< STARKWARE

A Cambrian Explosion of
Cryptographic Proofs

February 2023

N



% STARKWARE

Background



Background

Integrity* via Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time
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Univ. of Chicago ® Boston University *

Mario Szegedy®
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Abstract. Motivated by Manuel Blum'’s concept of instance checking, we consider new, very fast and generic
mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols
[LFKN92], [Sha92], and especially the MIP = N EXP protocol from [BFL91].

We show that every nondeterministic computational task S(x,y). defined as a polynomial time relation
between the ¢nstance x, representing the input and output combined, and the witness y can be modified to a
task S’ such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time
from a witness satisfying S.

Here the instance and the description of S have to be provided in error-correcting code (since the checker
will not notice slight changes). A modification of the M TP proof was required to achieve polynomial time
in (iii); the earlier technique yields NOUeglog N) time only.

This result becomes significant if software and hardware reliabulity are regarded as a considerable cost

factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard
wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized
and checked off-line at_a_modest cost

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware.
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transformed into a {ransparent proof, i.e. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time || P||!*¢ into a transparent proof, verifiable in Monte Carlo time (log|| P||)©(1/¢)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
code transforms messages of length 1+ and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)O( /)y time.

into codewords of length < N
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transformed into a fransparent proof, i.c. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time ||P||'*¢ into a transparent proof, verifiable in Monte Carlo time (log || P[|)©(1/<)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
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code transforms messages of length N into codewords of length < N'+¢; and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)O( /)y time.
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RS coc Human dignity demands that personal information. like medical and forensic data, be hidden fromthe st Fourier
~ "] public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit
Transf] by institutions entrusted with Data, unjustly harming citizens and eroding trust in central institutions. wd that of
the ve Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to this tension between  ljin o bt
the ideals of personal privacy and institutional integrity. enforcing the latter in a way that does not ‘
not st compromise the former. Public trust demands transparency from ZK systems, meaning they be set up pm-.liup;u-
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BaCkground Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
‘2‘008 satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
. * st The network timestamps transactions by hashing them into an ongoing chain of
In tegl‘lty Via M a.t h hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

“...a| single reliable PC|can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]
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Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
‘2‘008 satoshin@gmx.com

www.bitcoin.org

Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform.
By Vitalik Buterin (2014).

When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January < as
Integrity* Via. Math simultaneously introducing two radical and untested concepts. The first is the "bitcoin”, a decentralized
peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So
far, the "bitcoin” as a currency unit has taken up the bulk of the public attention, both in terms of the political
aspects of a currency without a central bank and its extreme upward and downward volatility in price.
However, there is also another, equally important, part to Satoshi's grand experiment: the concept of a proof of

work-based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can

be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to

(11 Q o . .
".4s’ngle rellable PC can monl.tor the Operatlon A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining
Of a herd o.f Supercomputers Wlth powerf“’ bUt from two transactions which came earlier, and for decades this stymied the development of decentralized
unreliable SOftWC!I'e and untested hardware u.” digital currency. Satoshi's blockchain was the first credible decentralized solution. And now, attention is

rapidly starting to shift toward this second part of Bitcoin's technology, and how the blockchain concept can be

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis] T m—
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Verify, Don’t Trust

In Math We Trust
Integrity* via Math

Blockchain is the “single reliable PC”

“...a| single reliable PC|can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]
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2013 Verify, Don’t Trust

In Math We Trust

Blockchain is the “single reliable PC”

Integrity* via Math

“..dsingle reliable PClcan monitor the operation 2015 - Zcash 1st general ZK for privacy

of a herd of supercomputers with powerful but
unreliable software and untested hardware ...” 2018 - StarkWare 1st Proofs for scalability

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]
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Why so few systems in blockhcain?
- theory-to-practice takes time [ Zcash - new ]

- existing systems good enough for scale
- tech standards (network protocols, programming languages, ...)

- bottleneck is not proof/verification efficiency
- bottlenecks: productization, dev tools, integration, ...
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Proofs of Computational Integrity (CI)

Privacy (Zero Knowledge, ZK)

Prover’s private inputs are shielded

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

6/ Universality

Applicability to general computation

+| Transparency
*J No toxic waste (i.e. no trusted setup)

*With respect to size of computation
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1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Example: For public 256-bit string z, Bob claims knows a SHA2-preimage of z

Pre-arithmetization Reduction Post-arithmetization Theorem
claim claim
“I know y such that produces 2 I know 4 polynomials IfA, B, C, D do not
SHA2(y)=z" polynomials: of degree d - A(x), B(x), satisfy THIS,
ox,Y,T,W), R(X) and C(x), D(X) - such that:
degree bound d |
O, A(X), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie




1) Arithmetization

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

Pre-arithmetization Reduction Post-arithmetization Theorem
claim claim
“I know y such that produces 2 I know 4 polynomials IfA, B, C, D do not
SHA2(y)=z" polynomials: of degree d - A(x), B(x), satisfy THIS,
ox,Y,T,W), R(X) and C(x), D(X) - such that:
degree bound d |
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C(2*X))=D(X) * R(X) expose Bob’s lie




2) Low degreeness

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

New Computational Post-arithmetization Theorem

Integrity problem: Force claim

Bob to answer all queries I know 4 polynomials If A, B, C, D do not

according to some of degree d - A(x), B(x),  satisfy THIS,

quadruple of degree-d Seg, 12l0) - e et

: |

polynomials O(X, AX), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie

€ STARKWARE
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Differentiating 1. Arithmetization Method
2. Low degreeness enforcement
Factors 3. Cryptographic assumptions used to get 2
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Ancestors 2. Low degreeness
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2. Enforcing low-degreeness
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Requires trusted setup,

l Hide queries to polynomials
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2. Enforcing low-degreeness

Polynomial Commitment Scheme (PCS) [Field F, degree d]

Prover sends ¢ = Commit (P(x)), deg(P)<d

Verifier queries z€ F

Prover answers a €F, claiming “deg(P)<d and P(z)=a”

Both parties interact; at end, verifier decides whether to accept/reject claim
Want

o Completeness: If P(z)=a then Verifier accepts
o Soundness: If P(z) # a then whp Verifier rejects

€ STARKWARE



2. Enforcing low-degreeness

Polynomial Commitment Scheme (PCS) [Field F, degree d]

e Prover sends ¢ = Commit (P(x)), deg(P)<d
e \erifierqueriesz€ F
e Prover answers a €F, claiming “deg(P)<d and P(z)=a”
e Both parties interact; at end, verifier decides whether to accept/reject claim
e Want
o Completeness: If P(z)=a then Verifier accepts
o Soundness: If P(z) # a then whp Verifier rejects
o Knowledge soundness: efficient extractor can recover P(X) from good prover
o Efficiency: low proving time, comm complexity, verification time, over all fields, ...
o Succinctness: polylogarithmic verification time (and communication)

(@)
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Security: minimal crypto assumptions
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2. Enforcing low-degreeness
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2. Enforcing low-degreeness

FRI

Pros =

Cons -

Assumptions -

€ STARKWARE

Succinct verification
Succinct setup
Transparent

Post quantum secure
Works over all fields

Long proofs (dozens KB)

Collision resistant hash

Inner Product Arguments

- Transparent
- Short proofs (KBs)
- Additivity

- Linear time verifier
- Quantum breakable

- Discrete log hardness

Very short pf (<1KB)
Additivity

Trusted setup
Linear size/time setup
Quantum breakable

Knowledge exponent
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Scalability and Transparency
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Scalability and Transparency
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“The future life expectancy of'some

non-perishable things like a/technology or

an/idea/is proportional to their current age”

~ The Llndy Effect / Nassm Taleb
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ZKP members differ by (i) arithmetization, (ii)

Summary low-degreeness, and (iii) crypto assumpti,ons

ZKP Cambrian explosion ongoing, expect more science!
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ZKP members differ by (i) arithmetization, (ii)
Summary low-degreeness, and (iii) crypto assumptions

ZKP Cambrian explosion ongoing, expect more science!

For short proofs, use Groth16 SNARKs.
libSTARK For everything else, there’s STARKS!
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Fastest proving time

» STARKWARE Future proofing (Lindsey)
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& STARKWARE

Proofs of Computational Integrity (CI)

Privacy (Zero Knowledge, ZK)

Prover’s private inputs are shielded

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

6/ Universality

Applicability to general computation

+| Transparency
*)  No toxic waste (i.e. no trusted setup)

& Lean & Battle-Hardened Cryptography

e.g. post-quantum secure

*With respect to size of computation



& STARKWARE

STARK vs. SNARK - emphasizing different aspects

G STARKs must be o SNARKs must be
A4 N

Transparent no trusted setup Noninteractive: pf is single message (after
preprocessing)

Scalable: logarithmic verifying time and

nearly-linear proving time Succinct: logarithmic verifying time

Succinct setup, at most logarithmic time Setup can take linear time (and more)

Non-interactive STARKs are SNARKSs (transparent ones)

Transparent SNARKs w/ succinct setup are STARKs
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3. Cryptographic Assumptions

Note: systems can move across trees
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STARK efficiency

e Arithmetization over any field
o Initially over any “FFT-friendly” field, including small binary fields, small primes
o Recently: over any field, using Elliptic curves [BCKL 2021-2]

e New Computational Model - IOP [RRR 2016; BCS 2016]
e Fast Reed-Solomon IOP of Proximity (FRI) [BBHR 2018]

o  Proving time is O(n), small constants (6 or less)
o Verification time is O(log n), small constants (20 or less)
o Nearly no soundness loss till Johnson bound [BCIKS 2020]
m Formally: if fis delta-far from RS code, then single query-phase (log n queries to f and
IOP) rejects f w.p. at least min (delta, 1-sqgrt{rate})
m Proof: relies on the Guruswami-Sudan list decoding algorithm

€ STARKWARE



