
Dan Boneh

Constructing a SNARK

BIU Winter School on cryptography Day 2 Lecture 4

Let’s build an efficient SNARK

A polynomial
interactive

oracle proof (IOP)

A polynomial
commitment

scheme
SNARK for

general circuits

First, let’s review poly. commitments (informally)

Prover commits to a polynomial 𝑓(𝑋) in 𝔽!
(#$) 𝑋 (univariate)

• eval: for public 𝑢, 𝑣 ∈ 𝔽!, prover can convince the verifier
that committed poly satisfies

𝑓(𝑢) = 𝑣 and deg 𝑓 ≤ 𝑑.

• Eval proof size and verifier time should be 𝑂&(log 𝒅)

verifier has (𝑑, comf , 𝑢, 𝑣)

𝑓

Note: poly. commitments have many applications beyond SNARKs

Example polynomial commitments

A few examples:

• Using bilinear groups: KZG’10 (trusted setup), Dory’20, …

• Using elliptic curves: Bulletproofs (short proof, but verifier time is 𝑂(𝑑))

• Using hash functions only: based on FRI

• Using groups of unknown order: Dark’20

Proving properties of
committed polynomials

Proving properties of committed polynomials

Prover P(𝑓, 𝑔) Verifier V(𝑓 , 𝑔)

Goal: convince verifier that 𝑓, 𝑔 ∈ 𝔽!
(#$) [𝑋] satisfy some properties

Proof systems presented as an IOP:
𝑟 𝑟 ⇽ 𝔽!

$

𝑞

query 𝑓 𝑋 , 𝑔(𝑋), 𝑞(𝑋) at some points in 𝔽! accept or reject

Compiled protocol: V sends 𝑥 to P; P responds with 𝑓(𝑥) and eval proof 𝜋

A simple example: polynomial equality testing
Prover Verifier

𝒇, 𝒈

query 𝑓(X) and 𝑔 𝑋 at 𝑟

accept if:
𝑓 𝑟 = g(𝑟)

𝑟 ⇽ 𝔽!$

𝑓 𝑔
<latexit sha1_base64="7L6aXb+AutU5q4vaDunfVDWunoU=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQNyWRoi6LgrisYB+QxDKZTtqhk0mYmQglZOXGX3HjQhG3foM7/8ZJm4W2HrhwOOde7r3HjxmVyrK+jdLS8srqWnm9srG5tb1j7u51ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPr3K/+0CEpBG/U5OYeCEachpQjJSW+uahSzl0Q6RGvp9eZ/34Pq25jMDBSeb0vL5ZterWFHCR2AWpggKtvvnlDiKchIQrzJCUjm3FykuRUBQzklXcRJIY4TEaEkdTjkIivXT6RgaPtTKAQSR0cQWn6u+JFIVSTkJfd+YHy3kvF//znEQFF15KeZwowvFsUZAwqCKYZwIHVBCs2EQThAXVt0I8QgJhpZOr6BDs+ZcXSee0bp/VG7eNavOyiKMMDsARqAEbnIMmuAEt0AYYPIJn8ArejCfjxXg3PmatJaOY2Qd/YHz+AFZQmGg=</latexit>

2 F(d)
p [X]

learn 𝑓 𝑟 , g(𝑟)

Lemma: complete and sound assuming 𝑑/𝑝 is negligible

Goal: convince verifier that 𝑓 = 𝑔

Review: the compiled proof system
Prover

𝒇, 𝒈

𝑟

<latexit sha1_base64="7L6aXb+AutU5q4vaDunfVDWunoU=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQNyWRoi6LgrisYB+QxDKZTtqhk0mYmQglZOXGX3HjQhG3foM7/8ZJm4W2HrhwOOde7r3HjxmVyrK+jdLS8srqWnm9srG5tb1j7u51ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPr3K/+0CEpBG/U5OYeCEachpQjJSW+uahSzl0Q6RGvp9eZ/34Pq25jMDBSeb0vL5ZterWFHCR2AWpggKtvvnlDiKchIQrzJCUjm3FykuRUBQzklXcRJIY4TEaEkdTjkIivXT6RgaPtTKAQSR0cQWn6u+JFIVSTkJfd+YHy3kvF//znEQFF15KeZwowvFsUZAwqCKYZwIHVBCs2EQThAXVt0I8QgJhpZOr6BDs+ZcXSee0bp/VG7eNavOyiKMMDsARqAEbnIMmuAEt0AYYPIJn8ArejCfjxXg3PmatJaOY2Qd/YHz+AFZQmGg=</latexit>

2 F(d)
p [X]

𝑦, 𝜋𝑓 𝑦′, 𝜋𝑔
𝑦⇽ 𝑓(𝑟)
𝑦)⇽𝑔(𝑟)

proof that
𝑦 = 𝑓(𝑟)

proof that
𝑦′ = 𝑔(𝑟)

Verifier

accept if:
(i) 𝑦 = 𝑦′ and

(ii) 𝜋𝑓, 𝜋𝑔
are valid

𝑟 ⇽ 𝔽!$

𝑓 𝑔

learn 𝑓 𝑟 , g(𝑟)

Make non-interactive
using Fiat-Shamir

Important proof gadgets for univariates

Let Ω be some subset of 𝔽! of size 𝑘.

Let 𝑓 ∈ 𝔽!
(#$) [𝑋] (𝑑 ≥ 𝑘) Verifier has 𝑓

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (ZeroTest): prove that 𝑓 is identically zero on Ω

Task 2 (SumCheck): prove that ∑*∈,𝑓 𝑎 = 0

Task 3 (ProdCheck): prove that ∏*∈,𝑓(𝑎) = 1

The vanishing polynomial

Let Ω be some subset of 𝔽! of size 𝑘.

Def: the vanishing polynomial of Ω is 𝑍,(𝑋) ≔∏*∈,(𝑋 − 𝑎)
deg(𝑍,) = 𝑘

Let 𝜔 ∈ 𝔽! be a primitive 𝑘-th root of unity (so that 𝜔- = 1).

• if Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } ⊆ 𝔽! then 𝑍, 𝑋 = 𝑋- − 1

⇒ for 𝑟 ∈ 𝔽!, evaluating 𝑍, 𝑟 takes 2 log. 𝑘 field operations

(1) ZeroTest on Ω (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 })

Prover P(𝑓) Verifier V(𝑓)

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍&(𝑋) 𝑞 ∈ 𝔽!
(#$) 𝑋

query 𝑞(𝑋) and 𝑓(𝑋) at 𝑟
learn 𝑞 𝑟 , 𝑓(𝑟)

accept if 𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍,(𝑟)

Thm: this protocol is complete and sound, assuming 𝑑/𝑝 is negligible.

Lemma: 𝑓 is zero on Ω if and only if
𝑓 𝑋 is divisible by 𝑍&(𝑋)

(implies that 𝑓(𝑋) = 𝑞 𝑋 4 𝑍& 𝑋 w.h.p)

verifier evaluates
𝑍&(𝑟) by itself

𝑟 ⇽ 𝔽!
$

(1) ZeroTest on Ω (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 })

Prover P(𝑓) Verifier V(𝑓)

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍&(𝑋) 𝑞 ∈ 𝔽!
(#$) 𝑋

query 𝑞(𝑋) and 𝑓(𝑋) at 𝑟
learn 𝑞 𝑟 , 𝑓(𝑟)

accept if 𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍,(𝑟)

(implies that 𝑓(𝑋) = 𝑞 𝑋 4 𝑍& 𝑋 w.h.p)

verifier evaluates
𝑍&(𝑟) by itself

𝑟 ⇽ 𝔽!
$

Verifier time: O(log 𝑘) and two poly queries (but can be batched)

Prover time: dominated by time to compute 𝑞(𝑋) and commit to 𝑞(𝑋)

Lemma: 𝑓 is zero on Ω if and only if
𝑓 𝑋 is divisible by 𝑍&(𝑋)

(4) Another useful gadget: permutation check

Let 𝑓, 𝑔 polynomials in 𝔽!
(#$) 𝑋 . Verifier has 𝑓 , 𝑔 .

Prover wants to prove that (𝑓 1 , 𝑓 𝜔 , 𝑓 𝜔. , … , 𝑓(𝜔-/0)) ∈ 𝔽!-

is a permutation of (𝑔 1 , 𝑔 𝜔 , 𝑔 𝜔. , … , 𝑔(𝜔-/0)) ∈ 𝔽!-

⇒ Proves that 𝑔(Ω) is the same as 𝑓(Ω), just permuted

Let Q𝑓 𝑋 = ∏*∈,(𝑋 − 𝑓 𝑎) and R𝑔 𝑋 = ∏*∈,(𝑋 − 𝑔 𝑎)

Prover P(𝑓, 𝑔) Verifier V(𝑓 , 𝑔)

Then: Q𝑓 𝑋 = R𝑔 𝑋 ⟺ 𝑔(Ω) is a permutation of 𝑓(Ω)
𝑟

prove that Q𝑓 𝑟 = R𝑔 𝑟

prod-check:
<latexit sha1_base64="T7gWbQMte9/b4cc/TBW1IHbsi+s=">AAACSnicbVBNaxRBFOxZo4nr1xqPXh4uwubgMiMavQSCXrwZwU0CO8vypvfNbJOe7qH7jbAM8/tyycmbP8KLB0W82LNZQRMLGurVq6K7K6u08hzHX6Leja2bt7Z3bvfv3L13/8Hg4e6xt7WTNJFWW3eaoSetDE1YsabTyhGWmaaT7Oxttz/5RM4raz7yqqJZiYVRuZLIQZoPsEmXyE3ejtwepDZYYS0UndDCAaSVs4t5g5AqA+n7kgpsIdWU8wgaB88gH+GfZDcWYQwGp4ol74V8Mh8M43G8BlwnyYYMxQZH88HndGFlXZJhqdH7aRJXPGvQsZKa2n5ae6pQnmFB00ANluRnzbqKFp4GZQG5deEYhrX6d6LB0vtVmQVnibz0V3ed+L/dtOb89axRpqqZjLy8KK81sIWuV1goR5L1KhCUToW3glyiQ8mh/X4oIbn65evk+Pk42R+//PBiePhmU8eOeCyeiJFIxCtxKN6JIzERUpyLr+K7+BFdRN+in9GvS2sv2mQeiX/Q2/oNWaevYg==</latexit>

f̂(r)

ĝ(r)
=

Y

a2⌦

✓
r � f(a)

r � g(a)

◆
= 1

accept or reject
[Lipton’s trick, 1989]

implies 6𝑓 𝑋 = 8𝑔 𝑋 w.h.p

𝑟 ⇽ 𝔽!
$

(4) Another useful gadget: permutation check

(5) final gadget: prescribed permutation check

𝑊:Ω ⇾ Ω is a permutation of Ω if ∀𝑖 ∈ 𝑘 : 𝑊(𝜔)) = 𝜔* a bijection

example (𝑘 = 3): 𝑊 𝜔+ = 𝜔, , 𝑊 𝜔- = 𝜔+ , 𝑊(𝜔,) = 𝜔-

Let 𝑓, 𝑔 polynomials in 𝔽.
(/0)[𝑋] . Verifier has 𝑓 , 𝑔 , 𝑊 .

Goal: prover wants to prove that 𝑓(𝑦) = 𝑔(𝑊(𝑦)) for all 𝑦 ∈ Ω

⇒ Proves that 𝑔(Ω) is the same as 𝑓(Ω), permuted by the prescribed 𝑊

Prescribed permutation check

How? Use a zero-test to prove 𝑓 𝑦 − 𝑔 𝑊 𝑦 = 0 on Ω

The problem: the polynomial 𝑓 𝑦 − 𝑔 𝑊 𝑦 has degree k2

⇒ prover would need to manipulate polynomials of degree k2

⇒ quadratic time prover !! (goal: linear time prover)

Can reduce this to a prod-check on a poly of degree 2𝑘 (not 𝑘.)

Summary of proof gadgets

prescribed permutation check

permutation check

product check, sum check

zero test on Ω

polynomial equality testing

The PLONK IOP
for general circuits

eprint/2019/953

PLONK: widely used in practice

The Plonk
IOP

KZG’10
(pairings)

Aztec, JellyFish

Halo2
(slow verifier)
(no trusted setup)

Bulletproofs
(no pairings)

Plonky2, Redshift
(no trusted setup)

FRI
(hashing)

polynomial commitment scheme SNARK system

PLONK: a poly-IOP for a general circuit 𝐶(𝑥, 𝑤)

The computation trace (arithmetization):

𝑥1 𝑥2 𝑤1

+ +

×

(𝑥1+ 𝑥2)(𝑥2+ 𝑤1)
77 inputs: 5, 6, 1

Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

5 6 1 example input

11

5 6

7

6 1

left
inputs

right
inputs

outputs

Step 1: compile circuit to a computation trace (gate fan-in = 2)

(Gate 0) (Gate 1)

(Gate 2)

Encoding the trace as a polynomial

|𝐶| ≔ total # of gates in 𝐶 , |𝐼| ≔ |𝐼𝑥| + |𝐼𝑤| = # inputs to 𝐶

let 𝑑 ≔ 3 𝐶 + |𝐼| (in example, 𝑑 = 12) and Ω≔ { 1, 𝜔, 𝜔2,…, 𝜔$/0 }

The plan:
prover interpolates a poly. 𝑇 ∈ 𝔽!

(#$)[X]

that encodes the entire trace.

inputs: 5, 6, 1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

Let’s see how …

Encoding the trace as a polynomial

The plan: Prover interpolates 𝑇 ∈ 𝔽!
(#$)[X] such that

(1) 𝑻 encodes all inputs: T(𝜔/7) = input #𝑗 for 𝑗 = 1, …, |𝐼|

(2) 𝑻 encodes all wires: ∀ 𝑙 = 0,… , 𝐶 − 1:

• T(𝜔3𝑙): left input to gate #𝑙

• T(𝜔3𝑙+1): right input to gate #𝑙

• T(𝜔3𝑙+2): output of gate #𝑙

inputs: 5, 6, 1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

Encoding the trace as a polynomial
In our example, Prover interpolates 𝑇(𝑋) such that:

inputs: T(𝜔)*) = 5, T(𝜔)+) = 6, T(𝜔),) = 1,
gate 0: T(𝜔-) = 5, T(𝜔*) = 6, T(𝜔+) = 11,
gate 1: T(𝜔,) = 6, T(𝜔.) = 1, T(𝜔/) = 7,
gate 2: T(𝜔0) = 11, T(𝜔1) = 7, T(𝜔2) = 77

degree(𝑇) = 11

Prover can use NTT to compute the coefficients
of T in time O(𝑑 log 𝑑)

inputs: 5, 6, 1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

Step 2: proving validity of T
Prover P(𝑆𝑝, 𝒙,𝐰) Verifier V(𝑆𝑣, 𝒙)

build T(𝑋) ∈ 𝔽!
(#$)[X]

𝑇

Prover needs to prove that T is a correct computation trace:
(1) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly,
(4) the output of last gate is 0

Proving (4) is easy: prove 𝑇(𝜔8 9 /0) = 0

inputs: 5 , 6, 1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

(wiring constraints)

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 𝔽.
(/|6#|)[X]

that encodes the 𝑥-inputs to the circuit:

for 𝑗 = 1, . . . , |𝐼7|: 𝑣(𝜔8*) = input #j

In our example: 𝑣 𝜔)* = 5, 𝑣 𝜔)+ = 6 . (𝑣 is linear)

constructing 𝑣(𝑋) takes time proportional to the size of input 𝑥

⇒ verifier has time do this

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 𝔽.
(/|6#|)[X]

that encodes the 𝑥-inputs to the circuit:

for 𝑗 = 1, . . . , |𝐼7|: 𝑣(𝜔8*) = input #j

Let Ωinp ≔ {𝜔)*, 𝜔)+, … , 𝜔) 3# } ⊆ Ω (points encoding the input)

Prover proves (1) by using a ZeroTest on Ωinp to prove that

T(y) − 𝑣(y) = 0 ∀ y ∈ Ωinp

Proving (2): every gate is evaluated correctly
Idea: encode gate types using a selector polynomial S(X)

define S(X) ∈ 𝔽.
(/0)[X] such that ∀ 𝑙 = 0,… , 𝐶 − 1:

S(𝜔3𝑙) = 1 if gate #𝑙 is an addition gate
S(𝜔3𝑙) = 0 if gate #𝑙 is a multiplication gate

𝑥1 𝑥2 𝑤1

+ +

×

(Gate 0) (Gate 1)

(Gate 2)
inputs: 5 , 6, 1 𝑆(𝑋)
Gate 0 (𝜔0): 5 , 6 , 11 1
Gate 1 (𝜔3): 6 , 1 , 7 1
Gate 2 (𝜔6): 11, 7, 77 0

(+)
(+)
(×)

Proving (2): every gate is evaluated correctly
Idea: encode gate types using a selector polynomial S(X)

define S(X) ∈ 𝔽.
(/0)[X] such that ∀ 𝑙 = 0,… , 𝐶 − 1:

S(𝜔3𝑙) = 1 if gate #𝑙 is an addition gate
S(𝜔3𝑙) = 0 if gate #𝑙 is a multiplication gate

T(𝜔2y)

Then ∀ y ∈ Ωgates ≔ { 1, 𝜔3, 𝜔6, 𝜔9, …, 𝜔8(9 /0) } :

S(y)⋅[T(y) + T(𝝎𝐲)] + (1 – S(y))⋅T(y)⋅T(𝝎𝐲) =

left input right input outputleft input right input

Proving (2): every gate is evaluated correctly

S(y)⋅[T(y) + T(𝜔y)] + (1 – S(y))⋅T(y)⋅T(𝜔y) − T(𝜔2y) = 0

Prover P(𝑝𝑝, 𝒙,𝐰) Verifier V(𝑣𝑝, 𝒙)

build T(𝑋) ∈ 𝔽!
(#$)[X]

𝑇

Setup(𝐶) ⇾ 𝑝𝑝≔S and 𝑣𝑝≔ (S)

Prover uses ZeroTest to prove that for all ∀ 𝑦 ∈ Ω𝑔𝑎𝑡𝑒𝑠 :

Proving (3): the wiring is correct

Step 4: encode the wires of 𝐶:
T(𝜔-2) = T(𝜔1) = T(𝜔3)
T(𝜔-1) = T(𝜔0)
T(𝜔2) = T(𝜔6)
T(𝜔-3) = T(𝜔4)

example: x1=5,		x2=6	,		𝑤1=1

𝜔-1, 𝜔-2, 𝜔-3: 5, 6, 1
𝜔0, 𝜔1, 𝜔2 : 5, 6, 11
𝜔3, 𝜔4, 𝜔5 : 6, 1, 7
𝜔6, 𝜔7, 𝜔8 : 11, 7, 77

0:

1:

2:

Lemma: ∀ 𝑦∈Ω: T(𝑦) = T(W(𝑦)) ⇒ wire constraints are satisfied

Define a polynomial W: Ω⇾ Ω that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2) , W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) , …

Proving (3): the wiring is correct

Step 4: encode the wires of 𝐶:
T(𝜔-2) = T(𝜔1) = T(𝜔3)
T(𝜔-1) = T(𝜔0)
T(𝜔2) = T(𝜔6)
T(𝜔-3) = T(𝜔4)

example: x1=5,		x2=6	,		𝑤1=1

𝜔-1, 𝜔-2, 𝜔-3: 5, 6, 1
𝜔0, 𝜔1, 𝜔2 : 5, 6, 11
𝜔3, 𝜔4, 𝜔5 : 6, 1, 7
𝜔6, 𝜔7, 𝜔8 : 11, 7, 77

0:

1:

2:

Lemma: ∀ 𝑦∈Ω: T(𝑦) = T(W(𝑦)) ⇒ wire constraints are satisfied

Define a polynomial W: Ω⇾ Ω that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2) , W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) , …

Proved using a prescribed permutation check

The complete Plonk Poly-IOP (and SNARK)

Setup(𝐶) ⇾ 𝑝𝑝≔ (𝑆,𝑊) and 𝑣𝑝 ≔ (𝑆 and 𝑊) (untrusted)

Prover proves:
(1) S(y)⋅[T(y) + T(𝜔y)] + (1 – S(y))⋅T(y)⋅T(𝜔y) − T(𝜔2y) = 0; ∀ y ∈ Ωgates
(2) T(y) − 𝑣(y) = 0 ∀ y ∈ Ωinp

(3) T(y) − T(𝑊(y)) = 0 (using prescribed perm. check) ∀ y ∈ Ω

(4) T(𝜔, 4)*) = 0 (output of last gate = 0)

gates:

inputs:

wires:

output:

Prover P(𝑝𝑝, 𝒙,𝐰) Verifier V(𝑣𝑝, 𝒙)
build 𝑣(𝑋) ∈ 𝔽!

(#|3#|) [X]build T(𝑋) ∈ 𝔽!
(#$)[X] 𝑇

The complete Plonk Poly-IOP (and SNARK)

Setup(𝐶) ⇾ 𝑝𝑝≔ (𝑆,𝑊) and 𝑣𝑝 ≔ (𝑆 and 𝑊) (untrusted)

Prover P(𝑝𝑝, 𝒙,𝐰) Verifier V(𝑣𝑝, 𝒙)
build 𝑣(𝑋) ∈ 𝔽!

(#|3#|) [X]build T(𝑋) ∈ 𝔽!
(#$)[X] 𝑇

Thm: The Plonk Poly-IOP is complete and knowledge sound,
assuming 7|𝐶|/𝑝 is negligible

(eprint/2019/953)

Many extensions …

• Plonk proof: a short proof (O(1) commitments), fast verifier

• The SNARK can be made into a zk-SNARK

Main challenge: reduce prover time

• Hyperplonk: replace Ω with 0,1 ; (where 𝑡 = log+|Ω|)

• The polynomial T is now a multilinear polynomial in 𝑡 variables

• ZeroTest is replaced by a multilinear SumCheck (linear time)

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and × on rows:

Plonkish computation trace: (also used in AIR)
u1 v1 w1 t1 r1

u2 v2 w2 t2 r2

u3 v3 w3 t3 r3

u4 v4 w4 t4 r4

u5 v5 w5 t5 r5

u6 v6 w6 t6 r6

u7 v7 w7 t7 r7

u8 v8 w8 t8 r8

output

∀ 𝑦 ∈ Ω: 𝑣 𝑦𝜔 + 𝑤(𝑦) 4 𝑡(𝑦) − 𝑡 𝑦𝜔 = 0

An example custom gate:

All such gate checks are included in the gate check

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and × on rows:

Plonkish computation trace: (also used in AIR)
u1 v1 w1 t1 r1 0

u2 v2 w2 t2 r2 0

u3 v3 w3 t3 r3 1

u4 v4 w4 t4 r4 0

u5 v5 w5 t5 r5 1

u6 v6 w6 t6 r6 0

u7 v7 w7 t7 r7 0

u8 v8 w8 t8 r8 1

Plookup: ensure some values are in a pre-defined list ... tomorrow

∀ 𝑦 ∈ Ω: S X 4 [𝑣 𝑦𝜔 + 𝑤(𝑦) 4 𝑡(𝑦) − 𝑡 𝑦𝜔] = 0

An example custom gate:

Selector poly 𝑆(𝑋) can choose when to apply gate
output

S(X)

THE END

