
What are SNARKs
and what are they good for?

Dan Boneh
Stanford University

BIU Winter School on cryptography Day 2 Lecture 1

What is a zk-SNARK ? (intuition)

SNARK: a succinct proof that a certain statement is true

Example statement: “I know an 𝑚 such that SHA256(𝑚) = 0”

• SNARK: the proof is “short” and “fast” to verify

[if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK: the proof “reveals nothing” about 𝑚 (privacy for 𝑚)

Commercial interest in SNARKs

Many more building applications that use SNARKs

Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor
the operation of a herd of supercomputers
working with unreliable software.

Why so much commercial interest?

“Checking Computations in Polylogarithmic Time”

Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor
the operation of a herd of supercomputers
working with unreliable software.

Why so much commercial interest?

“Checking Computations in Polylogarithmic Time”

GPUs

a slow and expensive computer

Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor
the operation of a herd of supercomputers
working with unreliable software.

Why so much commercial interest?

“Checking Computations in Polylogarithmic Time”

GPUs

L1 blockchain

Blockchain Applications I

Outsourcing computation: (no need for zero knowledge)
L1 chain quickly verifies the work of an off-chain service

Examples:
• Scalability: proof-based Rollups (zkRollup)

off-chain service processes a batch of Tx;
L1 chain verifies a succinct proof that Tx were processed correctly

• Bridging blockchains: proof of consensus (zkBridge)
Chain A produces a succinct proof about its state. Chain B verifies.

To minimize gas: need a short proof, fast to verify

Blockchain Applications II

Some applications require zero knowledge (privacy):

• Private Tx on a public blockchain:
• zk proof that a private Tx is valid (Tornado cash, Zcash, IronFish, Aleo)

• Compliance:
• Proof that a private Tx is compliant with banking laws (Espresso)

• Proof that an exchange is solvent in zero-knowledge (Raposa)

More on these blockchain applications in a minute

Many non-blockchain applications

Blockchains drive the development of SNARKs

… but many non-blockchain applications benefit

Why is all this possible now?

The breakthrough: new fast SNARK provers

• Proof generation time is linear (or quasilinear) in computation size

• Many beautiful ideas … will cover during the day

a large bibliography: a16zcrypto.com/zero-knowledge-canon

What is a SNARK?

Review: arithmetic circuits
Fix a finite field 𝔽 = 0,… , 𝑝 − 1 for some prime p>2.

Arithmetic circuit: 𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled +, −, or ×
inputs are labeled 1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe

|𝐶| = # gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)

(preprocessing) NARK: Non-interactive ARgument of Knowledge

Preprocessing (setup): S(𝐶) ⇾ public parameters (𝒑𝒑, 𝒗𝒑)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽
public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒑𝒑, 𝒙, 𝒘 𝒗𝒑, 𝒙

accept or
reject

proof 𝝅 that 𝐶(𝑥, 𝑤) = 0

(preprocessing) NARK: Non-interactive ARgument of Knowledge

A preprocessing NARK is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑝𝑝, 𝑣𝑝) for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘) ⇾ proof 𝜋

• V(𝑣𝑝, 𝒙, 𝝅) ⇾ accept or reject

all algs. and adversary have
access to a random oracle

NARK: requirements (informal)
Prover P(𝑝𝑝, 𝒙,𝒘) Verifier V (𝑣𝑝, 𝒙, 𝝅)

proof 𝜋 accept or reject

Complete: ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ Pr[V(𝑣𝑝, 𝑥, P(𝑝𝑝, 𝒙, 𝒘)) = accept] = 1

Adaptively knowledge sound: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0
(an extractor 𝐸 can extract a valid 𝒘 from P)

Optional: Zero knowledge: (𝐶, 𝑝𝑝, 𝑣𝑝 , 𝒙, 𝜋) “reveal nothing new” about 𝒘
(witness exists ⇒ can simulate the proof)

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑝𝑝, 𝑣𝑝) for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘) ⇾ short proof 𝜋 ; len(𝜋) = 𝑂+(𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪)

• V(𝑣𝑝, 𝒙, 𝝅) fast to verify ; time(V) = 𝑂+(𝑥 , 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪)

V has no time to read 𝐶 !!short “summary” of circuit

[for some SNARKs, len 𝜋 = time 𝑉 = 𝑂+ 1]

SNARK: a NARC (complete and knowledge sound) that is succinct

zk-SNARK: a SNARK that is also zero knowledge

SNARK: a Succinct ARgument of Knowledge

The trivial SNARK is not a SNARK

(a) Prover sends 𝒘 to verifier,
(b) Verifier checks if 𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:

(1) 𝒘 might be long: we want a “short” proof

(2) computing 𝐶(𝒙,𝒘)may be hard: we want a “fast” verifier

(3) 𝒘 might be secret: prover might not want to reveal 𝒘 to verifier

The SNARK zoo … next lecture

STARK

Breakdown

Orion

Bulletproofs

Halo2 Plonk

Marlin

Sonic

Groth16 Gemini

DARKPlonky2

Open: one SNARK to rule them all
Spartan

Nova Hyperplonk

Hyrax ⋮

SNARKs in practice

DSL
program
Circom,

ZoKrates,
Leo,
Zinc,
Cairo,
Noir,

…

SNARK
backend
prover

𝑥, witness

𝜋

heavy
computation

domain specific
language

SNARK
friendly
format
circuit,
R1CS,
AIR,

EVM
byte code

…

compiler

The future: a market for ZK provers
Anyone with a GPU will be paid to create ZK proofs

tx1

tx2

tx3

tx4

market

𝜋

𝜋,

𝜋- selects provers
and distributes rewards

prover 1

prover 2

prover 3

Three examples: (briefly)
zkRollup, zkBridge, Tornado

Applications of SNARKs

(actually using ZK)

The Tornado Story

Privacy: Tornado – a ZK mixer

account

MIX

Tornado.cash
contract

fresh
address

(1000 DAI)

???

1000 DAI NFT
market

buy NFT
privately

1000 DAI

1000 DAI

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

1000 DAI

The tornado cash contract (simplified)

nf1

nullifiers

explicit list:
one entry per spent coin

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)Currently:

• three coins in pool
• contract has 300 DAI
• two nullifiers stored contract state

next = 4

H1, H2: R ⇾ {0,1}256

C1 C2 C3 0 0 … 0

public list of coins

tree of
height 20

(220 leaves)

Coins
Merkle

root

CRHF

Tornado cash: deposit (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 0 0 … 0

Coins
Merkle

root

tree of
height 20

(220 leaves)

Alice deposits 100 DAI:

explicit list:
one entry per spent coin

public list of coins
Build Merkle proof for leaf #4:

MerkleProof(4) (leaf=0)
choose random k, r in R
set C4 = H1(k, r)

H1, H2: R ⇾ {0,1}256

contract state

next = 4
100 DAI

C4 , MerkleProof(4)

Tornado cash: deposit (simplified)

coins
Merkle

root
(32 bytes)

tree of
height 20

(220 leaves)

100 DAI
C4 , MerkleProof(4)

Tornado contract does:

(1) verify MerkleProof(4) with
respect to current stored root

(2) use C4 and MerkleProof(4) to
compute updated Merkle root

(3) update state

next = 4

H1, H2: R ⇾ {0,1}256

Tornado contract C1 C2 C3 0 0 … 0

public list of coins

Coins
Merkle

root

Tornado cash: deposit (simplified)

coins
Merkle

root
(32 bytes)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

100 DAI
C4 , MerkleProof(4)

public list of coins

Tornado contract does:

(1) verify MerkleProof(4) with
respect to current stored root

(2) use C4 and MerkleProof(4) to
compute updated Merkle root

(3) update state

next = 4

H1, H2: R ⇾ {0,1}256

Tornado contract

Tornado cash: deposit (simplified)

nf1

nullifiers

updated
Merkle

root

Treasury: 400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

100 DAI
C4 , MerkleProof(4)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coinsnote: (k, r)
Alice keeps secret
(one note per coin)

Every deposit: new Coin
added sequentially to tree

an observer sees who
owns which leaves

Alice deposits 100 DAI:

updated contract state

next = 5

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

Withdraw coin #3
to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

public list of coins

has note= (k’, r’)

set nf = H2(k’)

H1, H2: R ⇾ {0,1}256

next = 5

contract state

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof 𝜋 for
public statement x = (root, nf, A)
secret witness w = (k’, r’, C3 , MerkleProof(C3))

where Circuit(x,w)=0 iff:

(i) C3 = (leaf #3 of root), i.e. MerkleProof(C3) is valid,

(ii) C3 = H1(k’, r’), and

(iii) nf = H2(k’).

H1, H2: R ⇾ {0,1}256

(address A not used in Circuit)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof 𝜋 for
public statement x = (root, nf, A)
secret witness w = (k’, r’, C3 , MerkleProof(C3))

H1, H2: R ⇾ {0,1}256

The address A is part of the statement to ensure that a miner cannot change A to
its own address and steal funds

Assumes the SNARK is non-malleable:
adversary cannot use proof 𝜋 for x to build a proof 𝜋’ for some “related” x’

(where in x’ the address A is replaced by some A’)

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins
Bob’s ID and coin C3

are not revealed

Contract checks (i) proof 𝜋 is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers

nf, proof 𝜋, A
(over Tor)

Merkle
root

H1, H2: R ⇾ {0,1}256

contract state

next = 5

Withdraw coin #3
to addr A:

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins

nf, proof 𝜋, A
(over Tor)

nf

nf and 𝜋 reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because nf = H2(k’) is now nullified.

… but observer does not
know which are spent

100 DAI
to address A

Merkle
root

H1, H2: R ⇾ {0,1}256

next = 5

contract state

Withdraw coin #3
to addr A:

Who pays the withdrawal gas fee?
Problem: how does Bob pay for gas for the withdrawal Tx?
• If paid from Bob’s address, then fresh address is linked to Bob

Tornado’s solution: Bob uses a relay

nf, proof 𝜋, A
(over Tor)

(100-gas) DAI
to address A

relay

nf, proof 𝜋, A
and gas

tornado
contract

gas

Note: relay and Tornado also charge a fee

Tornado Cash: the UI

After deposit: get a note Later, use note to withdraw

enter note here

address

(SNARK proof generated in browser)

Tornado trouble … U.S. sanctions

The Ronin-bridge hack (2022):
• In late March: ≈600M USD stolen … $80M USD sent to Tornado
• April: Lazarus Group suspected of hack
• August: “U.S. Treasury Sanctions Virtual Currency Mixer Tornado Cash”

• Lots of collateral damage … and two lawsuits

Tornado

The lesson: complete anonymity in the
payment system is problematic

Designing a compliant Tornado??

(1) deposit filtering: ensure incoming funds are not sanctioned

Chainalysis SanctionsList contract:

function isSanctioned(address addr) public view returns (bool) {
return sanctionedAddresses[addr] == true ;

}

Reject funds coming from a sanctioned address.

Difficulties: (1) centralization, (2) slow updates

Designing a compliant Tornado??
(2) Withdrawal filtering: at withdrawal, require a ZK proof that

the source of funds is not currently on sanctioned list.

How?

• modify the way Tornado computes Merkle leaves during deposit
to include msg.sender.

in our example Alice sets: C4 = [H1(k, r), msg.sender]
• During withdrawal Bob proves in ZK that msg.sender in his leaf is

not currently on sanctions list.

THE END

Scalability: zkRollup
Transaction rates (Tx/sec):

• Bitcoin: can process about 7 (Tx/sec)

• Ethereum: can process about 15 (Tx/sec)

• The visa network: can process up to 24,000 (Tx/sec)

Can we scale blockchains to visa speeds? … with low Tx fees

Tx Fees fluctuate:
2$ to 60$

for simple Tx

How to process more Tx per second

Many ideas:

• Use a faster consensus protocol

• Parallelize: split the chain into independent shards

• Rollups: move the work somewhere else

• Payment channels: reduce the need to touch the chain

reduces
composability

Recall: a basic layer-1 blockchain
A layer-1 blockchain

(e.g., Ethereum)

current world state

updated world state

updated world state

TxA

TxB

⋮
World state: balances, storage, etc.

Can handle 15 Tx/sec …

Rollup: batch many Tx into one (briefly)
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

TxA

TxB

Rollup
coordinator

TxC Rollup state:
Alice’s balance
Bob’s balance
…

(updated state root, Tx list, proof 𝜋)

Store Tx list on L1
verify proof 𝜋

Rollup: batch many Tx into one (briefly)
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

Key point:

• Hundreds of transactions
on Rollup state are batched into
a single transaction on layer-1

⇒ 100x speed up in Tx/sec

• Let’s see how … Rollup state:
Alice’s balance
Bob’s balance
…

Store Tx list on L1
verify proof 𝜋

Rollup operation (simplified)

Rollup coordinator

Alice:
5 DAI
3 ETH

Bob:
2 ETH

… Zoe:
1 ETH
3 USDC

Merkle Tree

Rollup state root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔$

[B⇾Z: 1 ETH]
[Z⇾B: 2 USDC]
𝑠𝑖𝑔% 𝑠𝑖𝑔&

atomic swap:

Tx

Rollup operation (simplified)

Rollup coordinator

Alice:
5 DAI
1 ETH

Bob:
3 ETH
2 USDC

… Zoe:
2 ETH
1 USDC

Merkle Tree

new Rollup root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔$

[B⇾Z: 1 ETH]
[Z⇾B: 2 USDC]
𝑠𝑖𝑔% 𝑠𝑖𝑔&

atomic swap:

Tx

block 361

new root, Tx list
proof 𝝅

verify proof and
record root

What the SNARK proof proves
SNARK proof is short and fast to verify:

⇒ Cheap to verify proof on the slow L1 chain (with EVM support)
(usually not a zero knowledge proof)

Public statement: (old state root, new state root, Tx list)
Witness: (state of each touched account pre- and post- batch,

Merkle proofs for touched accounts, user sigs)
SNARK proof proves that:

(1) all user sigs on Tx are valid, (2) all Merkle proofs are valid,
(3) post-state is the result of applying Tx list to pre-state

An example (StarkNet -- using STARK proofs)

Source: starkscan.co

Block

…

Tx posted on L1 (Ethereum) about every eight hours

zkEVM
When a contract (e.g. Uniswap) runs on a Rollup:
• coordinator builds a SNARK proof of correct execution of

an EVM program ⇒ called a zkEVM
• Generating proof is a heavyweight computation

… verifying proof is fast
Rollup

coordinator

(lots of GPUs)

Two flavors of zkEVM:
• Prove that EVM bytecode ran correctly

(Polygon zkEVM, Scroll)

• Compile Solidity to a SNARK-friendly circuit
(MatterLabs)

Why write Tx list to L1?

Coordinate cannot steal funds, but can deny service …

What happens if coordinator fails and/or disappears?
• Solution: start a new coordinator

⇒ need the entire transaction history to reconstitute state

Writing Tx list on chain uses the L1 for data availability
• Other solutions: data availability committee.

