Function Secret Sharing

Elette Boyle
IDC Herzliya (Reichman University)

University of Computer Science

..

*
*]
~ Reichman < Efi Arazi School

Based predominantly on joint works with Niv Gilboa and Yuval Ishai

In the Coming Days...

* Function Secret Sharing

* Prio +

* Oblivious RAM

* Vector OLE

* Pseudorandom Correlation Generators
* Private Set Intersection

* Signatures

Additive Secret Sharing

Elements in Abelian group G

s< s

* Secrecy: s, hidess
* Reconstruction: s, +s;=s (in G)

Function Secret Sharing (FSS) [sci1s)

Secret function
fo

f: {011 > G < . _
i.e., 2" correlated secrets in G f1

Secrets have a
compact representation (via f)...

Can we secret share them ALL
in @ compact way?

FSS: The 3-Hour Adventure

Definition & Discussion & Highlights

Extensions & Applications

FSS: Definition & Discussion

Function Secret Sharing (FSS) for 7 [t lecture

Focus on 2 shares

Definition [BGI15]: FSS scheme for class F is (Gen, Eval) st:

* Gen(14, f) forf € F =2 (fy, f;) sometimes k,,k; “function keys”
* Eval(b, ky,x) forx € Domain(f) =2 y, outputshare

satisfying...

 Secrecy: “Semantic security”: Vf,f € F, {k,fromf}={k, fromf"}
* Reconstruction: y,+y;=f(x)

Alternative Notion of Security

* “Semantic security”:
Vf,f €F,
{k,fromf}={k, fromf’}

Allows fine-grained

e “Simulation security” wrt leakage function L:
I SimstVf € F,

hiding/revealing

{kyfromf} = {Sim(L(f))}

(Semantic security) = (Simulation security wrt L= F)

Remarks

fo
* This talk: Splitinto 2 shares f <
f1

* This talk: Semi-honest parties (wait for Henry’s talk!)

* This talk: Additive reconstruction
Why additive? Hold that thought...

Example: FSS for All Functions (Truth Table)

fo f

Public x

yO

- m—

>

Just secret share the
whole truth table!

* Share size = | Truth Table| ~ 0(2")

Yo

Y1

+\-*=

-

f(x)

10

Example: Linear Functions [Beng6]

Public x

Ao bO g a0x+ bO
fx) = ax+b < \+A ax + b
/

Over ring R a4 by TNy x + by = f(X)

Additively share
a, b over R

11

Example: Polynomials

Public x
f(x) — Qo bO Co a0x2+ bO X + Co \
ax® + x+c< H ax?+bx+c

Over ring R a, by ¢ —— a;x%+ by x+ ¢ y

= ()

More generally: Secret linear combination of public functions of x
a,b,c x?, x, 1

12

Note: Sum of FSS

= FSS for

FSS for F

+

FSS for

F+G={f+g:f€F, g€}

Public x
fo —

J’O\
ferF <:z v
ii—\nr

go —>/ Zy

9€9 < e
g4 —> Z1 //

(f+g)€T+Q<

fo

h

9o

91

Public x

>

>

Yo + Zj \\\\A

yi + 74

+

/7

(f +9)(x)

13

A Little Different...

Useful Example: FSS for Point Functions [GI14]

Public x

fo ” Yo \
Secret fap < ¥ = f(x)
function f, >y, =

* Point functionclass F: f, 5 : {0,1}" —» G

fa,B(x) = {'g ifx=a

else

15

Useful Example: FSS for Point Functions [GI14]

Eval on ALL x

= “Distributed Point Functions (DPF)”
Construction: In Part 2!

16

Coming Up Next...

 Sample Application: Private Data Manipulation

e Overview: What is Known

Sample Application

Private Data Manipulation

Goal: Private Queries to Public DB

Query DB, hiding query from servers

Public DB

Held by

s=>1
(non-colluding)
servers

Examples: Stock quotes, map search, ...

Note: Client does not own DB (many-client setting) 19

Special Case: Private Information Retrieval (PIR)
[CGKS98, KOOO]

111111

Public DB

111111

111111

111111111111

Held by

s=>1
(non-colluding)
EEEEEEEEEEEE servers

111111

Client

100100 Daniel

11111111111

101010 Elliott

000000

SSSSSS

Private Query: “Retrieve item i” (while hiding index i)

20

Private Information Retrieval

Suppose DB = n entries, each 1 bit

Statistical Privacy Computational Privacy (A =sec param)

e 2+ servers: e 2+ servers: (one-way functions)
slightly n°(1) (A + 2) logn [Boyle-Gilboa-Ishai 16b]
[Yekhanin07,Efremenko09, Dvir-Gopi 15]

* 1 server: Impossible. * 1 server: (structured PKE assumptions)

Requires public-key crypto poly (1) log? n [Kushilevitz-Ostrovsky00,...]
[Di Crescenzo-Malkin-Ostrovsky 00]

21

Thus: A Motivated Setting

VVVVVVVVVVVV

e 2 non-colluding servers

* Lightweight crypto Public DB
Held by
s=2
Non-collusion: Eg, different providers Client (non-colluding)
/ subpoena jurisdictions... e o Servers

111111

100100 Daniel

11111111111

111111

111111111111

For this talk: passive adversary (honest-but-curious server)

22

FSS for Point Functions = 2-Server PIR

Q To access item i € [n]:

Define point fi1: [nl = Z;
function N {1ifj—i

fe

ya+vyg =1-valli] + z 0
{j=i}

Ya=2 fa(j) vallJ]

Value

10000101

10010100

01100111

10101010

00101101

)] (2] B~ w N = | ®

11010101

Value

10000101

10010100

01100111

10101010

00101101

)] (2] 0w N = | ®

p—
—

-

X

X

X

11010101

Communication = | f, |+|vall[i]| ‘~ log n +|val[i]| for FSS from PRGs!

Also...
Private Updates to Secret-Shared Data

FSS for Point Functions = Private Histograms

g To increment item i :

Define point fi1: In] - Z,

function
fi1 < j:A
B

fa(1) +
fA fal2) +

Anyone can increment! g

fal6) +

fo(1) +
fB fa(2) +

f5(6) +

Value

o U W N | ®

10000101

10010100

01100111

10101010

00101101

11010101

Value

o U 0w N | ®

10000101
10010100
01100111
10101010

00101101

11010101

Servers store

Secret-shared DB

FSS for Point Functions = Private Histograms

g To increment items
satisfying P :
Define secret function

P (x) = {1 if P(x) =1

0 else

p fA
f <fs

fa

/8

Leakage: Query class supported by FSS scheme (& columns applied to)

fa(1) +
fal2) +

fal6) +

fo(1) +
fa(2) +

f5(6) +

Value

o U W N | ®

10000101

10010100

01100111

10101010

00101101

11010101

Value

o U 0w N | ®

10000101

10010100

01100111

10101010

00101101

11010101

Servers store

Secret-shared DB

Remarks

* Why additive reconstruction?

Linear compressibility enables
to compress server’s reply

* Linear in DB: Are you crazy??
Sometimes this is not so bad...

 What's the leakage?

Reveals FSS query class F
Hides query from within class

111111111111

27

FSS for F = Private Database Manipulation

FSS for more general function classes

—> more expressive database manipulation

* Private Updates to Secret-Shared Data
Voting, Secret histograms, Anonymous broadcast, ...

e “Attribute-Based” Information Retrieval
Multi-keyword search, Range queries, DB statistics, ...

- Counting Queries: foutputs {0,1}in Zy
- Recovery Queries: for m items, using sketching techniques (eg, [0S07])

28

Application: 2-Server Private Database Queries

 Salary between $100-200k,
Counting Query Example: < AND Birthday in October,
* AND Female

: Ya=2 .fA(leyjl)
FSS for more expressive class ‘F
f Name Salary DOB G—
f: ZM X le X ZZ _) ZN A Alexandra Baker $289,000 3/14/80 F
Patricia Callman @ @ F
r . Preston Greenly @ M
1 Ifx E $[100k) ZOOk] / yA Graeme Roberts @@ M
— Martin Wolferson $109,000 M
Ay = Oct T
f(x, y’ Z) := < /\ Z — Female Charles Zanzabar @ ﬂ
\ Name Salary DOB G
0 Alexandra Baker $289,000 3/14/80 F
\ I
B Patricia Callman $215,000 7/11/76 F
Preston Greenly $98,000 1/11/81 M
— yB Graeme Roberts $223,000 9/28/77 M
CO un t - yA _I_ yB E ZN Martin Wolferson $109,000 10/9/79 M
Charles Zanzabar $72,000 6/24/86 M

Overview of FSS: What is Known

Side Note: Function vs Homomorphic SS (HSS)

For P € P and input x

* HSS for program class P Evalp

Xo
x] x<
X
* FSS for program class P P< P,
| P P,

FSS/HSS more natural in different applications

Function Secret Sharing: Current Landscape

”Hiéh-level” Not efficient (Builds atop specific FHE) ‘

LWE+ Circuits [DHRW16, BGI15, BGILT18]
“Mid-level”

DDH Branching Programs [BGI16, BCGIO17, DKK18]

Paillier) [FGJS17, OSY21, RS21]

\WE Structured assumptions BKS19)

yielding PKE ' “Weird PRGs”: Wait for

“Lapland” Low-deg polynomials [BCGIKS19] Peter/Yuval...

LPN Weird PRGs...

Requires one-way
“Low-level” functions [G114,BGI15]
OWEF Simple functions [GI14, BGI15, BGl16b]

“Algorithmica”
None Linear Combinations [Ben86]

w/ Secret Coeffs .

In Particular... Lightweight Constructions

From any Pseudorandom Generator (PRG)

* Point Functions [Gl14,BGI15,BGl16b] = PIR, keyword search
* Interval Functions [BGI15,BGI16b] = Range queries
* (Small) Constant-Dimension Intervals = Small conjunctions

e Simple Decision Trees [BGI16b]

33

Stretch Break!

Cliffhanger... how can we build this great FSS thing?

Recap; f Public x
0 Yo
FSS: f < (+ = f(x)
fs 4

e Useful applications in private data manipulation (& more!)

» “Distributed Point Function” (DPF) = FSS for point functions

34

35

Part |l:
Constructions of FSS

FSS for Point Functions

FSS for Comparison Functions

Construction:

FSS for Point Functions
= Distributed Point Functions (DPF)

fa(T)

s

/

\

1ifz =«

0 else

37

History of DPF from OWF

key size in bits: n =input bit len

A =sec param

mplicit in [CG99 [Gl114] [BGI15] [BGI16b]
mplicitin | | Recursive Tree-Based Optimized Tree
0(2V"2) ~ 0(n'58)) ~4na ~nd .,
- N
- NN .
n/2 bits " -
L =]
—
n/2 bits n-1bits
.|
.

DPF Construction: Starting Tools

* Uses (any) length-doubling Pseudo-Random Generator (PRG)

e Useful Tool: GGM Pseudorandom function (PRF)
[Goldreich-Goldwasser-Micali 84]

Length-doubling PRG

PRG

(Eg: 2 calls to AES)
Loooong Pseudorandomness

39

DPF Construction Overview Suppose domain
[Boyle-Gilboa-Ishai 16b] [N] = [2"]

Random PRG seeds
So S|

CW, CW,

CW, CW,

“Correction Words” at each level

(to force equality once input disagrees with special value) "

DPF Construction from PRGs f:{0,13" - {0,1}
[BGI16Db]

share, share;
]]

Invariant for Eval:

For each node v on evaluation path we have [S]|[b]

Additive secret shares

41

DPF Construction from PRGs

. [STI{1] EnE
C 1 I E

Invariant for Eval:

For each node v on evaluation path we have [S]|[b]
* von special path: S is pseudorandom, b=1
» v off special path: S=0, b=0 42

DPF Construction from PRGs

[STI{1]

Invariant for Eval:

For each node v on evaluation path we have [S]|[b]
* von special path: S is pseudorandom, b=1
» v off special path: S=0, b=0 43

Gadget: Conditional Correction

1
e (0L DN) B ReRer

b, € {0,1} B [b] B b,=by@®b

! !

R,® (b,-A) [RO(bA)] R;® (b, A)
|

Test yourself: ¢ R=0, b=0 = generate shares of... 0!
 A=R, b=1 = generate shares of... 0!

44

Building the Correction Word A

I I (1]
PRG PRG
R

A= S, |b [Se®5 |-be

Goal = 0 0 S’ 1

45

Building the Correction Word A

I B - s [Iny

PRG PRG

Optimization: Don’t
need to inject new S’

46

Using the CW A : On-Path

PRG

B O

47

Using the CW A : Off-Path

/"N\
|
o}
\\—’,
PRG

B O

The DPF Keys: Correction Word per Level

NN e 3
I e
I ™

Correction Word

_ ﬂ) For this level

50

DPF: Final Key Construction
Key Ky Key kg:

Level O:

Level 1:
Level 2:
Level 3:

Level n:

A + (A+2)n bits .

DPF Construction: Complexity

[Boyle-Gilboa-Ishai 16b]

* Function share (“key”) size:

* PRG seed @ top A bits
 CW for n levels (A + 2)n total bits

 Generation / 1 evaluation cost:
* n PRG evaluations (plus some xors)

Example: PIR on 22> records of length d
e Comm: 2578 bits — each server, d bitsin return
e Comp: Dominated by reading + XORing all records

Domain
[N] =[2"]

CW,

CW,

Optimizing PIR Applications

 Early termination: pack outputs into A bits
 EvalAll: compute each node once

FSS computation n—log (1)

costs dominated by
lookup/xors

Observations on the Construction

/

mu
* Incremental evaluation -£
* Hidden all-prefix FSS inside!

* Almost everything is public

* Ties hands of malicious key generator EXVV
given public CW'’s 2

CW,

cw,

* These properties are useful for applications!

/

]]
BN <IN
IR -:-IlEs
s | |

I <IN

[BBCGI21]

54

Construction:

FSS for Comparison Functions
= Distributed Comparison Functions (DCF)

£<(x) = {1 ifx <a

0 else

55

Warm-Up Observations

2 x DCF over {0,1} = Intervals over {0,1}

Interval

Comparison function

Sum of FSS + : .
Comparison function

* n x DPF = DCF (black box)

Point function applied

to Prefix(x)\

But: We can build non-black-box
for much cheaper!

Note: almost like all-prefix DPF,
but not quite... (co-paths)

56

fa:{0,1}" - {0,1}

DCF Construction from PRGs

[BGI15,BCGGIKR21] ‘

[[0] I
0 C

1] (n)
- 0 n

Same Per-Node Invariant for Eval (as DPF)

New: @ each level of Eval, compute extra secret shared bit
* Eval exits a-path to the left at this level & bit shares 1
* Final output = DPF output + sum of all levels’ bits

57

Building the Correction Word A

PRG
“ ¢, S b SR br cgr

A — —Cy,

I (1]

s b | s

|-br

Cr

Goal = FNEEINEEENTY

Leaving path @
is exit left

PRG

58

Building the Correction Word A

I N R (1]
PRG PRG
T
A= CL SL ‘bL ‘ SL ‘—IbR Cr

cEIEMM o0 o o0 5.9 1 |0
@ Leaving path

/ \ is exit right

59

DCF: Final Key Construction

Key kj: Key Kg:
Level O:]]
Level 1: (W; BN NN (W, BN RN
Level 2: CW, gpEES W, sepERES
Level 3:

W; guEEE | | VY -

Leveln: | W, N HNIEN (W, HNHN

(Note: For general output

A + (A+4)n bits group G, each [€ G)

Note: DPF & DCF are special

FSS for Decision Trees [BGI16b] cases - Decision Lists
* Hides:

+ Edge label

. Leagfe v:Iuee: .
e Reveals: @ =

* Topology ! !

 Node labels — -

* Key size ~4A1 - (tree size)
Extends DPF/DCF but without optimizations

* Example application: k-dim intervals, k € O(1)

61

Summary of Part li

e Construction of DPF
* + Useful Properties

e Construction of DCF
Distributed Comparison Function

* Briefly: FSS for Decision Trees

]
Cw, [

cw, NN
W: ENHN

cw, N .

AN

Cw, [.
W, INN N
W; HN N

cw, NN NN

62

63

Part llI:
Applications & Extensions

Application:

Secure Computation with Preprocessing

Secure (2-Party) Computation
[Yao86,GMWS87]

f(xy)

Learn f (x,y) and nothing else about x, y

66

Secure Computation with Preprocessing
[Beaver '91]

@ ¥

-
N4

Online phase

f(x,v) * Cheap

e Low communication

Semi-Orthogonal Questions

* How to use correlations (& which are useful)?

* Beaver triples, circuit-dependent Beaver [Bea91]
* One-time truth tables (TinyTables) [IKMOP13, DNNR17] Now

e Sublinear IT online comm for layered circuits [Coul9]

* How to generate correlations?

‘ “Pseudorandom Correlation Generators”
Wed & Thurs! [BCGIKS19, BCGIKRS19,...]

68

Secure Computation with Preprocessing

e Arithmetic Circuit (+,x)
over some ring R [Beaver’91]

Goal:

* Possibly mixed domains (big)

e Useful nonlinear gates

* Equality, Comparison,
RelU, Bit Decomposition, ...

69

2PC with Preprocessing from FSS (High Level)

* General Framework: MPC with Preprocessing via FSS

4) /FSS(=))
4+ | FsS(amm)
FSS(mm)
N J N\ J

N

/

[BGI 19]

* Theoretical: Unifying approach ¢ Practical: Promising low-online-comm
(equality, comparison, bit decomp,...)

* Necessity of FSS? “Shared equality” with optimal online communication = OWF

70

2PC with Preprocessing from FSS (High Level)

* General Framework: MPC with Preprocessing via FSS

-

-
FSS(mm)

FSS(o)

FSS(mm) —

/ -

|

“Secret Offset Functions”

G(x —r) for gate G

[BGI 19]

71

Recall: Information-Theoretic FSS

* Any function class { f:{0,1}" - G} . Public x ,
* Secret share the truth table f < +° N - fix)
f, > ¥, 7

* Low-degree polynomials { ¥}, a;x* }
* Secret share the coefficients q;

* Function class {)}; ; f;(x) } for public f;

* Secret share the coefficients q;

Corollaries

« Any function class {f 0,1} > G} One-time truth tables [IKMOP13]

e Secret share the truth table TinyTables [DNNR.17]
(TT for local functions) [Cou19]

o | d | ol Z i Beaver triples [Bea91]
ow-degree polynomials { 2,; a;x" } Circuit-dependent Beaver [DNNR17]

* Secret share the coefficients ¢; (1 — 1) Xy — T9) = X1y — T42p — X1Ty + 14T
1 — 11 2 12) — A1A2 7 1142 7 A172 172

* Function class { }}; «; f;(x) } for public f; Degree-d gates
* Secret share the coefficients «; Bilinear maps, ..

Lightweight FSS Constructions from OWF

86115, BGi16b) -

* Point Functions f, 5 : {0,1}" > G 5

* Keysize ~ An + log|G| bits
 Gen/Eval ~ n PRG evals

(o M 1
e “Special” Intervals

* Cost < Point Function x 2 >

e General Intervals
e Cost < Point Function x4

Corollaries from OWEF
[BGI15, BGI16b, BGI19]

2PC with Preprocessing for:

* Point Functions f, 5 : {0,1}" > G

* Keysize ~ An + log|G| bits
 Gen/Eval ~ n PRG evals

e “Special” Intervals
* Cost < Point Function x 2

e General Intervals
e Cost < Point Function x4

Other Cool FSS Things

“Programmable” DPF [BGIK??]
* One key is A bits

e Builds on “Puncturable Pseudorandom Sets”
of [CK20] (from online/offline PIR)

 Very different DPF structure!
* Punctured histogram
» Amplify 1/poly error — negligible

77

Multi-Party DPF (Security Against t>1)

* Bottom Line: Sort of sucks. [Boyle, personal communication ‘22]
e Eg [BGI15]: 2 parties, t =1 3 parties, t =2 m parties, t =m-1
Key size: ~nl 0(2™2%)) 0(2™ . 2™/2))

* The reason: 2 parties = Shares of O are identical values (leveraged!)

* Improvements given gap between # parties & # corrruptions [BKO21]
e Eg: 5 parties, 2 corruptions, 0(2™%) instead of 0(2™/?)

78

Relation to Other Crypto Objects

* “Nontrivial” FSS = OWF [GI14,BGI15]
Functions f,, f{ must be PRFs [BGI15]

* FSS for Class containing SKE Dec circuit
= (amortized) succinct secure computation [BGI15]

* Privately Puncturable PRF [BL\W17] = “adaptive” DPF
Can set 1 key before knowing the secret a

* Targeted Lossy Functions [OQ\WW21]
DPF equivalent to “Targeted All-Lossy-But-One” functions

79

FSS: Summary

Lecture Conclusion — Part |

Public x

fo > Yo \
* Function Secret Sharing (FSS) f < ¥ = f(x)
s % 7

* Approach to 2-server private DB queries / updates (+ more!)

* Current FSS: Richness vs complexity tradeoff
* Simple functions: Lightweight from any PRG
 NC!: Uses public-key crypto, but getting reasonable
* Above: Heavy crypto...

81

Lecture Conclusion — Part Il

e Construction of DPF
* + Useful Properties

e Construction of DCF
Distributed Comparison Function

* Briefly: FSS for Decision Trees

]
Cw, [

cw, NN
W: ENHN

cw, N .

]
Cw, [.

W, INN N
W; HN N

cw, NN NN

82

Lecture Conclusion — Part lli

- ™
* Application: 2PC with Preprocessing w

* Other Highlights
e “Programmable” DPF
e Multi-Party DPF
* Relation to other primitives

FSS(m)
FSS(ommm)
FSS(gm)

83

Some Things We Don’t Know

FSS: Sample Open Problems

e Richer FSS from OWF

* Broader function classes (CNF/DNF?)
Barriers known for > AC°

e 3-server FSS with security against 2 servers
To beat: key size (A 2"/2) vs (An) for security against 1

* More efficient FSS
e 2-server FSS for Point Functions from OWF: Beat An key size?
 Amortizing cost of multi-point function?
* Better efficiency from “mid-level” constructions

* New & improved applications

85

Coming up next...

What About Malicious
Parties?

