
Building MPC Wallets –
Challenges and Solutions

February 2023 1

Yehuda Lindell
Cryptographer

Joint work with the Coinbase cryptography team (and others)
• Arash Afshar
• Yi-Hsiu Chen
• Iftach Haitner
• Samuel Ranellucci

The Self-Custody Dilemma
2

3

Self Custody

• Technical solution
• User holds key – on mobile device, laptop, hardware device

• Advantages
• Your keys your coins – not as a catchphrase: you have full control and this

is the whole reason for decentralization
• No one can censor you or prevent you using your keys (subpoena, other)
• You are not reliant on a central organization, and you don’t lose your money

if they go bankrupt

• Other assets like NFTs are not aligned with a centralized exchange
• Although it can be technically solved by them holding your keys for you

4

Self Custody

• Technical solution
• User holds key – on mobile device, laptop, hardware device

• Disadvantages
• Usability – you are responsible

• Backup: store the mnemonic where it won’t be lost or stolen
• Note that these goals are at direct odds with each other

• Many stories of users with wallets asking for password reset
• Security

• User devices are very problematic from a security perspective
• Users are vulnerable to social engineering (exacerbated by mnemonic)
• Backup is related here as well – consider backup in cloud storage, on a piece

of paper, etc.

5

Self Custody Usability

• Think about the regular non-expert user

Which
should I
choose?

6

Self Custody Usability

• Think about the regular non-expert user

7

Self Custody Usability

8

Exchanges and Custody

• Technical solution
• Exchange or custodian holds your funds for you

• Advantages
• Burden of management and security is on them
• Professional enterprises are far better at security and backup than

regular users
• Additional anti-fraud and other mechanisms can be used

• Step-up authentication for high amounts, policies on amounts,
allow-lists and more can be enforced at the exchange

9

Exchanges and Custody

• Technical solution
• Exchange or custodian holds your funds for you

• Disadvantages
• Not all exchanges are equal – users are vulnerable to bankruptcy

or fraud by the exchange itself
• True of regular banks, but we have decades of regulation and

support to minimize these risks (at least in many countries)
• Not decentralized so why bother (to some extent)

10

Exchanges and Custody

11

Exchanges and Custody

12

Exchange and Custody

• But – where would you put your money?
• In Sam’s bank of the Bahamas, or
• Citibank, JP Morgan,…

• The same is true of crypto exchanges as well

13

The Self-Custody Dilemma

• If we want everyone (or anyone) to use cryptocurrency, then we
must solve this problem

• The aim: self-custody with the experience of an exchange

• A note: I personally think that this isn’t a XOR situation
• I want to keep some money in my wallet
• I also want to keep some money in a “bank”

• Bank in quotes due to regulatory ramifications

MPC Wallets – High Level
Idea

14

Using MPC for Keys (aka Threshold Signing)

• MPC considers “different parties” with “different inputs”
• We can also use MPC for one input split over different devices

• Take a private key 𝑘 and “split” it into two random shares 𝑘! and 𝑘" such that
𝑘! + 𝑘" = 𝑘

• Place one share on each device
• Relate to each share as “private input” and run an MPC protocol

• Security guarantees – a malicious adversary (running arbitrary attack code)
having full control over one of the devices cannot break the protocol
• Privacy: attacker can’t learn anything beyond the signature (so nothing is

revealed about the key)
• Correctness: an attacker can’t make the signature be on a different transaction
• Attacker needs to break into both devices in order to learn anything

17

18

Corruptions

• Clearly, we aren’t concerned with a corrupt user stealing from
themselves

• We also aren’t concerned with a corrupt service provider wanting to
steal from their customers
• Of course, depending on the service provider

• We are concerned that the user’s device is infected by malware, that
the service provider is breached or that there’s a corrupt insider

• Key not at service provider also has major legal implications, but
these alone can be solved with “semi-honest MPC”

MPC-Based Wallets

• Key is shared between user device (mobile and/or browser)
and service provider

• Basic properties
• Service provider cannot transact without user (doesn’t hold key)
• Malware on mobile isn’t enough for key theft

• Key misuse is also mitigated with policies
• Backup of user share is much easier (only one share)
• But: naïve implementation is still not censorship-free

• Need to add censorship-free backup

19

20

MPC Operations Needed

• Signing (obviously)

• Key generation – never have a key exposed

• Refresh – force an attacker to “simultaneously” breach
• If shares of key are 𝑘!, 𝑘" then update to 𝑘! + 𝑟, 𝑘" − 𝑟 for a

randomly generated 𝑟
• The sum is unchanged

• Backup

• HD wallet support

21

More About Backup

• Publicly-verifiable backup
• The obvious idea: each device encrypts the share they generated under a

(secured) backup key
• The threat: one of the devices encrypts the wrong value

• Why? Sabotage for example (competition, etc.)

• Publicly-verifiable backup: verify that the encrypted value is correct
without opening the encryption (or even holding the decryption key)

22

First Backup

• Regular easy-to-use backup
• User holds private decryption key in cloud backup (as an example)
• Service provider backs up their share locally
• User backs up their share by encrypting under backup encryption key

and sends to service provider

• User loses their device, transfers and data is lost, etc.
• Service provider sends encrypted backup to user (strong authentication

is needed here!)
• User retrieves decryption key from cloud backup and decrypts
• Service provider retrieves from backup (needed due to refresh)

23

Second Backup (if subpoena is a concern)

• Censorship-free hard-to-use backup
• User holds private decryption key in secure environment

• YubiHSM, biometric-protected secure enclave
• Service provider encrypts their share under public backup key
• User encrypts their share also under public backup key
• Backup ciphertexts are stored (in device, in cloud, etc.)
• Key is never exposed even while generating backup

• User needs to export (is censored due to subpoena or anything else)
• User obtains both backup ciphertexts
• User decrypts both shares

24

The Self Custody Dilemma

• Why does this solve the mnemonic and usability problem?
• The backup is generated automatically and safely

• Unlike with mnemonics, it is possible to store the user share in the
cloud without too much danger (so it can be automatic)

• The censorship-resistant backup is also generated safely

• Other features
• Since the service provider is involved in all operations, they can

apply policy and fraud mitigation mechanisms
• Restore-from-backup provides a UX like password reset (as long as

they have access to their cloud)

25

HD Wallet Support

• Backup is “easier” with an HD wallet
• It isn’t essential since once backup is automatic, we can do it for

every generated key, but it requires access to backup storage
which depends on the setting

• Can we build MPC HD wallets?

26

BIP-039/BIP-032 Compliant HD Wallets

27

BIP-039/BIP-032 Compliant HD Wallets

• Why do we want BIP compliance?
• Standard methods require no explanation
• Existing BIP wallets can be imported

• It’s possible to import just hard-derived keys, but this is actually not so
simple
• What happens if I run the wallet in parallel in two different products?
• What if I import to an MPC wallet that doesn’t yet support everything I

have?

• Export is much easier with fully compliant methods
• Just export a mnemonic or seed (not the same thing)
• No technical problem with exporting keys (and this can be done) but it

depends on the support in the other wallet

28

Construction BIP-Compliant Wallets

• MPC theorem: any probabilistic polynomial-time function can be securely
computed
• Convert function to Boolean circuit and compute
• But how efficient is it?

• BIP-039
• A way of generating a seed from a mnemonic
• Uses PBKDF2: 2048 iterations of HMAC-SHA512 [Yehuda’s rant]
• Size of single garbled circuit (essentially a lower bound here):

• Approximate number of AND gates in circuit: 4 × 58,120 × 2048 = 476,119,040
• Size of circuit = 32 bytes per AND gate; approx 14GB

• This is not happening anytime soon from a mobile…

29

Constructing BIP-032 Compliant Wallets

• Run two-party MPC of HMAC-SHA512
• Three HMAC-SHA512 for a derivation (BIP-044)

• But isn’t two-party malicious secure computation very
expensive?

31

HD Derivation – It’s Not So Simple

• MPC ensures that the computation is correct; it says nothing
about the inputs (think about trusted black box)
• What forces the parties to input the correct shares of the seed in

the derivation?
• What forces the parties to use the correct output shares from the

derivation?
• Computing the public key in the circuit would add tens of millions of

gates

• Input and output enforcement mechanisms need to be added

32

Constructing BIP-Compliant Wallets

• Imported wallet
• Only have mnemonic, and anyway it was already in one place, so do local

key generation and then split
• Any later hardened derivations are via MPC on the seed with BIP-032

• New wallet – fully BIP-039 compliant
• Can do the same as above (still much better than standard wallets)

• New wallet – BIP-032 compliant
• Can generate the seed and run MPC to generate all keys
• Expensive but possible

• New wallet – not BIP compliant; can export keys only

33

MPC-Friendly HD Wallets

• Use an MPC-friendly derivation function
• This means that it is amenable to efficient MPC
• Typically functions with nice algebraic structure

• Same problems of input and output enforcement exist
• Not considered by most existing solutions (as far as what I’ve seen)

34

Summary

• MPC wallets can solve some of the major problems of usability
• Easier backup since only one share
• Achieve effect of “password reset”
• Enable policy enforcement, fraud management, etc.

• MPC solutions required:
• Standard key generation, signing, refresh etc.
• Publicly-verifiable backup
• HD wallet derivation with input/output enforcement
• MPC-friendly derivation
• And more, like deterministic signing, EdDSA key-compatibility,…

Thank You
36

Building MPC Wallets –
Technical Details

February 2023 37

Yehuda Lindell
Cryptographer

38

Technical Details

• Publicly-verifiable backup
• BIP-032 derivation in MPC

• Computation
• Input and output enforcement

• MPC-friendly HD derivation
• Deterministic signing

• Why is this needed?

• EdDSA key-compatibility
• What’s the problem? Isn’t EdDSA just Schnorr (ignoring nonce

generation)?

39

Publicly-Verifiable Backup

• Task: given private 𝒙 and public 𝑸 = 𝒙 ⋅ 𝑮, and given public
encryption key 𝒑𝒌, generate 𝑪 so that
• Given (𝐶, 𝑄, 𝑝𝑘) an efficiently verify that 𝐶 encrypts the dlog of Q

• This is quite easy using additively homomorphic encryption

• We want to use any encryption scheme (RSA, ECIES, etc.)
• Enables storage of backup keys in HSMs, smartcards, secure

enclaves, or anywhere

• Note: when doing distributed key generation, each party will
backup their share of the private key

40

Interactive Proof with Soundness ½

• Input: (𝑥, 𝑄, 𝑝𝑘)
• Prover commit:

• Choose random 𝑥!, 𝑥" such that 𝑥! + 𝑥" = 𝑥
• Compute 𝑄! = 𝑥! ⋅ 𝐺 and 𝑄" = 𝑥" ⋅ 𝐺
• Compute 𝐶! = 𝐸𝑛𝑐#$(𝑥!; 𝑟!) and 𝐶" = 𝐸𝑛𝑐#$(𝑥"; 𝑟")
• Sends (𝑄!, 𝐶!, 𝑄", 𝐶")

• Verifier challenge: send random challenge 𝑏 to open first or second
• Prover response: send (𝑥! , 𝑟!)
• Verifier: check that

• 𝐶% = 𝐸𝑛𝑐#$(𝑥%; 𝑟%)
• 𝑄% = 𝑥% ⋅ 𝐺
• 𝑄 = 𝑄! + 𝑄"

Soundness: if both checks would pass, then this
implies that the encryptions sum to dlog of Q

Zero-knowledge: revealing only one ciphertext
gives nothing (just random garbage); simulate by
computing (𝑥%, 𝑟%, 𝐶%, 𝑄%) and take 𝑄"&% = 𝑄 − 𝑄%

41

Non-Interactive Proof

• Needed for public verifiability

• Solution:
• Run in parallel 128 times and use Fiat-Shamir
• Optimizations

• Provide randomness and not ciphertext
• Reduce bandwidth (and increase work) by building tree

42

BIP-032 Compliant HD Wallets

43

Constructing BIP-032 Compliant Wallets

• Naïve: run fully malicious 2PC on derivation circuit per key
• Each derivation requires 3 HMAC-SHA512 computations:

• Each HMAC is four SHA computations
• Size: 4 × 58,120 × 3 = 687,440 AND gates (size of a single garbled

circuit = 21.3MB
• Fully malicious protocols

• Garbled-circuit cut-and-choose: about 40-60x
• Authenticated garbling: about 10x

• Can be too expensive
!⊕ #$%&

'(

) = $%+ℎ

! ⊕ -$%&

'(Derived key .

45

Stage 1 – Smaller Circuit

• Sometimes big improvements come from small observations
• In BIP-032, the HMAC key is the (non or semi-private) chain code

• If we provide the chain code to both MPC parties, then can reduce
HMAC from 4 to 2 SHA512 computations

• This requires breaking the circuit computation into 3 parts and
forcing correct (private) output to be used

!⊕ #$%&

'(

) = $%+ℎ

! ⊕ -$%&

'(Derived key .

46

Stage 1 – Smaller Circuit

• Sometimes big improvements come from small observations
• Further improvement by keeping intermediate values in tree

47

Stage 2 – Malicious Two-Party Computation

• Dual execution
• Basic garbled circuit construction is secure against malicious

evaluator (if OT is malicious secure)
• OT + garbled circuit

• Challenge for achieving malicious security
• Garbled circuit can be incorrect and can even reveal secrets

• The dual execution method
• Run basic construction in both directions (evaluator gets output only)
• Compare results and only reveal output if the same

48

Stage 2 – Malicious Two-Party Computation

• Dual execution is leaky
• Malicious circuit: “if first bit input is 0 then output correct; else output garbage”
• The party learns the bit from whether or not there’s an abort

• Dual execution isn’t sufficient for many standard MPC tasks
• Can reveal “most important bit”

• Dual execution for key derivation
• Input is random and learning a bit is OK
• Challenges

• If can run many in parallel, then can learn entire key
• Party can always abort if it’s about to be caught in equality check, and claim

“my machine fell”

49

Dual Execution – Distinguishing Aborts

• Aim: ensure recovery from accidental aborts

• Solution:
• In equality check, encrypt recovery information (small)

• Use encryption key in backup
• If equality check doesn’t conclude, then set flag to recover
• After recovery check, reset flag
• Check flag before any execution

• And make sure no parallelization

50

Output Enforcement – The Problem

• We run dual execution to obtain private shares 𝒙𝟏, 𝒙𝟐 of
derived key

• At this point, we can run distributed key generation using these
values (instead of choosing random shares)

• But:
• What forces the parties to actually input 𝑥!, 𝑥"?
• If they don’t, backup will be invalid!

51

Output Enforcement – Naïve Solution

• Naïve solution
• Garbled circuit computes 𝑄 = 𝑥 ⋅ 𝐺 and outputs it
• After key generation, compare to given 𝑄

• Problem
• This requires millions of gates!

52

Output Enforcement – Solution

• Parties also input random 𝒂𝟏, 𝒃𝟏 and 𝒂𝟐, 𝒃𝟐
• Circuit computes derived key 𝑥 (shares 𝑥0, 𝑥1)
• Circuit also outputs 𝑡 = 𝑎0 + 𝑎1 ⋅ 𝑥 + 𝑏0 + 𝑏1

• Prefer computation over integers; can set 𝑎 of 64 bits, and 𝑏 of size 64
bigger than 𝑎 ⋅ 𝑥 (concretely 384)

• After execution:
• Party 1 sends commitment to 𝑄0 = 𝑥0 ⋅ 𝐺 and 𝐵0 = 𝑏0 ⋅ 𝐺 and 𝑎0
• Party 2 sends 𝑄1 = 𝑥1 ⋅ 𝐺 and 𝐵1 = 𝑏1 ⋅ 𝐺 and 𝑎1
• Party 1 decommits
• Both check that 𝑡 ⋅ 𝐺 = 𝑎0 + 𝑎1 ⋅ 𝑄0 + 𝑄1 + 𝐵0 + 𝐵1
• If yes, they output 𝑄

53

Output Enforcement – Solution

• Recall
• 𝑡 = 𝑎* + 𝑎+ ⋅ 𝑥 + 𝑏* + 𝑏+
• Both check that 𝑡 ⋅ 𝐺 = 𝑎* + 𝑎+ ⋅ 𝑄* +𝑄+ + 𝐵* +𝐵+

• Soundness
• Parties reveal their values before seeing the others
• If Party 1 wants to change 𝑄* to 𝑄*, then it needs to find 𝑎*, , 𝐵*, such that

• 𝑎" + 𝑎# ⋅ 𝑥" + 𝑥# + 𝑏" + 𝑏# = 𝑎"$ + 𝑎# ⋅ 𝑥"$ + 𝑥# + 𝑏"$ + 𝑏#
• ⇔ 𝑎 ⋅ 𝑥 + 𝑏 = 𝑎 + Δ% ⋅ 𝑥 + Δ& + 𝑏 + Δ!
• ⇔ 0 = 𝑎 ⋅ Δ& + Δ% ⋅ 𝑥 + Δ% ⋅ Δ& + Δ!

• But 𝑎 is not known

• Privacy: 𝑏 is large enough to hide 𝑎, given 𝑡

54

Input Enforcement

• But parties can input different seed in different computations
• In particular, can input different seed than what was backed up

• Solution
• Generate seed and back it up

• Using publicly-verifiable backup, we know a public 𝑄23 for the seed
• Run a circuit computation with input seed shares

• Can use the same method of output enforcement on 𝑄23 as well
• Can also compute one-time MAC for future executions

55

MPC-Friendly HD Wallets

• Use an MPC-friendly derivation function
• This means that it is amenable to efficient MPC
• Based on functions with nice algebraic structure

• Strongly recommend against circuit-efficient hash

• We will give an imperfect yet reasonable solution here
• Tool – VRF (party committed to PRF)

• For example:
• In setup, provide 𝐾 = 𝑘 ⋅ 𝐺; 𝐻 is random oracle to curve
• 𝑌 = 𝑃𝑅𝐹4 𝑚 = 𝑘 ⋅ 𝐻 𝑚 (by DDH, this looks random)
• Proof that (𝐺, 𝐻 𝑚 ,𝐾, 𝑌) is a Diffie-Hellman tuple (easy proof)

56

Imperfect MPC-Friendly Derivation

• Hold shares of a root key 𝑥!, 𝑥" with public key 𝑄 = (𝑥! + 𝑥") ⋅ 𝐺
• Each party uses a VRF (with a different key) to derive some Δ!, Δ"

from the path, and set Δ = Δ! + Δ"
• The derived public key is 𝑄%&' = 𝑄 + Δ ⋅ 𝐺
• The private key shares are 𝑥! + Δ and 𝒙"
• This is like normal derivation, except only MPC parties can compute it

• Doesn’t support delegation or export of some keys (typically OK)
• Unlinkability is still supported for anyone except MPC participants (but

they can link anyway)

57

Deterministic Signing – why do we care?

• Maybe you are concerned about randomness generation
• Personally I’m less concerned in an MPC setting, but…

• Sometimes you have no choice
• How do some dApps utilize wallets that can only do ECDSA/EdDSA

but they want to do other things?
• Upon enrollment, ask for two signatures on a random message
• If they are the same, then support the wallet; else reject
• Derive the key by asking for a signature on a fixed message
• Interesting fact: 𝐻(𝑆𝑖𝑔𝑛54 𝑚) is a PRF

58

Deterministic Signing – Danger

• Naïve solution: each party uses PRF to locally derive randomness

• Attack
• Attacker uses different randomness on two signatures
• Schnorr

• 𝑅 = 𝑟 ⋅ 𝐺; 𝑠 = 𝑟 + 𝐻(𝑚| 𝑅 ⋅ 𝑘
• 𝑟 = 𝑟" + 𝑟# chosen by the parties

• Attacker sets 𝑟-, = 𝑟- + Δ for a known Δ
• Given 𝑠 = 𝑟 + 𝐻(𝑚| 𝑅 ⋅ 𝑘 and 𝑠, = 𝑟 + Δ +𝐻(𝑚| 𝑅 ⋅ 𝑘, compute

𝑘 = ./.!/0
1(2||4)

59

EdDSA

• Key setup
• SHA512 hash key 𝑘 to 512 bits

• First part: signing private key 𝑥; signing public key 𝑄 = 𝑥 ⋅ 𝐺
• Second part: derivation key 𝑑

• Sign message 𝒎
• Nonce: 𝑟 = 𝑆𝐻𝐴512(𝑑,𝑚) and 𝑅 = 𝑟 ⋅ 𝐺
• 𝑒 = 𝑆𝐻𝐴512(𝑅, 𝑄,𝑚)
• 𝑠 = 𝑟 + 𝑒 ⋅ 𝑥 mod 𝑞
• Output (𝑅, 𝑠)

• EdDSA is Schnorr with key and randomness derivation
• Schnorr is very MPC friendly

60

EdDSA Compatibility

• If we don’t care about deterministic signatures, we can simply
use any MPC protocol for Schnorr
• This is indistinguishable (up to signing twice on same message)

• In many (or most) cases this is “good enough”

• What about compatibility?
• No problem: export generated Schnorr key as EdDSA-derived 𝑥

• This will work for all EdDSA implementations (take 𝑑 random)
• Regeneration of signatures won’t work – not sure it matters

61

EdDSA Export Compatibility

• But all wallets expect to receive the pre-derivation key 𝒌
• This is true also of wallets that enable key import (and not just BIP

import)

• This means that I need to generate shares of 𝒙 from shares of
𝒌, so that it can be exported
• Or I could provide my own proprietary code, but…

• Solution:
• Everything we saw with BIP derivation and enforcement, but just

one SHA512 computation

62

Summary

• MPC wallets solve a lot of problems and are a great fit

• But naïve solutions can be very dangerous

• There are many advanced MPC techniques needed here, and
lots of research questions for improving them

Thank You
63

