BIU Winter School on cryptography Day 2 Lecture 4

Constructing a SNARK

Dan Boneh

Let’s build an efficient SNARK

A polynomial
commitment
scheme

SNARK for
general circuits

A polynomial
interactive
oracle proof (IOP)

First, let’s review poly. commitments (informally)

Prover commits to a polynomial f(X) in IFz(fd) | X] (univariate)

* eval: for publicu,v € [F), prover can convince the verifier
that committed poly satisfies

f(u)=v and deg(f) <d. ‘ verifier has (d, com¢, u, v)

g

Note: poly. commitments have many applications beyond SNARKSs

* Eval proof size and verifier time should be 0;(logd)

Example polynomial commitments

A few examples:

Using bilinear groups: KZG’10 (trusted setup), Dory’20, ...
Using elliptic curves: Bulletproofs (short proof, but verifier time is 0(d))
Using hash functions only: based on FRI

Using groups of unknown order: Dark’20

Proving properties of
committed polynomials

Proving properties of committed polynomials

Prover P(f, g) Verifier V(m ,@)

Goal: convince verifier that f, g € IFz(fd) [X] satisfy some properties

Proof systems presented as an IOP:

query f(X),g(X),q(X) at some points in F,

accept or reject

Compiled protocol: V sends x to P; P responds with f(x) and eval proof n

A simple example: polynomial equality testing

Prover Goal: convince verifierthat f = g verifier
9 eF9x] fllg
query f(X)and g(X) atr r e« F

learn f(r), g(r)

accept if:

f(r) =g(r)

Lemma: complete and sound assuming d /p is negligible

Review: the compiled proof system

Prover Verifier
Make non-interactive
f)9 e FEIIX] using Fiat-Shamir fll9
: r r & F),
y = f(r)
I/
y'e— g(r) y, m y, T, | learn f (1), g(r)
accept if:
proof that p’roof that ()y =y and
y = f(r) y =g())
(i) sy m,
are valid

Important proof gadgets for univariates

Let (0 be some subset of IFp of size k.

let f € IF;Sd) [X] (d=k) Verifier has | f

Let us construct efficient Poly-IOPs for the following tasks:

Task 1(ZeroTest): prove that f isidentically zero on ()
Task 2 (SumCheck): prove that), ,cqf(a) =0

Task 3 (ProdCheck): prove that [[,cqf(a) =1

The vanishing polynomial

Let (0 be some subset of IFp of size k.

Def: the vanlshlng polynomial of Qis Zq(X) =[1,eq(X — a)
deg(Zq) =

Let w € [F, be a primitive k-th root of unity (so that wk =1).
¢+ if 0={1, 0, w2 ., w"}CSF, then ZoX)=X"-1

= for r € F),, evaluating Zo(r) takes 2log, k field operations

(1) ZeroTest on ()

Prover P(f) Verifier V(E_)

a0 f(X0/Za0 [qe BED x]

$ verifier evaluates
r — [F
p [Zqo(7) by itself

_ Query q(X) and f(X) at r

learn q(r), f(r)
Lemma: f is zero on Q if and only if . .
F(X) is divisible by Zo,(X) acceptif f(r) = q(r)-Za(r)

(implies that F(X) = q(X) - Zq (X) w.h.p)

Thm: this protocol is complete and sound, assuming d/p is negligible.

(1) ZeroTest on ()

Prover P(f) Verifier V(E_)

a0 f(X0/Za0 [qe BED x]

$ verifier evaluates
r — [F
p [Zqo(7) by itself

_ Query q(X) and f(X) at r

learn q(r), f(r)
Lemma: f is zero on Q if and only if . .
F(X) is divisible by Zo,(X) acceptif f(r) = q(r)-Za(r)

(implies that F(X) = q(X) - Zq (X) w.h.p)

Verifier time: O(log k) and two poly queries (but can be batched)

Prover time: dominated by time to compute g(X) and commit to q(X)

(4) Another useful gadget: permutation check

Let f,g polynomialsin [F;Sd) | X]. Verifier has , @ .

Prover wants to prove that (f(1), f(w), f(w?), ..., f(w*™1)) € Fg

is a permutation of (g(1), g(w), g(w?), ..., g(w* 1)) € Fg

= Proves that g({) is the same as f({1), just permuted

(4) Another useful gadget: permutation check

Prover P(f, g) Verifier V(m , @)

Let f(X) = [lgeaX = f(@)) and GX) = [lgeaX — g(a))
Then: f(X) =4§(X) < g(Q)isa permutation of f()

r re&TF

prove that f(r) = §(r)

prod-check: 0 =TT (=21

g(r) Jeg \r—g(a)

I
[

<€

> implies f(X) = §(X) w.h.p
t ject
[Lipton’s trick, 1989] acceptorrejec

(5) final gadget: prescribed permutation check

W:Q — Qis a permutation of Qif Vi € [k]: W(w') = w’ a bijection

example (k =3): W(w?) = w?, Ww!)=w?, WWw?) =w!

Let f,g polynomialsin IFz(fd) |X]. Verifier has) El) :

forall y e

Goal: prover wants to prove that f(y) = g(W (y))

= Proves that g(Q) is the same as f (1), permuted by the prescribed W

Prescribed permutation check

How? Use a zero-test to prove | f(y) — g(W(y)) =0 on(

The problem: the polynomial f(y) — g(W(y)) has degree k2
= prover would need to manipulate polynomials of degree k2

= quadratic time prover !! (goal: linear time prover)

Can reduce this to a prod-check on a poly of degree 2k (not k?)

Summary of proof gadgets

polynomial equality testing

zero test on ()

product check, sum check

permutation check

prescribed permutation check

The PLONK IOP
for general circuits

eprint/2019/953

PLONK: widely used in practice

polynomial commitment scheme SNARK system
KZG’10 » Aztec, JellyFish
/ (pairings)
The Plonk
» Bulletproofs » Halo2
I0P (no pairings) (slow verifier)

(no trusted setup)

FRI » Plonky2, Redshift
(hashing) (no trusted setup)

PLONK: a poly-IOP for a general circuit C(x,w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

The computation trace (arithmetization):

(x1 + x2) (2 + wy)

/7 inputs: 5, 6, 1
@(Gatez)
> |Gateo: 5, 6, 11
6

11 7 6
(Gate 0) (Gate 1) Gate 1: , 1 , 7
5 }6 ')‘6 1 Gate2: 11, 7, |77

5 6 1 «— example input left right || outputs
inputs || inputs

Encoding the trace as a polynomial

|C| :=total # of gatesinC, |I|=|I,|+|[,| =#inputstoC

let d:=3|C|+ |I| (nexample,d =12) and Q:={1, w, w?.., w* 1}

The plan:
prover interpolates a poly. T € F; [x]

that encodes the entire trace.

Let’s see how ...

inputs: 5, 6,
Gate0: 5, 6, 11
Gatel: 6, 1, 7
Gate2: 11, 7, 77

Encoding the trace as a polynomial

The plan: Prover interpolates T € IF;Sd)[X] such that
(1) T encodes allinputs: T(w™/) =input#j forj=1,.., |

(2) T encodes all wires: VI1=0,...,|C|—1:

e T(w3!): leftinput to gate #l

inputs: 5, 6, 1
e T(w3"1): right input to gate #l Gate0: 5, 6, 11
e T(w32): output of gate #l Gatel: 6, 1, 7
Gate2: 11, 7, 77

Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:
inputs: T(w ™) =5, Tw™?)=6 T(w?3) =1,
gate0: T(w®) =5 Tw!)=6T(w? =11,
gatel: T(w3) =6 TwH=1 Tw>) =7,

gate2: T(w®) =11, T(w) =7 T(w® =77

degree(T) =11

inputs: 5, 6, 1

Gate0: 5, 6, 11
Prover can use NTT to compute the coefficients Gatel: 6, 1, 7
of Tin time O(d log d) Gate2: 11, 7, |77

Step 2: proving validity of T

Prover P(Sp, X, W)

build T(X) € F&V[X] :

Verifier V(S,, x)

Prover needs to prove that T is a correct computation trace:

P(l) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly,

(4) the output of last gate is O

Proving (4) is easy: prove T(w3!¢1=1) =0

(wiring constraints)

inputs: 5, g, 1
Gate0: 5, .6, 11
Gate 1: 6,/1 , 7

Gate2: 11, 7, 77

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IF;S“"D[X]
that encodes the x-inputs to the circuit:

for j=1,....|L|: v(w™7) =input #]

In our example: v(w 1) =5, v(w™?)=6. (v islinear)

constructing v(X) takes time proportional to the size of input x

= verifier has time do this

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IF;S“"D[X]
that encodes the x-inputs to the circuit:

for j=1,....|L|: v(w™7) =input #]

Let Qi ={w L w2 .., 07 l}ca (points encoding the input)

Prover proves (1) by using a ZeroTest on Q,,, to prove that

inp
T(y) — v(y) =0 VYE Q'inp

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)
define S(X) € FSV[X] suchthat VI =0,..,|C| - 1:
S(w3) =1 if gate #l is an addition gate
S(w3!) =0 if gate #l is a multiplication gate

IOGate . inputs: 5, 6, 1 S(X)
GateO (w%): 5, 6, 11 1 (+)
(Gatec))ﬁ-{ Gate 1) Gatel(w3): 6, 1, 7 1 (+)
S &D/ Gate2 (wS): 11,7, 77 | 0 |(x)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)
define S(X) € FSV[X] suchthat VI =0,..,|C| - 1:
S(w3) =1 if gate #l is an addition gate
S(w3!) =0 if gate #l is a multiplication gate

Then Vy € Qe =11, &3 0 w’, .., w3UCI-1y .

S(y)-[T(y) + T(wy)] + (1-S(y))Tly) T(wy) = T(w?y)

czh diem cEhdrm &

Proving (2): every gate is evaluated correctly

Setup(C) — pp:=S and vp:=(|S|)

Prover P(pp, x, W) Verifier V(vp, x)

build T(X) € Fy; [x] :

Prover uses ZeroTest to prove that forall Vy € (4. :

S(y)-[T(y) + T(wy)] + (1=S(y))-T(y) T(wy) - T(w?y) =0

Proving (3): the wiring is correct

Step 4: encode the wires of C: example: x;=5, =6, w;=1
0: C()O, (1)1, Cl)2: 5, 6,
- T(w?) = T(wO) B oS 6/1 ;®
T(w?) = T(w®) 2 Wb, w!, ws: @ 7. 77
| T(w3) = T(w?)

Define a polynomial W: Q — Q0 that implements a rotation:
W(w?, wt, »?) = (w!, 0’ w?), Ww?, o%=(w’, o), ..

Lemma: V yeQ:T(y)=T(W(y)) = wire constraints are satisfied

Proving (3): the wiring is correct

example: x=5, x,=6, w;=1

Step 4: encode the wires of C:
[T(w?2) = T(w?!) = T(w3)

w!, w? w3 5, 9
0: wd !, w?: 5, 6, (11
1

1y = 0
- Tw™) = T(®) 1. w3, w?* wd: 6,/, 7
T(w?) = T(n)®) N 4
[Proved using a prescribed permutation check
Define a polyno — () that implements a rotation:
W(w?, w!, w3) w3, w?), Wwl =, wl), ..

Lemma: V yeQ:T(y)=T(W(y)) = wire constraints are satisfied

The complete Plonk Poly-IOP (and snark)

Setup(C) = pp:=(S,W) and vp:=(S|and|W]) (untrusted)

Prover P(pp, x, w) Verifier V(vp, x)
build T(X) € FEP[X] I _ build v(x) € F&D [x]

Prover proves:
gates: (1) S(y)-[T(y) + T(wy)] +(1—=S(y))-T(y) T(wy) — T(w?y) = 0; VY € Qyates

inputs: (2) T(y) —v(y) =0 Vy€Q,
wires: (3) T(y) = T(W(y)) =0 (using prescribed perm. check) Vye€Q

output: (4) T(w3/¢I-1) =0 (output of last gate = 0)

The complete Plonk Poly-IOP (and snark)

Setup(C) = pp:=(S,W) and vp:=(S|and|W]) (untrusted)

Prover P(pp, x, w) Verifier V(vp, x)
build T(X) € FEP[X] I _ build v(x) € F&D [x]

Thm:The Plonk Poly-10OP is complete and knowledge sound,
assuming 7|C|/p is negligible

(eprint/2019/953)

Many extensions ...

* Plonk proof: ashort proof (O(1) commitments), fast verifier

e The SNARK can be made into a zk-SNARK

Main challenge: reduce prover time
* Hyperplonk: replace O with {0,1}t (where t = log,|Q|)
 The polynomial T is now a multilinear polynomial in t variables

» ZeroTest is replaced by a multilinear SumCheck (linear time)

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and X on rows:

ul (vl |wl t1 |rl

Plonkish computation trace: (also used in AIR) w2 v2 w2 2 |
ud | v3 r3

An example custom gate: . &
us |v5 w5 t5 | r5

Vyel: v(yw)+w(y) t(y) —tlyw) =0 UG | V6 | w6 | t6 | 16
u/7 v/’ | w7 t7 |r7

All such gate checks are included in the gate check | 5 g | we s (=

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and X on rows: S(X)
ul (vl |wl t1 |rl 0
Plonkish computation trace: (also used in AIR) Zarza kil
ud | v3 r3
An example custom gate: e r4

us |vdi w5 t5 |5
Vy€eO: SXK): [viyw) +wy) - t(y) —t(yw)] =0 | u6 v6 w6 t6 |16
u/7 | v7 w7 t7 | r7
u8 | v8 | w8 | t8 (\r8>

|l OOk, O| kL, O

Selector poly S(X) can choose when to apply gate

Plookup: ensure some values are in a pre-defined list ... tomorrow

THE END

