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Introduction

The construction of cryptographic multilinear maps has been
a long standing open problem.

There is a very recent construction by Garg, Gentry and
Halevi based on ideal lattices.

In the following, a brief and (over)simplified overview of this
construction will be given.
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Multilinear Pairings

Let G1, · · · ,Gn and GT be abelian groups.
A non-degenerate multilinear map is a map

e : G1 × · · · × Gn → GT

satisfying the following conditions.

I Multilinear in n arguments: For all 1 ≤ i ≤ n

e(h1, . . . , hi−1, g1g2, hi+1, . . . , hn)

= e(h1, . . . , hi−1, g1, hi+1, . . . , hn)

· e(h1, . . . , hi−1, g2, hi+1, . . . , hn)

,
I Non-degenerate: For all 1 ≤ i ≤ n and all h1 ∈ G1\{1},
. . . , hn ∈ Gn\{1} there is g ∈ Gi such that

e(h1, . . . , hi−1, g , hi+1, . . . , hn) 6= 1.
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Some Loose Aspects

I By fixing k arguments we obtain multilinear maps on
the remaining n − k arguments, in particular bilinear
maps.

I Suppose Gi
∼= Z/nZ and GT

∼= Z/nZ. Then a
multilinear map takes the form

(h1, . . . , hn) 7→ ch1 · · · hn

for some fixed c ∈ Z/nZ.

I So is again essentially ring multiplication of n
arguments.
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Some Hardness Assumptions

I No efficiently computable isomorphism GT → Gi .

I Diffie-Hellman variants for G1 = · · · = Gn: Given

g , ga1 , . . . , gan+1

compute e(g , . . . , g)a1···an+1 . Or, given

g , ga

compute e(g , . . . , g)1/a.

I Roughly speaking, any power of g where the exponent
cannot be computed as a sum of products of n
exponents of input elements should be hard to compute.

I Asymmetric multilinear DDH, SXDH etc.
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Point of View

The above discussion can lead to following point of view:

I Use multiplication in Z/nZ to get a multilinear map

Z/nZ× · · · × Z/nZ→ Z/nZ.

I Use an encoding Z/nZ→ Gi , a 7→ ga
i for obfuscation,

e.g. Gi ⊆ E (Fq) and GT ⊆ F×q .

I But do it in a way such that the group law and the
multilinear map can be computed efficiently on the
encodings.

This point of view has been taken previously:

I For example, if the Computational Diffie-Hellman
problem can be solved in a prime order group, then the
prime order group is a “black-box field”.

I Was used for a reduction of the DLP to the CDH.
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Use homomorphic encryption?

Natural idea:

I Take somewhat homomorphic encryption E on Z/nZ.

I Encodings are E (a) for a ∈ Z/nZ.

I Suppose E (a + b) = E (a) + E (b), E (ab) = E (a)E (b).

I Then multilinear map is

(a1, . . . , an) 7→ E (a1 · · · an).

Problems:

I Problem: Equality test for map values? Does not work if
E is secure (indistinguishable cipher texts).

I Easy DLP in arguments ...

Yet, methods from homomorphic encryption yield multilinear
maps, as we will see now.
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Construction Idea of GGH

Basic idea and features:

I Replace Z/nZ by a suitable factor ring R/I .

I Provide a setup of encodings of elements of R/I that
partially preserve addition in R/I and allow to compute
a k-fold multiplication

R/I × · · · × R/I → R/I

on the level of encodings.

I The equivalent of the DLP is the decoding problem.

I During setup a trapdoor for decoding is constructed.

I The encodings are randomised, there are many
encodings of the same element in R/I .

I The output values are also randomised, hence need test
for equality and a derandomisation (but not decoding!).
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Construction Idea by Way of Example

A suitable but failing example is R = Z.

Let g be small, I = Rg and q a large enough prime.

Let [x ]q with [x ]q ∈ [−q/2, q/2) and [x ]q ≡ x mod q.

Let x inv ∈ [−q/2, q/2) with [xx inv]q = 1.

Choose z ∈ [0, q] random.

Let x be small. Then

[xz i ]q

is called an encoding of x + I ∈ R/I at level i .

[xz i ]q looks random, but x can be recovered if z known:

Have x = [[xz i ]q(z inv)i ]q.
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Addition and Multiplication

Addition and multiplication:

I Encodings of same level can be added in R, provided
size bound is met for v + w :

[[vz i ]q + [wz i ]q]q = [(v + w)z i ]q.

I Endodings of different levels can be multiplied in R,
provided i + j ≤ k :

[[vz i ]q · [wz j ]q]q = [(vw)z i+j ]q.
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Setup

Some precomputed elements:

I One element at level one: Let a ∈ 1 + I be small and
define y = [az ]q.

I Zero elements at level one: Let bi ∈ 0 + I be small and
define xi = [biz ]q.

I Zero-testing element at level k: Let h somewhat small
and coprime to g and define pzt = [h(z inv)kg inv]q.

Public versus private:

I The one element y , neutral elements xi and zero-testing
element pzt are made public.

I z , a, bi , e are kept secret.

I The assertion is that keeping secret works.

I This fails in our example, but we indicate later how
GGH solve this.
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Sampling and Randomised Encoding

Sampling and randomised encoding at level one:

I Choose small u ∈ R. This represents u + I and is
encoding at level 0.

I Multiply with one element and add linear combination
of the zeros elements:

v = [uy +
∑

λi ,jxi ]q

for small random λi ,j .

I Then v is a randomised encoding of u + I at level one.

I Division by y gives [u +
∑
λi ,jbia

inv]q. Since ainv is big,
u cannot be recovered.

I So decoding supposedly hard.
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Multilinear Maps

Multilinear map computation:

I The multilinear map takes k randomised encodings at
level one and returns their product:

(v1, . . . , vn) 7→
[∏

vi

]
q
.
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Equality Testing

Zero-testing at level k :

I Equality testing can be reduced to zero testing via
subtraction.

I If v encoding at level k then compute

[vpzt ]q.

Then this is somewhat small iff v represents 0 + I .

I Have [vpzt ]q = [(uzk)(h(z inv)kg inv)]q = [(uh)g inv]q, and

this is somewhat small iff g |u, hence u ∈ I .

I The use of somewhat small is to ensure that the user
cannot produce zero-testing elements at other levels.

I In particular, the product of two somewhat small
elements should not be somewhat small anymore.
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Extraction

Extraction (Derandomisation):

I Have [(u − v)pzt ]q somewhat small iff u and v encode
the same element.

I This means that the most significant bits of [upzt ]q and
[vpzt ]q agree.

I These bits can be taken, after the application of a hash
function, as unique representing bitstring.
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Security

Now R = Z insecure.

I For example, try all small a to find z .

I g is known from a description of I , thus

[pztg ]q = [h(z inv)k ]q

This essentially enables distinguishability of level k
encodings.

I Small multiples of hinv lead to zero testing parameters
at higher level, thus multilinear maps with more
arguments.

Idea: Replace R by ring that is Z-module of high rank.
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Rings and Ideals in GGH

System data:

I R = Z[x ]/(xn + 1) with n a power of 2,

I The size ||f || of f ∈ R is the euclidean norm of its
vector of coefficients.

I q stays a suitable prime.

I [f ]q the element of R obtained by reducing the
coefficients of f modulo q into the interval [−q/2, q/2).

I I = Rg for some small g .
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Security of GGH

Security:

I Now exponentially many small a, cannot try all to find
z with y = [az ]q.

I Small multiples of g and hinv protected by principal
ideal problem.

I n needs to be chosen large enough.

I q needs to be chosen large enough to “not interfere
with signal”.

I q must not be too large to make lattice problems
easy (e.g. “lattice gaps”).

I Roughly n = Õ(kλ2) and q = 2n/λ for security

parameter λ. Thus q = 2c
√
nk .
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Properties of GGH

Some rather cool properties:

I Great flexibility in encodings, the set of levels can be
any additively closed subset I of (Z≥0)τ .

I Zero-testing parameters are provided for a subset of I .

Some restrictive or unfamiliar properties:

I Can assume that HNF-bases of various principal ideals
with small generators are known, in particular I . So R/I
is known.

I Cannot encode prescribed elements from R/I .

I Incidentally, abelian group DLP in encodings of level
zero (the arguments) is easy, since ∼= R/I .

I Length of encoding not independent of k, no
compactness.

I There exists trapdoor for decoding and equality testing.
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Outlook

Future developments:

I Will surely see many applications.

I Scheme seems efficient. But how efficient can it be?

I Can more efficient techniques for homomorphic
encryption for multilinear pairings be used too?
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Thank you!


