< STARKWARE

A Cambrian Explosion of
Cryptographic Proofs

February 2023

N



% STARKWARE

Background



Background

Integrity* via Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

Lance Fortnow? Leonid A. Levin?®
Dept. Comp. Sci. Dept. Comp. Sci.
Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp. Sci.

Univ. of Chicago

Abstract. Motivated by Manuel Blum'’s concept of instance checking, we consider new, very fast and generic
mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols
[LFKN92], [Sha92], and especially the MIP = N EXP protocol from [BFL91].

We show that every nondeterministic computational task S(x,y). defined as a polynomial time relation
between the ¢nstance x, representing the input and output combined, and the witness y can be modified to a
task S’ such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time
from a witness satisfying S.

Here the instance and the description of S have to be provided in error-correcting code (since the checker
will not notice slight changes). A modification of the M TP proof was required to achieve polynomial time
in (iii); the earlier technique yields NOUeglog N) time only.

This result becomes significant if software and hardware reliabulity are regarded as a considerable cost

factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard
wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized
and checked off-line at_a_modest cost

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware.

£ G S L i 0 6113 G 73 i 1 G e T it
transformed into a {ransparent proof, i.e. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time || P||!*¢ into a transparent proof, verifiable in Monte Carlo time (log|| P||)©(1/¢)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
code transforms messages of length 1+ and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)O( /)y time.

into codewords of length < N




Background

Integrity* via Math

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

Lance Fortnow? Leonid A. Levin?®
% and Dept. Comp. Sci. Dept. Comp. Sci.
iv., Budapest Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp. Sci.
Univ. of Chicago

Abstract. Motivated by Manuel Blum'’s concept of instance checking, we consider new, very fast and generic
mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols
[LFKN92], [Sha92], and especially the MIP = P protocol from [BFLY1].

We show that every nondeterministic computational task S(x,y). defined as a polynomial time
between the instance x, representing the input and output combined, and the wilness y can be modified to a
task S’ such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time
from a witness satisfying S

Here the instance and the description of S have to be provided in error-correcting code (since the checker
will not notice slight changes). A modification of the M TP proof was required to achieve polynomial time
in (iii); the earlier technique yields N OUeglog M) time only.

This result becomes significant if software and hardware reliability are regarded as a considerable cost
factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard
wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized
od_off-line aft_a_mod.

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware.

T anoer
transformed into a fransparent proof, i.c. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time ||P||'*¢ into a transparent proof, verifiable in Monte Carlo time (log || P[|)©(1/<)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The

tion

and che st_cost

TP TatIoH, W S HOW AT T P oIy HOT AT Ui, SV oA T A tie atieal proor tan be

code transforms messages of length N into codewords of length < N'+¢; and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)O( /)y time.




% STARKWARE

Background

Claim: Starting @ state hash x, after 1,000,000

txs processed by program P, reached state hash y

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



% STARKWARE

Background

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000 P CP

txs processed by program P, reached state hash y

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



% STARKWARE

Background

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000 P CP

txs processed by program P, reached state hash y

“..asingle reliable PC can monitor the operation  pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



% STARKWARE

Background

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000 P CP

txs processed by program P, reached state hash y

“..asingle reliable PC can monitor the operation  pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



% STARKWARE

Background

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000

PCP

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation  pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



% STARKWARE

Background

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation  pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



Background

Integrity* via Math
(impractical)

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

26 Babai' Lance Fortnow? Leonid A. Levin?®
(Chicago © and Dept. Comp. Sci. Dept. Comp. Sci.
iv., Budapest Univ. of Chicago ® Boston University *

Mario Szegedy®

Dept. Comp. Sci.
Univ. of Chicago

Abstract. Motivated by Manuel Blum'’s concept of instance checking, we consider new, very fast and generic
mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols
[LFKN92], [Sha92], and especially the MIP = N EXP protocol from [BFL91].

We show that every nondeterministic computational task S(x,y). defined as a polynomial time relation
between the ¢nstance x, representing the input and output combined, and the witness y can be modified to a
task S’ such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time
from a witness satisfying S.

Here the instance and the description of S have to be provided in error-correcting code (since the checker
will not notice slight changes). A modification of the M TP proof was required to achieve polynomial time
in (iii); the earlier technique yields N OUeglog M) time only.

This result becomes significant if software and hardware reliability are regarded as a considerable cost
factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard
wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized
od_off-line aft_a_mod.

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware.

T anoer
transformed into a {ransparent proof, i.e. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time ||P||'*¢ into a transparent proof, verifiable in Monte Carlo time (log || P[|)©(1/<)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
code transforms messages of length N into codewords of length < N1+¢; and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)O( /)y time.

and che st_cost

TP TatIoH, W S HOW AT T P oIy HOT AT Ui, SV oA T A tie atieal proor tan be




Backg

Integrity* via Math
(ipractical)

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

Lance Fortnow? Leonid A. Levin?®
Dept. Comp. Sci. Dept. Comp. Sci.
Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp.

Univ. of Chicago

SIAM J P

.Con (© 2008 Society for Industrial and
Vol. 38, No. 2, pp. 551-607

Eli Ben-Sasson', Alessandro Chiesa® and Nicholas Spooner?

Fast Reed-Solomon Interactive Oracle Proofs of Proximity |-

Eli Ben-Sasson* Iddo Bentovt Yinon Horesh* Michael Riabzev*

January 12, 2018

Scalable, transparent, and post-quantum secure com

integrity
Th
linear Eli Ben-Sasson® Iddo Bentov’ Yinon Horesh* Michael Riabzev* vith per-
fect zef March 6, 2018 mplexity
requirg ying such
PCP/]]
To Abstract [OPP) for
RS coc Human dignity demands that personal information. like medical and forensic data, be hidden fromthe st Fourier
~ "] public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit
Transf] by institutions entrusted with Data, unjustly harming citizens and eroding trust in central institutions. wd that of
the ve Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to this tension between  ljin o bt
the ideals of personal privacy and institutional integrity. enforcing the latter in a way that does not ‘
not st compromise the former. Public trust demands transparency from ZK systems, meaning they be set up pm-.liup;u-
I with no reliance on any trusted party, and have no trapdoors that could be exploited by powerful parties to
provin, ness. For ZK systems to be used with Big Data, it is imperative that the public verification
e sublinearly in data size. Transparent ZK proofs that can be verified ex; y faster
ze were first described in the 1990s but early constructions were impractical, and no ZK
system realized thus far in code (including that used by crypto-currencies like Zcash™) has achieved
both y and i ion speedup, for general
Here we report the first realization of a transparent ZK system (ZK-STARK) in which ve
scales exponentially faster than database size, and morcover, this exponential speedup in
is observed ly for gful and next. Our s;
several recent advances on interactive oracle proofs (IOP), such as a “fast” (linear time) IOP system for
error correcting codes.




Background

Integrity* via Math
(mpractical)

“...a| single reliable PC|can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

Lance Fortnow? Leonid A. Levin?®
Dept. Comp. Sci. Dept. Comp. Sci.
Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp.

Univ. of Chicago

SIAM J P

.Con (© 2008 Society for Industrial and
Vol. 38, No. 2, pp. 551-607

T

Fast Reed-Solomon Interactive Oracle Proofs of Proximity

Eli Ben-Sasson* Iddo Bentovt Yinon Horesh* Michael Riabzev*

January 12, 2018

Scalable, transparent, and post-quantum secure com

integrity
Th
linear Eli Ben-Sasson® Iddo Bentov’ Yinon Horesh* Michael Riabzev* vith per-
fect zef March 6, 2018 mplexity
requirg ying such
PCP/]]
To Abstract [OPP) for
RS coc Human dignity demands that personal information. like medical and forensic data, be hidden fromthe st Fourier
~ "] public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit
Transf] by institutions entrusted with Data, unjustly harming citizens and eroding trust in central institutions. wd that of
the ve Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to this tension between  ljin o bt
the ideals of personal privacy and institutional integrity. enforcing the latter in a way that does not ‘
not st compromise the former. Public trust demands transparency from ZK systems, meaning they be set up por.liup;\r
I with no reliance on any trusted party, and have no trapdoors that could be exploited by powerful parties to
provin, itness. For ZK systems to be used with Big Data, it is imperative that the public verification
3 g pe P
ly in data size. Transparent ZK proofs that can be verified exy y faster
st described in the 1990s but early constructions were impractical, and no ZK
system realized thus far in code (including that used by crypto-currencies like Zcash™) has achieved
both y and i ion speedup, for general
Here we report the first realization of a transparent ZK system (ZK-STARK) in which ve
scales exponentially faster than database size, and morcover, this exponential speedup in
is observed ly for gful and next. Our system uses
several recent advances on interactive oracle proofs (IOP), such as a “fast” (linear time) IOP system for
error correcting codes.




% STARKWARE

BaCkground Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
‘2‘008 satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
. * st The network timestamps transactions by hashing them into an ongoing chain of
In tegl‘lty Via M a.t h hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

“...a| single reliable PC|can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



% STARKWARE

Background

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
‘2‘008 satoshin@gmx.com

www.bitcoin.org

Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform.
By Vitalik Buterin (2014).

When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January < as
Integrity* Via. Math simultaneously introducing two radical and untested concepts. The first is the "bitcoin”, a decentralized
peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So
far, the "bitcoin” as a currency unit has taken up the bulk of the public attention, both in terms of the political
aspects of a currency without a central bank and its extreme upward and downward volatility in price.
However, there is also another, equally important, part to Satoshi's grand experiment: the concept of a proof of

work-based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can

be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to

(11 Q o . .
".4s’ngle rellable PC can monl.tor the Operatlon A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining
Of a herd o.f Supercomputers Wlth powerf“’ bUt from two transactions which came earlier, and for decades this stymied the development of decentralized
unreliable SOftWC!I'e and untested hardware u.” digital currency. Satoshi's blockchain was the first credible decentralized solution. And now, attention is

rapidly starting to shift toward this second part of Bitcoin's technology, and how the blockchain concept can be

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis] T m—




Background

Integrity* via Math

“...a| single reliable PC|can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Verify, Don’t Trust

In Math We Trust

Blockchain is the “single reliable PC”



% STARKWARE

Background

2013

Verify, Don’t Trust

In Math We Trust
Integrity* via Math

Blockchain is the “single reliable PC”

“...a| single reliable PC|can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



% STARKWARE

Background

2013 Verify, Don’t Trust

In Math We Trust

Blockchain is the “single reliable PC”

Integrity* via Math

“..dsingle reliable PClcan monitor the operation 2015 - Zcash 1st general ZK for privacy

of a herd of supercomputers with powerful but
unreliable software and untested hardware ...” 2018 - StarkWare 1st Proofs for scalability

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]



Cambrian Explosion
of Cryptographic Proofs



-
September 2019 ‘
e
;‘;’-'f (lf':
‘ BulletProofs
genSTARK & fin ,' o



November 2019

- A
.
:v“ﬂ, ¢ s e - .
o 3 g
b1 ‘ 7
£ 5 ) %
BulletProofs af

£

STARK N

B o
: L
o S

-

e -
. I
= " VoY L IR
- B AR MRS S
e ¢ g
oy 52



February 2023

| — —
- Awesome Stuff!

flpw ; FF =¥ o
e - =
v e .

the

BulletProofs sf

Grothle [N

b Ay

\

A

e

genSTARK
f
P yg« : Z

s oS KA
: X 7 & | Awesome Stuff!



-

Blockchain Usage
February 2023

ALY .

RiscO

pep—__

Polygon O



& STARKWARE

Blockchain Usage C—

February 2023 StarkEx |- = =.
N— =
. .

Starknet ---------------------------------------------------

ﬁ "

. -

Risc0

ﬁ . [

Privacy ( ‘ Aztec -

Polygon 0 .

_

ﬁ (—\ n

l Monero | Aleo e -

Hermez [ ] ync .

S— L

ﬁ (ﬁ

Scalability e . -

Miden Mina :

[ BulletProofs J I Marlin

Scroll .

—_

Groth16
= (o

[ Zcash - new }

Zcash - old
\—
)

Filecoin
—
)

Loopring
e’



& STARKWARE

Blockchain Usage )
February 2023 StarkEx  [+(:*

)

Starknet

)\
——

RiscO

Privac

y Polygon0 | {:
B
)

Hermez

7

|

'l Monero '

[ BulletProofs ]

[ STARK J m
Oz

[

Scalability

Miden
\e

D

Zcash - old

Filecoin

Loopring




& STARKWARE

Blockchain Usage )
February 2023 StarkEx [+~ z.:

)

Starknet - y ----------------------------------------------

L )N e
)

RiscO

Privac

y Polygon 0 f-.j
N
)

Hermez

|

' Monero

[ BulletProofs ]

o) T

Why so few systems in blockhcain?
- theory-to-practice takes time [ Zcash - new ]

- existing systems good enough for scale
- tech standards (network protocols, programming languages, ...)

- bottleneck is not proof/verification efficiency
- bottlenecks: productization, dev tools, integration, ...

[

Scalability

Miden
M

Zcash - old

Filecoin

Loopring




& STARKWARE

Proofs of Computational Integrity (CI)

Privacy (Zero Knowledge, ZK)

Prover’s private inputs are shielded

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

6/ Universality

Applicability to general computation

+| Transparency
*J No toxic waste (i.e. no trusted setup)

*With respect to size of computation



o

BulletProofs sf m SLONK

Groth16

A
& & .

8

g sonc M plonk

Common 1. Arithmetization
Ancestors 2. Low degreeness



1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Example: For public 256-bit string z, Bob claims knows a SHA2-preimage of z

€ STARKWARE



1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Example: For public 256-bit string z, Bob claims knows a SHA2-preimage of z

Pre-arithmetization
claim

“I know y such that
SHA2(y)=z"




1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Example: For public 256-bit string z, Bob claims knows a SHA2-preimage of z

Pre-arithmetization Reduction
claim
“I know y such that produces 2
SHA2(y)=z" polynomials:

Q(X,Y, W), R(X) and
degree bound d




1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Example: For public 256-bit string z, Bob claims knows a SHA2-preimage of z

Pre-arithmetization Reduction Post-arithmetization
claim claim
“I know y such that produces 2 I know 4 polynomials
SHA2(y)=z" polynomials: of degree d - A(x), B(x),
ox,Y,T,W), R(X) and C(x), D(X) - such that:
degree bound d

QX, A(X), B(X+1),
C(2*X))=D(X) * R(X)




1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Example: For public 256-bit string z, Bob claims knows a SHA2-preimage of z

Pre-arithmetization Reduction Post-arithmetization Theorem
claim claim
“I know y such that produces 2 I know 4 polynomials IfA, B, C, D do not
SHA2(y)=z" polynomials: of degree d - A(x), B(x), satisfy THIS,
ox,Y,T,W), R(X) and C(x), D(X) - such that:
degree bound d |
O, A(X), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie




1) Arithmetization

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

Pre-arithmetization Reduction Post-arithmetization Theorem
claim claim
“I know y such that produces 2 I know 4 polynomials IfA, B, C, D do not
SHA2(y)=z" polynomials: of degree d - A(x), B(x), satisfy THIS,
ox,Y,T,W), R(X) and C(x), D(X) - such that:
degree bound d |
OX, A(X), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie




2) Low degreeness

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

New Computational Post-arithmetization Theorem

Integrity problem: Force claim

Bob to answer all queries I know 4 polynomials If A, B, C, D do not

according to some of degree d - A(x), B(x),  satisfy THIS,

quadruple of degree-d Seg, 12l0) - e et

: |

polynomials O(X, AX), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie

€ STARKWARE




o

BulletProofs sf m SLONK

Groth16

A
& & .

8

g sonc M plonk

Common 1. Arithmetization
Ancestors 2. Low degreeness



Differentiating 1. Arithmetization Method
2. Low degreeness enforcement
Factors 3. Cryptographic assumptions used to get 2

Common 1. Arithmetization
Ancestors 2. Low degreeness



3. Cryptographic Assumptions

Hodor [ Ligero ]

openZKP

genSTARK

BulletProofs

[ Succ. Aurora

STARK

Cryptographic Collision-Resistant . . Knowledge of Groups of
Assumptions Hash Elliptic Curve DLP Exponent unknown order

1980s-2000s 2000s-2017 1997-2019



3. Cryptographic Assumptions

Symmetrlc cryptography :
Plausibly quantum resistant - - - - — - - >
l Asymmetric cryptography
Number theoretic assumptions
| Quantum computer breakeable

BulletProofs

Cryptographic Collision-Resistant
Assumptions Hash

Knowledge of Groups of
Exponent unknown order

Elliptic Curve DLP

1980s-2000s 2000s-2017 1997-2019



3. Cryptographic Assumptions

Symmetrlc cryptography :
Plausibly quantum resistant - - - - — - - >

l Asymmetric cryptography
Number theoretic assumptions

libSTARK ] m | Quantum computer breakeable

Hodor [ Ligero ]

openZKP

genSTARK

BulletProofs

[ Succ. Aurora

Cryptographic Collision-Resistant

" Knowledge of  Groups of
Assumptions Hash Elliptic Curve DLP

Exponent unknown order

1980s-2000s 2000s-2017 1997-2019



2. Enforcing low-degreeness

libSTARK ]

Aurora

genSTARK

' Ligero '

Succ. Aurora

Cryptographic Collision-Resistant

Assumptions

Hash

Requires trusted setup,

l Hide queries to polynomials
& Limited scalability, or use recursion

Marlin

BulletProofs

Knowledge of Groups of
Exponent unknown order

Elliptic Curve DLP

1980s-2000s 2000s-2017 1997-2019



2. Enforcing low-degreeness

b—————— o
= ——=—===- A
Merkle trees 1 Homomorphic encryp. ) ] )
Long proofs ! Short proofs Hide queries to polynomials
! Requires trusted setup,
libSTARK ] y y & Limited scalability, or use recursion
N/ N/

Marlin

Groth16

BulletProofs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
genSTARK I
|
|
|
|
|

Cryptographic Collision-Resistant L.
A:Eumgptilgns Hash Elliptic Curve DLP

Knowledge of Groups of
Exponent unknown order

1980s-2000s 2000s-2017 1997-2019



2. Enforcing low-degreeness

- o
= ——=—===- A
Merkle trees 1 Homomorphic encryp. ) ] )
Long proofs ! Short proofs Hide queries to polynomials
! Requires trusted setup,
y & Limited scalability, or use recursion
N’

genSTARK

Knowledge of  Groups of

Exponent unknown order

Cryptographic Collision-Resistant L.
A:sumgptigns Hash Elliptic Curve DLP

1980s-2000s 2000s-2017 1997-2019



2. Enforcing low-degreeness

Polynomial Commitment Scheme (PCS) [Field F, degree d]

Prover sends ¢ = Commit (P(x)), deg(P)<d

Verifier queries z€ F

Prover answers a €F, claiming “deg(P)<d and P(z)=a”

Both parties interact; at end, verifier decides whether to accept/reject claim
Want

o Completeness: If P(z)=a then Verifier accepts
o Soundness: If P(z) # a then whp Verifier rejects

€ STARKWARE



2. Enforcing low-degreeness

Polynomial Commitment Scheme (PCS) [Field F, degree d]

e Prover sends ¢ = Commit (P(x)), deg(P)<d
e \erifierqueriesz€ F
e Prover answers a €F, claiming “deg(P)<d and P(z)=a”
e Both parties interact; at end, verifier decides whether to accept/reject claim
e Want
o Completeness: If P(z)=a then Verifier accepts
o Soundness: If P(z) # a then whp Verifier rejects
o Knowledge soundness: efficient extractor can recover P(X) from good prover
o Efficiency: low proving time, comm complexity, verification time, over all fields, ...
o Succinctness: polylogarithmic verification time (and communication)

(@)
€ STARKWARE

Security: minimal crypto assumptions



2. Enforcing low-degreeness

- o
= ——=—===- A
Merkle trees 1 Homomorphic encryp. ) ] )
Long proofs ! Short proofs Hide queries to polynomials
! Requires trusted setup,
y & Limited scalability, or use recursion
N’

genSTARK

Knowledge of  Groups of

Exponent unknown order

Cryptographic Collision-Resistant L.
A:sumgptigns Hash Elliptic Curve DLP

1980s-2000s 2000s-2017 1997-2019



2. Enforcing low-degreeness

-

StarkEx

}

Starknet

|

RiscO

|

Polygon 0

|

Hermez

|

Miden

{

STARK

FRI

<

4 N

I Monero I

[ BulletProofs ]

[ Zcash - new }

& STARKWARE

@\

Aztec

ZkSync

Mina

Scroll

Inner Product
\ Arsument /

Groth16

Zcash - old

|

Filecoin

|

\ Loopring

|

|

/




2. Enforcing low-degreeness

FRI

Pros =

Cons -

Assumptions -

€ STARKWARE

Succinct verification
Succinct setup
Transparent

Post quantum secure
Works over all fields

Long proofs (dozens KB)

Collision resistant hash

Inner Product Arguments

- Transparent
- Short proofs (KBs)
- Additivity

- Linear time verifier
- Quantum breakable

- Discrete log hardness

Very short pf (<1KB)
Additivity

Trusted setup
Linear size/time setup
Quantum breakable

Knowledge exponent



1. Arithmetization - finite field type

genSTARK

‘ Slow Arithmetic

8

RSA integers

(thousands bits)

BulletProofs Marlin

iy Large primes m

(256-bit at least)

Any kind (binary,

32-bit size, ...)

Knowledge of Groups of
Exponent unknown order

Cryptographic Collision-Resistant L.
Agsumgptigns Hash Elliptic Curve DLP

1980s-2000s 2000s-2017 1997-2019



1. Arithmetization - finite field type

genSTARK

‘ Slow Arithmetic

8

RSA integers

(thousands bits)

BulletProofs Marlin

iy Large primes m

(256-bit at least)

Any kind (binary,

32-bit size, ...)

Knowledge of Groups of
Exponent unknown order

Cryptographic Collision-Resistant L.
Agsumgptigns Hash Elliptic Curve DLP

1980s-2000s 2000s-2017 1997-2019



Scalability and Transparency

ﬁ Transparent
N’

J3 Scalable
3 s s o
E libSTARK \f Aurora Semi-Scalable

ﬁ ¢~/ (after linear pre-processing)
GQ Hodorg Ligero \4 ZKBoo ﬁ

\ 4 Db
g& Fractal ﬁ gg ﬁ
é— j Succ. Aurora
‘QopenZKP ﬁ Y

! (3
‘ggenSTARK

ﬁt BulletProofs

g@ Grothl6
i
PLONK

SONIC
tg&Pinocchio J;SuperSonl
N
= ‘9
(0]

R
Cryptographic Collision-Resistant ipti Kn W\Teﬁge of Groups of
Assumptions Hash Elliptic Curve DLP Exponent unknown order

1980s-2000s 2000s-2017 1997-2019



Scalability and Transparency

ﬁ Transparent
N’

Hodor [ Ligero ]

openZKP

genSTARK

BulletProofs

[ Succ. Aurora

SuperSonic

-

Cryptographic Collision-Resistant . . Knowledge of Groups of
Assumptions Hash Elliptic Curve DLP Exponent unknown order

1980s-2000s 2000s-2017 1997-2019



“The future life expectancy of'some

non-perishable things like a/technology or

an/idea/is proportional to their current age”

~ The Llndy Effect / Nassm Taleb



ZKP Family Trees

___________

___________

libSTARK ]

___________

___________

Hodor [ Ligero

openZKP

genSTARK

________

[ Succ. Aurora

Exchange

IdenAtity Based
Knovh”eﬁge of Groups of
Exponent unknown order

Crypto

Cryptographic Collision-Resistant L.
Agfumgptilgns Hash Elliptic Curve DLP

1980s-2000s 2000s-2017 1997-2019



ZKP Family Trees

___________

___________

libSTARK ]

___________

Hodor [ Ligero

openZKP
SSL Key

genSTARK i
& | Exchage:

= = : Identity Based
. \ Password ' Crypto
— S COMMENCE Authentication

Cryptographic Collision-Resistant L.
Agsumgptilgns Hash Elliptic Curve DLP

[ Succ. Aurora

= ‘9 R
Knowledge of Groups of
Exponent unknown order

year 1976 1980s-2000s 2000s-2017 1997-2019



ZKP members differ by (i) arithmetization, (ii)

Summary low-degreeness, and (iii) crypto assumpti,ons

ZKP Cambrian explosion ongoing, expect more science!

Hodor

Ligero ZKBoo

BulletProofs

[ Succ. Aurora

openZKP

genSTARK

STARK

€ STARKWARE



ZKP members differ by (i) arithmetization, (ii)
Summary low-degreeness, and (iii) crypto assumptions

ZKP Cambrian explosion ongoing, expect more science!

Hodor

Ligero ZKBoo

[ Succ. Aurora

openZKP

genSTARK

SuperSonic

Lean crypto
Post quantum security Proof length
Fastest proving time

» STARKWARE Future proofing (Lindsey)



ZKP members differ by (i) arithmetization, (ii)
Summary low-degreeness, and (iii) crypto assumptions

ZKP Cambrian explosion ongoing, expect more science!

For short proofs, use Groth16 SNARKs.
libSTARK For everything else, there’s STARKS!
Hodor

Ligero ZKBoo

[ Succ. Aurora

openZKP

genSTARK

SuperSonic

Lean crypto - é‘

Post quantum security Proof length
Fastest proving time

» STARKWARE Future proofing (Lindsey)



The End



November 2019 , @
ot 1 v

“openZKP

o— ok 3T SO
The Cambrian
Explosion of ZKPs -~ = -

0 Succ. Aurora BulletProofs




February 2023

=

e

Awesome Stuff!

(—— ——
= - e

"lr— A1

ol
A%

“ genSTARK

The'Cambrian
Explosion of ZKPs 'fr,=—

Su perSonTE‘/




& STARKWARE

Proofs of Computational Integrity (CI)

Privacy (Zero Knowledge, ZK)

Prover’s private inputs are shielded

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

6/ Universality

Applicability to general computation

+| Transparency
*)  No toxic waste (i.e. no trusted setup)

& Lean & Battle-Hardened Cryptography

e.g. post-quantum secure

*With respect to size of computation



& STARKWARE

STARK vs. SNARK - emphasizing different aspects

G STARKs must be o SNARKs must be
A4 N

Transparent no trusted setup Noninteractive: pf is single message (after
preprocessing)

Scalable: logarithmic verifying time and

nearly-linear proving time Succinct: logarithmic verifying time

Succinct setup, at most logarithmic time Setup can take linear time (and more)

Non-interactive STARKs are SNARKSs (transparent ones)

Transparent SNARKs w/ succinct setup are STARKs



BulletProofs

The Cambrian
Explosion of ZKPs - =



3. Cryptographic Assumptions

Note: systems can move across trees

libSTARK ]

openZKP

genSTARK

BulletProofs

[ Succ. Aurora

STARK

Cryptographic Collision-Resistant . . Knowledge of Groups of
Assumptions Hash Elliptic Curve DLP Exponent unknown order

1980s-2000s 2000s-2017 1997-2019



STARK efficiency

e Arithmetization over any field
o Initially over any “FFT-friendly” field, including small binary fields, small primes
o Recently: over any field, using Elliptic curves [BCKL 2021-2]

e New Computational Model - IOP [RRR 2016; BCS 2016]
e Fast Reed-Solomon IOP of Proximity (FRI) [BBHR 2018]

o  Proving time is O(n), small constants (6 or less)
o Verification time is O(log n), small constants (20 or less)
o Nearly no soundness loss till Johnson bound [BCIKS 2020]
m Formally: if fis delta-far from RS code, then single query-phase (log n queries to f and
IOP) rejects f w.p. at least min (delta, 1-sqgrt{rate})
m Proof: relies on the Guruswami-Sudan list decoding algorithm

€ STARKWARE



