BIU Winter School on cryptography Day 1 Lecture 3

Ethereum Mechanics

Dan Boneh
Stanford University

Ethereum: enables a world of applications

A world of Ethereum Decentralized apps (DAPPs)
e New coins: ERC-20 standard interface
 DeFi: exchanges, lending, stablecoins, derivatives, etc.

* |nsurance

* DAOs: decentralized organizations

* NFTs: Managing asset ownership (ERC-721 interface)

EEENE
2"
-

stateofthedapps.com, dapp.review

Ethereum as a state transition system

A rich state transition function

= onhe transition executes an entire program

Ethereum updated Ethereum
world state world state
input
BN ¥ - " Sit1

Running a program on a blockchain (DAPP)

... blolhain ...

state, Tx1 state; TTx2 e

program
code N create a DAPP

compute layer (execution chain): The EVM

The Ethereum system

Proof-of-Stake consensus

Block

15764027

15764026

15764025

15764024

15764023

15764022

15764021

15764020

Age

4 secs ago

16 secs ago

28 secs ago

40 secs ago

52 secs ago

1 min ago

1 min ago

1 min ago

Txn

91

26

165

188

18

282

295

71

Fee Recipient

Fee Recipient: 0x467...263

Oxedc7ec654e305a38ffff...

bloXroute: Max Profit Bui...

Lido: Execution Layer Re...

Fee Recipient: OxeBe...Acf

0xd4e96ef8eee8678dbff...

0xbb3afde35eb9f5feb53...

Fee Recipient: 0x6d2...766

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives
Tx fees for block
(along with other rewards)

The Ethereum SyStem (post merge)

update :
world state execution layer

notify new payload(payload) [Engine API]

sends transactions to compute layer

32 blocks
in an epoch

consensus layer (beacon chain)

The Ethereum Compute Layer:

The EVM

Ethereum compute layer: the EVM

World state: set of accounts identified by 32-byte address.

Two types of accounts:

(1) owned accounts (EOA): controlled by a signing key pair (pk,sk).

sk: owned by account owner

(2) contracts: controlled by code (set by creator)

Data associated with an account

Account data Owned Contracts

i (different with CREATE2)
address (computed): H(pk) H(CreatorAddr, CreatorNonce)
balance (in Wei): balance balance (108 Wei = 1 ETH)
code: 1 CodeHash
storage root (state): L StorageRoot
nonce: nonce nonce

_. (#Tx sent) + (#accounts created): anti-replay mechanism

Account state: persistent storage

Every contract has an associated storage array S[]:

S[0], S[1], ... , S[2%°®-1]: each cell holds 32 bytes, init to O.

Account storage root: Merkle Patricia Tree hash of S[] (simplified)
e Cannot compute full Merkle tree hash: 22°° leaves

R 0_- o,

5{000] = a 0 — 1 0 time to compute
S[010] =b — —1Lb root hash:
S[011] =c root 1 <2X S|
S[110] =d 1 110,d 1 1L¢C |S| = # non-zero cells

State transitions: Tx and messages

Transaction types:
owned — owned: transfer ETH between users
owned — contract: call contract with ETH & data

After a contract is called:
contract — contract: one program calls another (composability)
contract - owned: contract sends funds to user

Calling a contract can start a chain of transactions: A=+ B —-C—D

State transitions: Tx and messages

Transactions: signed data by initiator

To: 32-byte address of target (0 — create new account)

From, [Signature]: initiator address and signature on Tx (if owned)
Value: # Wei being sent with Tx

Tx fees (eip 1559): gasLimit, maxFee, maxPriorityFee (later)

if To#0: data (what function to call & arguments)

if To=0: create new contract code = (init, body)

nonce: must match current nonce of sender (prevents Tx replay)

chain_id: ensures Tx can only be submitted to the intended chain

Example (vlock #10993504)

From To msg.value Tx fee (ETH)
Oxadec1125ce9428ae5... - [3 0x2cebe81fe0dcd220e... 0 Ether 0.00404405
Oxba272f30459a119b2... - B Uniswap V2: Router 2 0.14 Ether 0.00644563
0x4299d864bbda0fe32... ~ B Uniswap V2: Router 2 0.00716578
0x4d1317a2a98cfead ... " 0xc59f33af5f4a7c8647... 0.001239
0x29ecaa773f052d14e... - [CryptoKitties: Core 0 Ether 0.00775543
0x63bb46461696416fa... -~ @ Uniswap V2: Router 2 0.00766728
0xde70238aef7a35abd... - (2 Balancer: ETH/DOUGH... 0 Ether 0.00261582
0Ox69acal0fe1394d535f... - [3 0x837d03aa7fc09b8be... 0 Ether 0.00259936

0xe2f5d180626d29e75... - [3 Uniswap V2: Router 2 0 Ether 0.00665809

The Ethereum blockchain: abstractly

block #X block #X+1
|

|

&
W

updated Tx
world
state

Wl

messages

|

&
=~

g
updated Tx log
world messages

state

in GB

Chain

1200

1100

1000

900

800

Amount of memory to run a node

1. Sep 1. Oct 1. Nov 1. Dec
TimeLine

ETH total blockchain size (archival):

1.Jan

13 TB

=900 GB

(data pruned)

1. Feb

(Feb. 2023)

An example contract: NameSystem

A name system on Ethereum: [uniswap — addr]
(a simplified ENS)

Need to support three operations:
* Name.new(OwnerAddr, Name): intent to register
* Name.update(Name, newVal, newOwner)

* Name.lookup(Name)

An example contract: NameSystem

contract nameSys { // Solidity code

struct nameEntry {
address owner; // address of domain owner
bytes32 value; // data

}

// array of all registered domains // data

. in contract
mapping (bytes32 => nameEntry) data; storage

An example contract: NameSystem

function nameNew(bytes32 name) { Q
// registration fee is 100 Wei

if (data[name] == 0 && msg.value >=100) {
data[name].owner = msg.sender // record owner
emit Register(msg.sender, name) //log event

I3

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commit-reveal.

An example contract: NameSystem

function nameUpdate(
bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from owner, and fee of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >=10) {

data[name].value = newValue; // record new value
data[name].owner = newOwner; // record new owner

1

An example contract: NameSystem

function nameLookup(bytes32 name) {

return data[name];

}

} // end of contract

Used by other contracts

EVM contracts cannot keep secrets Humans do not need this
(we need practical iO) (use etherscan.io)

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

= compile to EVM bytecode
(some projects use WASM or BPF bytecode)

= validators use the EVM to execute contract bytecode
in response to a Tx

Th e EV M (https://www.evm.codes)

Stack machine
e code can CREATE or CALL another contract J

In addition: several types of memory
* Persistent storage (on blockchain): SLOAD, SSTORE (expensive)
* Volatile memory (for single Tx): MLOAD, MSTORE (cheap)
 LOGO(data): write data to log

* CallData: arguments in Tx (persistent, but only readable by current Tx)

Every instruction costs gas, examples:

MLOAD, MSTORE: 3 gas (cheap)

SSTORE addr (32 bytes), value (32 bytes)

* zero — non-zero: 20,000 gas
* Nnon-zero — non-zero: 5,000 gas (for a cold slot)
* non-zero — zero: 15,000 gas refund (example)

CREATE : 32,000 + 200 X (code size) gas;

CALL gas, addr, value, args

Gas calculation

Why charge gas?
* Tx fees (gas) prevents submitting Tx that runs for many steps.

* During high load: block proposer chooses set of Tx from mempool
that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)

* Every Tx contains a gasPrice 'bid” (gas = Wei conversion price)

* Producer chooses Tx with highest gasPrice (max sum(gasPrice X gasUsed))
= not an efficient auction mechanism (first price auction)

Gas prices spike during congestion

Average Tx fee in USD

222222222222

ZZZZZ \ APR 22 /

congestion

Gas calculation: EIP1559 (since 8/2021)

EIP1559 goals (informal):

e users incentivized to bid their true utility for posting Tx,
* block proposer incentivized to not create fake Tx, and

* disincentivize off chain agreements.

[Transaction Fee Mechanism Design, by T. Roughgarden, 2021]

Gas calculation: EIP1559 (since 8/2021)

Every block has a “baseFee”:
the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

» earlier blocks at gas limit (30M gas) = base fee goes up 12.5% | | croojate

" in between

e earlier blocks empty = base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) = base fee does not change

Gas calculation

EIP1559 Tx specifies three parameters:

e gasLimit: max total gas allowed for Tx

* maxFee: maximum allowed gas price (max gas — Wei conversion)
 maxPriorityFee: additional “tip” to be paid to block proposer

Computed gasPrice bid:

gasPrice — min(maxFee, baseFee + maxPriorityFee)

Max Tx fee: gasLimit X gasPrice

Gas calculation

gasUsed « gas used by Tx

Send gasUsed X (gasPrice — baseFee) to block proposer

BURN gasUsed X baseFee V(m

= total supply of ETH can decrease

END OF LECTURE

