

By default, observer measures with respect to standard basis  0 , 1 , … , |𝑑 − 1⟩

Observe can also measure a state 𝜓 ∈ ℂ" with respect to arbitrary basis 𝐵 = 𝑏! , … , |𝑏"#$⟩ :

• Get outcome |𝑏%⟩ with probability 𝜓 𝑏% '.

• State gets collapsed to |𝑏%⟩. 

i.e. square overlap with 𝑏%

i.e. state is projected to 𝑏%



Measuring in different bases

|0⟩

|1⟩
𝜓 = −

2
3 0 +

1
3 |1⟩

Before

|0⟩

|1⟩

Obtain |+⟩ with probability ⟨𝜓|+⟩ '

|+⟩

|−⟩

+ =
1
2

0 + |1⟩ − =
1
2

0 − |1⟩

Diagonal Basis

𝜓 = |+⟩

|−⟩



Measuring in different bases

|0⟩

|1⟩
𝜓 = −

2
3 0 +

1
3 |1⟩

Before

|0⟩

|1⟩
|+⟩

|−⟩

Diagonal Basis

|+⟩

𝜓 = |−⟩

Obtain |−⟩ with probability ⟨𝜓|−⟩ '

+ =
1
2

0 + |1⟩ − =
1
2

0 − |1⟩



Quantum vs classical bits



Quantum vs classical bits

• Is there an essential difference between a quantum bit and a classical bit? For example, does 
allowing negative or complex amplitudes actually make a discernible difference? 

• Ex: + = $
'
0 + $

'
|1⟩ versus      − = $

'
0 − $

'
|1⟩

|0⟩

|1⟩
+

|0⟩

|1⟩

−

What happens when we 
measure these two states?



Quantum vs classical bits

• + and − states are orthogonal to each other. To see this using the Dirac notation:

• In quantum mechanics, orthogonal states are perfectly distinguishable from one another. 

⟨− + =



Quantum vs classical bits
• Suppose we had an unknown state 𝜓 that was either + or − . 

How could the observer tell the difference?

• Before measuring, apply a unitary 𝐻 = $
'
1 1
1 −1

• Also known as the Hadamard gate
• Unitaries can be thought as change-of-basis operators

• 𝐻 + = $
'
𝐻 0 + 𝐻|1⟩ = $

'
+ + |−⟩ = |0⟩

• Similarly, 𝐻 − = ⋯ = |1⟩
• Measuring the rotated state now tells us what 𝜓 originally was!

• In quantum mechanics, orthogonal states are perfectly 
distinguishable from one another. 

|0⟩

|1⟩
+

−



Quantum vs classical bits
• Suppose we had an unknown state 𝜓 that was either + or − . 

How could the observer tell the difference?

• Before measuring, apply a unitary 𝐻 = $
'
1 1
1 −1

• Also known as the Hadamard gate
• Unitaries can be thought as change-of-basis operators

• 𝐻 + =

• 𝐻 − =

• Measuring the rotated state now tells us what 𝜓 originally was!

|0⟩

|1⟩
+

−

0 = 𝐻 +

1 = 𝐻 −



Quantum vs classical bits

• Takeaway: Minus signs in the amplitudes matter!
• More precisely, relative phases between the classical basis states 

matter.

• On the other hand, global phases don’t matter.

• There is no quantum process (unitary + measurement) to 
distinguish between |𝜓⟩ and −|𝜓⟩, or in fact 𝛼|𝜓⟩ for any 
complex number 𝛼 of norm 1.

• This is because 𝑈(−|𝜓⟩) = −𝑈|𝜓⟩, and measurements at the 
end destroy sign information, because we’re taking the absolute 
value of the amplitudes!

|0⟩

|1⟩
+

−



Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to 
incompatible bases. 



Heisenberg Uncertainty Principle

Popular Science Physics: Cannot simultaneously know the position and velocity of a particle.

Heisenberg Uncertainty Principle (HUP) refers to measurements of a state with respect to 
incompatible bases. 

Def: Bases 𝐴 = 𝑎! , … , |𝑎"#$⟩ and 𝐵 = 𝑏! , … , |𝑏"#$⟩ are compatible if 𝐴 and 𝐵 are the same 
up to permutation and global phases.

• Ex: 𝐴 = { 0 , |1⟩} and 𝐵 = { 1 , 𝑖 0 } are compatible.

Otherwise, they are incompatible.
• Ex: 𝐴 = { 0 , |1⟩} and 𝐵 = { + , − } are incompatible.

+ =
1
2

0 + |1⟩

− =
1
2

0 − |1⟩



Heisenberg Uncertainty Principle

Def: A state 𝜓 ∈ ℂ" is determined in a basis 𝐵 = 𝑏! , … , |𝑏"#$⟩ if measuring according to 𝐵
yields a fixed state |𝑏%⟩ with probability 1. 

HUP for Qubits (simplest version): A qubit state 𝜓 ∈ ℂ' cannot be simultaneously determined in 
two incompatible bases.



Heisenberg Uncertainty Principle

Def: 𝑉𝑎𝑟 𝜓 , 𝐴 = 4 𝑝! ⋅ 𝑝$, where 𝑝% = probability of obtaining outcome |𝑎%⟩ when measuring |𝜓⟩
with respect to basis 𝐴.

HUP for Qubits (quantitative): Let 𝐴 = standard basis, 𝐵 = diagonal basis. For all 𝜓 ∈ ℂ', 

𝑉𝑎𝑟 𝜓 , 𝐴 + 𝑉𝑎𝑟 𝜓 , 𝐵 ≥ 1.



Quantum Zeno Effect

Quantum version of the idiom “A watched pot never boils.”

Intermediate measurements can drastically change
the outcome of a quantum experiment:

Experiment A (pot left alone)

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '
()
⌉ times:

1. Apply 𝑅) =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 to qubit.

3. Measure qubit in standard basis.



Quantum Zeno Effect

Quantum version of the idiom “A watched pot never boils.”

Intermediate measurements can drastically change
the outcome of a quantum experiment:

Experiment A (pot left alone) Experiment B (watched pot)

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '
()
⌉ times:

1. Apply 𝑅) =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 to qubit.

3. Measure qubit in standard basis.

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '
()
⌉ times:

1. Apply 𝑅) to qubit.

2. Measure in standard basis.

3. Measure qubit in standard basis.



Quantum Zeno Effect

• 𝑅- =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 is a rotation by angle 𝜃.

• If 𝜓 = cos 𝛼 0 + sin 𝛼 |1⟩, then 𝑅- 𝜓 = cos 𝛼 + 𝜃 0 + sin 𝛼 + 𝜃 |1⟩

• Experiment A (pot left alone): final state is 𝑅-
. 0

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '
()
⌉ times:

1. Apply 𝑅) to qubit.

3. Measure qubit in standard basis.



Quantum Zeno Effect

• 𝑅- =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 is a rotation by angle 𝜃.

• If 𝜓 = cos 𝛼 0 + sin 𝛼 |1⟩, then 𝑅- 𝜓 = cos 𝛼 + 𝜃 0 + sin 𝛼 + 𝜃 |1⟩

• Experiment B (watched pot):

1. Qubit starts in 0 state.

2. Repeat k = ⌈ '
()
⌉ times:

1. Apply 𝑅) to qubit.

2. Measure in standard basis.

3. Measure qubit in standard basis.



Composite quantum systems



Composite quantum systems
• The state of a qubit is a unit vector in the space ℂ'.

• Also called the Hilbert space of a qubit. 

• Hilbert space = complex vector space with inner product.



Composite quantum systems
• The state of a qubit is a unit vector in the space ℂ'.

• Also called the Hilbert space of a qubit. 

• Hilbert space = complex vector space with inner product.

• The Hilbert space of 2 qubits is the tensor product space ℂ'⊗ℂ'

• ℂ' has orthonormal basis 0 , |1⟩ . 

• The tensor product space ℂ'⊗ℂ' ≅ ℂ/ is 4-dimensional, with orthonormal basis 

• Shorthand: 𝑖𝑗 = 𝑖, 𝑗 = 𝑖 𝑗 = |𝑖⟩ ⊗ 𝑗 .

• This basis represents the classical states of the two qubits. 

0 ⊗ 0 =
1
0
0
0

0 ⊗ 1 =
0
1
0
0

1 ⊗ 0 =
0
0
1
0

1 ⊗ 1 =
0
0
0
1



Composite quantum systems
• Tensor product of vectors: if 𝜓 = 𝛼 0 + 𝛽 1 , and 𝜑 = 𝛾 0 + 𝛿 1 , then 

the state of the two qubits together is

𝜓 𝜑

𝜓 ⊗ 𝜑

𝜓 ⊗ 𝜑 =



Composite quantum systems
• A two qubit state 𝜓 is a unit vector in ℂ'⊗ℂ':

• General two-qubit states cannot be written as a tensor product state

for one-qubit states 𝜑 , 𝜃 ∈ ℂ'.

• States that cannot be written in product form are called entangled. 
Otherwise, they are unentangled. 

𝜓 = ∑%,1 𝛼%1 𝑖 ⊗ |𝑗⟩ ∑%,1 |𝛼%1|' = 1

𝜓 ≠ 𝜑 ⊗ |𝜃⟩



Composite quantum systems
• Ex: 𝐸𝑃𝑅 = $

'
0 ⊗ 0 + 1 ⊗ |1⟩ is entangled.

• Ex: 𝜓 = $
'

00 + 01 + 10 + |11⟩ is unentangled. 



Composite quantum systems
• Taking inner products in ℂ'⊗ℂ': let 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈ ℂ'

• Let 𝜓 = ∑%,1 𝛼%1 𝑖, 𝑗 and 𝜃 = ∑%,1 𝛽%1 𝑖, 𝑗 . Then

⟨𝑎| ⊗ ⟨𝑏| ( 𝑐 ⊗ |𝑑⟩) = ⟨𝑎 𝑐 ⋅ 𝑏 𝑑

⟨𝜓|𝜃⟩ =



Measurements
• Measuring two-qubit states 𝜓 = ∑𝛼%1|𝑖𝑗⟩ ∈ ℂ'⊗ℂ':

• Obtain classical outcome 𝑖, 𝑗 ∈ 0,1 ' with probability 𝛼%1
'
.

• The post-measurement state of 𝜓 is then 𝑖, 𝑗



Partial Measurements
• What if we only want to measure the first qubit?

• To compute probability of obtaining outcome 𝑖 ∈ 0,1 :

• State gets projected to basis states where the first qubit is in the state |𝑖⟩.

• Probability 𝑝% is squared length of 𝜓′ , which is  ∑1 𝛼%1
'

.

• The post-measurement state is 𝜓′ renormalized:

𝜓% =
1
𝑝%
^

1
𝛼%1 |𝑖𝑗⟩ = 𝑖 ⊗

1
𝑝%
^

1
𝛼%1 |𝑗⟩

𝜓%& =^
1
𝛼%1 |𝑖𝑗⟩ Unnormalized state



Partial Measurements

Ex: measure first qubit of 𝜓 = '
+
00 + $

2
01 − $

2
|11⟩



Unitaries on multiple qubits
• Two-qubit systems in isolation undergo evolution via unitary operators acting on ℂ'⊗ℂ'.

• Tensor product of unitaries: 

• Let 𝑈, 𝑉 be one-qubit unitaries.

• Applying 𝑈 to the left qubit and 𝑉 to the right qubit, from the 
perspective of the larger system, corresponds to the unitary 𝑈⊗ 𝑉. 

• Matrix representation: 

• 𝑈 =
𝑢$$ 𝑢$'
𝑢'$ 𝑢'' , 𝑉 =

𝑣$$ 𝑣$'
𝑣'$ 𝑣''

• 𝑈⊗ 𝑉 = 𝑢$$𝑉 𝑢$'𝑉
𝑢'$𝑉 𝑢''𝑉

is a 4×4 matrix

Matrix representation depends on 
how you label your rows/columns!



Unitaries on multiple qubits
• Ex: 𝜓 = 0 ⊗ 0 ,𝑈 = 𝑉 = $

'
1 1
1 −1

• Ex: 𝜓 = $
'

00 + 01 − 10 − |11⟩ , 𝑈 = 𝑉 = $
'
1 1
1 −1



Unitaries on multiple qubits

• Ex: 𝜓 = '
+
00 + $

2
01 − $

2
|11⟩, 𝑈 = 𝑉 = $

'
1 1
1 −1



Unitaries on multiple qubits
• In general, two-qubit unitaries are not product operators; they are entangling.

• Ex: CNOT (“controlled-NOT”) acts on 2-qubits: for all 𝑥 ∈ {0,1}

• Ex: 𝜓 = + ⊗ 0 . CNOT 𝜓 =

• Explicit matrix representation of CNOT (not that useful)

𝐶𝑁𝑂𝑇 𝑥 ⊗ 0 = 𝑥 ⊗ |𝑥⟩
𝐶𝑁𝑂𝑇 𝑥 ⊗ 1 = 𝑥 ⊗ |𝑥 ⊕ 1⟩

CNOT flips a target qubit, based on control qubit.

Ctrl Tgt



The No-Cloning Theorem

• Classical bits are easily copied. Quantum information is different.

• Informal Statement: “There is no quantum Xerox machine”.

• Formally: there is no unitary 𝑈 acting on two qubits such that

• for all one-qubit states 𝜓 .

𝑈( 𝜓 ⊗ 0 ) = 𝜓 ⊗ |𝜓⟩

ancilla qubit



The No-Cloning Theorem

Proof: try to copy 0 versus +



The exponentiality of QM
• The joint state of 𝑛 qubits is represented as a 

vector in ℂ' ⊗4 ≅ ℂ'!:

• Each additional qubit doubles the dimensionality of the Hilbert space. 

• Applying a unitary 𝑈 to an 𝑛-qubit state 𝜓 appears to be doing exponentially many 
computations in parallel:

𝜓 = P
*∈ ,,- !

𝛼* |𝑥⟩

𝑈 𝜓 = ^
5∈ !,$ !

𝛼5 𝑈|𝑥⟩



The exponentiality of QM, redux
• Nature is doing an incredible amount of work for us. 

• However, this extravagance is hidden behind the veil of measurement. 

• We can only access the exponential information stored in 𝜓 in a limited way.

• This leads to a fundamental tension in quantum information:

The exponentiality vs fragility of quantum states

• This tension makes quantum information and 
computation subtle, mysterious, and extremely interesting.


