
DAG Meets BFT

Alexander Spiegelman

Theory Meets Practice

B2 B3B1

Consensus

Execution

Storage

Scaling Blockchains

Joint Work

Alberto
Sonnino

Lefteris
Kokoris-Kogias

George
Danezis

Idit
Keidar

Oded
Naor

Neil
Giridharan

Alexander Spiegelman

Narwhal&Tusk

Our DAG-Based BFT Approach

All You Need Is DAG

(DAG-Rider) Bullshark

PODC 2021 EuroSys (Best paper) 2022 CCS 2022

Being implemented by several Blockchain companies, e.g., Aptos, Celo, Mysten Labs, and Somelier.

The Goal

Stream of transactions1 2 3 4 5 6

1 2 3 4 5 6 Stream of transactions

Stream of transactions1 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6

Total order

n validators  
f < n/3 Byzantine

The Challenge

• Performance

• Throughput

• Latency

• Scalability

• Number of validators

• Simplicity

• Easy to deploy, maintain, debug

The Agenda

• Performance

• Throughput

• Latency

• Scalability

• Number of validators

• Simplicity

• Easy to deploy, maintain, debug

Narwhal

Bullshark

Scaling

Consensus

Current Designs

Optimize overall message complexity of the consensus protocol

Current Designs

Data has to be shared

Current Designs

Monolithic protocol sharing transaction data as part of the consensus

Current Designs
Typical leader-based protocols

re
so

ur
ce

 u
til

iz
at

io
n lead

er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

Load Balance

re
so

ur
ce

 u
til

iz
at

io
n

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

Decoupling data dissemination from
metadata ordering is the key to

performance

Data Dissemination Metadata Ordering

Data Dissemination

Each validator asynchronously
disseminates its data

re
so

ur
ce

 u
til

iz
at

io
n

lead
er

lead
er

lead
er

lead
er

lead
er

Proof of Availability

Persist data and send back a signature

Collect quorum certificate

Data can be retrieved before
execution

Proof of Availability

re
so

ur
ce

 u
til

iz
at

io
n

lead
er

lead
er

lead
er

lead
er

lead
er

Scaling Out

Metadata Ordering

• The leader is no longer a major bottleneck

• Consensus communication complexity is much
less important

• Use low latency protocol

re
so

ur
ce

 u
til

iz
at

io
n

lead
er

lead
er

lead
er

lead
er

lead
er

Quorum Store

• The Aptos implementation of Narwhal

• Aptos uses Jolteon for consensus

• Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback [GKSSX]

• Over 100 validators on 3-regions setup

• 10x performance gain for consensus only test

• Latency was (surprisingly) reduced!
 Jolteon

Production Code Is Complex

• Storage, cache, quota, expiration and garbage collection, state sync,
network prioritization, back pressure, etc

• Maintain and debug

DAG Meets BFT

• Network abstraction

• Simple consensus

• No view-change, view-synchronization

• Way to switch between partial synchrony and
asynchrony

• Building one system

• Piggyback more protocols (e.g., ADKG, MPC)

• Perfect load balance

• Leaderless

L

re
so

ur
ce

 u
til

iz
at

io
n

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

Building a DAG

L

Round 1 Round 2 Round 3 Round 4

Validator 1

Validator 2

Validator 4

N-f edges to the previous round

Proofs of Availability for consensus

Other applications data/metadata

Local view of validator 4

Challenges

• Reliable communication

• Need to deliver n-f nodes to advance
rounds

• Causal history

• Non-equivocation

Non-Equivocation

G1

G2

G3

node header

H

H

H

V

V

V

certificate

C

C

C

C

Non-Equivocation

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Non-Equivocation

Round 1

V

V

V

G1

G2

G3

H

H

H

Zero Communication Overhead Consensus
Round 1 Round 2 Round 3 Round 4

Validator 1

Validator 2

Validator 3

Validator 4 L

DAG-Rider

Tusk

BullsharkTotal order

Aleph

Bullshark
1. Partially synchronous version

2. Asynchronous Version (DAG-Rider)

3. Best of both worlds

Bullshark

Round 1 Round 2 Round 3 Round 4

L1

Validator 1

Validator 2

Validator 3

Validator 4

Local view of validator 1

L1

Round 1 Round 2

Validator 1

Validator 2

Validator 3

Validator 4

Local view of validator 4

Non-Equivocation

Bullshark

Anchor Votes Anchor Votes

A1

L1

A2

Validator 1

Validator 2

Validator 3

Validator 4

Local view of validator 1

Interpreting The DAG

Goal

1. Decide which anchors to

commit.

2. Deterministically order their

causal histories.

Anchors

A priori known -> Partial synchrony

Elected in retrospect -> Asynchrony

Bullshark

Local view of validator 1

Commit Rule

Anchor Votes Anchor Votes

A1

L1

A2

Validator 1

Validator 2

Validator 3

Validator 4 f+1 votes are required for commit

Bullshark

Round 1 Round 2 Round 3 Round 4

A1

L1

A2

Validator 1

Validator 2

Validator 3

Validator 4

Local view of validator 1

A1

Round 1 Round 2

Validator 1

Validator 2

Validator 3

Validator 4

Local view of validator 4

Different Local Views

A1 is committedHas to order A1 before A2!

Bullshark

f+1 votes required to commit Each node refers to n-f nodes from
the previous round

If an anchor A is
committed

All future anchors will have a
path to at least 1 vote for A

All future anchors will
have a path to A

Quorum-Intersection

Bullshark
Quorum-Intersection

A1

Round 1 Round 2

Validator 1

Validator 2

Validator 3

Validator 4

Local view of validator 4

A2

Bullshark

No path from future
anchor A’ to A

No honest Validator
committed A

Quorum-Intersection

Bullshark
The Full Protocol

Round 1 Round 2 Round 3 Round 4

A1

Validator 1

Validator 2

Validator 3

Validator 4

A3

A2

Round 5 Round Round 6

Cannot commit A1Cannot commit A2Commit A3

A3
Total Order

No need to order A2Need to order A1 before A3

A1

Continue recursively from A1 until
an anchor that was previously

ordered is reached

Bullshark
The Full Protocol

Round 1 Round 2 Round 3 Round 4

A1

Validator 1

Validator 2

Validator 3

Validator 4

A3

A2

Round 5 Round Round 6

Cannot commit A1Cannot commit A2Commit A3

A3
Total Order

No need to order A2Need to order A1 before A3

A1

Continue recursively from A1 until
an anchor that was previously

ordered is reached

Finally, order anchors’ causal
histories one by one by some

deterministic order

Bullshark
Chain Quality For Free

Round 1 Round 2 Round 3 Round 4

Validator 1

Validator 2

Validator 3

Validator 4 L1

At least 2f+1 nodes in each round out
of which at most f are byzantine

At least f+1/2f+1 > 1/2 honest

Optimal!

Probabilistic Indistinguishability and the Quality of

Validity in Byzantine Agreement [AFT’22]

Bullshark
Fairness and Garbage Collection

Round 1 Round 2 Round 3 Round 4

A1

L1

A2

Validator 1

Validator 2

Validator 3

Validator 4
Weak link

Bullshark
Fairness and Garbage Collection

Round i Round i+1 Round i+2 Round i+3

t=1

t=2

t=3

t=2

t=5

t=5

Validator 1

Validator 2

Validator 3

Validator 4

t=1 t=3

Weak linkt=4

A

t=1

t=4

t=4

t=4

t=6

TS=1 TS=3 TS=4 TS=5

TS=5

Delta = 2Garbage collected

Round i-1

Consensus

Round-based

DAG structure

Easy

Bullshark
Conclusion

•Extremely simple

•No view-change!

•No view-synchronization!

•Zero communication overhead

•Chain-Quality

•Fairness

•Garbage collection

A

A

A

Liveness

Asynchronous Liveness

Round 1 Round 2 Round 3 Round 4

Validator 1

Validator 2

Validator 3

Validator 4 L1

DAG-Rider

Tusk

Full Bullshark
Randomness

Partially Synchronous Liveness

Round 1 Round 2 Round 3 Round 4

Validator 1

Validator 2

Validator 3

Validator 4 L1

Bullshark

Pre-defined

sasha@aptoslabs.com
Alexander Spiegelman

Conclusion
Papers are available online

Read blogpost for extended summary

Happy to collaborate

Consenus Is No Longer a Bottleneck

What Is Next In BFT?

•Incentives

•Randomness

•Shading

