
Dan Boneh
Stanford University

Ethereum Mechanics

BIU Winter School on cryptography Day 1 Lecture 3

Ethereum: enables a world of applications

stateofthedapps.com, dapp.review

A world of Ethereum Decentralized apps (DAPPs)

• New coins: ERC-20 standard interface

• DeFi: exchanges, lending, stablecoins, derivatives, etc.

• Insurance

• DAOs: decentralized organizations

• NFTs: Managing asset ownership (ERC-721 interface)

Ethereum as a state transition system

A rich state transition function

⇒ one transition executes an entire program

𝑠!

Ethereum
world state

… 𝑆!"#

updated Ethereum
world state

…input

Tx

Running a program on a blockchain (DAPP)

consensus layer (beacon chain)

compute layer (execution chain): The EVM

state0

program
code

… blockchain …

state1Tx1 Tx2 state2

create a DAPP

…

The Ethereum system
Proof-of-Stake consensus

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives
Tx fees for block

(along with other rewards)

The Ethereum system (post merge)

consensus layer (beacon chain)

execution layer

notify_new_payload(payload) [Engine API]

sends transactions to compute layer

32 blocks
in an epoch

update
world state

The Ethereum Compute Layer:
The EVM

Ethereum compute layer: the EVM

World state: set of accounts identified by 32-byte address.

Two types of accounts:

(1) owned accounts (EOA): controlled by a signing key pair (pk,sk).
sk: owned by account owner

(2) contracts: controlled by code (set by creator)

Data associated with an account
Account data Owned Contracts

address (computed): H(pk) H(CreatorAddr, CreatorNonce)

code: ⊥ CodeHash

storage root (state): ⊥ StorageRoot

balance (in Wei): balance balance (1018 Wei = 1 ETH)

nonce: nonce nonce

(#Tx sent) + (#accounts created): anti-replay mechanism

(different with CREATE2)

Account state: persistent storage
Every contract has an associated storage array S[]:

S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[] (simplified)

• Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a
S[010] = b
S[011] = c
S[110] = d

root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute
root hash:

≤ 2×|S|

|S| = # non-zero cells

State transitions: Tx and messages

Transaction types:
owned ⇾ owned: transfer ETH between users
owned ⇾ contract: call contract with ETH & data

After a contract is called:
contract ⇾ contract: one program calls another (composability)
contract ⇾ owned: contract sends funds to user

Calling a contract can start a chain of transactions: A ⇾ B ⇾ C ⇾ D

State transitions: Tx and messages
Transactions: signed data by initiator
• To: 32-byte address of target (0 ⇾ create new account)

• From, [Signature]: initiator address and signature on Tx (if owned)

• Value: # Wei being sent with Tx
• Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee (later)
• if To ≠ 0: data (what function to call & arguments)

• if To = 0: create new contract code = (init, body)

• nonce: must match current nonce of sender (prevents Tx replay)
• chain_id: ensures Tx can only be submitted to the intended chain

Example (block #10993504)

From To msg.value Tx fee (ETH)

The Ethereum blockchain: abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

block #X block #X+1

Amount of memory to run a node

ETH total blockchain size (archival): 13 TB (Feb. 2023)

≈900 GB

(data pruned)

An example contract: NameSystem

A name system on Ethereum: [uniswap ⇾ addr]

Need to support three operations:

• Name.new(OwnerAddr, Name): intent to register

• Name.update(Name, newVal, newOwner)

• Name.lookup(Name)

(a simplified ENS)

An example contract: NameSystem

contract nameSys { // Solidity code

struct nameEntry {
address owner; // address of domain owner
bytes32 value; // data

}

// array of all registered domains
mapping (bytes32 => nameEntry) data;

data
in contract

storage

An example contract: NameSystem
function nameNew(bytes32 name) {

// registration fee is 100 Wei

if (data[name] == 0 && msg.value >= 100) {
data[name].owner = msg.sender // record owner
emit Register(msg.sender, name) // log event

}}

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commit-reveal.

An example contract: NameSystem
function nameUpdate(

bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from owner, and fee of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >= 10) {

data[name].value = newValue; // record new value
data[name].owner = newOwner; // record new owner

}}}

An example contract: NameSystem

function nameLookup(bytes32 name) {

return data[name];
}

} // end of contract

Used by other contracts

Humans do not need this
(use etherscan.io)

EVM contracts cannot keep secrets
(we need practical iO)

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

⇒ compile to EVM bytecode
(some projects use WASM or BPF bytecode)

⇒ validators use the EVM to execute contract bytecode
in response to a Tx

The EVM (https://www.evm.codes)

Stack machine
• code can CREATE or CALL another contract

In addition: several types of memory

• Persistent storage (on blockchain): SLOAD, SSTORE (expensive)

• Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

• LOG0(data): write data to log

• CallData: arguments in Tx (persistent, but only readable by current Tx)

on chain storage
is expensive

Every instruction costs gas, examples:

SSTORE addr (32 bytes), value (32 bytes)

• zero ⇾ non-zero: 20,000 gas

• non-zero ⇾ non-zero: 5,000 gas (for a cold slot)

• non-zero ⇾ zero: 15,000 gas refund (example)

CREATE : 32,000 + 200×(code size) gas; CALL gas, addr, value, args

MLOAD, MSTORE: 3 gas (cheap)

Gas calculation
Why charge gas?
• Tx fees (gas) prevents submitting Tx that runs for many steps.
• During high load: block proposer chooses set of Tx from mempool

that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)
• Every Tx contains a gasPrice ``bid’’ (gas ⇾ Wei conversion price)
• Producer chooses Tx with highest gasPrice (max sum(gasPrice×gasUsed))

⟹ not an efficient auction mechanism (first price auction)

Gas prices spike during congestion

Average Tx fee in USD

congestion

Gas calculation: EIP1559 (since 8/2021)

EIP1559 goals (informal):

• users incentivized to bid their true utility for posting Tx,

• block proposer incentivized to not create fake Tx, and

• disincentivize off chain agreements.

[Transaction Fee Mechanism Design, by T. Roughgarden, 2021]

Gas calculation: EIP1559 (since 8/2021)

Every block has a “baseFee”:
the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

• earlier blocks at gas limit (30M gas) ⟹ base fee goes up 12.5%

• earlier blocks empty ⟹ base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) ⟹ base fee does not change

interpolate
in between

Computed gasPrice bid:

gasPrice ⇽ min(maxFee, baseFee + maxPriorityFee)

Gas calculation
EIP1559 Tx specifies three parameters:
• gasLimit: max total gas allowed for Tx

• maxFee: maximum allowed gas price (max gas ⇾ Wei conversion)

• maxPriorityFee: additional “tip” to be paid to block proposer

Max Tx fee: gasLimit× gasPrice

Gas calculation
gasUsed ⇽ gas used by Tx

Send gasUsed×(gasPrice – baseFee) to block proposer

BURN gasUsed× baseFee

⇒ total supply of ETH can decrease

END OF LECTURE

