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What is a zk-SNARK ?      (intuition)

SNARK:   a succinct proof that a certain statement is true

Example statement:   “I know an 𝑚 such that  SHA256(𝑚) = 0”

• SNARK:  the proof is “short” and “fast” to verify

[if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK:  the proof “reveals nothing” about 𝑚 (privacy for 𝑚)



Commercial interest in SNARKs

Many more building applications that use SNARKs



Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor 
the operation of a herd of supercomputers 
working with unreliable software.

Why so much commercial interest?

“Checking Computations in Polylogarithmic Time”



Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor 
the operation of a herd of supercomputers 
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Why so much commercial interest?

“Checking Computations in Polylogarithmic Time”

GPUs

a slow and expensive computer



Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor 
the operation of a herd of supercomputers 
working with unreliable software.

Why so much commercial interest?

“Checking Computations in Polylogarithmic Time”

GPUs

L1 blockchain



Blockchain Applications I

Outsourcing computation:     (no need for zero knowledge)
L1 chain quickly verifies the work of an off-chain service

Examples:
• Scalability:   proof-based Rollups (zkRollup)

off-chain service processes a batch of Tx;  
L1 chain verifies a succinct proof that Tx were processed correctly

• Bridging blockchains: proof of consensus (zkBridge)
Chain A produces a succinct proof about its state.  Chain B verifies.

To minimize gas: need a short proof, fast to verify



Blockchain Applications II

Some applications require zero knowledge (privacy):

• Private Tx on a public blockchain: 
• zk proof that a private Tx is valid  (Tornado cash,  Zcash,  IronFish,  Aleo)

• Compliance:
• Proof that a private Tx is compliant with banking laws (Espresso)

• Proof that an exchange is solvent in zero-knowledge (Raposa)

More on these blockchain applications in a minute



Many non-blockchain applications

Blockchains drive the development of SNARKs

… but many non-blockchain applications benefit



Why is all this possible now?

The breakthrough:  new fast SNARK provers

• Proof generation time is linear (or quasilinear) in computation size

• Many beautiful ideas … will cover during the day

a large bibliography:     a16zcrypto.com/zero-knowledge-canon



What is a SNARK?



Review: arithmetic circuits
Fix a finite field    𝔽 = 0,… , 𝑝 − 1 for some prime  p>2.

Arithmetic circuit:     𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled  +, −, or ×
inputs are labeled   1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe 

|𝐶| = # gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)



(preprocessing)  NARK:  Non-interactive ARgument of Knowledge

Preprocessing (setup):    S(𝐶)  ⇾ public parameters  (𝒑𝒑, 𝒗𝒑 )

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽
public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒑𝒑, 𝒙, 𝒘 𝒗𝒑, 𝒙

accept or 
reject

proof  𝝅 that   𝐶(𝑥, 𝑤) = 0



(preprocessing)  NARK:  Non-interactive ARgument of Knowledge

A preprocessing NARK is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (𝑝𝑝, 𝑣𝑝)    for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘)  ⇾ proof  𝜋

• V(𝑣𝑝, 𝒙, 𝝅)  ⇾ accept or reject

all algs. and adversary have 
access to a random oracle



NARK:  requirements  (informal)
Prover P(𝑝𝑝, 𝒙,𝒘) Verifier V (𝑣𝑝, 𝒙, 𝝅)

proof  𝜋 accept or reject

Complete:   ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ Pr[ V(𝑣𝑝, 𝑥, P(𝑝𝑝, 𝒙, 𝒘)) = accept ] = 1

Adaptively knowledge sound:   V accepts    ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0
(an extractor 𝐸 can extract a valid 𝒘 from P)

Optional: Zero knowledge:      (𝐶, 𝑝𝑝, 𝑣𝑝 , 𝒙, 𝜋)    “reveal nothing new” about 𝒘
(witness exists  ⇒ can simulate the proof)   



SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple  (S, P, V):

• S(𝐶)  ⇾ public parameters  (𝑝𝑝, 𝑣𝑝)    for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘)  ⇾ short proof  𝜋 ;        len(𝜋) = 𝑂+( 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪 )

• V(𝑣𝑝, 𝒙, 𝝅)    fast to verify ;         time(V) = 𝑂+( 𝑥 , 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪 )

V has no time to read 𝐶 !!short “summary” of circuit

[ for some SNARKs,  len 𝜋 = time 𝑉 = 𝑂+ 1 ]



SNARK: a NARC  (complete and knowledge sound)  that is succinct

zk-SNARK: a SNARK that is also zero knowledge

SNARK: a Succinct ARgument of Knowledge



The trivial SNARK is not a SNARK

(a)  Prover sends  𝒘 to verifier,  
(b)  Verifier checks if   𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:

(1)   𝒘 might be long:   we want a “short” proof

(2)   computing 𝐶(𝒙,𝒘)may be hard:   we want a “fast” verifier

(3)   𝒘 might be secret:  prover might not want to reveal  𝒘 to verifier



The SNARK zoo … next lecture

STARK

Breakdown

Orion

Bulletproofs

Halo2 Plonk

Marlin

Sonic

Groth16 Gemini

DARKPlonky2

Open:  one SNARK to rule them all
Spartan

Nova Hyperplonk

Hyrax ⋮



SNARKs in practice

DSL
program
Circom,

ZoKrates,
Leo,
Zinc,
Cairo,
Noir,

…

SNARK 
backend
prover

𝑥,  witness

𝜋

heavy
computation

domain specific 
language

SNARK
friendly
format
circuit,
R1CS,
AIR,

EVM 
byte code

…

compiler



The future:  a market for ZK provers
Anyone with a GPU will be paid to create ZK proofs

tx1

tx2

tx3

tx4

market

𝜋

𝜋,

𝜋- selects provers
and distributes rewards

prover 1

prover 2

prover 3



Three examples:   (briefly)
zkRollup,    zkBridge,    Tornado

Applications of SNARKs

(actually using ZK)



The Tornado Story



Privacy:  Tornado – a ZK mixer

account

MIX

Tornado.cash
contract

fresh
address

(1000 DAI)

???

1000 DAI NFT
market

buy NFT
privately

1000 DAI

1000 DAI

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

1000 DAI



The tornado cash contract   (simplified)

nf1

nullifiers

explicit list:
one entry per spent coin

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)Currently:

• three coins in pool
• contract has 300 DAI
• two nullifiers stored contract state

next = 4

H1, H2:  R ⇾ {0,1}256

C1 C2 C3 0   0 … 0

public list of coins

tree of
height 20

(220 leaves)

Coins
Merkle

root

CRHF



Tornado cash: deposit     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 0   0 … 0

Coins
Merkle

root

tree of
height 20

(220 leaves)

Alice deposits 100 DAI:

explicit list:
one entry per spent coin

public list of coins
Build Merkle proof for leaf #4:

MerkleProof(4)      (leaf=0)
choose random  k, r  in  R
set C4 = H1(k, r)

H1, H2:  R ⇾ {0,1}256

contract state

next = 4
100 DAI

C4 , MerkleProof(4)



Tornado cash: deposit     (simplified)

coins
Merkle

root
(32 bytes)

tree of
height 20

(220 leaves)

100 DAI
C4 ,  MerkleProof(4)

Tornado contract does:

(1) verify  MerkleProof(4) with 
respect to current stored root

(2) use C4 and MerkleProof(4)  to
compute updated Merkle root

(3) update state

next = 4

H1, H2:  R ⇾ {0,1}256

Tornado contract C1 C2 C3 0   0 … 0

public list of coins

Coins
Merkle

root



Tornado cash: deposit     (simplified)

coins
Merkle

root
(32 bytes)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

100 DAI
C4 ,  MerkleProof(4)

public list of coins

Tornado contract does:

(1) verify  MerkleProof(4) with 
respect to current stored root

(2) use C4 and MerkleProof(4)  to
compute updated Merkle root

(3) update state

next = 4

H1, H2:  R ⇾ {0,1}256

Tornado contract



Tornado cash: deposit     (simplified)

nf1

nullifiers

updated
Merkle

root

Treasury:  400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

100 DAI
C4 , MerkleProof(4)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coinsnote:  (k, r)
Alice keeps secret
(one note per coin)

Every deposit:  new Coin 
added sequentially to tree

an observer sees who
owns which leaves

Alice deposits 100 DAI:

updated contract state

next = 5



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

Withdraw coin #3
to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

public list of coins

has note= (k’, r’)

set nf = H2(k’)

H1, H2:  R ⇾ {0,1}256

next = 5

contract state

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)



Tornado cash: withdrawal     (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof  𝜋 for 
public statement  x = (root,  nf,  A)
secret witness  w = (k’, r’,  C3 , MerkleProof(C3) )

where  Circuit(x,w)=0 iff:

(i) C3 = (leaf #3 of root),   i.e.   MerkleProof(C3) is valid,

(ii) C3 = H1(k’, r’),  and

(iii) nf = H2(k’).

H1, H2:  R ⇾ {0,1}256

(address A not used in Circuit)



Tornado cash: withdrawal     (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof  𝜋 for 
public statement  x = (root,  nf,  A)
secret witness  w = (k’, r’,  C3 , MerkleProof(C3) )

H1, H2:  R ⇾ {0,1}256

The address A is part of the statement to ensure that a miner cannot change A to 
its own address and steal funds 

Assumes the SNARK is non-malleable:
adversary cannot use proof 𝜋 for x to build a proof 𝜋’ for some “related” x’

(where in x’ the address A is replaced by some A’)



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins
Bob’s ID and coin C3

are not revealed

Contract checks (i) proof  𝜋 is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers  

nf,  proof 𝜋,  A
(over Tor)

Merkle
root

H1, H2:  R ⇾ {0,1}256

contract state

next = 5

Withdraw coin #3
to addr A:



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins

nf,  proof 𝜋,  A
(over Tor)

nf

nf and 𝜋 reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because  nf = H2(k’)  is now nullified. 

… but observer does not 
know which are spent

100 DAI
to address A

Merkle
root

H1, H2:  R ⇾ {0,1}256

next = 5

contract state

Withdraw coin #3
to addr A:



Who pays the withdrawal gas fee?
Problem:   how does Bob pay for gas for the withdrawal Tx?
• If paid from Bob’s address, then fresh address is linked to Bob

Tornado’s solution:   Bob uses a relay

nf, proof 𝜋,  A
(over Tor)

(100-gas) DAI
to address A

relay

nf, proof 𝜋,  A
and gas

tornado
contract

gas

Note:  relay and Tornado also charge a fee



Tornado Cash:  the UI

After deposit:  get a note Later, use note to withdraw

enter note here

address

(SNARK proof generated in browser)



Tornado trouble … U.S. sanctions

The Ronin-bridge hack (2022):
• In late March:  ≈600M USD stolen … $80M USD sent to Tornado
• April:  Lazarus Group suspected of hack
• August:   “U.S. Treasury Sanctions Virtual Currency Mixer Tornado Cash”

• Lots of collateral damage … and two lawsuits

Tornado

The lesson:  complete anonymity in the 
payment system is problematic



Designing a compliant Tornado??

(1) deposit filtering:  ensure incoming funds are not sanctioned

Chainalysis SanctionsList contract:

function isSanctioned(address addr) public view returns (bool) {
return sanctionedAddresses[addr] == true ;

}

Reject funds coming from a sanctioned address.

Difficulties:  (1) centralization,  (2) slow updates



Designing a compliant Tornado??
(2) Withdrawal filtering:  at withdrawal, require a ZK proof that 

the source of funds is not currently on sanctioned list.

How?   

• modify the way Tornado computes Merkle leaves during deposit 
to include msg.sender.

in our example Alice sets:     C4 =  [ H1(k, r),  msg.sender ]
• During withdrawal Bob proves in ZK that msg.sender in his leaf is 

not currently on sanctions list.



THE  END



Scalability:   zkRollup
Transaction rates  (Tx/sec):

• Bitcoin:    can process about  7   (Tx/sec)

• Ethereum:   can process about  15  (Tx/sec)

• The visa network:   can process up to  24,000  (Tx/sec)

Can we scale blockchains to visa speeds?   … with low Tx fees

Tx Fees fluctuate:    
2$  to  60$     

for simple Tx



How to process more Tx per second

Many ideas:

• Use a faster consensus protocol

• Parallelize:  split the chain into independent shards

• Rollups:   move the work somewhere else  

• Payment channels: reduce the need to touch the chain

reduces
composability



Recall:  a basic layer-1 blockchain
A layer-1 blockchain

(e.g., Ethereum)

current world state

updated world state

updated world state

TxA

TxB

⋮
World state:  balances, storage, etc. 

Can handle 15 Tx/sec …



Rollup:  batch many Tx into one  (briefly)
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

TxA

TxB

Rollup
coordinator

TxC Rollup state:
Alice’s balance
Bob’s balance 
…

(updated state root, Tx list, proof 𝜋)

Store Tx list on L1
verify proof 𝜋



Rollup:  batch many Tx into one  (briefly)
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

Key point:

• Hundreds of transactions
on Rollup state are batched into
a single transaction on layer-1

⇒ 100x  speed up in Tx/sec

• Let’s see how … Rollup state:
Alice’s balance
Bob’s balance 
…

Store Tx list on L1
verify proof 𝜋



Rollup operation  (simplified)

Rollup coordinator

Alice: 
5 DAI
3 ETH

Bob: 
2 ETH

… Zoe: 
1 ETH
3 USDC

Merkle Tree

Rollup state root

Layer 1 blockchain
(e.g. Ethereum)

block  354

[A⇾B:  2 ETH],  𝑠𝑖𝑔$

[B⇾Z:  1 ETH]
[Z⇾B:  2 USDC]
𝑠𝑖𝑔% 𝑠𝑖𝑔&

atomic swap:

Tx



Rollup operation  (simplified)

Rollup coordinator

Alice: 
5 DAI
1 ETH

Bob: 
3 ETH
2 USDC

… Zoe: 
2 ETH
1 USDC

Merkle Tree

new Rollup root

Layer 1 blockchain
(e.g. Ethereum)

block  354

[A⇾B:  2 ETH],  𝑠𝑖𝑔$

[B⇾Z:  1 ETH]
[Z⇾B:  2 USDC]
𝑠𝑖𝑔% 𝑠𝑖𝑔&

atomic swap:

Tx

block  361

new root, Tx list
proof 𝝅

verify proof and
record root



What the SNARK proof proves
SNARK proof is short and fast to verify:

⇒ Cheap to verify proof on the slow L1 chain  (with EVM support)
(usually not a zero knowledge proof)

Public statement:   (old state root,  new state root,  Tx list)
Witness:  (state of each touched account pre- and post- batch,

Merkle proofs for touched accounts, user sigs)
SNARK proof proves that:

(1) all user sigs on Tx are valid,   (2) all Merkle proofs are valid, 
(3) post-state is the result of applying Tx list to pre-state



An example    (StarkNet -- using STARK proofs)

Source:  starkscan.co

Block

…

Tx posted on L1 (Ethereum) about every eight hours



zkEVM
When a contract (e.g. Uniswap) runs on a Rollup:
• coordinator builds a SNARK proof of correct execution of 

an EVM program  ⇒ called a zkEVM
• Generating proof is a heavyweight computation

…  verifying proof is fast
Rollup

coordinator

(lots of GPUs)

Two flavors of zkEVM:
• Prove that EVM bytecode ran correctly  

(Polygon zkEVM,   Scroll)

• Compile Solidity to a SNARK-friendly circuit
(MatterLabs)



Why write Tx list to L1?

Coordinate cannot steal funds, but can deny service …

What happens if coordinator fails and/or disappears?
• Solution:  start a new coordinator 

⇒ need the entire transaction history to reconstitute state

Writing Tx list on chain uses the L1 for data availability
• Other solutions:   data availability committee.


