
Function Secret Sharing
Elette Boyle

IDC Herzliya (Reichman University)

Based predominantly on joint works with Niv Gilboa and Yuval Ishai 1

In the Coming Days…

• Function Secret Sharing
• Prio +
• Oblivious RAM
• Vector OLE
• Pseudorandom Correlation Generators
• Private Set Intersection
• Signatures

2

Additive Secret Sharing

s

• Secrecy: sb hides s
• Reconstruction: s0 + s1 = s (in 𝔾)

+ = s

Elements in Abelian group 𝔾

s0

s1“Secret
Share”

3

+ = 𝑓
𝑓0

𝑓1“Secret
Share”

𝑓 ∶ 0,1 ! → 𝔾
i.e., 2n correlated secrets in 𝔾

Secrets have a
compact representation (via f)…

Can we secret share them ALL
in a compact way?

[BGI15]

Secret function

Function Secret Sharing (FSS)

4

FSS: The 3-Hour Adventure

5

Definition & Discussion & Highlights

Core Constructions

Extensions & Applications

FSS: Definition & Discussion

6

Function Secret Sharing (FSS) for F
Definition [BGI15]: FSS scheme for class F is (Gen, Eval) st:

• Gen(1!, 𝑓) for 𝑓 ∈ F à (f0 , f1) sometimes k0 ,k1 “function keys”
• Eval(𝑏, 𝑘", 𝑥) for 𝑥 ∈ Domain(f) à yb output share

satisfying…

• Secrecy: “Semantic security”: ∀𝑓, 𝑓# ∈ F, { kb from f } ≈ { kb from f’ }
• Reconstruction: y0 + y1 = f(x)

For this lecture:
Focus on 2 shares

𝑓 = 𝑓(𝑥)
y0

y1

+

𝐸𝑣𝑎𝑙 for x
𝑓0

𝑓1“Secret
Share”

𝐺𝑒𝑛

f or f’? 7

Alternative Notion of Security

• “Semantic security”:
∀𝑓, 𝑓& ∈ F,

{ kb from f } ≈ { kb from f’ }

• “Simulation security” wrt leakage function L:
∃ Sim st ∀𝑓 ∈ F,

{ kb from f } ≈ { Sim(L(f)) }

8

Allows fine-grained
hiding/revealing

(Semantic security) ≡ (Simulation security wrt L= F)

Remarks

• This talk: Split into 2 shares

• This talk: Semi-honest parties (wait for Henry’s talk!)

• This talk: Additive reconstruction
Why additive? Hold that thought…

9

𝑓0

𝑓1
𝑓

Example: FSS for All Functions (Truth Table)

• Share size = |Truth Table| ∼ 𝑂 2!

10

= f(x)

f0

f1

+

Public x

𝑓 = ⋯

⋯

⋯

Just secret share the
whole truth table!

x

x

y0

y1

y0

y1

Example: Linear Functions [Ben86]

11

= 𝑓 𝑥

𝑎$

𝑎%
+

Public x

𝑓 𝑥 = 𝑎𝑥 + 𝑏

Over ring R

𝑏$

𝑏%

𝑎$

𝑎%

𝑏$

𝑏%

𝑥 +

𝑥 +
𝑎𝑥 + 𝑏

Additively share
𝑎, 𝑏 over R

Example: Polynomials

More generally: Secret linear combination of public functions of x

12

Public x

𝑓 𝑥 =
𝑎𝑥' + 𝑏𝑥 + 𝑐
Over ring R

= f(x)

+ 𝑎𝑥' + 𝑏𝑥 + 𝑐
𝑎$

𝑎%

𝑏$

𝑏%

𝑐$

𝑐%

𝑎 , 𝑏 , 𝑐 𝑥' , 𝑥 , 1

𝑎$

𝑎%

𝑏$

𝑏%

𝑥& + 𝑥 +

𝑥& + 𝑥 +

𝑐$

𝑐%

Note: Sum of FSS

13

(𝑓 + 𝑔) ∈ ℱ + 𝒢
+

𝑓$

𝑓%

Public x

𝑦$

𝑦%

(𝑓 + 𝑔)(𝑥)
𝑔$

𝑔%

𝑧$

𝑧%

+
+

+

𝑓!

𝑓"

Public x

𝑓 ∈ ℱ

𝑦!

𝑦"

𝑓(𝑥)

𝑧!

𝑧"

𝑔!

𝑔"

𝑔 ∈ 𝒢 + 𝑔(𝑥)

FSS for ℱ
+

FSS for 𝒢

⇒ FSS for
ℱ + 𝒢 = {𝑓 + 𝑔 ∶ 𝑓 ∈ ℱ, 𝑔 ∈ 𝒢}

A Little Different…

14

Useful Example: FSS for Point Functions [GI14]

• Point function class F: 𝑓(,* ∶ 0,1 ! → 𝔾

𝑓(,* 𝑥 = A 𝛽 if 𝑥 = 𝛼
0 𝑒𝑙𝑠𝑒

= f(x)
y0

y1

+Secret 𝑓!,#
function

f0

f1

Public x

Eg: 𝔾 = ℤ& or ℤ/

15

Useful Example: FSS for Point Functions [GI14]

Secret 𝑓!,$
function

f0

f1

Eval on ALL x

𝛼

= “Distributed Point Functions (DPF)”

16

Construction: In Part 2!

Coming Up Next…

• Sample Application: Private Data Manipulation

•Overview: What is Known

17

Sample Application
Private Data Manipulation

18

Goal: Private Queries to Public DB

Examples: Stock quotes, map search, …

Client

Public DB

Held by
𝑠 ≥ 1
(non-colluding)
servers

…

Query DB, hiding query from servers
Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

Note: Client does not own DB (many-client setting) 19

Special Case: Private Information Retrieval (PIR)
Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

Private Query: “Retrieve item i” (while hiding index i)

Client

…

[CGKS98, KO00]

Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

Public DB

Held by
𝑠 ≥ 1
(non-colluding)
servers

20

Private Information Retrieval

Statistical Privacy

• 2+ servers:
slightly 𝑛3(%)
[Yekhanin07,Efremenko09, Dvir-Gopi 15]

• 1 server:
Requires public-key crypto
[Di Crescenzo-Malkin-Ostrovsky 00]

Computational Privacy (𝜆 = sec param)

• 2+ servers: (one-way functions)
(𝜆 + 2) log 𝑛 [Boyle-Gilboa-Ishai 16b]

• 1 server: (structured PKE assumptions)
poly(𝜆) log& 𝑛 [Kushilevitz-Ostrovsky00,…]

Impossible.

Suppose DB = n entries, each 1 bit

21

Thus: A Motivated Setting

• 2 non-colluding servers
• Lightweight crypto

• Multiple clients
For this talk: passive adversary (honest-but-curious server)

Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

Client
Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

Public DB

Held by
𝑠 ≥ 2
(non-colluding)
servers

Non-collusion: Eg, different providers
/ subpoena jurisdictions…

22

FSS for Point Functions ⇒ 2-Server PIR

Value

1 10000101

2 10010100

3 01100111

4 10101010

5 00101101

6 11010101

To access item 𝑖 ∈ [𝑛]:

Value

1 10000101

2 10010100

3 01100111

4 10101010

5 00101101

6 11010101

Define point
function

fi,1
fA
fB

fA(1) ×
fA(2) ×

fA(6) ×
…

fB(1) ×
fB(2) ×

fB(6) ×

…

yA =Σ 𝑓𝐴(𝑗) 𝑣𝑎𝑙[𝑗]

fi,1(j) :=

(
1 if j = i

0 else

fA

fB

yA

yB

Communication = |𝑓+|+|val[𝑖]|

𝑦! + 𝑦" = 1 ⋅ 𝑣𝑎𝑙 𝑖 + 2
#$%

0

𝑓5,% ∶ 𝑛 → ℤ&

~ 𝐥𝐨𝐠𝒏 +|val[𝑖]| for FSS from PRGs!23

Also…

Private Updates to Secret-Shared Data

24

FSS for Point Functions ⇒ Private Histograms
Value

1 10000101

2 10010100

3 01100111

4 10101010

5 00101101

6 11010101

To increment item i :

Value

1 10000101

2 10010100

3 01100111

4 10101010

5 00101101

6 11010101

f i,1
fA
fB

fA(1) +
fA(2) +

fA(6) +

…

fB(1) +
fB(2) +

fB(6) +

…

fA

fB

Servers store
Secret-shared DB

Define point
function

𝑓5,% ∶ 𝑛 → ℤ&

Anyone can increment!
25

FSS for Point Functions ⇒ Private Histograms
Value

1 10000101

2 10010100

3 01100111

4 10101010

5 00101101

6 11010101

To increment items
satisfying P :

Value

1 10000101

2 10010100

3 01100111

4 10101010

5 00101101

6 11010101

Define secret function

f P fA
fB

fA(1) +
fA(2) +

fA(6) +

…

fB(1) +
fB(2) +

fB(6) +

…

fA

fB

𝑓4 𝑥 = A1 𝑖𝑓 𝑃 𝑥 = 1
0 𝑒𝑙𝑠𝑒

Servers store
Secret-shared DB

Leakage: Query class supported by FSS scheme (& columns applied to)
26

Remarks

• Why additive reconstruction?
Linear compressibility enables
to compress server’s reply

• Linear in DB: Are you crazy??
Sometimes this is not so bad…

• What’s the leakage?
Reveals FSS query class F
Hides query from within class

f(x)
y0

y1

Public x
f0

f1
f ??

Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

Value 1 Value 2

1 100101 Jane

2 100100 Daniel

3 011011 Peter

4 101010 Elliott

5 001001 Maya

6 110101 Samuel

f0

f1

27

FSS for F⇒ Private Database Manipulation

• Private Updates to Secret-Shared Data
Voting, Secret histograms, Anonymous broadcast, …

• “Attribute-Based” Information Retrieval
Multi-keyword search, Range queries, DB statistics, …

- Counting Queries: f outputs {0,1} in ℤ/
- Recovery Queries: for m items, using sketching techniques (eg, [OS07])

FSS for more general function classes
more expressive database manipulation)

28

Application: 2-Server Private Database Queries

Name Salary DOB G

Alexandra Baker $289,000 3/14/80 F

Patricia Callman $215,000 7/11/76 F

Preston Greenly $98,000 1/11/81 M

Graeme Roberts $223,000 9/28/77 M

Martin Wolferson $109,000 10/9/79 M

Charles Zanzabar $72,000 6/24/86 M

FSS for more expressive class F
fA

fB

yA

yBCount = 𝑦𝐴 + 𝑦5 ∈ ℤ6

Counting Query Example:
• Salary between $100-200k,
• AND Birthday in October,
• AND Female

Name Salary DOB G

Alexandra Baker $289,000 3/14/80 F

Patricia Callman $215,000 7/11/76 F

Preston Greenly $98,000 1/11/81 M

Graeme Roberts $223,000 9/28/77 M

Martin Wolferson $109,000 10/9/79 M

Charles Zanzabar $72,000 6/24/86 M

yA=Σ fA(xj,yj,zj)

𝑓: ℤ7×ℤ%&×ℤ& → ℤ/

𝑓 𝑥, 𝑦, 𝑧 ≔

1

0

if 𝑥 ∈ $ 100𝑘, 200𝑘
∧ 𝑦 = Oct
∧ 𝑧 = Female

29

Overview of FSS: What is Known

30

Side Note: Function vs Homomorphic SS (HSS)

• HSS for program class P
share size ~ |x|

• FSS for program class P
share size ~ |P|

FSS/HSS more natural in different applications

P0

P1
P

x0

x1
x

EvalP

Evalx

For 𝑃 ∈ P and input x

31

Function Secret Sharing: Current Landscape
“High-level”

LWE+ Circuits [DHRW16, BGI15, BGILT18]

“Mid-level”
DDH Branching Programs [BGI16, BCGIO17, DKK18]
Paillier [FGJS17, OSY21, RS21]
LWE [BKS19]

“Low-level”
OWF Simple functions [GI14, BGI15, BGI16b]

“Algorithmica”
None Linear Combinations [Ben86]

w/ Secret Coeffs

“Lapland” Low-deg polynomials [BCGIKS19]
LPN Weird PRGs… Requires one-way

functions [GI14,BGI15]

Structured assumptions
yielding PKE

Not efficient (Builds atop specific FHE)

32

“Weird PRGs”: Wait for
Peter/Yuval…

In Particular… Lightweight Constructions
From any Pseudorandom Generator (PRG)

• Point Functions [GI14,BGI15,BGI16b] ⇒ PIR, keyword search
• Interval Functions [BGI15,BGI16b] ⇒ Range queries

• (Small) Constant-Dimension Intervals ⇒ Small conjunctions
• Simple Decision Trees [BGI16b]

33

Stretch Break!

34

Cliffhanger… how can we build this great FSS thing?

= f(x)
y0

y1

+FSS: 𝑓
f0

f1

Public xRecap:

• Useful applications in private data manipulation (& more!)

• “Distributed Point Function” (DPF) = FSS for point functions

35

Part II:
Constructions of FSS

FSS for Point Functions
FSS for Comparison Functions

36

Construction:

FSS for Point Functions
= Distributed Point Functions (DPF)

37

f↵(x) :=

(
1 if x = ↵

0 else

History of DPF from OWF

Implicit in [CG99]

𝑶(𝟐 𝒏𝝀)

n/2 bits

n/2 bits n-1 bits

1 bit

key size in bits: 𝑛 = input bit len
𝜆 = sec param

[GI14]
Recursive

~ 𝑶(𝒏𝟏.𝟓𝟖𝝀)

[BGI15]
Tree-Based
~ 𝟒 𝒏𝝀

[BGI16b]
Optimized Tree

~ 𝒏𝝀

=

???

DPF Construction: Starting Tools

• Uses (any) length-doubling Pseudo-Random Generator (PRG)
• Useful Tool: GGM Pseudorandom function (PRF)

[Goldreich-Goldwasser-Micali 84]

s

Pseudorandomness

PRG

s

Loooong Pseudorandomness

Length-doubling PRG

(Eg: 2 calls to AES)
39

DPF Construction Overview

“Correction Words” at each level
(to force equality once input disagrees with special value)

[Boyle-Gilboa-Ishai 16b]

Random PRG seeds
s0 s1

CW1 CW1

…
…

CWn CWn

…

Suppose domain
[N] = [2n]

40

DPF Construction from PRGs

Invariant for Eval: λ-bit 1-bit

For each node v on evaluation path we have [S]|[b]

share1share0

41Additive secret shares

𝑓8: 0,1 9 → {0,1}
[BGI16b]

DPF Construction from PRGs

Invariant for Eval:

For each node v on evaluation path we have [S]|[b]
• v on special path: S is pseudorandom, b=1
• v off special path: S=0, b=0

[$]|[1]

42

DPF Construction from PRGs

Invariant for Eval:

For each node v on evaluation path we have [S]|[b]
• v on special path: S is pseudorandom, b=1
• v off special path: S=0, b=0

[$]|[1]

43

Gadget: Conditional Correction

b0 ∈ {0,1} b1=b0Åb

R0 ∈ 0,1 :

Δ

R1=R0ÅR

[b]

[R]

[RÅ(b.Δ)]R1 Å (b1 ⋅ Δ) R2 Å (b2 ⋅ Δ)

44

• R=0, b=0 ⇒ generate shares of…
• Δ=R, b=1 ⇒ generate shares of…

Test yourself: 0!
0!

Building the Correction Word Δ

45

L L R R

PRG

R0 L L R R

PRG

R1

Δ =

S

Goal =

|[1]

𝑆& 𝑏& 𝑆' 𝑏'

𝑆& 𝑏& 𝑆'⊕𝑆′ ¬𝑏'

0 0 𝑆′ 1

Building the Correction Word Δ

46

L L R R

PRG

R0 L L R R

PRG

R1

Δ =

S

Goal =

|[1]

𝑆& 𝑏& 𝑆' 𝑏'

𝑆& 𝑏& 𝑆'⊕𝑆′ ¬𝑏'

0 0 𝑆′ 1

𝑆& 𝑏& 𝑺𝑳 ¬𝑏'

0 0 𝑺𝑳⊕𝑺𝑹 1

Optimization: Don’t
need to inject new 𝑆′

Using the CW Δ : On-Path

47

0 1

L L R R

PRG

L L R R

PRG

L L R R L L

CW Δ
L

L

L

L

L R

L R
⊕1

R= ⊕1≈ rand

Using the CW Δ : Off-Path

48

0

L L R R

PRG

L L R R

0

L L R R

PRG

L L R R

Using the CW Δ : Off-Path

49

1

L L R R

PRG

1

L L R R

PRG

CW ΔCW Δ

L L R R L L R R

The DPF Keys: Correction Word per Level

50

L

L

L

L

L R

L R

⊕1

L R
Correction Word
For this level

DPF: Final Key Construction
Key kA: Key kB:

CW1

CW2

CW1

CW2

Level 0:

Level 1:
Level 2:
Level 3:

Level n:

CW3

CWn

CW3

CWn

… …

λ + (λ+2)n bits 51

DPF Construction: Complexity

• Function share (“key”) size:
• PRG seed @ top 𝜆 bits
• CW for n levels (𝜆 + 2)n total bits

• Generation / 1 evaluation cost:
• n PRG evaluations (plus some xors)

[Boyle-Gilboa-Ishai 16b]

s0

CW1

…

CWn
Example: PIR on 225 records of length d
• Comm: 2578 bits → each server, d bits in return
• Comp: Dominated by reading + XORing all records

Domain
[N] = [2n]

52

• Early termination: pack outputs into l bits
• EvalAll: compute each node once

FSS computation
costs dominated by

lookup/xors

Optimizing PIR Applications

n

n–log(l)

Observations on the Construction

• Incremental evaluation
• Hidden all-prefix FSS inside!

• Almost everything is public
• Ties hands of malicious key generator

given public CW’s

• These properties are useful for applications! [BBCGI21]
54

CW1

CW2

CW3

CWn

…
CW1

CW2

CW3

CWn

…

Construction:

FSS for Comparison Functions
= Distributed Comparison Functions (DCF)

55

𝑓(B 𝑥 = A1 if 𝑥 < 𝛼
0 else

Warm-Up Observations

• 2 x DCF over 0,1 ⇒ Intervals over {0,1}

• 𝑛 x DPF ⇒ DCF (black box)

56

Interval
=

Sum of FSS
Comparison function

Comparison function+

Point function applied
to Prefix(x)

But: We can build non-black-box
for much cheaper!

Note: almost like all-prefix DPF,
but not quite… (co-paths)

DCF Construction from PRGs

Same Per-Node Invariant for Eval (as DPF)
New: @ each level of Eval, compute extra secret shared bit
• Eval input x exits 𝛼-path to the left at this level ⇔ bit shares 1
• Final output = DPF output + sum of all levels’ bits

57

𝑓8?: 0,1 9 → {0,1}

[0]

[0]

[1]

[0]

[BGI15,BCGGIKR21]

Building the Correction Word Δ

58

L L R R

PRG

R0 L L R R

PRG

R1

Δ =

S

Goal =

|[1]

𝑆& 𝑏& 𝑆' 𝑏'

0 0 𝑆′ 1

𝑆& 𝑏& 𝑺𝑳 ¬𝑏'

0 0 𝑺𝑳⊕𝑺𝑹 1

𝑐$¬𝑐%

1 0

c% 𝑐$

Leaving path
is exit left

Building the Correction Word Δ

59

L L R R

PRG

R0 L L R R

PRG

R1

Δ =

S

Goal =

|[1]

𝑆& 𝑏& 𝑆' 𝑏'

0 0 𝑆′ 1

𝑆& 𝑏& 𝑺𝑳 ¬𝑏'

0 0 𝑺𝑳⊕𝑺𝑹 1

𝑐$𝑐%

0 0

c% 𝑐$

Leaving path
is exit right

DCF: Final Key Construction
Key kA: Key kB:

Level 0:

Level 1:
Level 2:
Level 3:

Level n:

λ + (λ+4)𝑛 bits
60

CW1

CW2

CW3

CWn

…
CW1

CW2

CW3

CWn

…

(Note: For general output
group 𝔾, each ∈ 𝔾)

FSS for Decision Trees [BGI16b]

61

• Hides:
• Edge labels
• Leaf values

• Reveals:
• Topology
• Node labels

• Key size ~4𝜆 ⋅ tree size
Extends DPF/DCF but without optimizations

• Example application: 𝑘-dim intervals, 𝑘 ∈ 𝑂(1)

Note: DPF & DCF are special
cases - Decision Lists

Summary of Part II

• Construction of DPF
• + Useful Properties

• Construction of DCF
Distributed Comparison Function

• Briefly: FSS for Decision Trees

62

CW1

CW2

CW3

CWn

…
CW1

CW2

CW3

CWn

…

63

Part III:
Applications & Extensions

64

Application:
Secure Computation with Preprocessing

65

Secure (2-Party) Computation

𝑦𝑥

𝑓(𝑥, 𝑦)

66

Learn 𝑓(𝑥, 𝑦) and nothing else about 𝑥, 𝑦

[Yao86,GMW87]

Secure Computation with Preprocessing

Preprocessing

𝑦𝑥
Online phase

𝑓(𝑥, 𝑦)

Correlated randomness

[Beaver ’91]

• Cheap
• Low communication

67

Semi-Orthogonal Questions

• How to use correlations (& which are useful)?
• Beaver triples, circuit-dependent Beaver [Bea91]
• One-time truth tables (TinyTables) [IKMOP13, DNNR17]
• Sublinear IT online comm for layered circuits [Cou19]
• …

• How to generate correlations?

“Pseudorandom Correlation Generators”
Wed & Thurs! [BCGIKS19, BCGIKRS19,…]

Now

68

Secure Computation with Preprocessing

• Arithmetic Circuit (+,x)
over some ring R [Beaver’91]

Goal:
• Possibly mixed domains (big)
• Useful nonlinear gates
• Equality, Comparison,

ReLU, Bit Decomposition, …

69

+

x

x x

???

2PC with Preprocessing from FSS (High Level)
• General Framework: MPC with Preprocessing via FSS

• Necessity of FSS? “Shared equality” with optimal online communication ⇒ OWF

+ FSS()
FSS()
FSS()

=

• Practical: Promising low-online-comm
(equality, comparison, bit decomp,…)

• Theoretical: Unifying approach

70

[BGI 19]

• General Framework: MPC with Preprocessing via FSS

• Necessity of FSS? “Shared equality” with optimal online communication ⇒ OWF

2PC with Preprocessing from FSS (High Level)

+ FSS()
FSS()
FSS()

=

71

[BGI 19]

“Secret Offset Functions”
𝐺(𝑥 − 𝑟) for gate 𝐺

Recall: Information-Theoretic FSS

• Any function class 𝑓: 0,1 ! → 𝔾
• Secret share the truth table

• Low-degree polynomials { ∑G 𝛼G𝑥G }
• Secret share the coefficients 𝛼5

• Function class { ∑G 𝛼G 𝑓G 𝑥 } for public 𝑓G
• Secret share the coefficients 𝛼5

= f(x)
y0

y1
+𝑓

f0

f1

Public x

Corollaries
One-time truth tables [IKMOP13]
TinyTables [DNNR17]

Beaver triples [Bea91]
Circuit-dependent Beaver [DNNR17]

Degree-𝑑 gates
Bilinear maps, …

(TT for local functions) [Cou19]

(𝑥) − 𝑟)) 𝑥* − 𝑟* = 𝑥)𝑥* − 𝑟)𝑥* − 𝑥)𝑟* + 𝑟)𝑟*

• Any function class 𝑓: 0,1 ! → 𝔾
• Secret share the truth table

• Low-degree polynomials { ∑G 𝛼G𝑥G }
• Secret share the coefficients 𝛼5

• Function class { ∑G 𝛼G 𝑓G 𝑥 } for public 𝑓G
• Secret share the coefficients 𝛼5

Lightweight FSS Constructions from OWF

• Point Functions 𝑓(,* ∶ 0,1 ! → 𝔾
• Key size ~ 𝜆𝑛 + log|𝔾| bits
• Gen/Eval ~ 𝑛 PRG evals

• “Special” Intervals
• Cost ≤ Point Function x 2

• General Intervals
• Cost ≤ Point Function x 4

𝛽

pos 𝛼

01

≤ 𝛼

0 1
≥ 𝛼

[BGI15, BGI16b]

01
𝛼 ≤ 𝑥 ≤ 𝛽

General input groups too

Corollaries from OWF

• Point Functions 𝑓(,* ∶ 0,1 ! → 𝔾
• Key size ~ 𝜆𝑛 + log|𝔾| bits
• Gen/Eval ~ 𝑛 PRG evals

• “Special” Intervals
• Cost ≤ Point Function x 2

• General Intervals
• Cost ≤ Point Function x 4

[BGI15, BGI16b, BGI19]

Is Zero

𝔾

ℤ&

Sign

ℤ/

ℤ&

Compare

ℤ/

ℤ&

ℤ/

2PC with Preprocessing for:

Spline

ReLU

ℤ/

ℤ/

Other Cool FSS Things

76

“Programmable” DPF [BGIK??]

• One key is 𝜆 bits

• Builds on “Puncturable Pseudorandom Sets”
of [CK20] (from online/offline PIR)

• Very different DPF structure!
• Punctured histogram
• Amplify 1/poly error → negligible

77

CW1

CW2

CW3

CWn

…

CW1

CW2

CW3

CWn

…

Multi-Party DPF (Security Against t>1)

• Bottom Line:

• Eg [BGI15]: 2 parties, t =1 3 parties, t = 2

• The reason: 2 parties ⇒ Shares of 0 are identical values (leveraged!)

• Improvements given gap between # parties & # corrruptions [BKO21]
• Eg: 5 parties, 2 corruptions, 𝑂(2𝒏/𝟒) instead of 𝑂(2𝒏/𝟐)

78

[Boyle, personal communication ‘22]

Key size: ~𝒏𝜆 𝑂(𝟐𝒏/𝟐𝜆)
𝑚 parties, t = 𝑚-1
𝑂(𝟐𝒎 ⋅ 29/&𝜆)

Sort of sucks.

Relation to Other Crypto Objects

• “Nontrivial” FSS ⇒ OWF [GI14,BGI15]
Functions 𝑓!, 𝑓" must be PRFs [BGI15]

• FSS for Class containing SKE Dec circuit
⇒ (amortized) succinct secure computation [BGI15]

• Privately Puncturable PRF [BLW17] ⇒ “adaptive” DPF
Can set 1 key before knowing the secret 𝛼

• Targeted Lossy Functions [QWW21]
DPF equivalent to “Targeted All-Lossy-But-One” functions

79

FSS: Summary

80

Lecture Conclusion – Part I

• Function Secret Sharing (FSS)

• Approach to 2-server private DB queries / updates (+ more!)

• Current FSS: Richness vs complexity tradeoff
• Simple functions: Lightweight from any PRG
• NC1: Uses public-key crypto, but getting reasonable
• Above: Heavy crypto…

= f(x)
y0

y1

+f
f0

f1

Public x

81

Lecture Conclusion – Part II

• Construction of DPF
• + Useful Properties

• Construction of DCF
Distributed Comparison Function

• Briefly: FSS for Decision Trees

82

CW1

CW2

CW3

CWn

…
CW1

CW2

CW3

CWn

…

Lecture Conclusion – Part III

• Application: 2PC with Preprocessing

• Other Highlights
• “Programmable” DPF
• Multi-Party DPF
• Relation to other primitives

83

+
FSS()
FSS()
FSS()

=

Some Things We Don’t Know

84

FSS: Sample Open Problems
• Richer FSS from OWF
• Broader function classes (CNF/DNF?)

Barriers known for > AC0

• 3-server FSS with security against 2 servers
To beat: key size (𝜆 2n/2) vs (𝜆n) for security against 1

• More efficient FSS
• 2-server FSS for Point Functions from OWF: Beat λn key size?
• Amortizing cost of multi-point function?
• Better efficiency from “mid-level” constructions

• New & improved applications
85

What About Malicious
Parties?

86

Coming up next…

