

Function Secret Sharing

Elette Boyle

IDC Herzliya (Reichman University)

Based predominantly on joint works with Niv Gilboa and Yuval Ishai

In the Coming Days...

- **Function Secret Sharing**
- Prio +
- Oblivious RAM
- Vector OLE
- Pseudorandom Correlation Generators
- Private Set Intersection
- Signatures

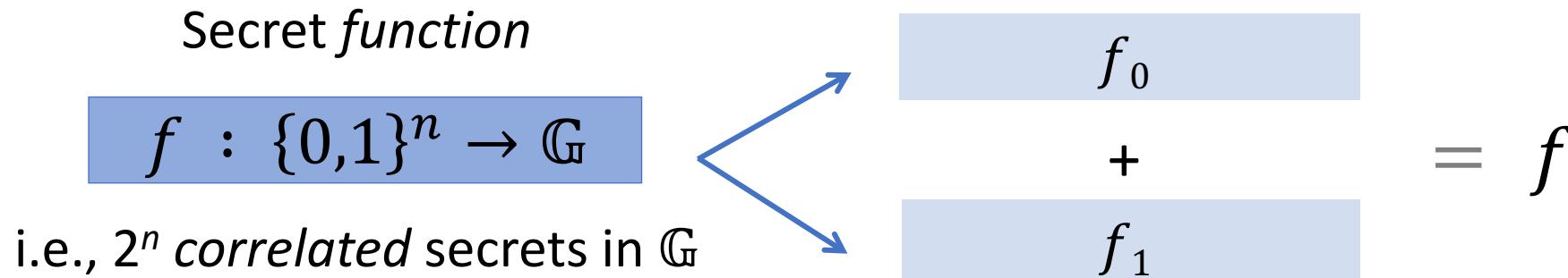
Additive Secret Sharing

Elements in Abelian group \mathbb{G}

$$S \xrightarrow{\quad} \begin{array}{c} s_0 \\ + \\ s_1 \end{array} = S$$

- **Secrecy:** s_b hides s
- **Reconstruction:** $s_0 + s_1 = s$ (in \mathbb{G})

Function Secret Sharing (FSS) [BGI15]



Secrets have a
compact representation (via f)...

Can we secret share them ALL
in a compact way?

FSS: The 3-Hour Adventure

Definition & Discussion & Highlights

Core Constructions

Extensions & Applications

FSS: Definition & Discussion

Function Secret Sharing (FSS) for \mathcal{F}

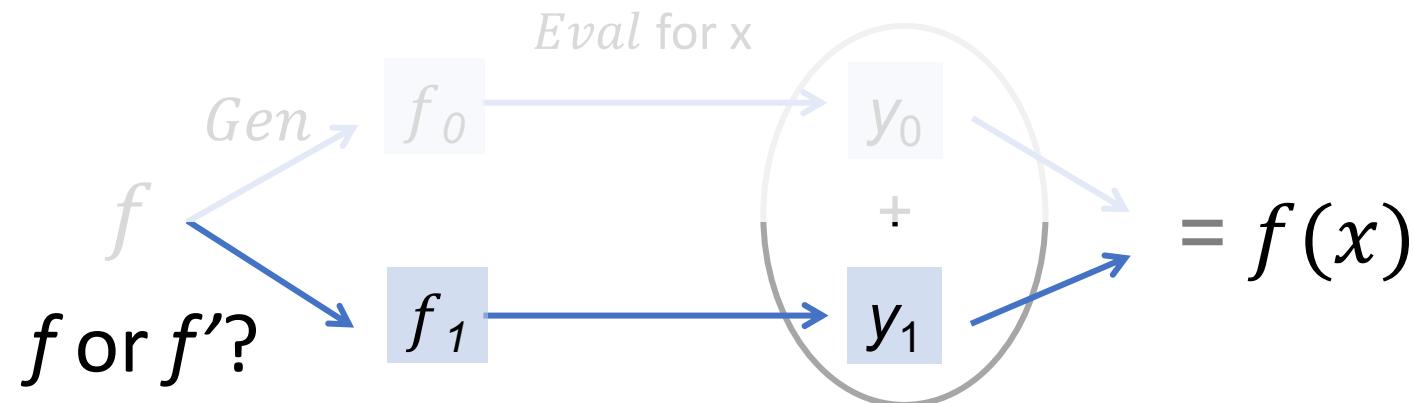
For this lecture:
Focus on 2 shares

Definition [BGI15]: FSS scheme for class \mathcal{F} is (Gen, Eval) st:

- $\text{Gen}(1^\lambda, f)$ for $f \in \mathcal{F}$ $\rightarrow (f_0, f_1)$ sometimes k_0, k_1 “function keys”
- $\text{Eval}(b, k_b, x)$ for $x \in \text{Domain}(f)$ $\rightarrow y_b$ output share

satisfying...

- Secrecy: “Semantic security”: $\forall f, f' \in \mathcal{F}, \{k_b \text{ from } f\} \approx \{k_b \text{ from } f'\}$
- Reconstruction: $y_0 + y_1 = f(x)$



Alternative Notion of Security

- “**Semantic security**”:

$$\forall f, f' \in \mathcal{F},$$

$$\{ k_b \text{ from } f \} \approx \{ k_b \text{ from } f' \}$$

- “**Simulation security**” wrt leakage function $\textcolor{red}{L}$:

$$\exists \text{ Sim st } \forall f \in \mathcal{F},$$

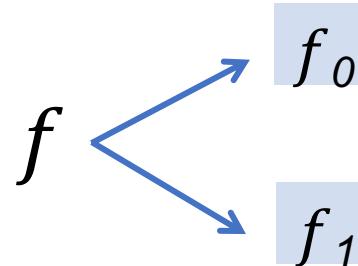
$$\{ k_b \text{ from } f \} \approx \{ \text{Sim}(\textcolor{red}{L}(f)) \}$$

Allows fine-grained
hiding/revealing

(Semantic security) \equiv (Simulation security wrt $L = \mathcal{F}$)

Remarks

- This talk: Split into 2 shares

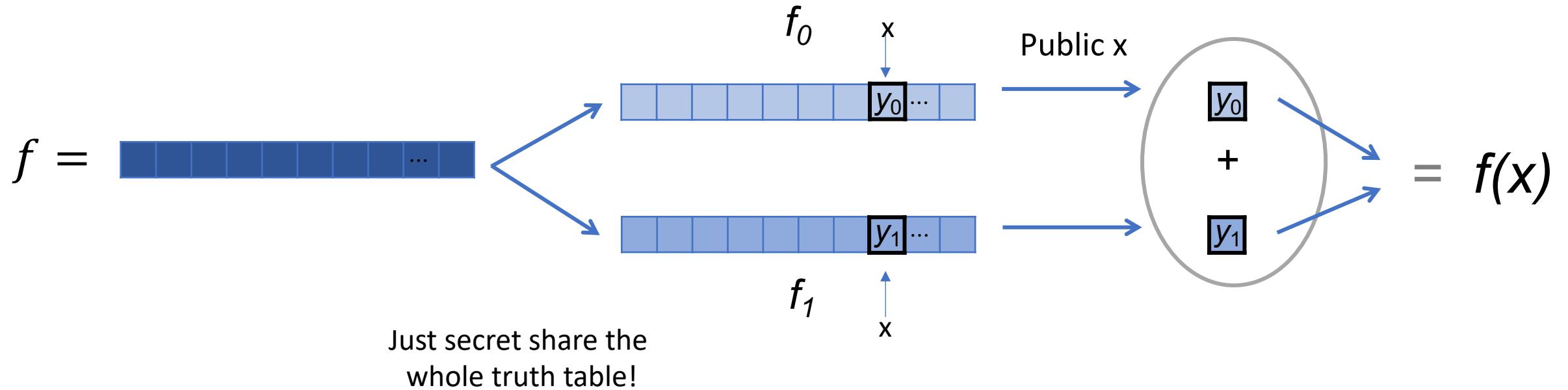


- This talk: Semi-honest parties (wait for Henry's talk!)

- This talk: Additive reconstruction

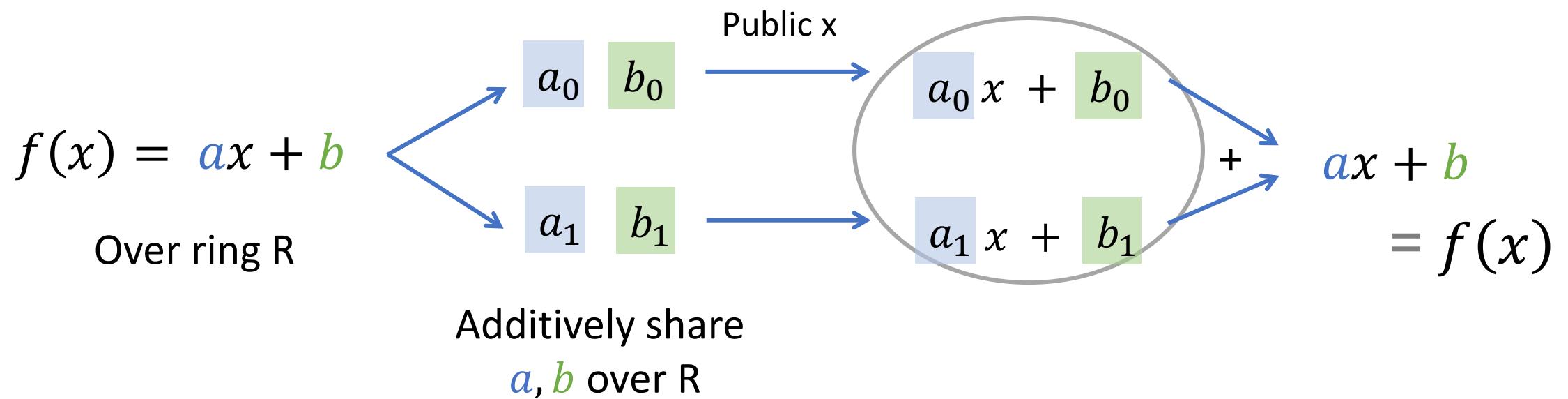
Why additive? Hold that thought...

Example: FSS for All Functions (Truth Table)

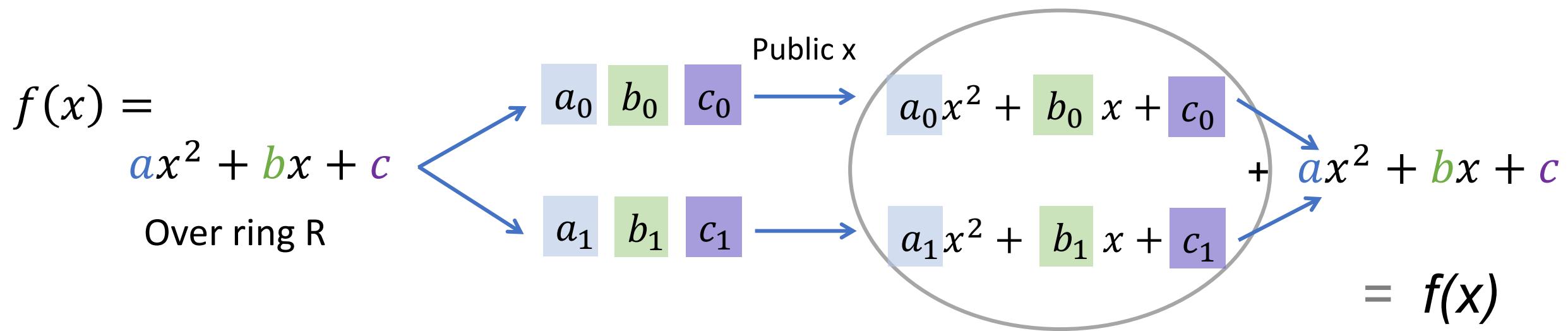


- Share size = |Truth Table| $\sim O(2^n)$

Example: Linear Functions [Ben86]



Example: Polynomials



More generally: Secret linear combination of public functions of x

a, b, c

$x^2, x, 1$

Note: Sum of FSS

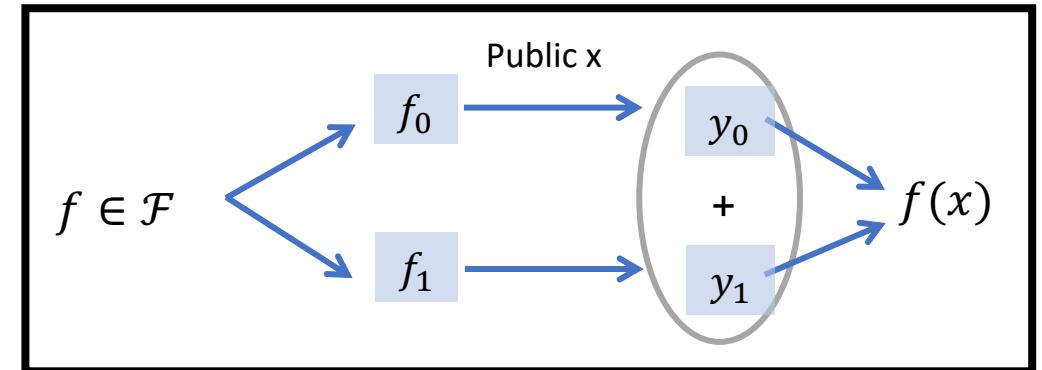
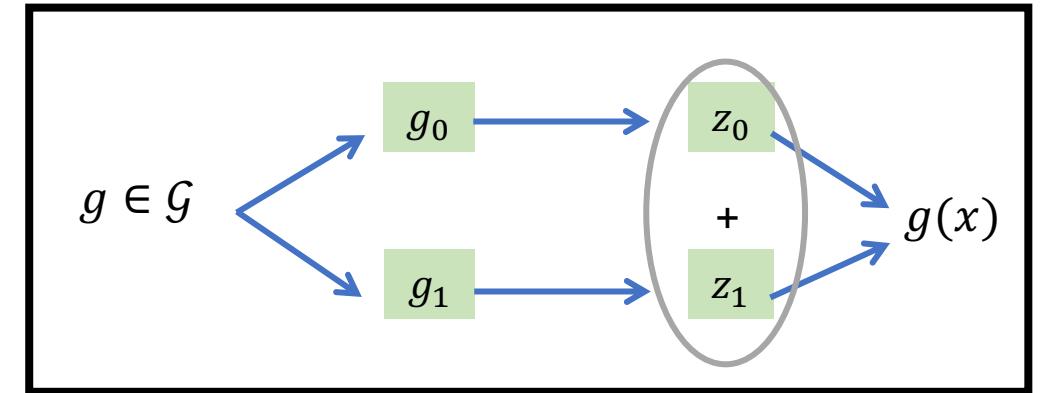
\Rightarrow FSS for

$$\mathcal{F} + \mathcal{G} = \{f + g : f \in \mathcal{F}, g \in \mathcal{G}\}$$

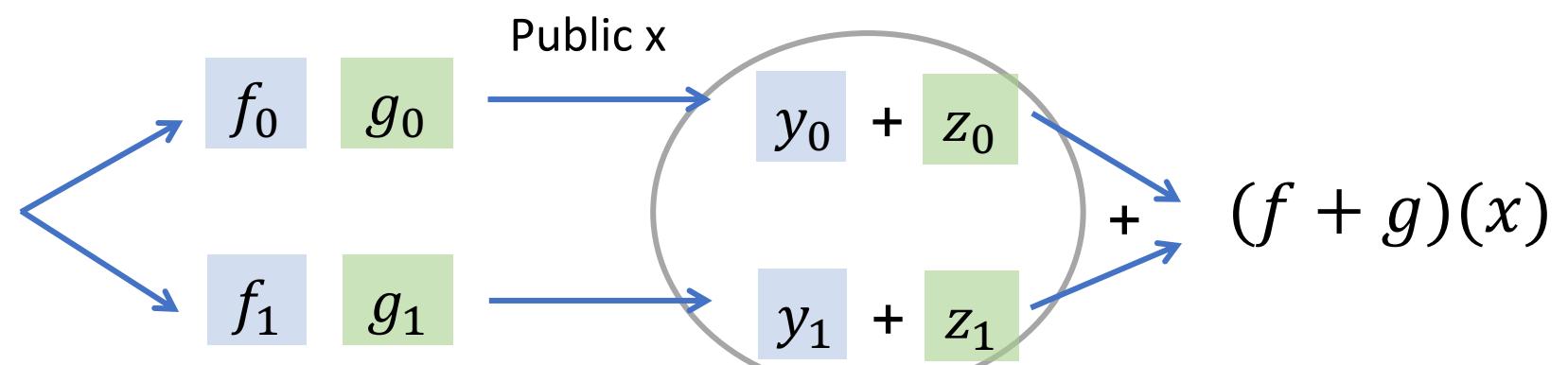
FSS for \mathcal{F}

+

FSS for \mathcal{G}



$(f + g) \in \mathcal{F} + \mathcal{G}$

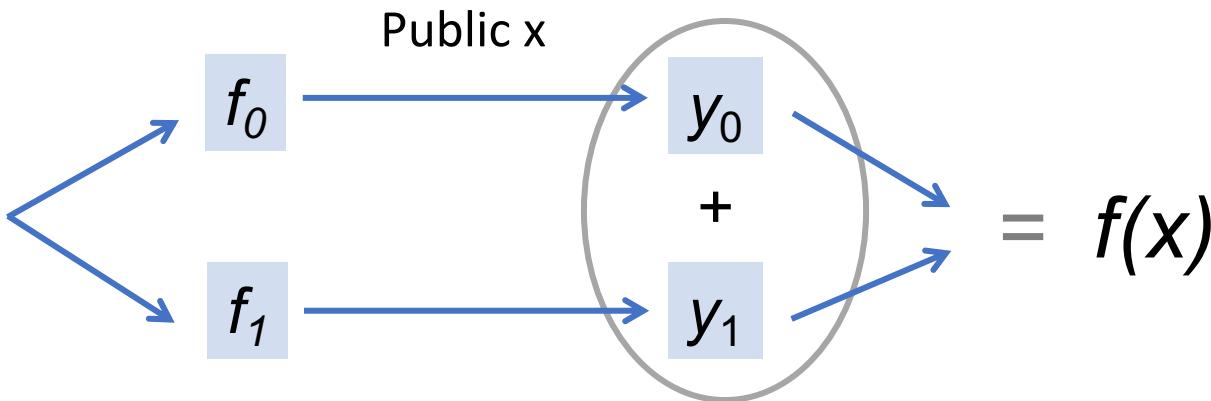


A Little Different...

Useful Example: FSS for Point Functions [GI14]

Secret
function

$f_{\alpha, \beta}$

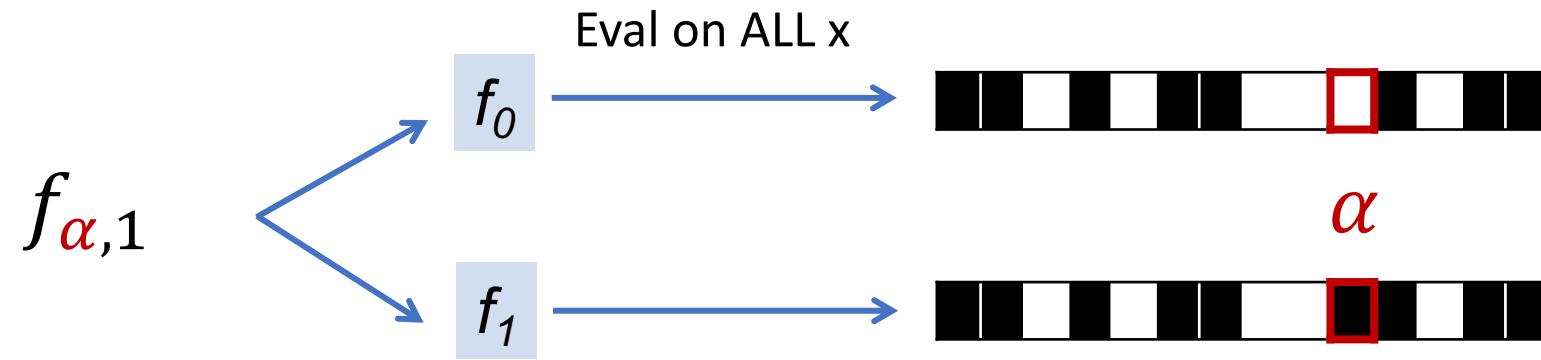


- Point function class \mathcal{F} : $f_{\alpha, \beta} : \{0,1\}^n \rightarrow \mathbb{G}$

Eg: $\mathbb{G} = \mathbb{Z}_2$ or \mathbb{Z}_N

$$f_{\alpha, \beta}(x) = \begin{cases} \beta & \text{if } x = \alpha \\ 0 & \text{else} \end{cases}$$

Useful Example: FSS for Point Functions [GI14]



= “Distributed Point Functions (DPF)”

Construction: In Part 2!

Coming Up Next...

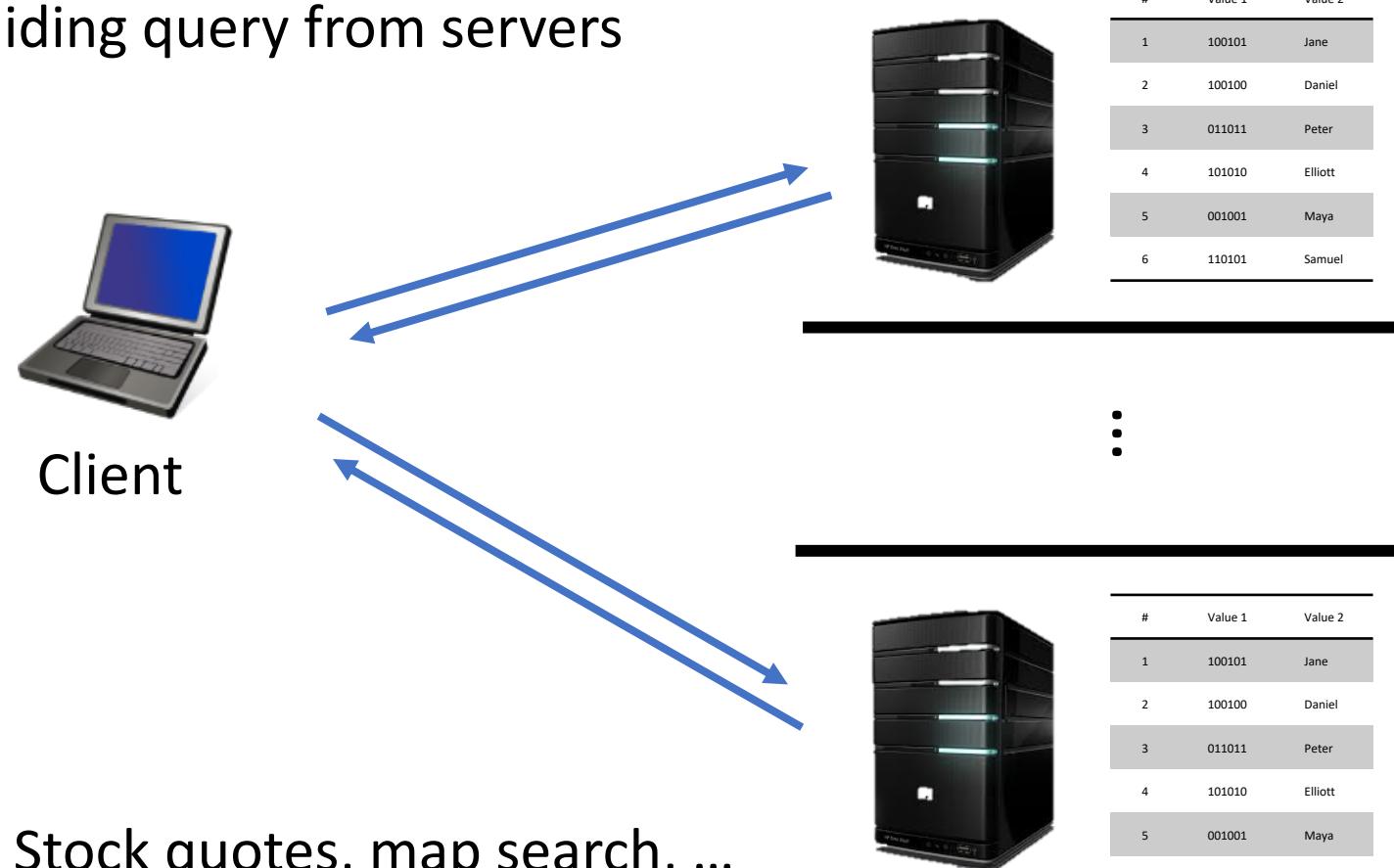
- **Sample Application:** Private Data Manipulation
- **Overview:** What is Known

Sample Application

Private Data Manipulation

Goal: Private Queries to Public DB

Query DB, hiding query from servers



Public DB

Held by
 $s \geq 1$
(non-colluding)
servers

Examples: Stock quotes, map search, ...

Note: Client does not own DB (many-client setting)

Special Case: Private Information Retrieval (PIR)

[CGKS98, KO00]

Private Query: “Retrieve item i ” (while hiding index i)

Private Information Retrieval

Suppose DB = n entries, each 1 bit

Statistical Privacy

- **2+ servers:**

slightly $n^{o(1)}$

[Yekhanin07, Efremenko09, Dvir-Gopi 15]

- **1 server: Impossible.**

Requires public-key crypto

[Di Crescenzo-Malkin-Ostrovsky 00]

Computational Privacy (λ = sec param)

- **2+ servers:** (one-way functions)

$(\lambda + 2) \log n$ [Boyle-Gilboa-Ishai 16b]

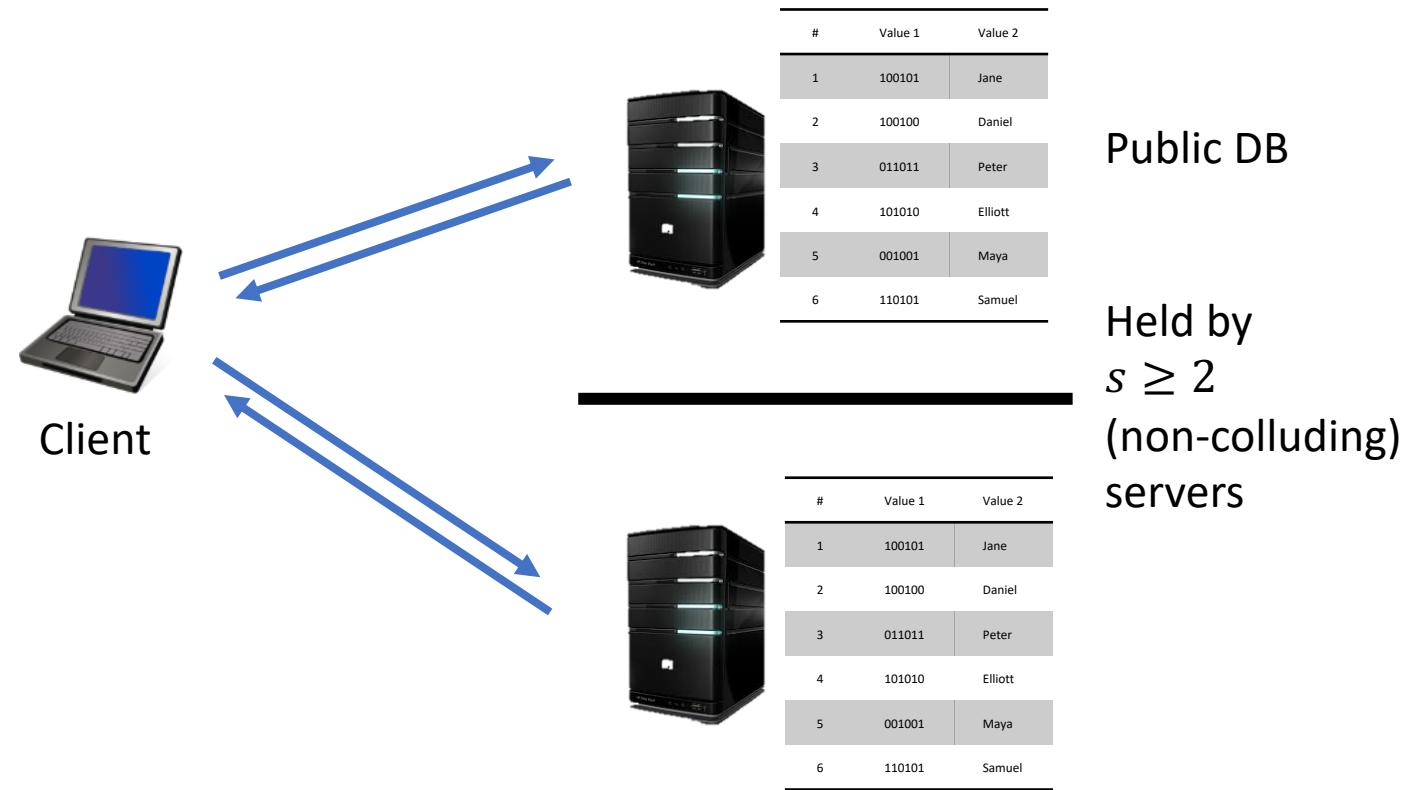
- **1 server:** (structured PKE assumptions)

$\text{poly}(\lambda) \log^2 n$ [Kushilevitz-Ostrovsky00,...]

Thus: A Motivated Setting

- 2 non-colluding servers
- Lightweight crypto

Non-collusion: Eg, different providers / subpoena jurisdictions...



For this talk: passive adversary (honest-but-curious server)

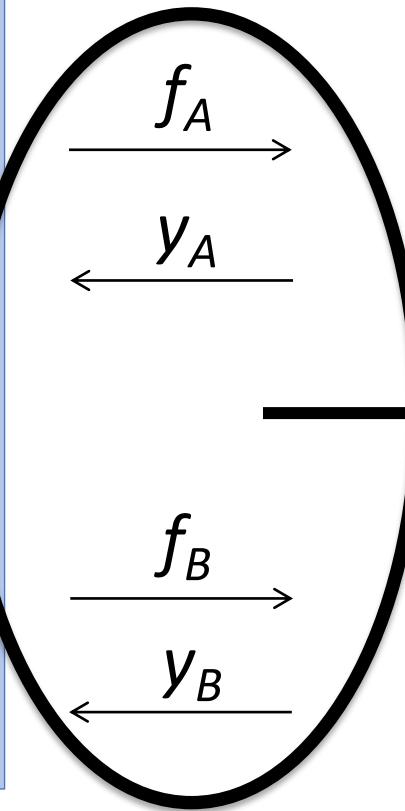
FSS for Point Functions \Rightarrow 2-Server PIR

 To access item $i \in [n]$:

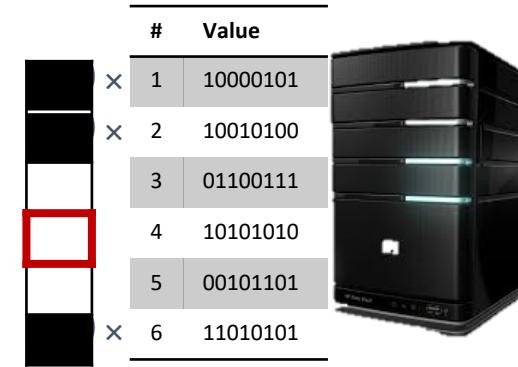
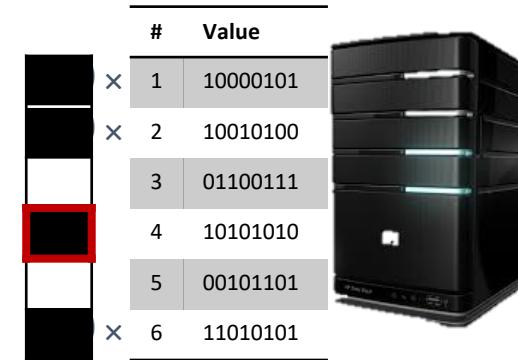
Define point function $f_{i,1} : [n] \rightarrow \mathbb{Z}_2$

$$f_{i,1}(j) := \begin{cases} 1 & \text{if } j = i \\ 0 & \text{else} \end{cases}$$

$f_{i,1} \longleftrightarrow f_A \longleftrightarrow f_B$

$$y_A + y_B = 1 \cdot val[i] + \sum_{\{j \neq i\}} 0$$


$$y_A = \sum f_A(j) val[j]$$



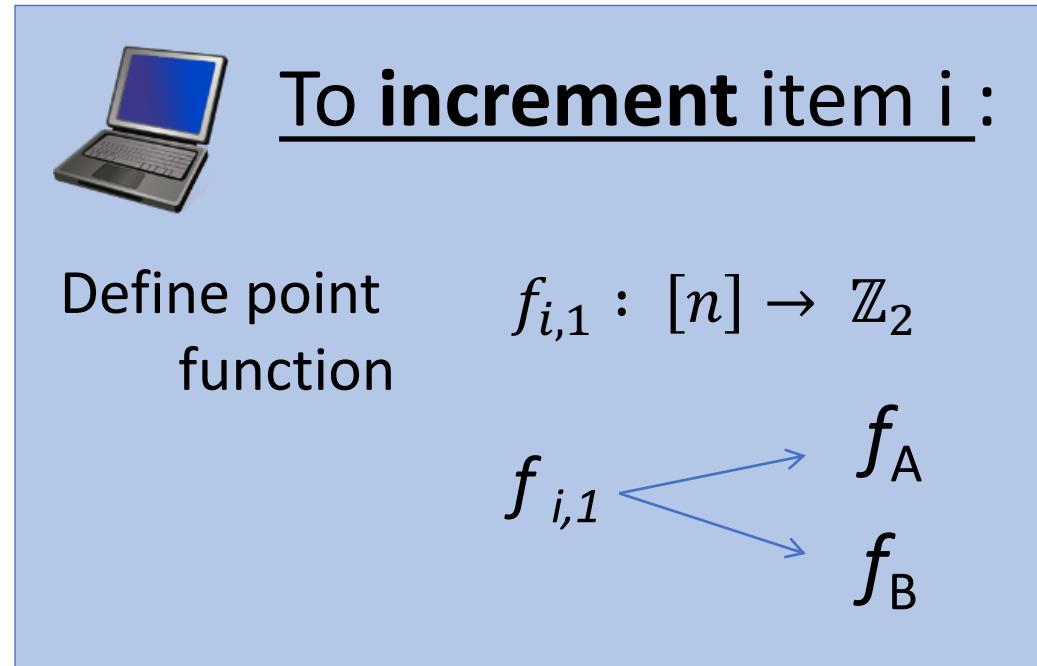
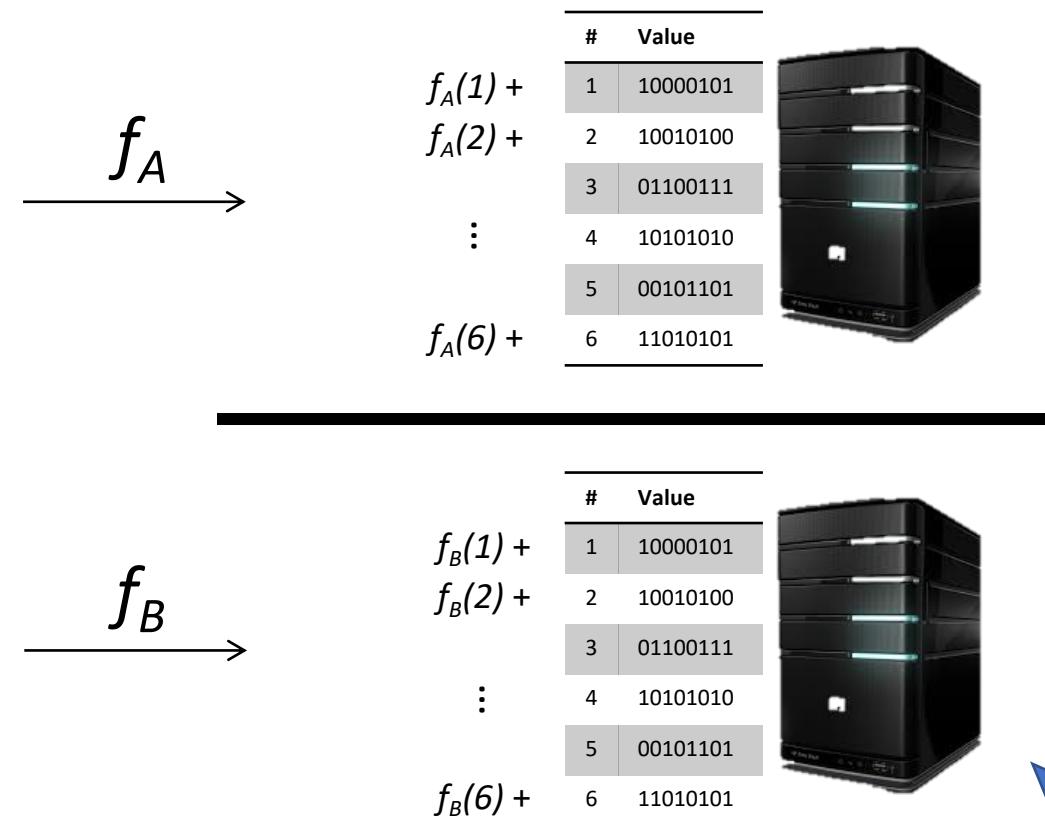
Communication = $|f_A| + |val[i]|$

$\sim \log n + |val[i]|$ for FSS from PRGs!

Also...

Private Updates to Secret-Shared Data

FSS for Point Functions \Rightarrow Private Histograms



Anyone can increment!

Servers store
Secret-shared DB

FSS for Point Functions \Rightarrow Private Histograms

To increment items
satisfying P :

Define secret function

$$f^P(x) = \begin{cases} 1 & \text{if } P(x) = 1 \\ 0 & \text{else} \end{cases}$$

$$f^P \quad \begin{matrix} \nearrow \\ \searrow \end{matrix} \quad f_A \\ f_B$$

$$f_A \longrightarrow$$

$$f_A(1) + \\ f_A(2) + \\ \vdots \\ f_A(6) +$$

#	Value
1	10000101
2	10010100
3	01100111
4	10101010
5	00101101
6	11010101

$$f_B \longrightarrow$$

$$f_B(1) + \\ f_B(2) + \\ \vdots \\ f_B(6) +$$

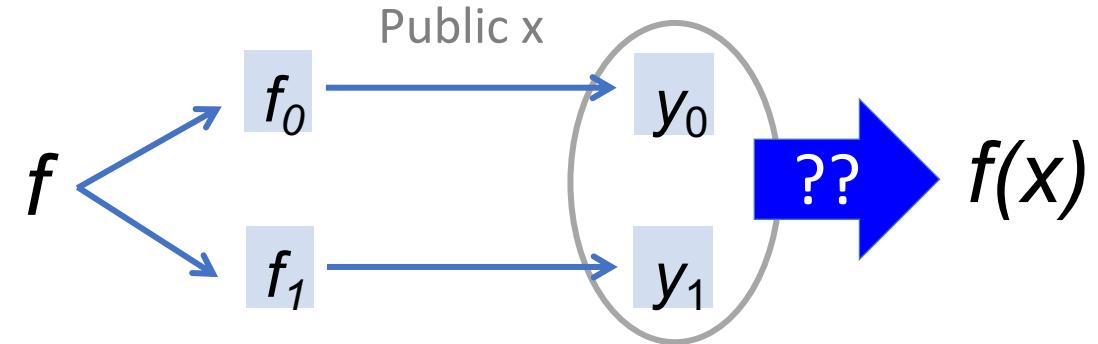
#	Value
1	10000101
2	10010100
3	01100111
4	10101010
5	00101101
6	11010101

Leakage: Query class supported by FSS scheme (& columns applied to)

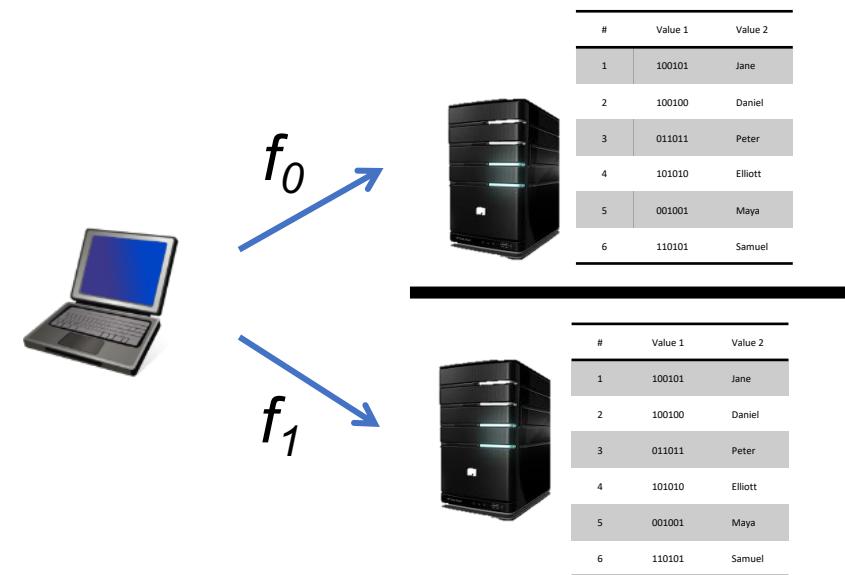
Servers store
Secret-shared DB

Remarks

- Why **additive** reconstruction?
Linear compressibility enables to compress server's reply



- **Linear** in DB: Are you crazy??
Sometimes this is not so bad...



- What's the **leakage**?
Reveals FSS query **class** \mathcal{F}
Hides **query** from within class

FSS for $\mathcal{F} \Rightarrow$ Private Database Manipulation

FSS for more general function classes
 \Rightarrow more expressive database manipulation

- **Private Updates to Secret-Shared Data**
Voting, Secret histograms, Anonymous broadcast, ...
- **“Attribute-Based” Information Retrieval**
Multi-keyword search, Range queries, DB statistics, ...
 - **Counting** Queries: f outputs $\{0,1\}$ in \mathbb{Z}_N
 - **Recovery** Queries: for m items, using sketching techniques (eg, [OS07])

Application: 2-Server Private Database Queries

Counting Query Example:

- Salary between \$100-200k,
- AND Birthday in October,
- AND Female

FSS for more expressive class \mathcal{F}

$$f: \mathbb{Z}_M \times \mathbb{Z}_{12} \times \mathbb{Z}_2 \rightarrow \mathbb{Z}_N$$

$$f(x, y, z) := \begin{cases} 1 & \text{if } x \in \$[100k, 200k] \\ & \wedge y = \text{Oct} \\ & \wedge z = \text{Female} \\ 0 & \end{cases}$$

$$\text{Count} = y_A + y_B \in \mathbb{Z}_N$$

$$f_A$$

$$y_A$$

$$f_B$$

$$y_B$$

$$y_A = \sum f_A(x_j, y_j, z_j)$$

Name	Salary	DOB	G
Alexandra Baker	\$289,000	3/14/80	F
Patricia Callman	\$215,000	7/11/76	F
Preston Greenly	\$98,000	1/11/81	M
Graeme Roberts	\$223,000	9/28/77	M
Martin Wolferson	\$109,000	10/9/79	M
Charles Zanzabar	\$72,000	6/24/86	M

Name	Salary	DOB	G
Alexandra Baker	\$289,000	3/14/80	F
Patricia Callman	\$215,000	7/11/76	F
Preston Greenly	\$98,000	1/11/81	M
Graeme Roberts	\$223,000	9/28/77	M
Martin Wolferson	\$109,000	10/9/79	M
Charles Zanzabar	\$72,000	6/24/86	M

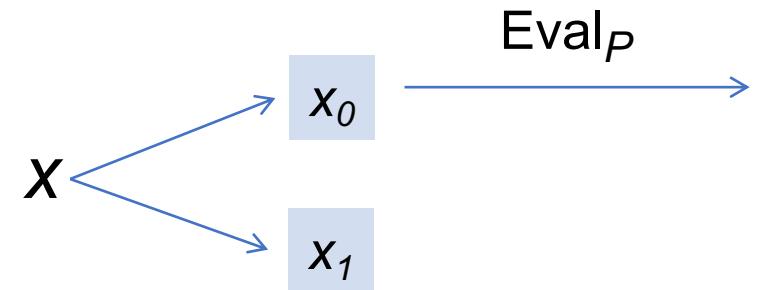
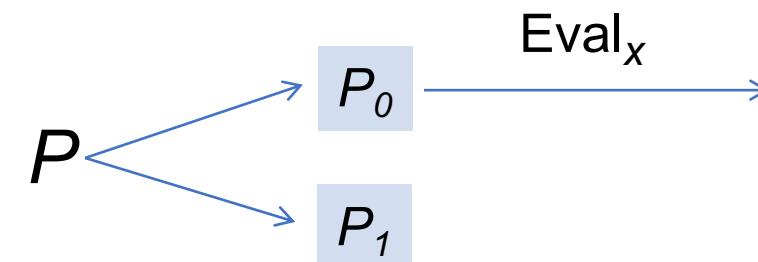
Overview of FSS: What is Known

Side Note: Function vs Homomorphic SS (HSS)

- HSS for program class \mathcal{P}
share size $\sim |x|$

- FSS for program class \mathcal{P}
share size $\sim |P|$

For $P \in \mathcal{P}$ and input x



FSS/HSS more natural in different applications

Function Secret Sharing: Current Landscape

“High-level”

LWE+

Not efficient (Builds atop *specific FHE*)

Circuits

[DHRW16, BGI15, BGILT18]

“Mid-level”

DDH

Paillier

LWE

Branching Programs

[BGI16, BCGIO17, DKK18]

Structured assumptions
yielding *PKE*

[FGJS17, OSY21, RS21]

[BKS19]

“Weird PRGs”: Wait for
Peter/Yuval...

“Lapland”

LPN

Low-deg polynomials

[BCGIKS19]

Weird PRGs...

“Low-level”

OWF

Simple functions

[GI14, BGI15, BGI16b]

Requires one-way
functions [GI14, BGI15]

“Algorithmica”

None

Linear Combinations
w/ Secret Coeffs

[Ben86]

In Particular... Lightweight Constructions

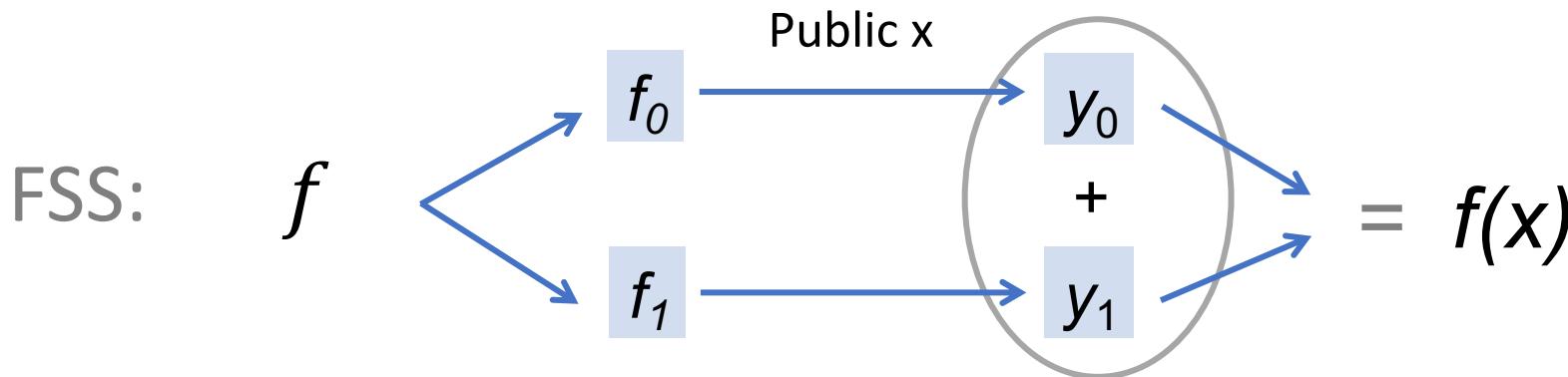
From any Pseudorandom Generator (PRG)

- Point Functions [GI14, BGI15, BGI16b] ⇒ PIR, keyword search
- Interval Functions [BGI15, BGI16b] ⇒ Range queries
- (Small) Constant-Dimension Intervals ⇒ Small conjunctions
- Simple Decision Trees [BGI16b]

Stretch Break!

Cliffhanger... how can we **build** this great FSS thing?

Recap:



- Useful applications in private data manipulation (& more!)
- “Distributed Point Function” (DPF) = FSS for point functions

Part II: Constructions of FSS

FSS for Point Functions

FSS for Comparison Functions

Construction:

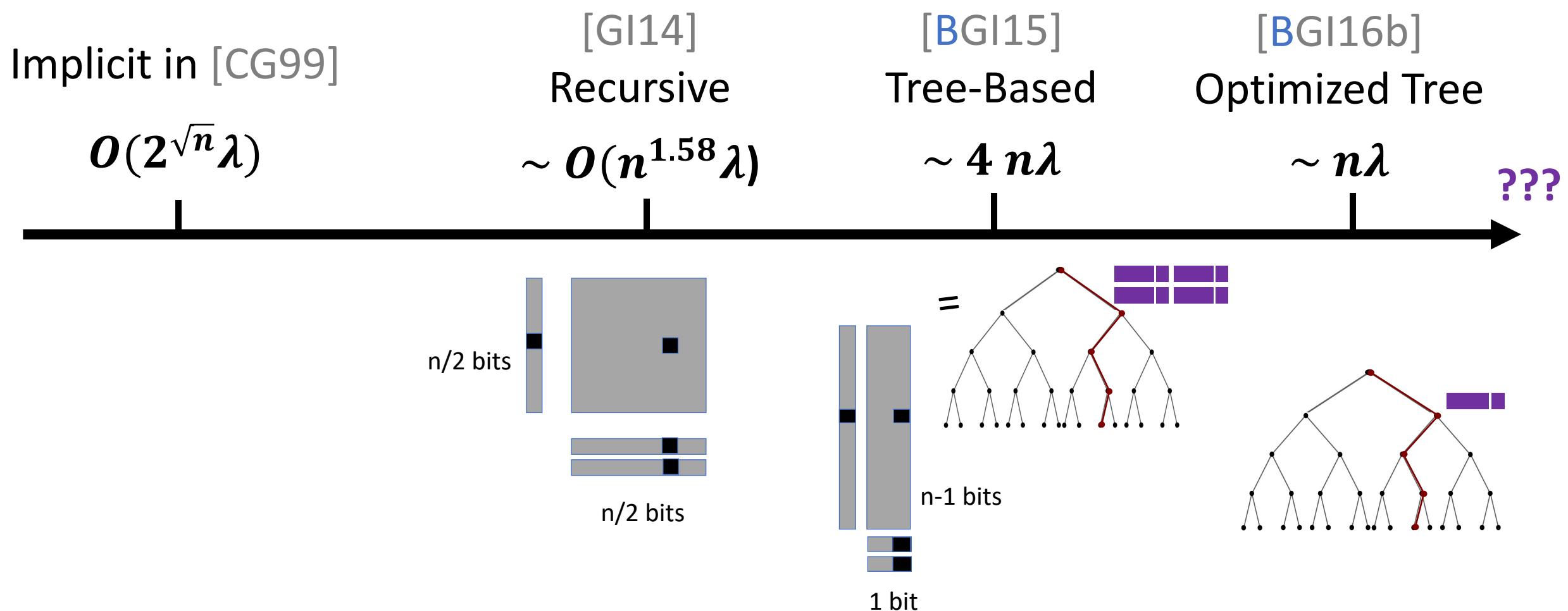
FSS for Point Functions

= Distributed Point Functions (DPF)

$$f_\alpha(x) := \begin{cases} 1 & \text{if } x = \alpha \\ 0 & \text{else} \end{cases}$$

key size in bits: n = input bit len
 λ = sec param

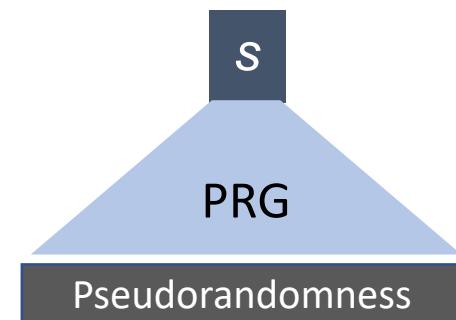
History of DPF from OWF



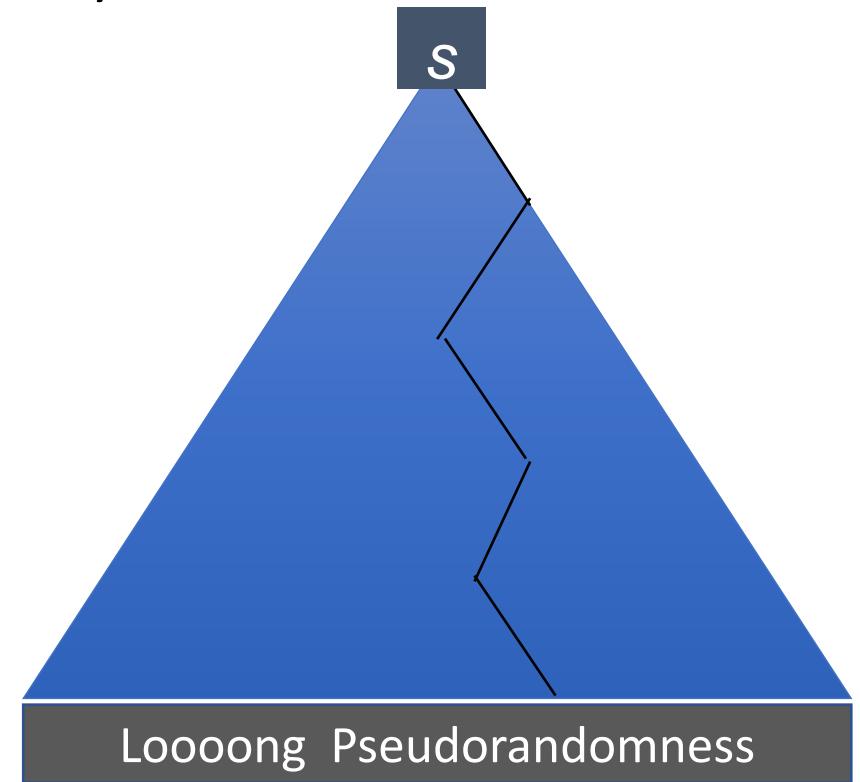
DPF Construction: Starting Tools

- Uses (any) length-doubling Pseudo-Random Generator (PRG)
- Useful Tool: GGM Pseudorandom function (PRF)
[Goldreich-Goldwasser-Micali 84]

Length-doubling PRG



(Eg: 2 calls to AES)

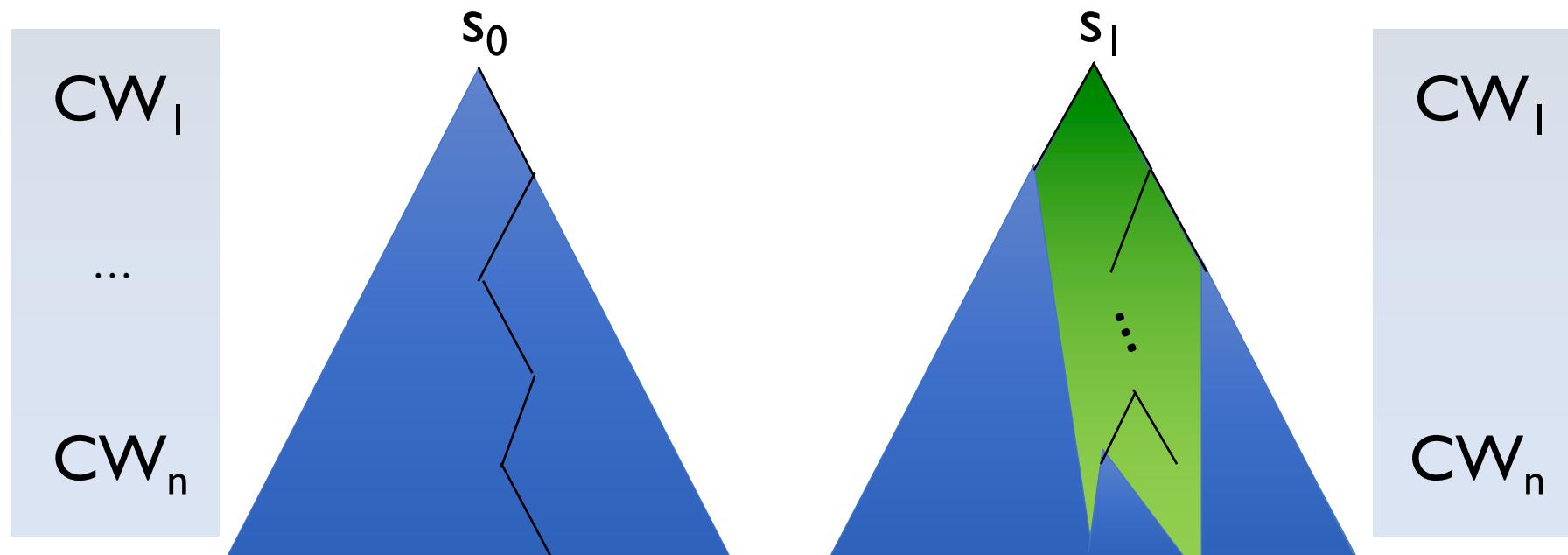


DPF Construction Overview

[Boyle-Gilboa-Ishai 16b]

Suppose domain
 $[N] = [2^n]$

Random PRG seeds



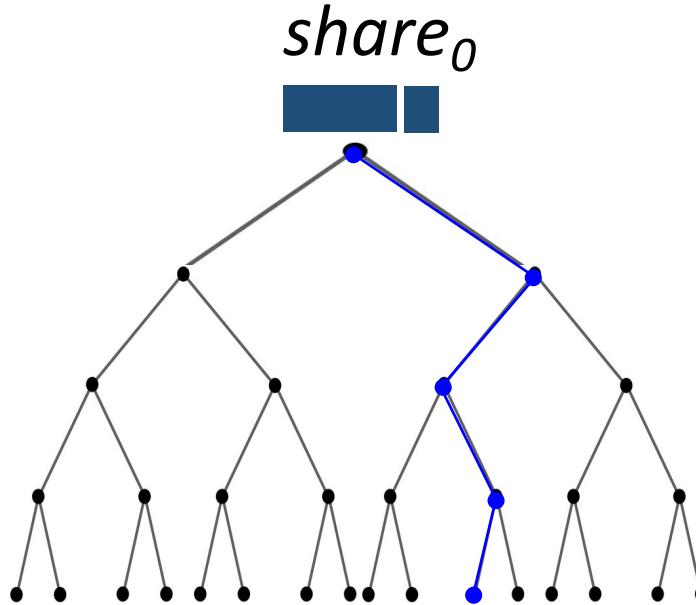
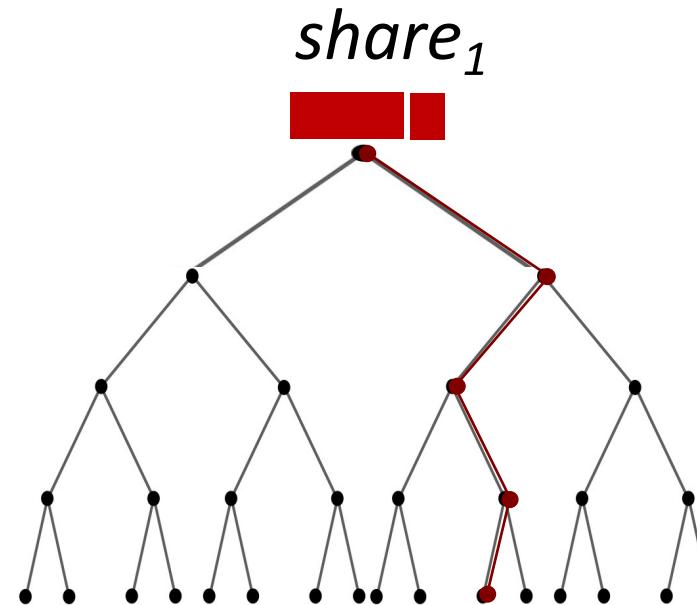
“Correction Words” at each level

(to force equality once input disagrees with special value)

DPF Construction from PRGs

[BGI16b]

$$f_\alpha: \{0,1\}^n \rightarrow \{0,1\}$$



Invariant for Eval:

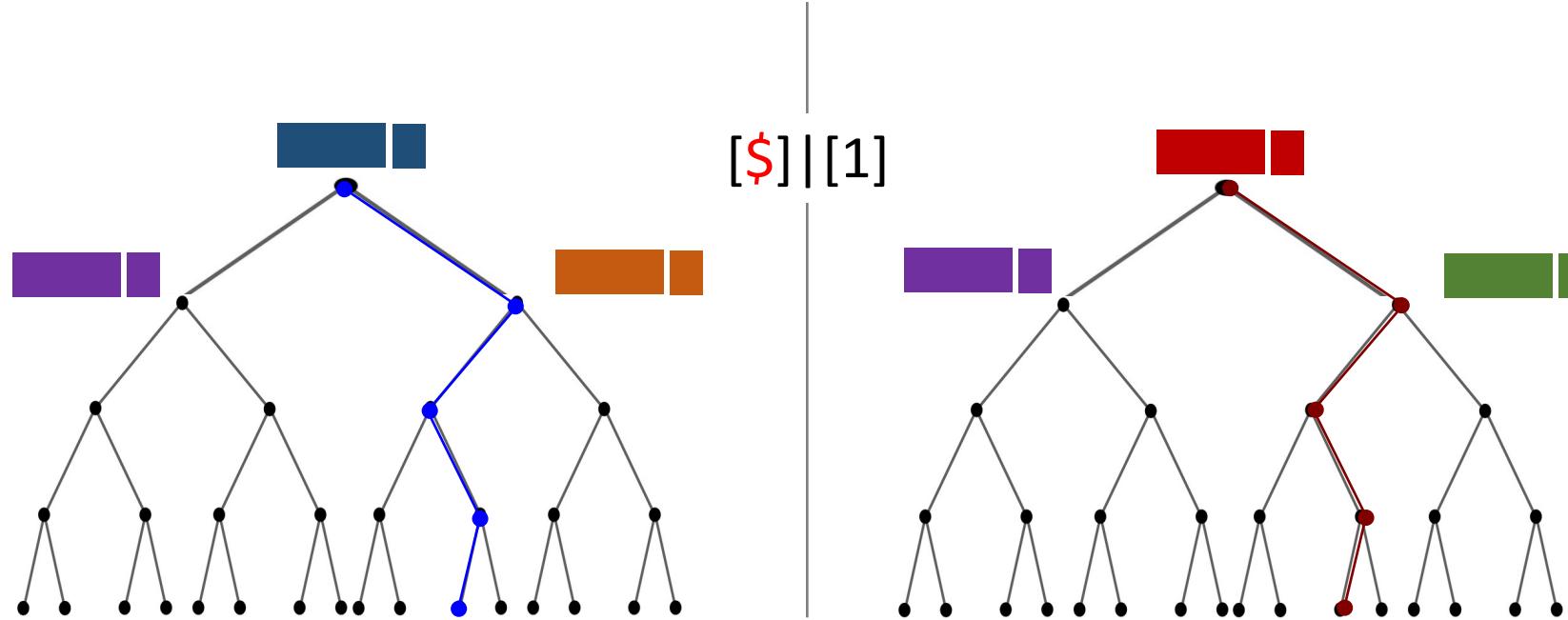
λ-bit

1-bit

For each node v on evaluation path we have [S]||[b]

Additive secret shares

DPF Construction from PRGs

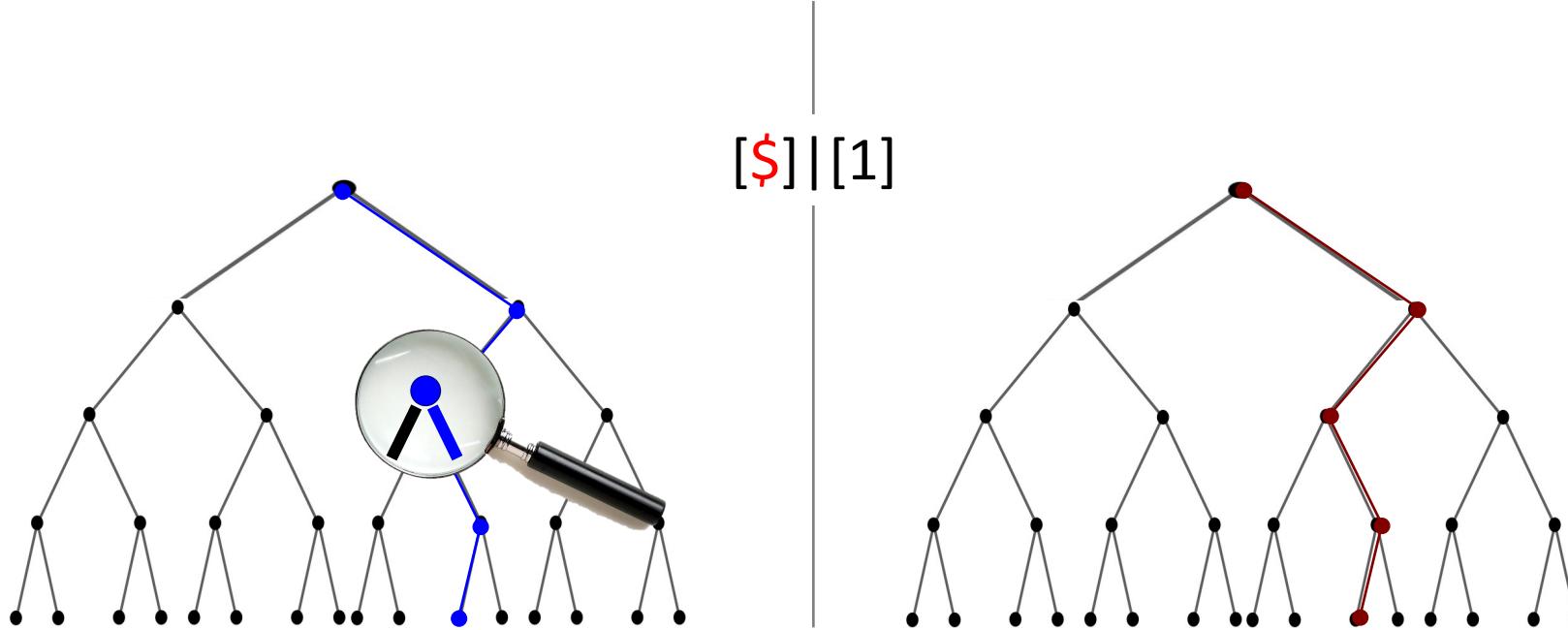


Invariant for Eval:

For each node v on evaluation path we have $[S] | [b]$

- v on special path: S is pseudorandom, $b=1$
- v off special path: $S=0$, $b=0$

DPF Construction from PRGs

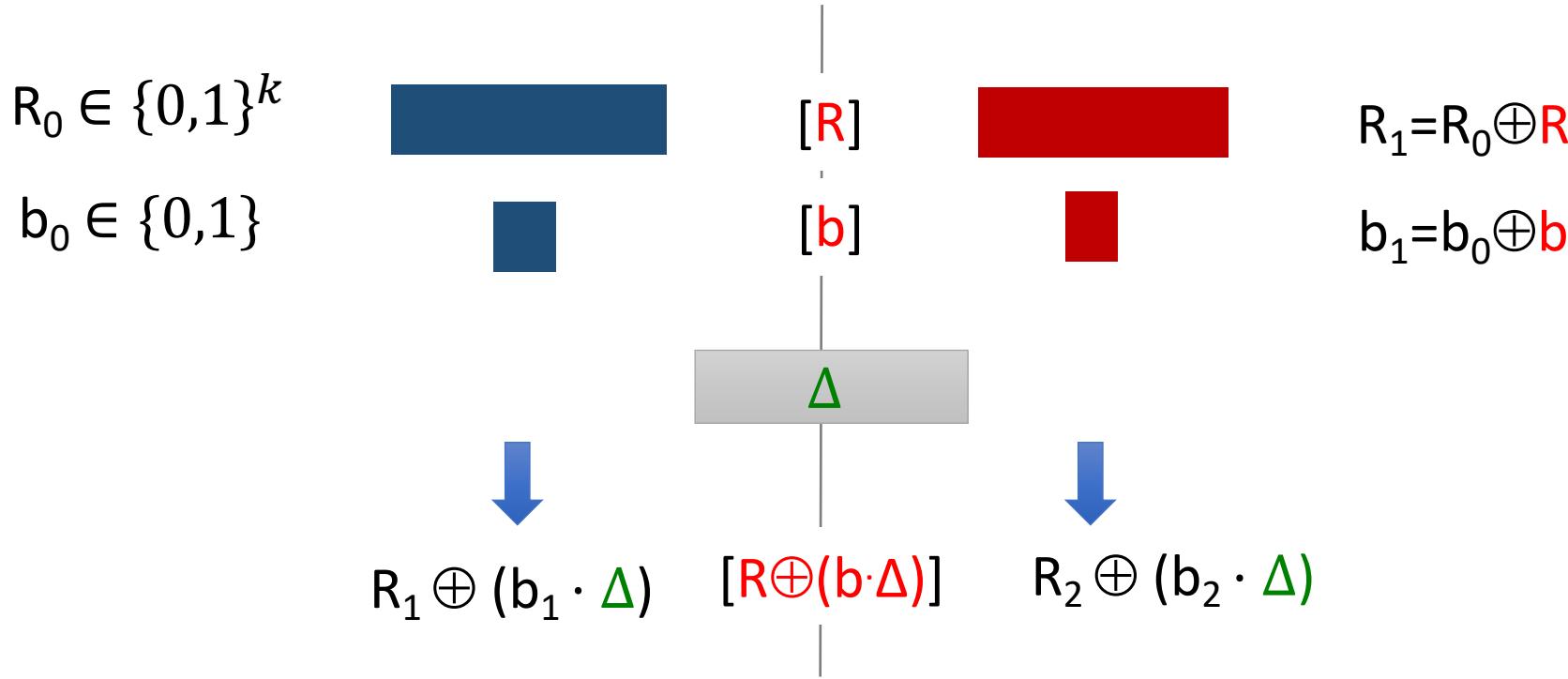


Invariant for Eval:

For each node v on evaluation path we have $[S]||[b]$

- v on special path: S is pseudorandom, $b=1$
- v off special path: $S=0$, $b=0$

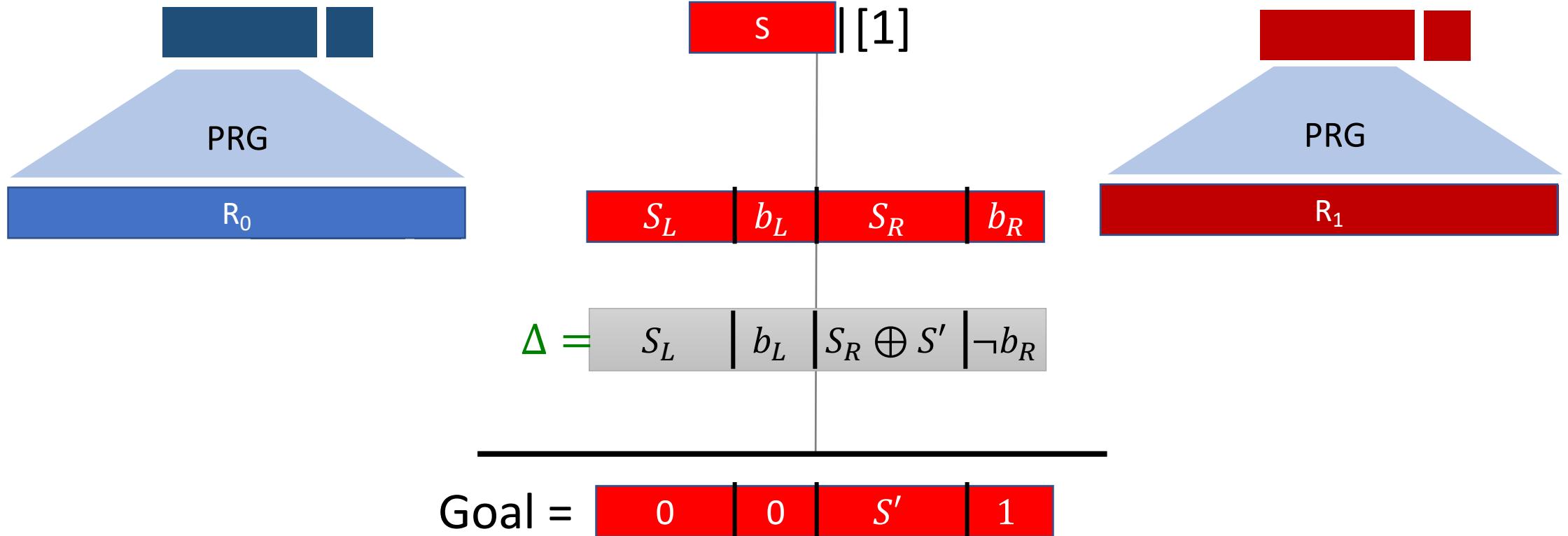
Gadget: Conditional Correction



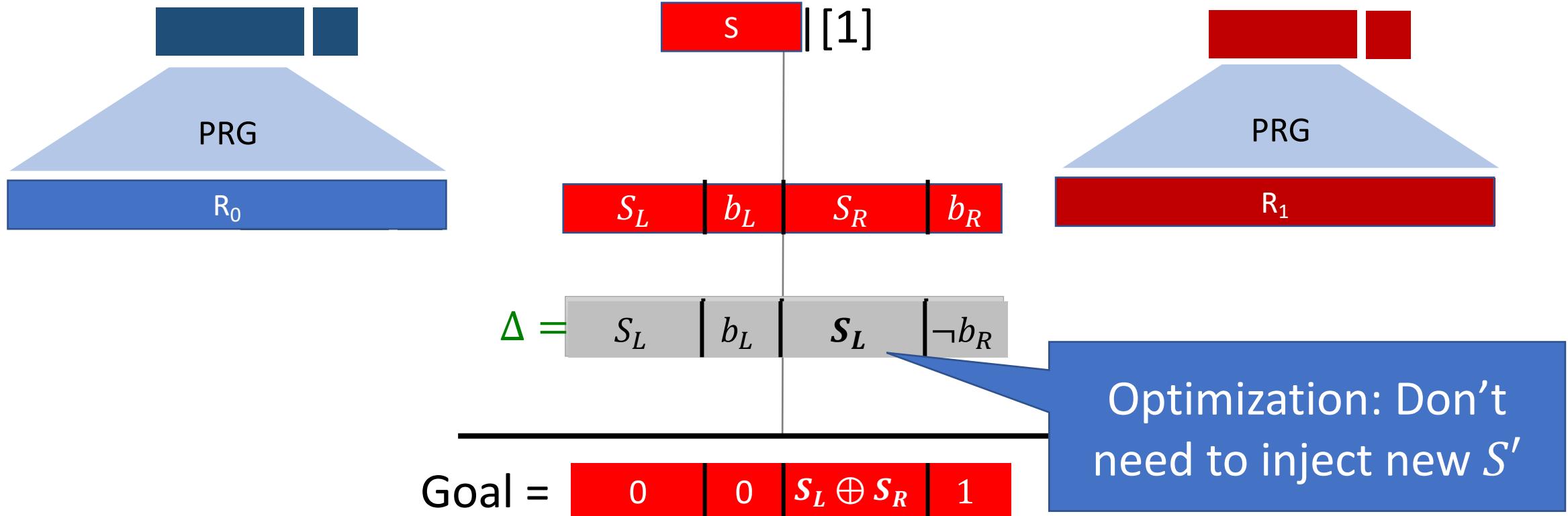
Test yourself:

- $R=0, b=0 \Rightarrow$ generate shares of... 0!
- $\Delta=R, b=1 \Rightarrow$ generate shares of... 0!

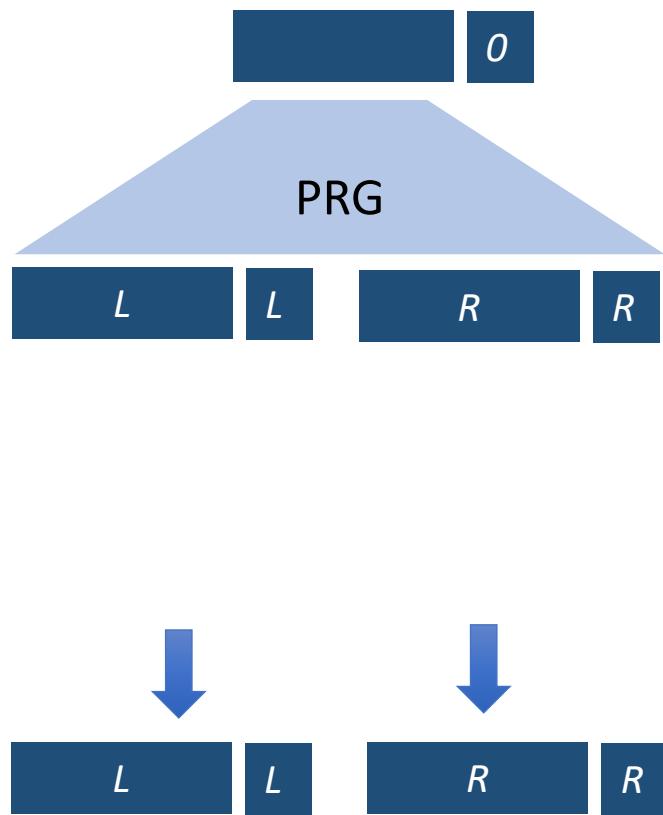
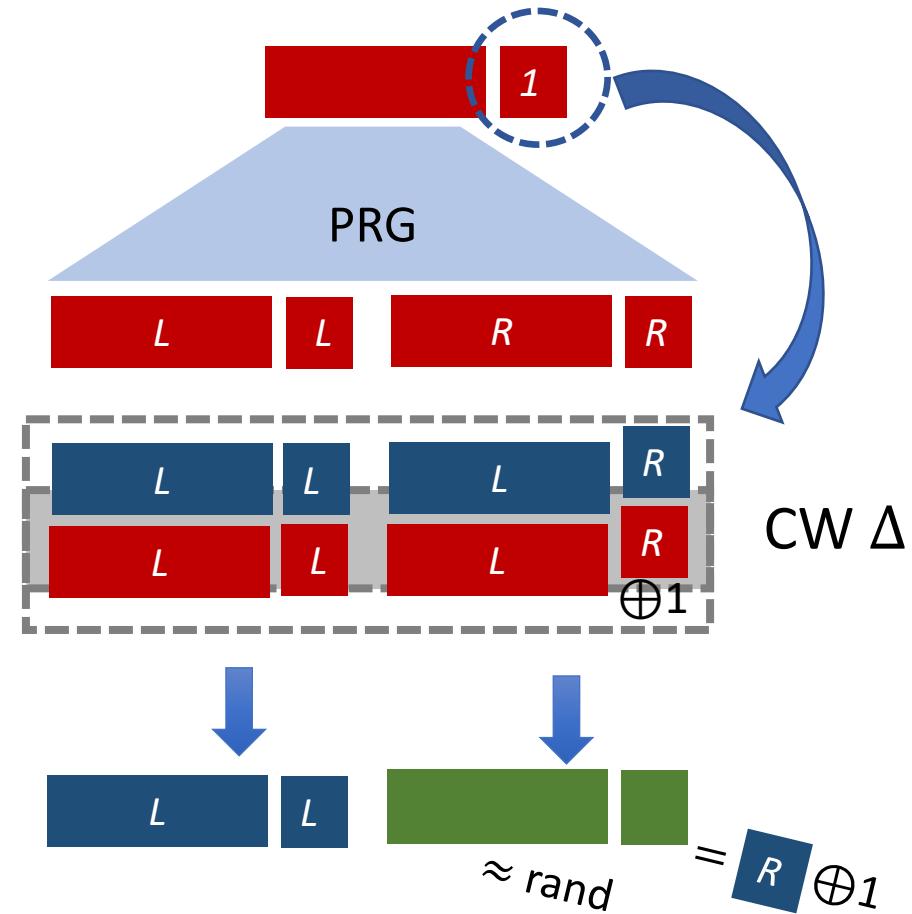
Building the Correction Word Δ



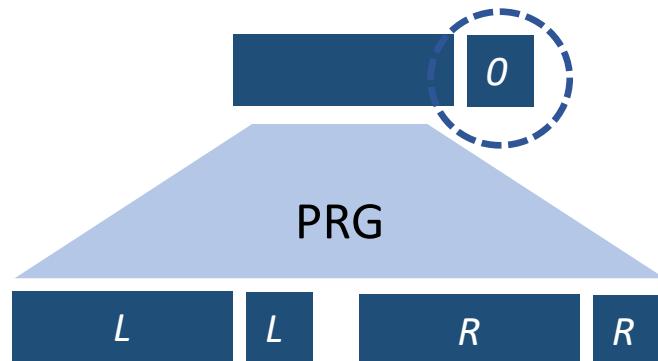
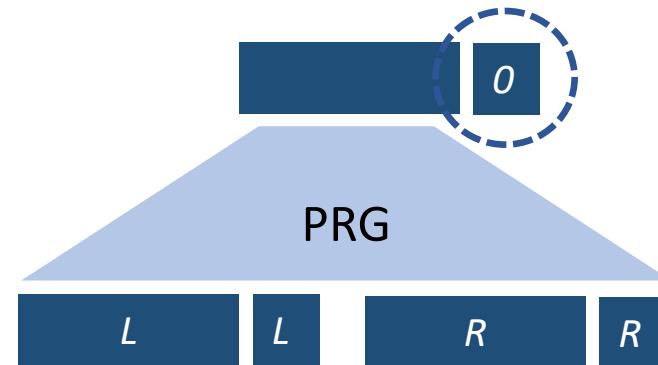
Building the Correction Word Δ



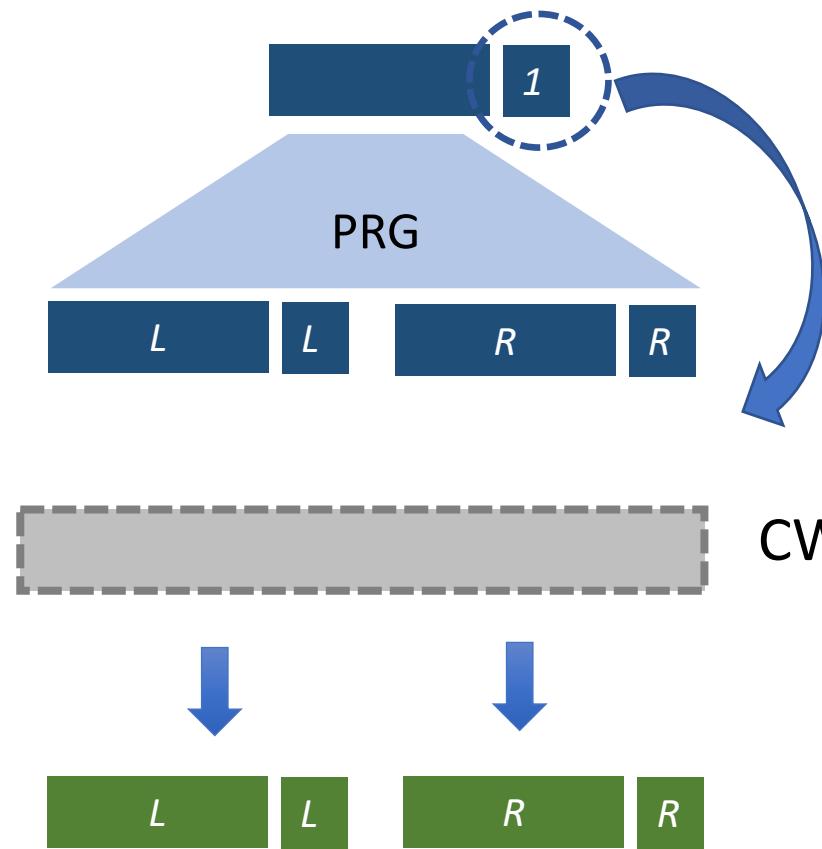
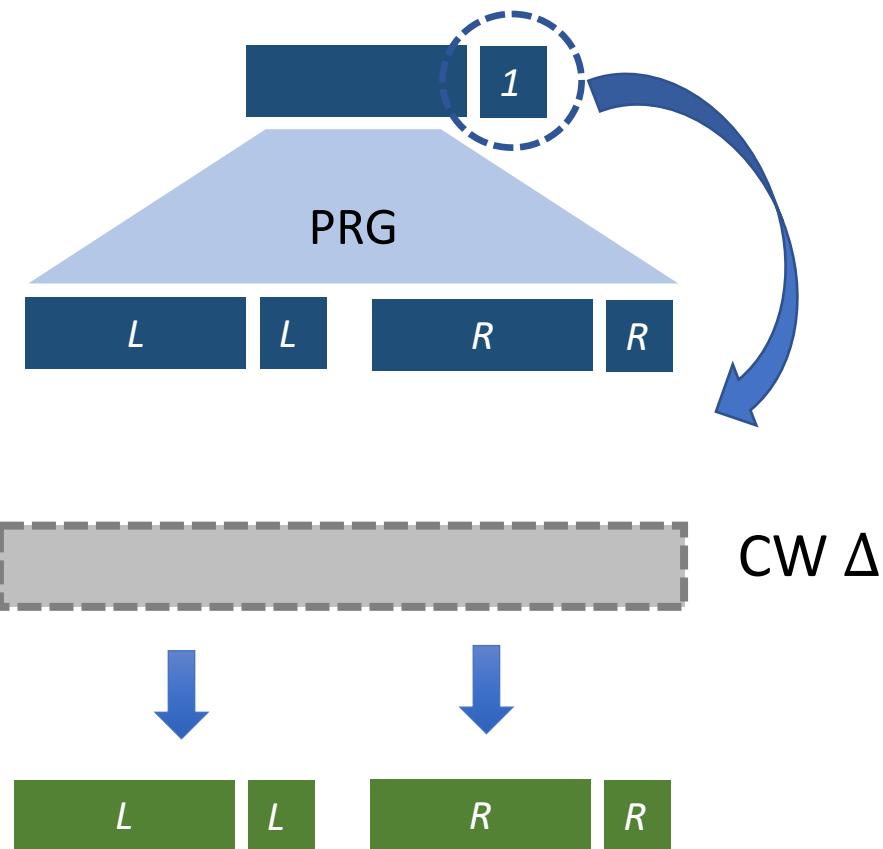
Using the CW Δ : On-Path



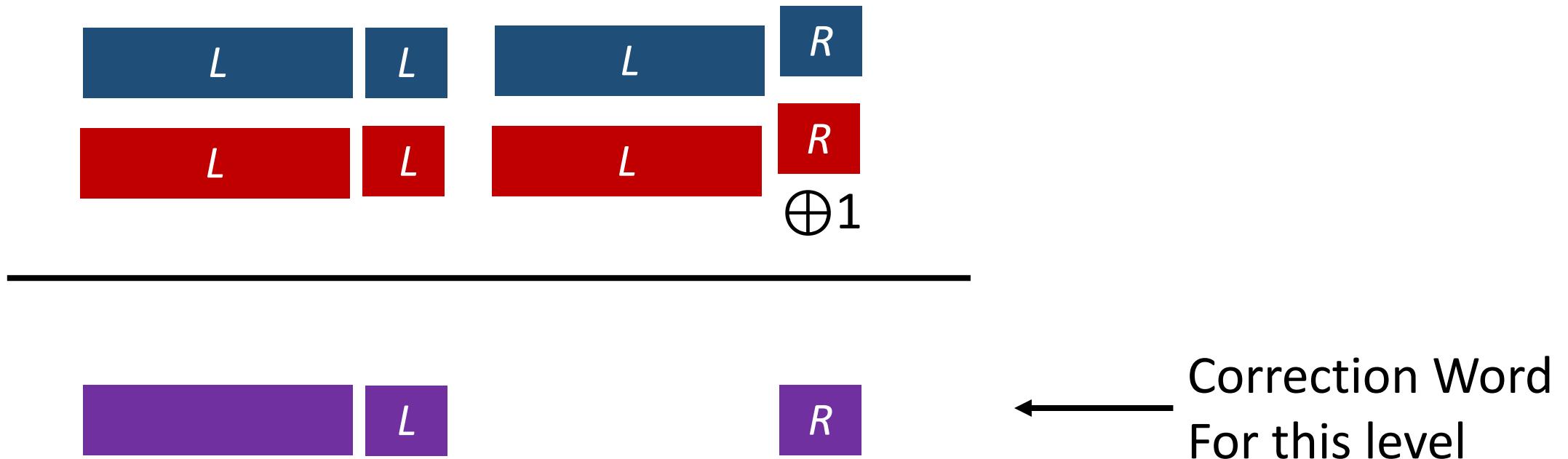
Using the CW Δ : Off-Path



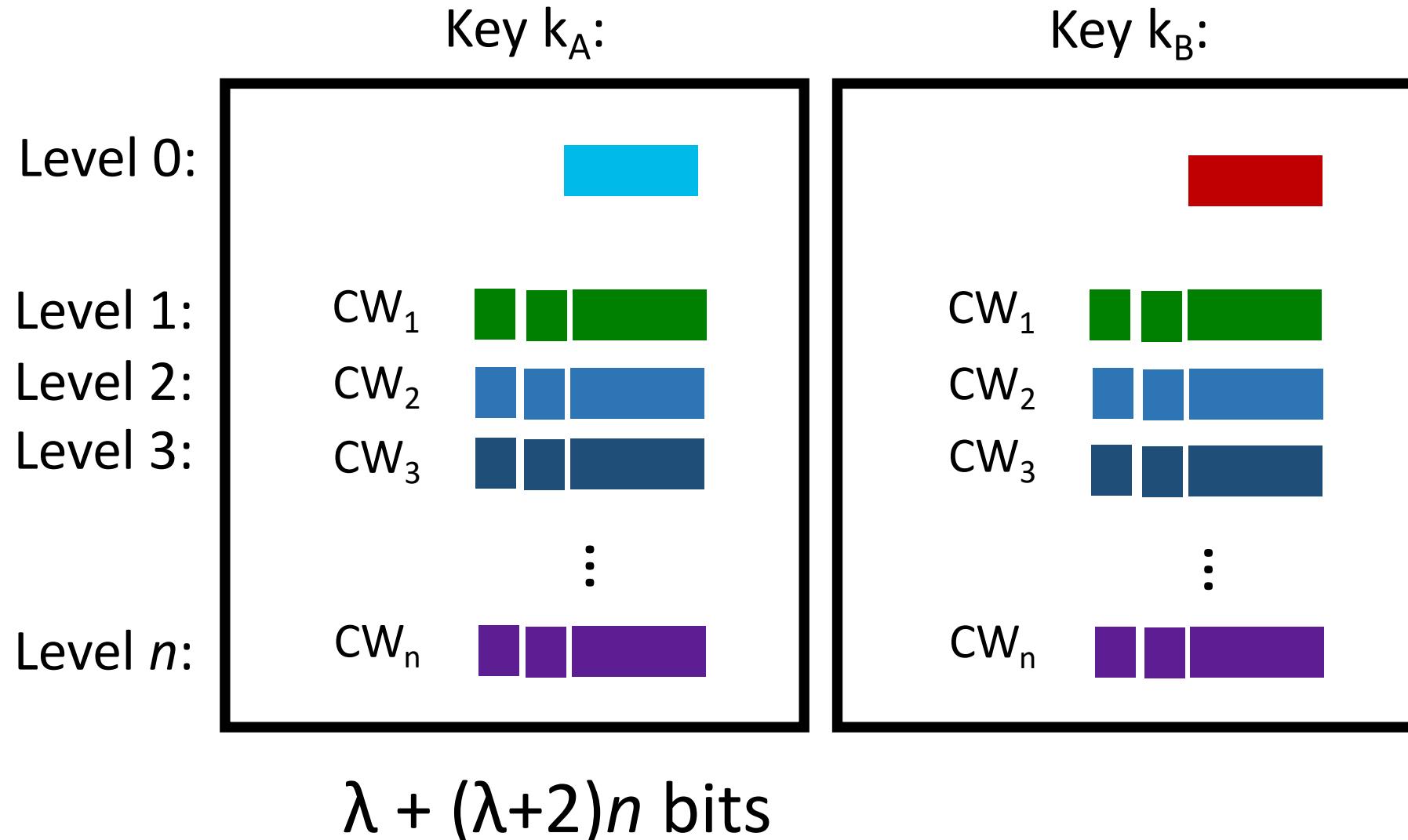
Using the CW Δ : Off-Path



The DPF Keys: Correction Word per Level



DPF: Final Key Construction

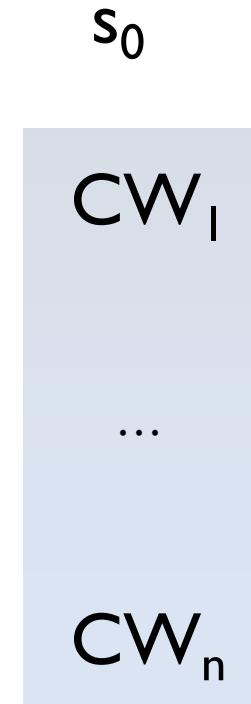


DPF Construction: Complexity

Domain
 $[N] = [2^n]$

[Boyle-Gilboa-Ishai 16b]

- Function share (“key”) size:
 - PRG seed @ top λ bits
 - CW for n levels $(\lambda + 2)n$ total bits
- Generation / 1 evaluation cost:
 - n PRG evaluations (plus some xors)



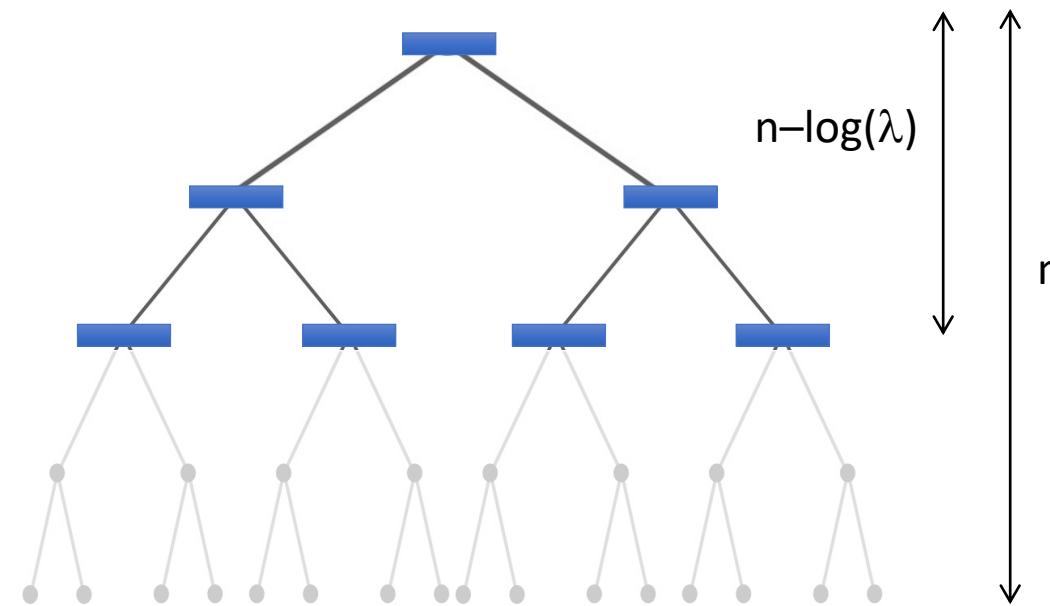
Example: PIR on 2^{25} records of length d

- Comm: 2578 bits \rightarrow each server, d bits in return
- Comp: Dominated by reading + XORing all records

Optimizing PIR Applications

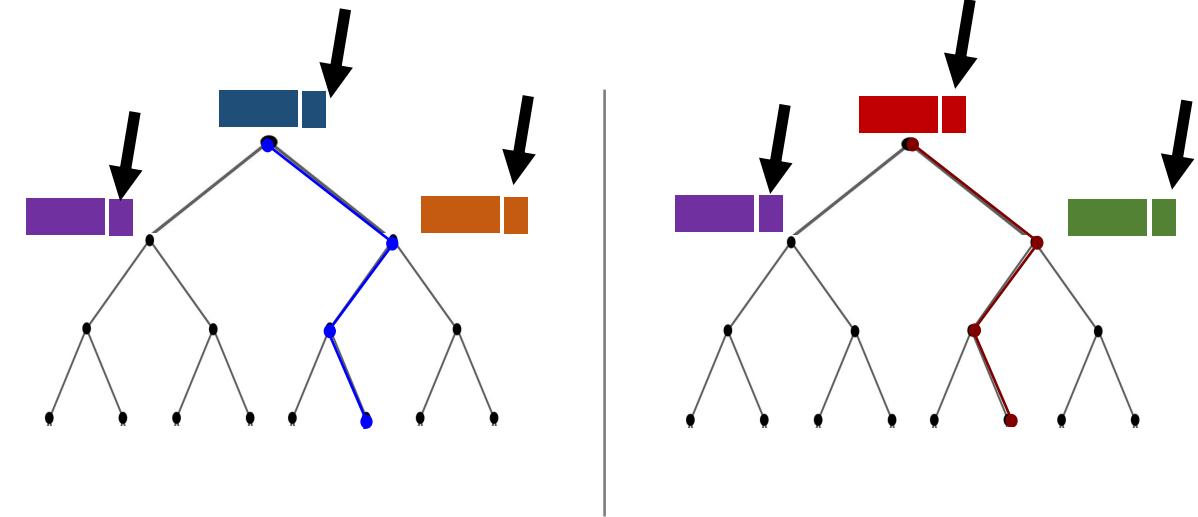
- Early termination: pack outputs into λ bits
- EvalAll: compute each *node* once

FSS computation
costs dominated by
lookup/xors

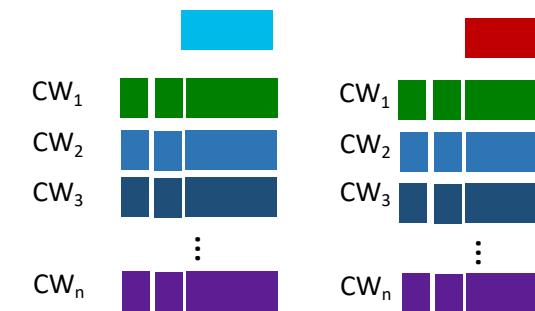


Observations on the Construction

- Incremental evaluation
 - Hidden **all-prefix FSS** inside!



- Almost everything is public
 - Ties hands of malicious key generator given public CW's



- These properties are useful for applications! [BBCGI21]

Construction:

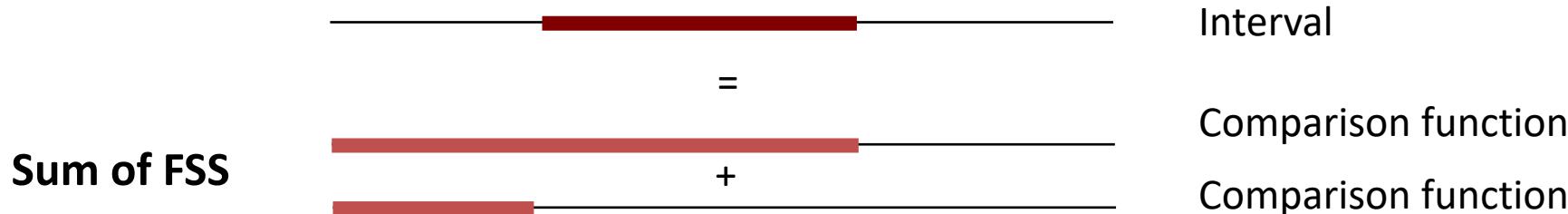
FSS for Comparison Functions

= Distributed Comparison Functions (DCF)

$$f_\alpha^<(x) = \begin{cases} 1 & \text{if } x < \alpha \\ 0 & \text{else} \end{cases}$$

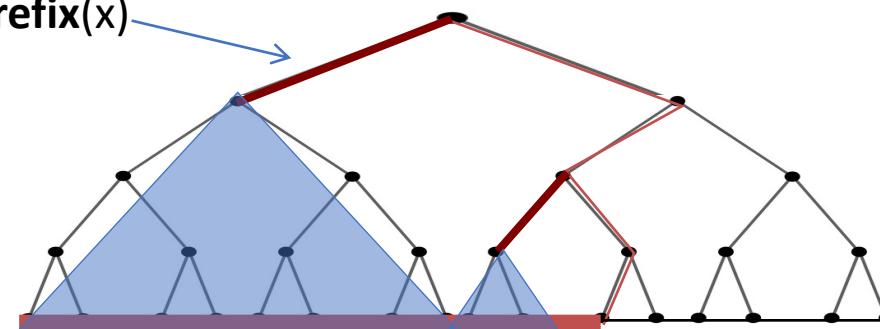
Warm-Up Observations

- $2 \times \text{DCF over } \{0,1\} \Rightarrow \text{Intervals over } \{0,1\}$



- $n \times \text{DPF} \Rightarrow \text{DCF (black box)}$

Point function applied
to **Prefix(x)**



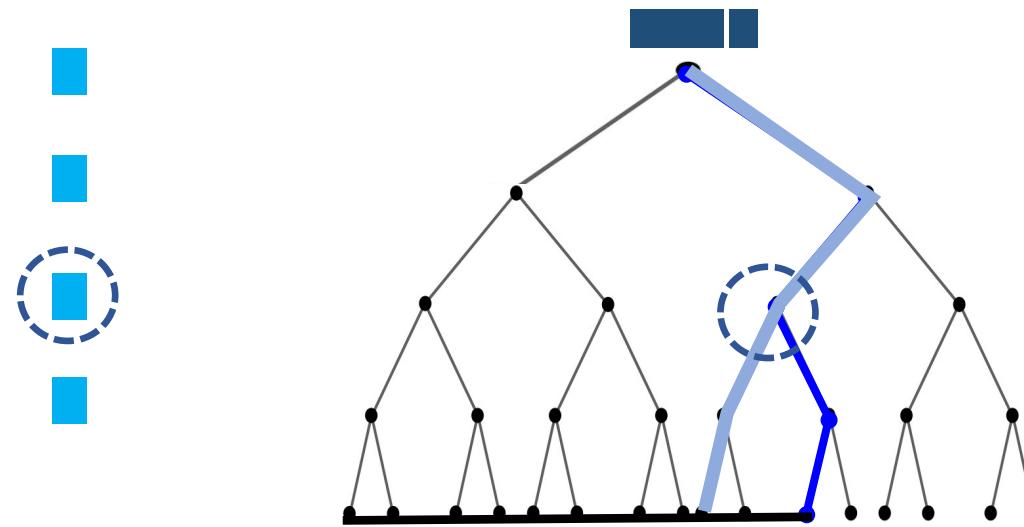
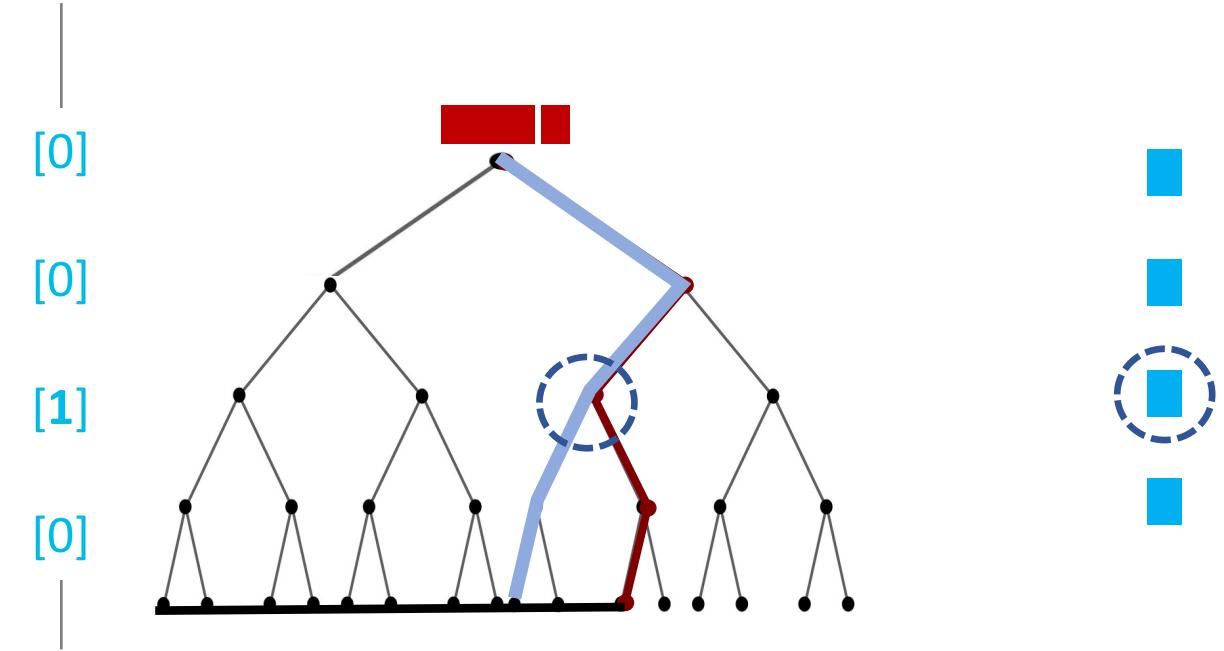
But: We can build non-black-box
for much cheaper!

Note: almost like all-prefix DPF,
but not quite... (co-paths)

$$f_\alpha^<: \{0,1\}^n \rightarrow \{0,1\}$$

DCF Construction from PRGs

[BGI15, BCGGIKR21]

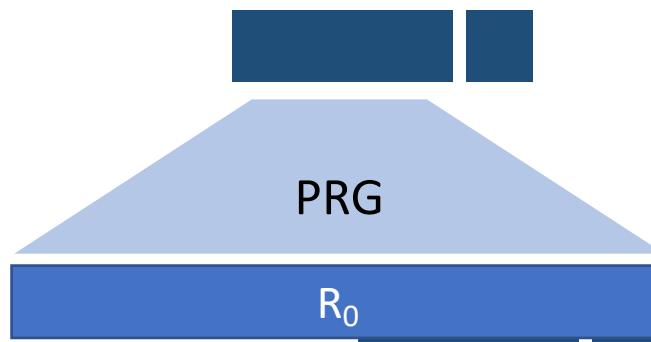


Same Per-Node Invariant for Eval (as DPF)

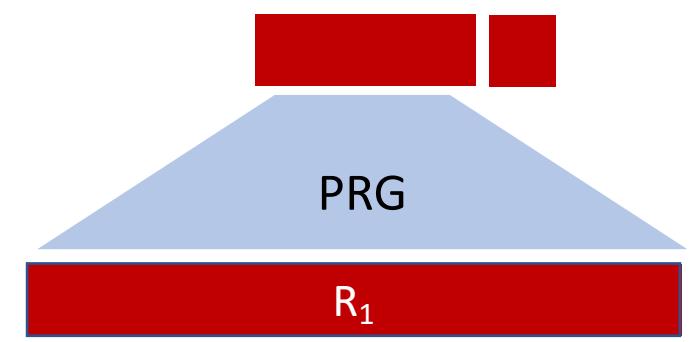
New: @ each level of Eval, compute **extra secret shared bit**

- Eval **input x** exits α -path **to the left** at this level \Leftrightarrow bit shares 1
- Final output = DPF output + **sum of all levels' bits**

Building the Correction Word Δ



$s \parallel [1]$

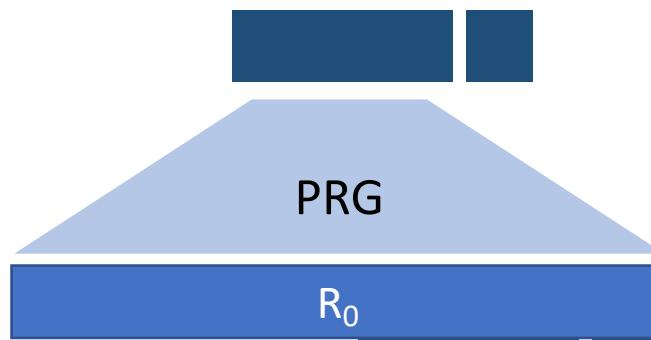
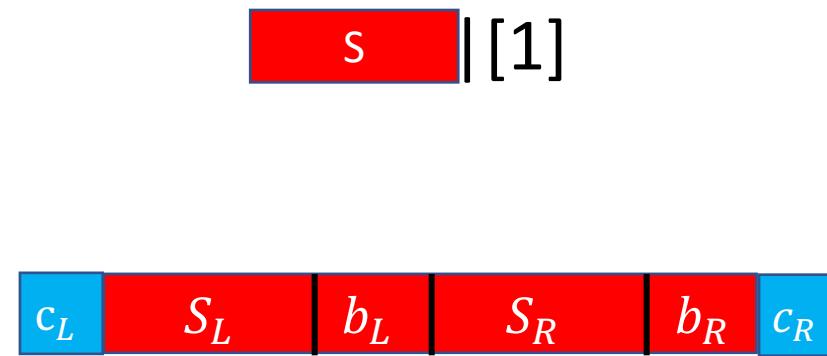
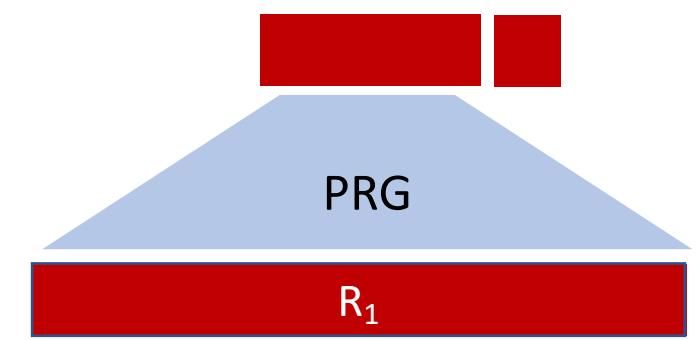


$$\Delta = \neg c_L \quad S_L \quad | \quad b_L \quad | \quad S_L \quad | \quad \neg b_R \quad c_R$$

$$\text{Goal} = \quad 1 \quad 0 \quad 0 \quad S_L \oplus S_R \quad 1 \quad 0$$

Leaving path
is exit **left**

Building the Correction Word Δ

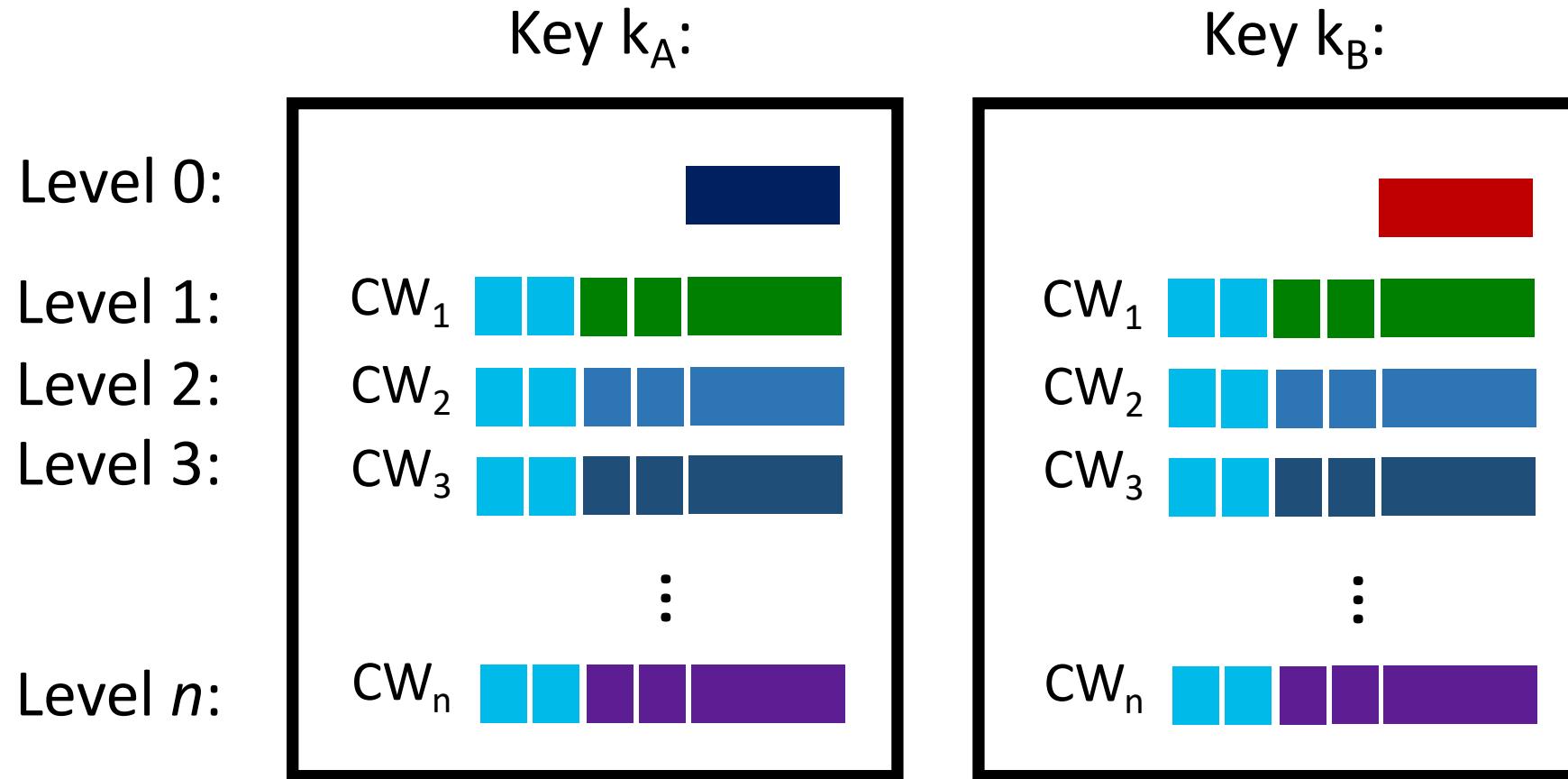


$$\Delta = \boxed{c_L} \quad S_L \quad | \quad b_L \quad | \quad S_L \quad | \quad \neg b_R \quad \boxed{c_R}$$

$$\text{Goal} = \boxed{0} \quad \boxed{0} \quad \boxed{0} \quad \boxed{S_L \oplus S_R} \quad \boxed{1} \quad \boxed{0}$$

Leaving path
is exit **right**

DCF: Final Key Construction



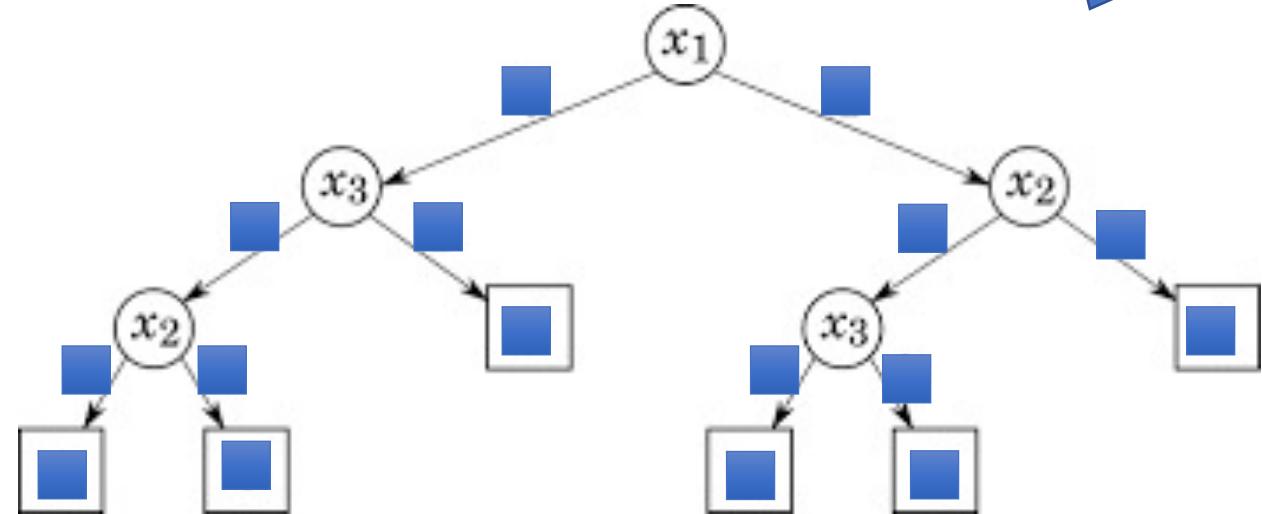
$\lambda + (\lambda+4)n$ bits

(Note: For general output group \mathbb{G} , each $\in \mathbb{G}$)

FSS for Decision Trees [BGI16b]

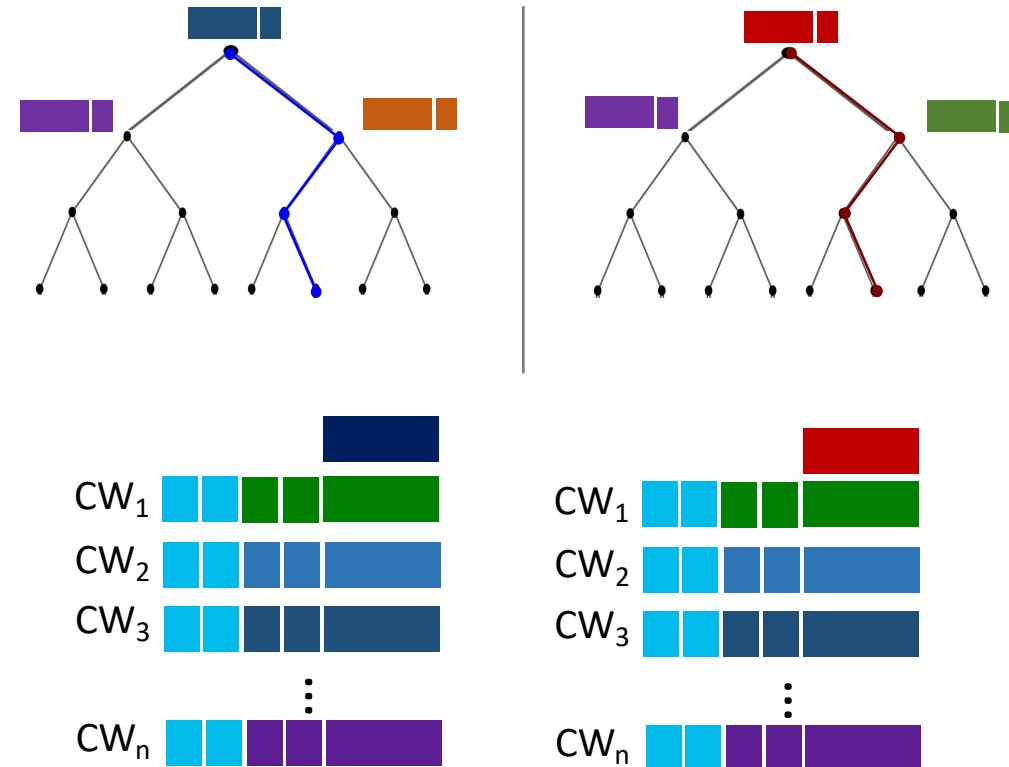
Note: DPF & DCF are special cases - Decision Lists

- Hides:
 - Edge labels
 - Leaf values
- Reveals:
 - Topology
 - Node labels
- Key size $\sim 4\lambda \cdot (\text{tree size})$
Extends DPF/DCF but without optimizations
- Example application: k -dim intervals, $k \in O(1)$



Summary of Part II

- **Construction of DPF**
 - + Useful Properties
- Construction of DCF
Distributed Comparison Function
- Briefly: FSS for Decision Trees

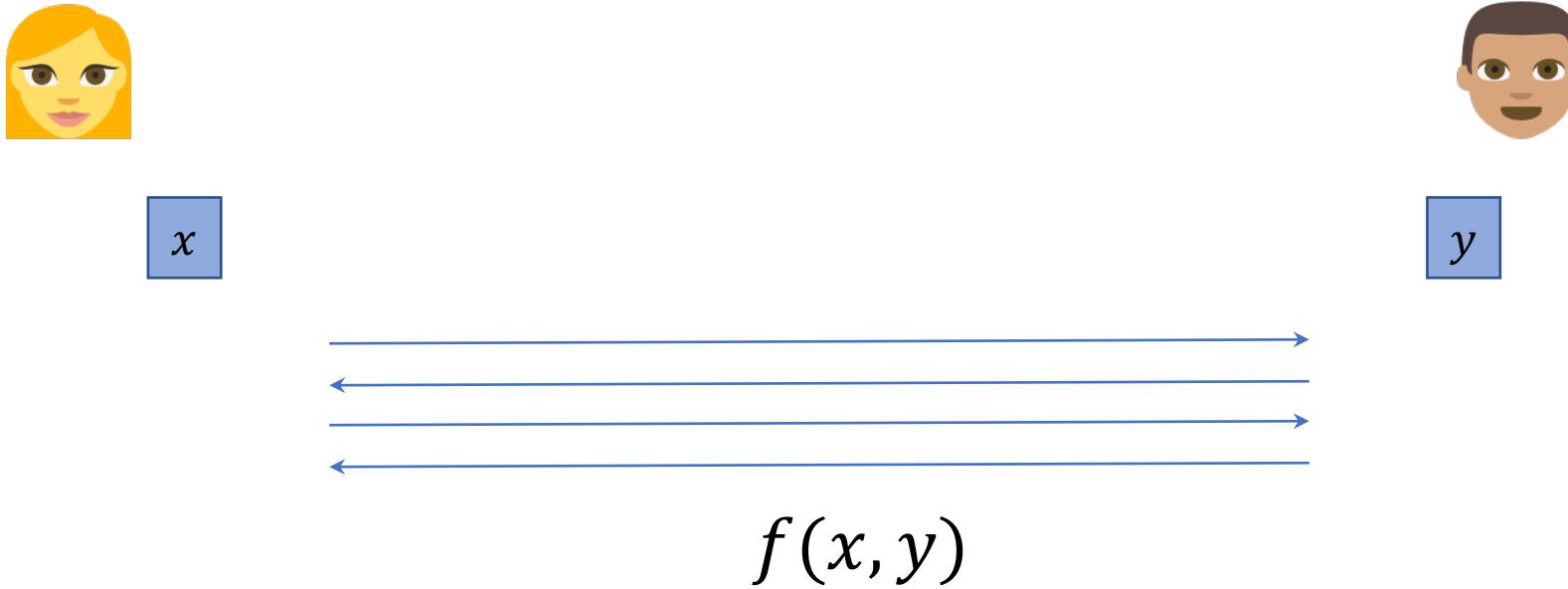


Part III: Applications & Extensions

Application: Secure Computation with Preprocessing

Secure (2-Party) Computation

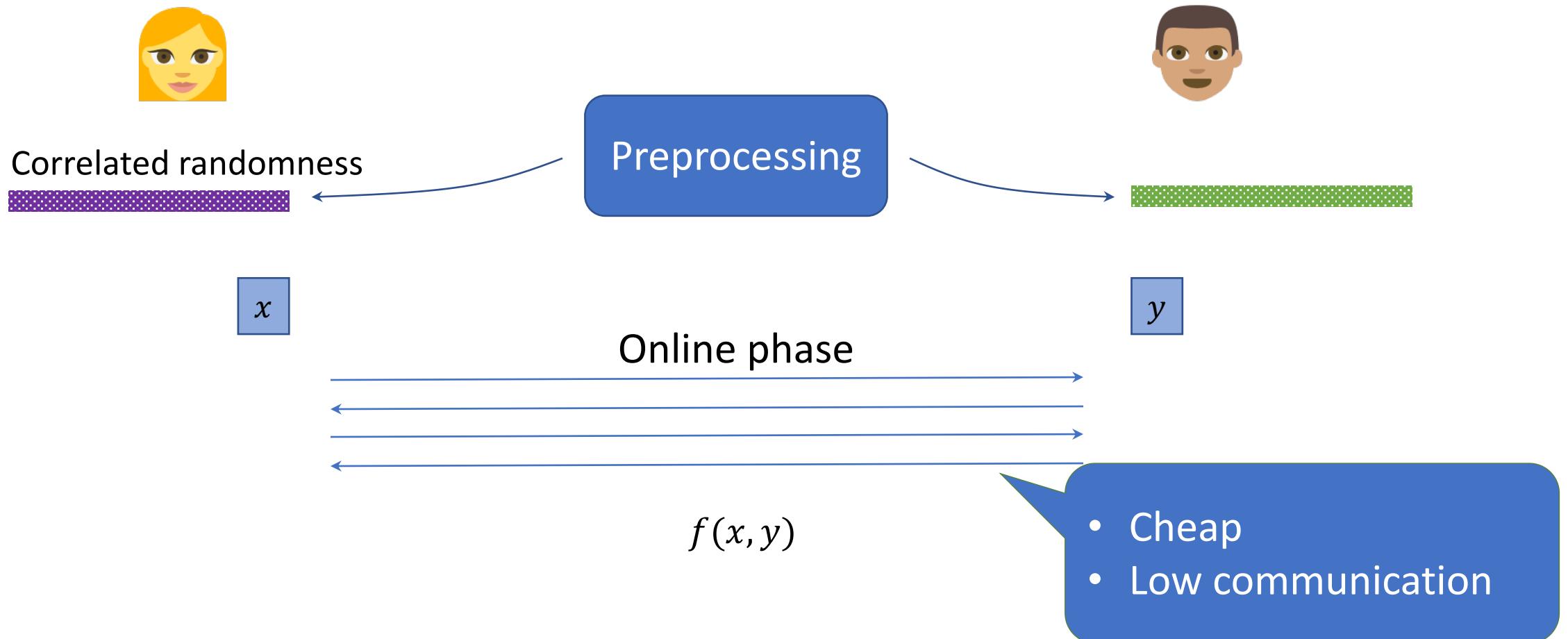
[Yao86,GMW87]



Learn $f(x, y)$ and **nothing else** about x, y

Secure Computation with Preprocessing

[Beaver '91]



Semi-Orthogonal Questions

- How to use correlations (& which are useful)?
 - Beaver triples, circuit-dependent Beaver [Bea91]
 - One-time truth tables (TinyTables) [IKMOP13, DNNR17]
 - Sublinear IT online comm for layered circuits [Cou19]
 - ...

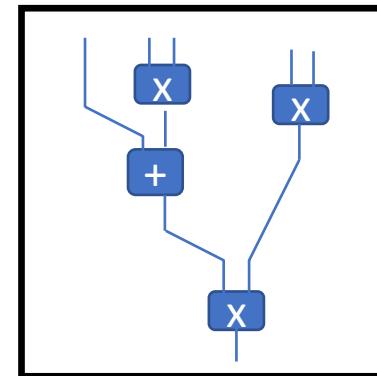
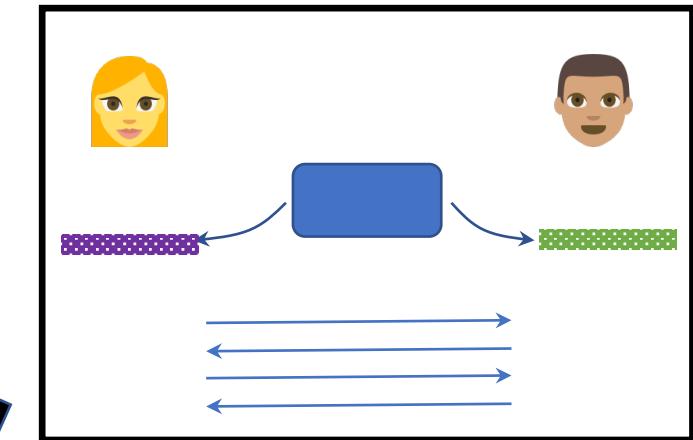
Now

- How to generate correlations?

“Pseudorandom Correlation Generators”
Wed & Thurs! [[BCGIKS19](#), [BCGIKRS19](#), ...]

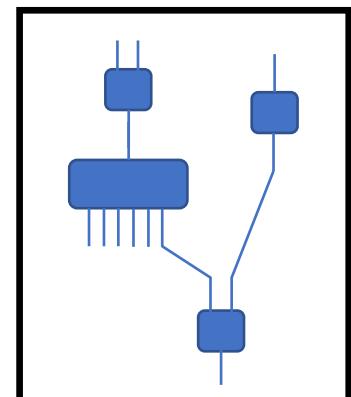
Secure Computation with Preprocessing

- Arithmetic Circuit ($+, \times$) over some ring R [Beaver'91]



Goal:

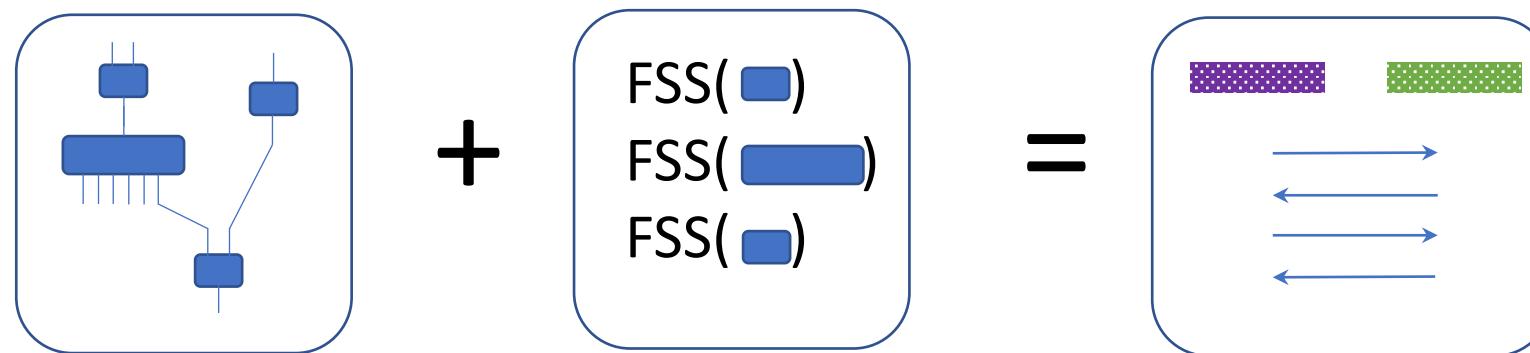
- Possibly mixed domains (big)
- Useful nonlinear gates
 - Equality, Comparison, ReLU, Bit Decomposition, ...



2PC with Preprocessing from FSS (High Level)

[BGI 19]

- General Framework: MPC with Preprocessing via FSS

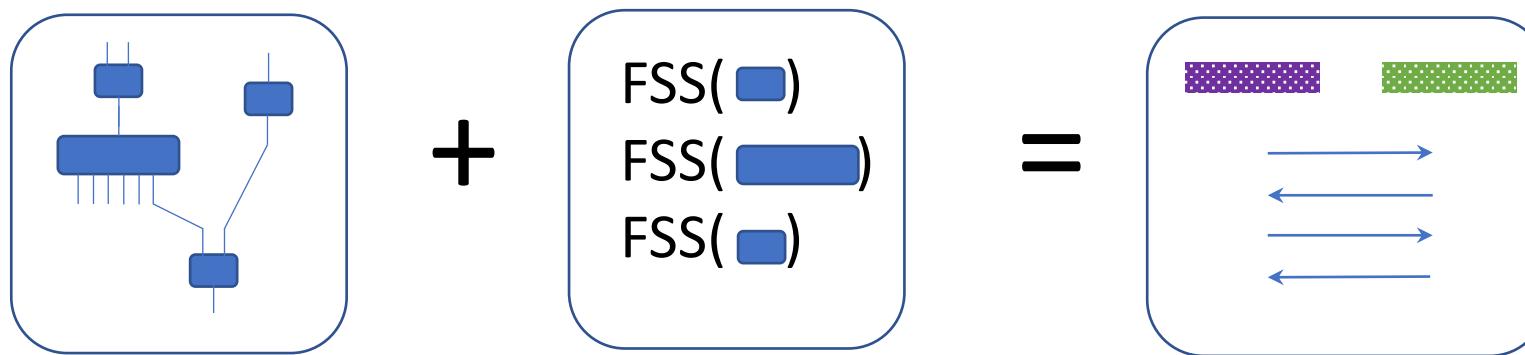


- Theoretical: Unifying approach
- Practical: Promising low-online-comm (equality, comparison, bit decomp,...)
- Necessity of FSS? “Shared equality” with optimal online communication \Rightarrow OWF

2PC with Preprocessing from FSS (High Level)

[BGI 19]

- General Framework: MPC with Preprocessing via FSS

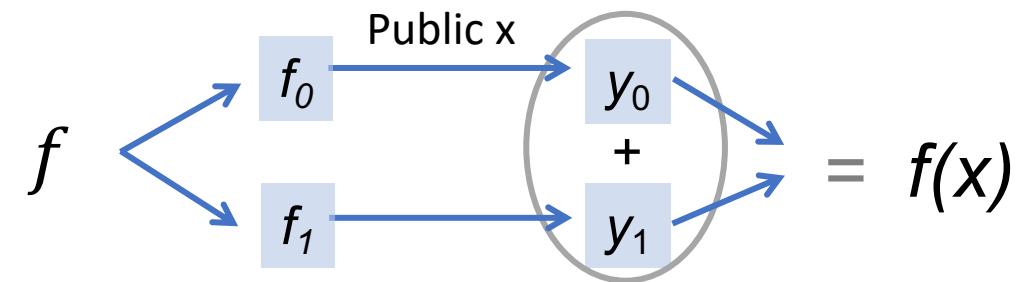


“Secret Offset Functions”
 $G(x - r)$ for gate G

Recall: Information-Theoretic FSS

- Any function class $\{ f: \{0,1\}^n \rightarrow \mathbb{G} \}$

- Secret share the truth table



- Low-degree **polynomials** $\{ \sum_i \alpha_i x^i \}$

- Secret share the coefficients α_i

- Function class $\{ \sum_i \alpha_i f_i(x) \}$ for **public** f_i

- Secret share the coefficients α_i

Corollaries

- Any function class $\{ f: \{0,1\}^n \rightarrow \mathbb{G} \}$
 - Secret share the truth table

One-time truth tables [IKMOP13]
TinyTables [DNNR17]
(TT for local functions) [Cou19]

- Low-degree **polynomials** $\{ \sum_i \alpha_i x^i \}$
 - Secret share the coefficients α_i

Beaver triples [Bea91]
Circuit-dependent Beaver [DNNR17]

$$(x_1 - r_1)(x_2 - r_2) = x_1 x_2 - \mathbf{r}_1 x_2 - x_1 \mathbf{r}_2 + \mathbf{r}_1 \mathbf{r}_2$$

- Function class $\{ \sum_i \alpha_i f_i(x) \}$ for **public** f_i
 - Secret share the coefficients α_i

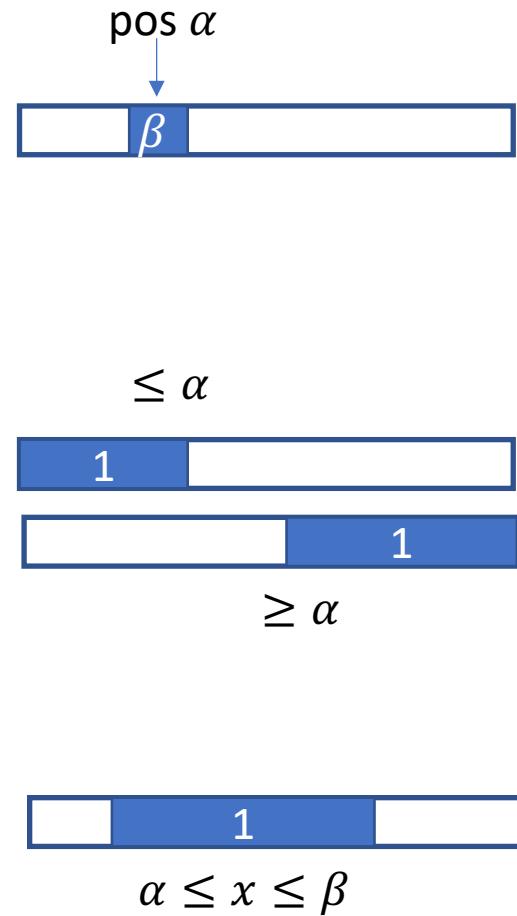
Degree- d gates
Bilinear maps, ...

Lightweight FSS Constructions from OWF

[BGI15, BGI16b]

General input groups too

- Point Functions $f_{\alpha,\beta} : \{0,1\}^n \rightarrow \mathbb{G}$
 - Key size $\sim \lambda n + \log|\mathbb{G}|$ bits
 - Gen/Eval $\sim n$ PRG evals
- “Special” Intervals
 - Cost \leq Point Function x 2
- General Intervals
 - Cost \leq Point Function x 4

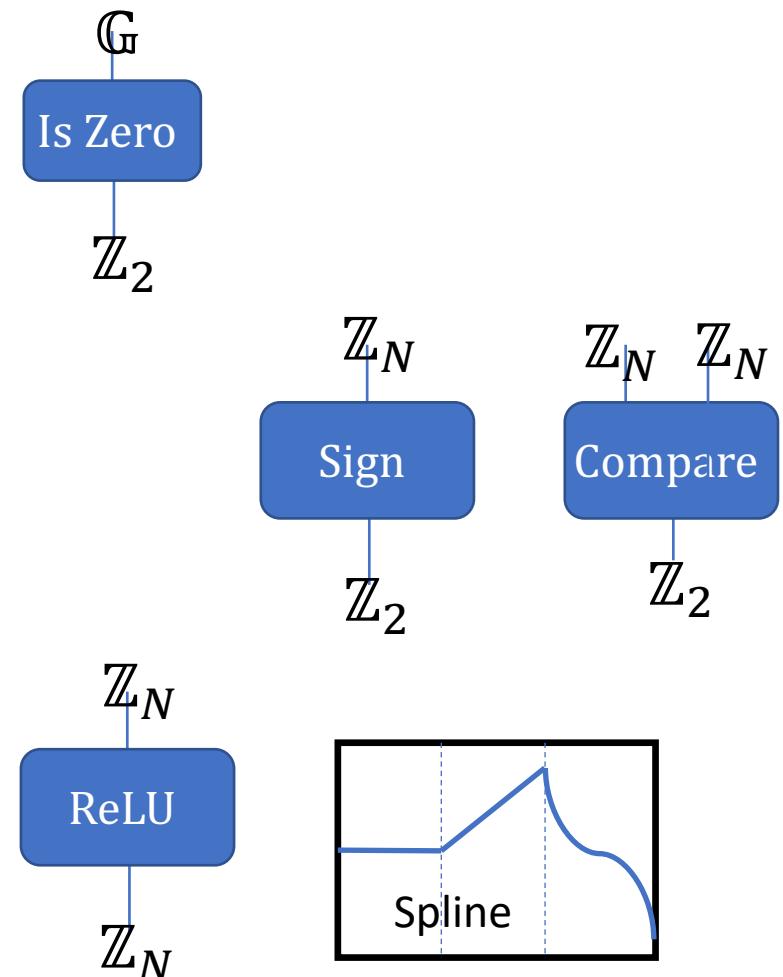


Corollaries from OWF

[BGI15, BGI16b, BGI19]

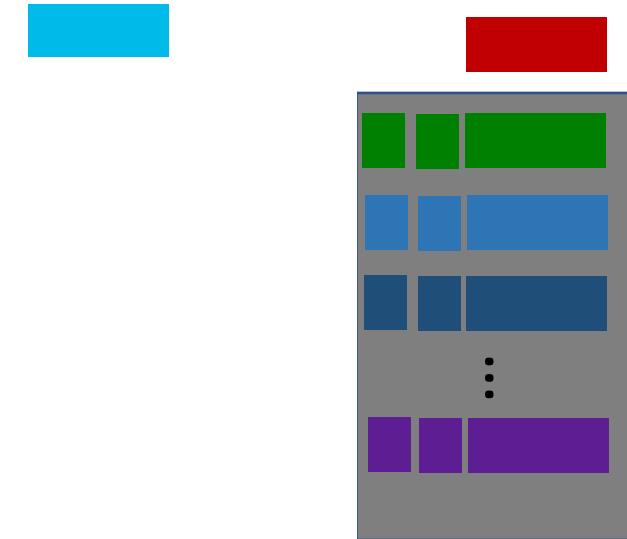
- Point Functions $f_{\alpha,\beta} : \{0,1\}^n \rightarrow \mathbb{G}$
 - Key size $\sim \lambda n + \log|\mathbb{G}|$ bits
 - Gen/Eval $\sim n$ PRG evals
- “Special” Intervals
 - Cost \leq Point Function x 2
- General Intervals
 - Cost \leq Point Function x 4

2PC with Preprocessing for:



Other Cool FSS Things

“Programmable” DPF [BGIK??]



- One key is λ bits
- Builds on “Puncturable Pseudorandom Sets” of [CK20] (from online/offline PIR)
- Very different DPF structure!
 - Punctured histogram
 - Amplify $1/\text{poly}$ error \rightarrow negligible

Multi-Party DPF (Security Against $t > 1$)

- Bottom Line: Sort of sucks. [Boyle, personal communication '22]
 - Eg [BGI15]: 2 parties, $t = 1$ $\sim n\lambda$ 3 parties, $t = 2$ $O(2^{n/2}\lambda)$ m parties, $t = m-1$ $O(2^m \cdot 2^{n/2}\lambda)$
Key size:
- The reason: 2 parties \Rightarrow Shares of 0 are **identical** values (leveraged!)
- Improvements given gap between # parties & # corruptions [BKO21]
 - Eg: 5 parties, 2 corruptions, $O(2^{n/4})$ instead of $O(2^{n/2})$

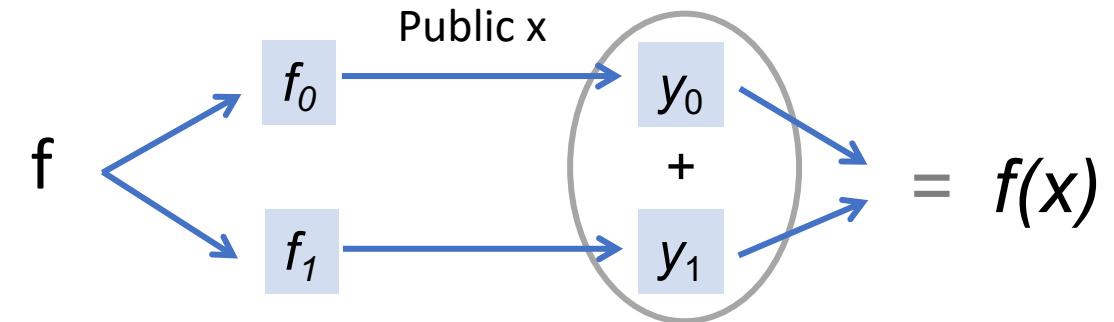
Relation to Other Crypto Objects

- “**Nontrivial**” **FSS** \Rightarrow **OWF** [GI14, BGI15]
Functions f_0, f_1 must be PRFs [BGI15]
- FSS for **Class containing SKE Dec circuit**
 \Rightarrow (amortized) **succinct secure computation** [BGI15]
- **Privately Puncturable PRF** [BLW17] \Rightarrow “adaptive” DPF
Can set 1 key before knowing the secret α
- **Targeted Lossy Functions** [QWW21]
DPF equivalent to “Targeted All-Lossy-But-One” functions

FSS: Summary

Lecture Conclusion – Part I

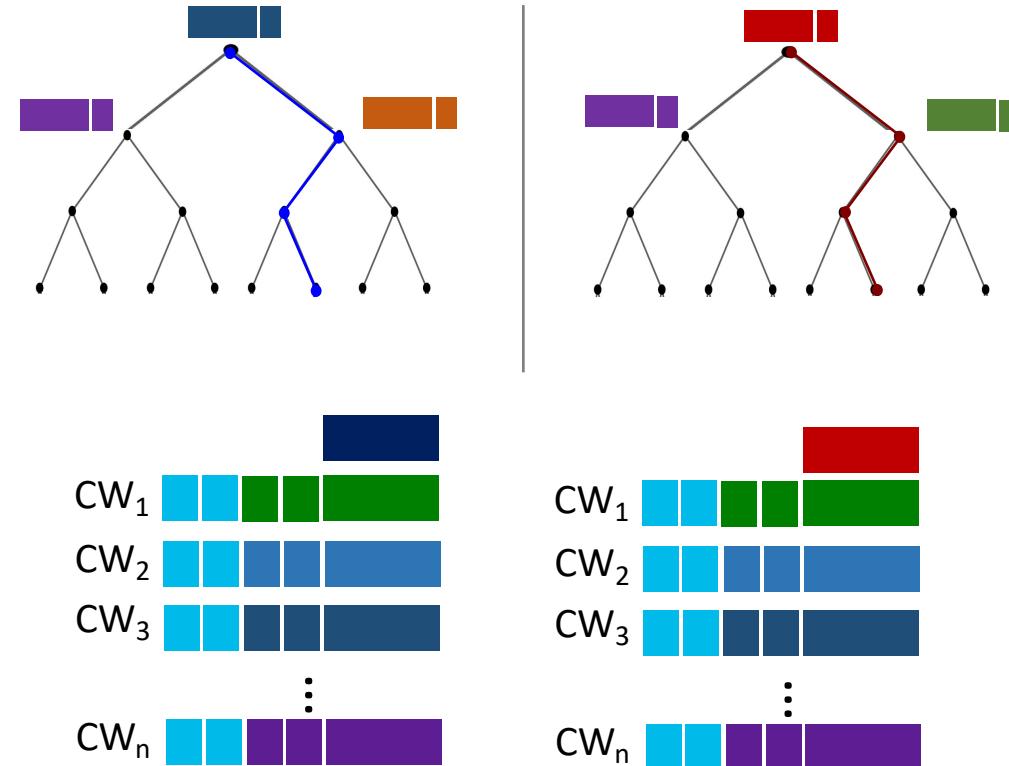
- Function Secret Sharing (FSS)



- Approach to 2-server private DB queries / updates (+ more!)
- Current FSS: Richness vs complexity tradeoff
 - Simple functions: Lightweight from any PRG
 - NC¹: Uses public-key crypto, but getting reasonable
 - Above: Heavy crypto...

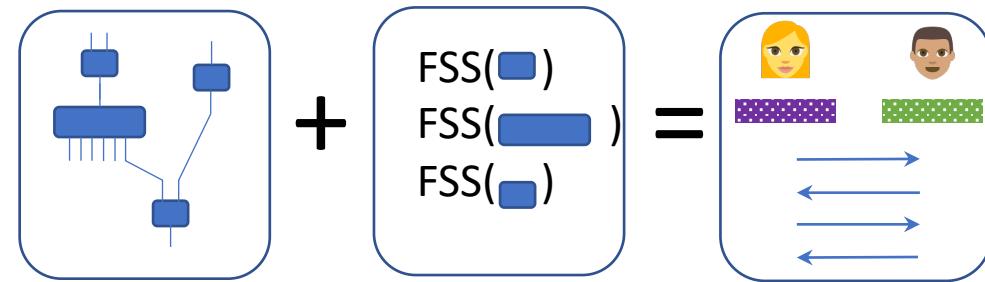
Lecture Conclusion – Part II

- **Construction of DPF**
 - + Useful Properties
- Construction of DCF
Distributed Comparison Function
- Briefly: FSS for Decision Trees



Lecture Conclusion – Part III

- Application: 2PC with Preprocessing



- Other Highlights
 - “Programmable” DPF
 - Multi-Party DPF
 - Relation to other primitives

Some Things We Don't Know

FSS: Sample Open Problems

- **Richer FSS from OWF**
 - Broader function classes (**CNF/DNF?**)
Barriers known for $> \text{AC}^0$
 - 3-server FSS with **security against 2 servers**
To beat: key size $(\lambda 2^{n/2})$ vs (λn) for security against 1
- **More efficient FSS**
 - 2-server FSS for Point Functions from OWF: **Beat λn key size?**
 - Amortizing cost of **multi-point function?**
 - Better efficiency from “**mid-level**” constructions
- **New & improved applications**

Coming up next...

What About Malicious Parties?