BIU Winter School on cryptography Day 2 Lecture 1

What are SNARKs

and what are they good for?

Dan Boneh

Stanford University

What is a zk-SNARK ? (intuition)

SNARK: a succinct proof that a certain statement is true

Example statement: “l know an m such that SHA256(m) = 0”

* SNARK: the proofis “short” and “fast” to verify

[if m is 1GB then the trivial proof (the message m) is neither]

* zk-SNARK: the proof “reveals nothing” about m (privacy for m)

Commercial interest in SNARKs

& STARKWARE & Aztec PATCUEEE O CShResso

C‘] RISC Zero %SCI‘O" % polygon

Many more building applications that use SNARKs

Why so much commercial interest?

Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor
the operation of a herd of supercomputers
working with unreliable software.

“Checking Computations in Polylogarithmic Time”

Why so much commercial interest?

Babai-Fortnow-Levin-Szegedy 1991:

a slow and expensive computer

In this setup, a sirgle-reliable-R&ean monitor
the operation of a herd of supereemputers——

working with unreliable software. GPUs

“Checking Computations in Polylogarithmic Time”

Why so much commercial interest?

Babai-Fortnow-Levin-Szegedy 1991:
L1 blockchain

In this setup, a sirgle-reliabtle-R&ean monitor
the operation of a herd of supereemputers——

working with unreliable software. GPUs

“Checking Computations in Polylogarithmic Time”

Blockchain Applications |

Outsourcing computation: (no need for zero knowledge)

L1 chain quickly verifies the work of an off-chain service

To minimize gas: need a short proof, fast to verify
Examples:

e Scalability: proof-based Rollups (zkRollup)
off-chain service processes a batch of Tx;

L1 chain verifies a succinct proof that Tx were processed correctly

e Bridging blockchains: proof of consensus (zkBridge)
Chain A produces a succinct proof about its state. Chain B verifies.

Blockchain Applications li

Some applications require zero knowledge (privacy):

* Private Tx on a public blockchain:

* zk proof that a private Tx is valid (Tornado cash, Zcash, IronFish, Aleo)

 Compliance:
* Proof that a private Tx is compliant with banking laws (Espresso)
* Proof that an exchange is solvent in zero-knowledge (Raposa)

More on these blockchain applications in a minute

Many non-blockchain applications

Blockchains drive the development of SNARKSs

... but many non-blockchain applications benefit

Why is all this possible now?

The breakthrough: new fast SNARK provers

* Proof generation time is linear (or quasilinear) in computation size

 Many beautiful ideas ... will cover during the day

a large bibliography: al6zcrypto.com/zero-knowledge-canon

What is a SNARK?

Review: arithmetic circuits

Fix a finite field F ={0,...,p — 1} for some prime p>2.

Arithmetic circuit: C: F* — [F

» directed acyclic graph (DAG) where

x1(x1 +x2+ 1)(x; — 1)

internal nodes are labeled +, —, or X
inputs are labeled 1, x4, ..., x,

e defines an n-variate polynomial
with an evaluation recipe BK

|C| =#gatesin(C

reprocessingg NARK: Non-interactive ARgument of Knowledge

Public arithmetic circuit: C(x, w) —

)

Preprocessing (setup): S(C) — public parameters (pp, vp)

public statement in F" secret witness in ™

pp, X, W vp, X

proof T that C(x,w) =0

accept or
reject

reprocessingg NARK: Non-interactive ARgument of Knowledge

A preprocessing NARK is a triple (S, P, V):
 S(C) — public parameters (pp, vp) for prover and verifier
 P(pp, x, w) = proof m

 V(vp, x,1T) = accept or reject

all algs. and adversary have
access to a random oracle

NARK: requirements (informal)

Prover P(pp, x, w) Verifier V (vp, x, 1)

proof 1t » accept or reject

Complete: Vx,w: C(x,w) =0 = Pr[V(vp, x, P(pp, x, W)) = accept | =1

Adaptively knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

(an extractor E can extract a valid w from P)

Optional: Zero knowledge: (C,pp,vp,x, m) “reveal nothing new” about w
(witness exists = can simulate the proof)

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

* S(C) — public parameters (pp, vp) for prover and verifier

* P(pp, x,w) — short proof m ; | len(m) = 0;(polylog(|C|))

 V(vp, x,) fastto verify ; time(V) = 0,(|x|, polylog(|C|))

\- short “summary” of circuit

V has notimetoread C !!

[for some SNARKs, len(rr) = time(V) = 0,(1)]

SNARK: a Succinct ARgument of Knowledge

SNARK: a NARC (complete and knowledge sound) that is succinct

zk-SNARK: a SNARK that is also zero knowledge

The trivial SNARK is not a SNARK

(a) Prover sends w to verifier,
(b) Verifier checksif C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be long: we want a “short” proof
(2) computing C(x,w) may be hard: we want a “fast” verifier

(3) w might be secret: prover might not want to reveal w to verifier

The SNARK zoo ... next lecture

STARK
Plonky2
Breakdown
Orion

Spartan

Bulletproofs Groth16

Halo?2 Plonk
Marlin
Nova |
Sonic
Hyrax

Gemini
DARK

Hyperplonk

Open: one SNARK to rule them all

SNARKSs in practice

DSL
program

SNARK SNARK

friendly backend
format

heavy

: m ion
Circom, computatio

prover

ZoKrates, circuit,

Leo, compiler R1CS,
Zinc, AT
Cairo, ’

Noir,
EVM
domain specific byte code

X, witness

language

The future: a market for ZK provers

Anyone with a GPU will be paid to create ZK proofs

(/)

selects provers
and distributes rewards

Applications of SNARKS

Three examples: (briefly)

zkRollup, zkBridge, Tornado

I

(actually using ZK)

The Tornado Story

Privacy: Tornado — a ZK mixer

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

\MQQK
@ 277
B

1000 DAI » MIX 1000 DAI

o buy NFT .| NFT

privately market

account fresh
address

DN (1000 DAI)
1000 Tornado.cash

contract

The tornado cash contract (simpiified)

100 DAI pool:

each coin = 100 DAI

Currently:

three coins in pool
contract has 300 DAI
two nullifiers stored

Treasury: 300 DA

coins nf1
Merkle ¢

root nt,
(32 bytes)
next=4

nullifiers
contract state f
explicit list:

Hll HZ: R— {011}256

Coins
Merkle
root

C,C,C;0 0..0

public list of coins

one entry per spent coin

CRHF

Tornado cash: deposit (simplified)

Hll HZ: R— {011}256

100 DAI pool: Treasury: 300 DAI
each coin = 100 DAI . Coins
coins nf1 Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes)

100 DAI
> next = 4
C, , MerkleProof(4)
nullifiers ¢ G G0O0..0
Build Merkle proof for leaf #4: |contract state $! ,
MerkleProof(4) (leaf=0) public list of coins

choose random k, r in R explicit list:

set C4=Hyl(k, r) one entry per spent coin

Tornado cash: deposit (simplified)

H,, H,: R — {0,1}2°%
coins
C,, MerkleProof(4) Merkle
root root
(32 bytes)
Tornado contract does:
next =4
(1) verify MerkleProof(4) with
respect to current stored root
Tornado contract Cl Cz C3 0 0..0
(2) use C, and MerkleProof(4) to
compute updated Merkle root public list of coins

(3) update state

Tornado cash: deposit (simplified)

H,, H,: R — {0,1}2°%
coins
C,, MerkleProof(4) Merkle
rOOt root
(32 bytes)
Tornado contract does:
next =4
(1) verify MerkleProof(4) with
respect to current stored root
Tornado contract Cl Cz C3 C4 0..0
(2) use C, and MerkleProof(4) to
compute updated Merkle root public list of coins

(3) update state

Tornado cash: deposit (simpiified)

100 DAI pool: Treasury: 400 DAI
each coin = 100 DAI updated
! uPdatEd nfl Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes)

100 DAI
C, , MerkleProof(4)

> next =5

nullifiers C; (G CGC 0.0
—

updated contract state

|

note: (k, r)
Alice keeps secret
(one note per coin)

public list of coins

Every deposit: new Coin an observer sees who

owns which leaves

added sequentially to tree

Tornado cash: withdrawal (simpiified)

Hy, Hy: R — {0,1}2°®

100 DAI pool: Treasury: 400 DAI
. Merkle
each coin = 100 DAI coins nfl oot
Merkle ¢
nt,

Withdraw coin #3 root
to addr A: (82:bytes)

;) next=>5

@ has note= (k’, r’) ;G CCO0..0
nullifiers v
set nf=H,(k’) contract state public list of coins

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)

Tornado cash: withdrawal (simpiified)

Hy, Hy: R — {0,1}2°®

Withdraw coin #3 to addr A:

Merkle
root

has note= (k/, r’) set nf =H,(k’)

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret witness w = (k’, r’, C3, MerkleProof(C;)) ;GG C,0...0
where Circuit(x,w)=0 iff:
(i) Cs;=(leaf #3 of root), i.e. MerkleProof(C;) is valid,
(ii) Cs3=Hy(k’, r’), and
(iii) nf =Hy(k’). (address A not used in Circuit)

Tornado cash: withdrawal (simpiified)

The address A is part of the statement to ensure that a miner cannot change A to
its own address and steal funds

Assumes the SNARK is non-malleable:
adversary cannot use proof for x to build a proof " for some “related” x’
(where in x’ the address A is replaced by some A’)

C,C,C;C,0..0

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret witness w = (k’, r’, Cs, MerkleProof(C;))

Tornado cash: withdrawal (simpiified)

Hll HZ: R— {011}256

100 DAI pool: Treasury: 400 DAI
each coin = 100 DAI . Merkle
coins nf1 root
Withdraw coin #3 Merkle f
to addr A: root 2

(32 bytes)
f, proofm, A
(over Tor) next =5
Bob’s ID and coin C;

are not revealed nullifiers -)
contract state public list of coins

C,C,C;C,0..0
l_'_'

Contract checks (i) proof m is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers

Tornado cash: withdrawal

(simplified)

Hy, Hy: R — {0,1}2°®

Merkle
root

C,C,C;C,0..0
l_'_'

100 DAI pool: Treasury: 300 DA
each coin = 100 DAI .
coins nf !
Withdraw coin #3 Merkle f
to addr A: root 2
b
_of proofz. A , | ™ | nf
(over Tor) next =5
nullifiers
to address A contract state

nf and reveal nothing about which coin was spent.

public list of coins
... but observer does not
know which are spent

But, coin #3 cannot be spent again, because nf = H,(k’)

is now nullified.

Who pays the withdrawal gas fee?

Problem: how does Bob pay for gas for the withdrawal Tx?
* If paid from Bob’s address, then fresh address is linked to Bob

Tornado’s solution: Bob uses a relay

nf, proofm, A
> -
nf, proof, A and gas (100-gas) DAI .
(over Tor) to address A
relay
tornado
contract

Note: relay and Tornado also charge a fee

Tornado Cash: the Ul

Deposit //’ Withdraw

Deposit \\ Withdraw

Token

DAT

Amount 3

raRn) 4;\ O T
N\ \4 \J N

100 DAI 1K DAI 10K DAI 100K DAI

After deposit: get a note

Note 3

enter note here

Recipient Address Donate

address

Later, use note to withdraw

(SNARK proof generated in browser)

Tornado trouble ... U.S. sanctions

The Ronin-bridge hack (2022):

* In late March: =600M USD stolen ... S80M USD sent to Tornado
e April: Lazarus Group suspected of hack
 August: “U.S. Treasury Sanctions Virtual Currency Mixer Tornado Cash”

e Lots of collateral damage ... and two lawsuits

/|
AT Tornado
The lesson: complete anonymity in the N \
payment system is problematic e

ELLIETIC .

Desighing a compliant Tornado??

(1) deposit filtering: ensure incoming funds are not sanctioned

Chainalysis SanctionsList contract:

function isSanctioned(address addr) public view returns (bool) {
return sanctionedAddresses[addr] == true ;

}

Reject funds coming from a sanctioned address.

Difficulties: (1) centralization, (2) slow updates

Desighing a compliant Tornado??

(2) Withdrawal filtering: at withdrawal, require a ZK proof that
the source of funds is not currently on sanctioned list.

How?

* modify the way Tornado computes Merkle leaves during deposit
to include msg.sender.

in our example Alice sets: C, = [Hy(k, r), msg.sender |

* During withdrawal Bob proves in ZK that msg.sender in his leaf is
not currently on sanctions list.

THE END

Scalability: zkRollup

Transaction rates (Tx/sec):

e Bitcoin: can process about 7 (Tx/sec) Tx Fees fluctuate:

— 2% to 60%
* Ethereum: can process about 15 (Tx/sec) | for simple Tx

e The visa network: can process up to 24,000 (Tx/sec)

Can we scale blockchains to visa speeds? ... with low Tx fees

How to process more Tx per second

Many ideas:

Use a faster consensus protocol

Parallelize: split the chain into independent shards

Rollups: move the work somewhere else

Payment channels: reduce the need to touch the chain

Recall: a basic layer-1 blockchain

Can handle 15 Tx/sec ... A layer-1 blockchain
(e.g., Ethereum)

current world state

updated world state

@ TXg i
. updated world state

World state: balances, storage, etc.

Rollup: batch many Tx into one (briefly)

(e.g., Ethereum)

Rollup
coordinator current world state
(Rollup state Merkle root)
>/ H Store Tx list on L1

<

verify proof

Rollup state: updated world state
6 Alice’s balance (updated Rollup state root)

Bob’s balance

Rollup: batch many Tx into one (briefly)

A layer-1 blockchain

Key point: (e.g., Ethereum)

* Hundreds of transactions
on Rollup state are batched into
a single transaction on layer-1

: Store Tx list on L1
= 100x speed up in Tx/sec H

current world state
(Rollup state Merkle root)

verify proof

updated world state

. ’ Rollup state:
Let’s see how ... (updated Rollup state root)

Alice’s balance

Bob’s balance

Rollup operation (simplified)

Rollup coordinator

[A—B: 2ETH], sig, Layer 1 blockchain

(e.g. Ethereum)

. oo]

[B—Z: 1 ETH]
[Z—B: 2 USDC] RO”Up state root

atomic swap:

Alice: Bob: Zoe:

Rollup operation (simplified)

[A—B: 2 ETH], sigg

Rollup coordinator

atomic swap:

"

[B—Z: 1 ETH]

%w Rollup root

Layer 1 blockchain
(e.g. Ethereum)

| block 354 \
sy
‘l block 361 \

verify proof and
record root

What the SNARK proof proves

SNARK proof is short and fast to verify:

= Cheap to verify proof on the slow L1 chain (with EVM support)
(usually not a zero knowledge proof)

Public statement: (old state root, new state root, Tx list)
Witness: (state of each touched account pre- and post- batch,
Merkle proofs for touched accounts, user sigs)
SNARK proof proves that:
(1) all user sigs on Tx are valid, (2) all Merkle proofs are valid,
(3) post-state is the result of applying Tx list to pre-state

An example

Block

Number © Y

PENDING
13011
13010

13009

12868
12867
12866

12865

Hash ®

PENDING
0x0432..2380 O
0x0492..fodl ©

0x0081..b7af @

0x060c..15eb @
0x0654..3b0f @
0x0779..57d6 O

0x06ae..943f O

(StarkNet

Status © Y

PENDING
ACCEPTED_ON_L2
ACCEPTED_ON_L2

ACCEPTED_ON_L2

ACCEPTED_ON_L2
ACCEPTED_ON_L1
ACCEPTED_ON_L1

ACCEPTED_ON_L1

Tx posted on L1 (Ethereum) about every eight hours

Num. of Txs (O

64

82

122

127

58

72

63

97

-- using STARK proofs)

Age® v Y
3min
8min
15min

24min

8h
9h
9h

9h

Source:

starkscan.co

zkEVM

When a contract (e.g. Uniswap) runs on a Rollup:

e coordinator builds a SNARK proof of correct execution of

an EVM program = called a zkEVMM
* Generating proof is a heavyweight computation

.. verifying proof is fast

Two flavors of zkEVM:

* Prove that EVM bytecode ran correctly
(Polygon zkEVM, Scroll)

* Compile Solidity to a SNARK-friendly circuit
(MatterLabs)

Rollup
coordinator

= e
= e

(lots of GPUs)

Why write Tx list to L1?

Coordinate cannot steal funds, but can deny service ...

What happens if coordinator fails and/or disappears?
* Solution: start a new coordinator
= need the entire transaction history to reconstitute state

Writing Tx list on chain uses the L1 for data availability
e Other solutions: data availability committee.

