Joint work with the Coinbase cryptography team (and others)
* Arash Afshar

* Yi-Hsiu Chen

e Iftach Haitner

* Samuel Ranellucci

coinbase

Building MPC Wallets -
Challenges and Solutions Costonr

The Self-Custody Dilemma

Self Custody

 Technical solution

e User holds key — on mobile device, laptop, hardware device

 Advantages

* Your keys your coins — not as a catchphrase: you have full control and this
is the whole reason for decentralization

* No one can censor you or prevent you using your keys (subpoena, other)

* You are not reliant on a central organization, and you don’t lose your money
if they go bankrupt

e Other assets like NFTs are not aligned with a centralized exchange
e Although it can be technically solved by them holding your keys for you

Self Custody

* Technical solution
e User holds key — on mobile device, laptop, hardware device

* Disadvantages

e Usability — you are responsible
e Backup: store the mnemonic where it won’t be lost or stolen

* Note that these goals are at direct odds with each other

Many stories of users with wallets asking for password reset

* Security

User devices are very problematic from a security perspective
Users are vulnerable to social engineering (exacerbated by mnemonic)

Backup is related here as well — consider backup in cloud storage, on a piece
of paper, etc.

Self Custody Usability

 Think about the regular non-expertuser =~ "7
DEV Commun| ity B2 & 2 5 W % umbrella .heavv | cactus

Secret Backup Phrase S

These 12 words are the keys to your wallet. Back them
up on the cloud or back them up manually. Do not share
this with anyone.

Your secret backup phrase makes it easy to back up
and restore your account.

WARNING: Never disclose your backup phrase. Anyone
with this phrase can take your Ether forever.

Which
a Back up manually ShOUId |

choose?
CLICK HERE TO REVEAL SECRET WORDS

Self Custody Usability

* Think about the regular non-expert user

Electrum - Install Wizard

Enter Seed

Please enter your seed phrase in order to restore your wallet.

brain board cactus tongue frown whale survey small
oxygen year eye surround soul fancy riot crater canvas
material first abandon abandon|

BIP39 (checksum: failed) Options

Warning: BIP39 seeds can be imported in Electrum, so that users
can access funds locked in other wallets. However, we do not
generate BIP39 seeds, because they do not meet our safety
standard. BIP39 seeds do not include a version number, which
compromises compatibility with future software. We do not
guarantee that BIP39 imports will always be supported in Electrum.

é

Backup your wallet

) Copy to clipboard

[] [Ledger Wallet

Self Custody Usability —

Ledger Products Downloads Crypto assets Get started For Business Support v

Menu Ledger data damage error 0XOm3Ck8n.

Do not reload or Your devices memory has been partially damaged. Please enter your

seed ir
W Wallet Error
Hd

son

BIP39 - Mnemonic Code x +

C O Not Secure | ledgertoolkit.com % Incognito (2) @ @
10311 Recovery seed
Mnemonic Code Converter

Please enter the 1st word of your mnemonic

Accounts
Mnemonlc o m
You can enter an existing BIP39 mnemonic, or generate a new random one. Typing your own twelve words will probably not work how you expect,
since the words require a particular structure (the last word is a checksum). e

For more info see the BIP39 spec.

Generate a random mnemonic: GENERATE 15 4 words, or enter your own below. SECURITY VULNERABILITY

Show entropy details

Hide all private info

Mnemonic Language English HZEE Espaiol (&) (%) Francais Italiano 2

BIP39 Mnemonic
/4
BIP39 Passphrase
(optional)
BIP39 Seed
y
Coin BTC - Bitcoin B

IMPORTANT: Ledger Nano S and Ledger Nano X
SECURE RNG CHIP CRITICAL VULNERABILITY

Inside Ledger hardware wallet, we use the Secyre Element chip to

generate and store the private keys for yo fssets. Unfortunately,

Ledger is activel e all defective
devices. Please chd CTective with the Ledger SE
tool

We apologize for the inconvenience.

This mail was sent to you because your Ledger device could be faulty.
Please download the Ledger SE Cecker tool below and check right now!

Exchanges and Custody

* Technical solution
e Exchange or custodian holds your funds for you

 Advantages
* Burden of management and security is on them

* Professional enterprises are far better at security and backup than
regular users
* Additional anti-fraud and other mechanisms can be used

* Step-up authentication for high amounts, policies on amounts,
allow-lists and more can be enforced at the exchange

Exchanges and Custody

* Technical solution
e Exchange or custodian holds your funds for you

* Disadvantages

* Not all exchanges are equal — users are vulnerable to bankruptcy
or fraud by the exchange itself

* True of regular banks, but we have decades of regulation and
support to minimize these risks (at least in many countries)

* Not decentralized so why bother (to some extent)

Exchanges and Custody

i RF

What next for French victims of the FTX cryptocurrency
exchange collapse?

The collapse of the FTX cryptocurrency exchange has had repercussions around the
globe, with more than a million clients losing money...

WP The Washington Post

Celsius bankruptcy judge ruling says account holders don't
own their accounts

More than half a million people who deposited money with collapsed crypto lender
Celsius Network have been dealt a major blow to their hopes...

@ CoinDesk

Three Arrows Capital Founders Launch Exchange Where
You Can Trade 3AC Bankruptcy Claims

... Launch Exchange Where You Can Trade 3AC Bankruptcy Claims ... the founders of
failed crypto hedge fund Three Arrows Capital (3AC),...

10

Exchanges and Custody

CRYPTOCURRENCIES

You Still Owe the IRS Even if Your Crypto Lender
Collapsed

By Joe Light @il Feb. 9, 2023 3:00 am ET Orde

Text size @ @

Listen to article
5 minutes

Customers of failed crypto lenders such
and BlockFi might have an unwelcome
surprise this tax season.

Even though their earnings might be
locked up in bankruptcy proceedings,
the investors likely still owe taxes on
Voyager Digital encouraged customers to get tax advice much of what their accounts received
Dreamstime last year.

11

Exchange and Custody

* But — where would you put your money?
* [n Sam’s bank of the Bahamas, or
e Citibank, JP Morgan,...

* The same is true of crypto exchanges as well

12

The Self-Custody Dilemma

* If we want everyone (or anyone) to use cryptocurrency, then we
must solve this problem

* The aim: self-custody with the experience of an exchange

* A note: | personally think that this isn’t a XOR situation
* | want to keep some money in my wallet

* | also want to keep some money in a “bank”

* Bank in quotes due to regulatory ramifications

13

MPC Wallets — High Level
ldea

Using MPC for Keys (aka Threshold Signing)

* MPC considers “different parties” with “different inputs”

* We can also use MPC for one input split over different devices
* Take a private key k and “split” it into two random shares k4 and k, such that
ki+k, =k
* Place one share on each device
* Relate to each share as “private input” and run an MPC protocol

* Security guarantees — a malicious adversary (running arbitrary attack code)
having full control over one of the devices cannot break the protocol
e Privacy: attacker can’t learn anything beyond the signature (so nothing is
revealed about the key)
* Correctness: an attacker can’t make the signature be on a different transaction

» Attacker needs to break into both devices in order to learn anything

17

Corruptions

* Clearly, we aren’t concerned with a corrupt user stealing from
themselves

 We also aren’t concerned with a corrupt service provider wanting to
steal from their customers

e Of course, depending on the service provider

 We are concerned that the user’s device is infected by malware, that
the service provider is breached or that there’s a corrupt insider

* Key not at service provider also has major legal implications, but
these alone can be solved with “semi-honest MPC”

18

MPC-Based Wallets

* Key is shared between user device (mobile and/or browser)
and service provider

* Basic properties
* Service provider cannot transact without user (doesn’t hold key)

 Malware on mobile isn’t enough for key theft
» Key misuse is also mitigated with policies

e Backup of user share is much easier (only one share)

* But: naive implementation is still not censorship-free
* Need to add censorship-free backup

19

MPC Operations Needed

 Signing (obviously)
* Key generation — never have a key exposed

* Refresh — force an attacker to “simultaneously” breach

* If shares of key are k¢, k, then updateto k; + 1, k, — r for a
randomly generated r

* The sum is unchanged

* Backup

HD wallet support

20

More About Backup

* Publicly-verifiable backup

* The obvious idea: each device encrypts the share they generated under a
(secured) backup key

* The threat: one of the devices encrypts the wrong value

 Why? Sabotage for example (competition, etc.)

e Publicly-verifiable backup: verify that the encrypted value is correct
without opening the encryption (or even holding the decryption key)

21

First Backup

* Regular easy-to-use backup
* User holds private decryption key in cloud backup (as an example)
* Service provider backs up their share locally
* User backs up their share by encrypting under backup encryption key
and sends to service provider
* User loses their device, transfers and data is lost, etc.

» Service provider sends encrypted backup to user (strong authentication
is needed here!)

* User retrieves decryption key from cloud backup and decrypts
e Service provider retrieves from backup (needed due to refresh)

22

Second Backup (if subpoena is a concern)

* Censorship-free hard-to-use backup
* User holds private decryption key in secure environment
* YubiHSM, biometric-protected secure enclave
* Service provider encrypts their share under public backup key
e User encrypts their share also under public backup key
* Backup ciphertexts are stored (in device, in cloud, etc.)
* Key is never exposed even while generating backup

* User needs to export (is censored due to subpoena or anything else)
e User obtains both backup ciphertexts
* User decrypts both shares

The Self Custody Dilemma

* Why does this solve the mnemonic and usability problem?
* The backup is generated automatically and safely

* Unlike with mnemonics, it is possible to store the user share in the
cloud without too much danger (so it can be automatic)

* The censorship-resistant backup is also generated safely
e Other features

* Since the service provider is involved in all operations, they can
apply policy and fraud mitigation mechanisms

* Restore-from-backup provides a UX like password reset (as long as
they have access to their cloud)

24

HD Wallet Support

* Backup is “easier” with an HD wallet

* Itisn’t essential since once backup is automatic, we can do it for
every generated key, but it requires access to backup storage
which depends on the setting

e Can we build MPC HD wallets?

25

BIP-039/BIP-032 Compliant HD Wallets

BIP 32 - Hierarchical Deterministic Wallets

Master Master Wallets / Wallet
Seed Node Accounts Chains
External @ o)
CKD(M/0, 0) \!ZJ o
t 8 m/0/0
S Internal 9 2]
nmema &
m/0 CKO(m/0, 1) /o1
cxo(m, 0),
Etropy External 18
- CKD(m/1, 0) LK)
128 bits ~ CKD(m. 1) t R m/1/0
wa HMAC-SHAS12 (@ @) inkemad L&
3 ._ m/1 CKO(m/1, 1)]
S m "\ .
. CKD(m, i)
L
External ‘® X
; CKD{myi, 0) ‘17
t % m/i/0
m/i Internal ‘t—S—J
CKD{myi, 1) m/]/l " -
Depth =0 Depth =1 Depth = 2

_____-m/0/0/0 _ m/0/0/1

~mio _ minn

Addresses

;i‘;“r iE “ o e ﬁ‘{

__~ mj0/0/k

?t;" k8 ... (28

_em/0/1/0 _ m/O/1/1 . mjO/1/k
L]
[]
[]
t 8 t 5—-_ « o [t 3

e m/if1/k

Depth = 3

Child Key Derivation Function ~ CKD(x,n) = HMAC-SHAS12(X cran » X sussey || N)

26

BIP-039/BIP-032 Compliant HD Wallets

* Why do we want BIP compliance?

e Standard methods require no explanation
* Existing BIP wallets can be imported

* It’s possible to import just hard-derived keys, but this is actually not so
simple
 What happens if | run the wallet in parallel in two different products?

 What if | import to an MPC wallet that doesn’t yet support everything |
have?

e Export is much easier with fully compliant methods
e Just export a mnemonic or seed (not the same thing)

* No technical problem with exporting keys (and this can be done) but it
depends on the support in the other wallet

27

Construction BIP-Compliant Wallets

 MPC theorem: any probabilistic polynomial-time function can be securely
computed

e Convert function to Boolean circuit and compute

e But how efficient is it?

* BIP-039
* A way of generating a seed from a mnemonic
e Uses PBKDF2: 2048 iterations of HMAC-SHA512 [Yehuda’s rant]
» Size of single garbled circuit (essentially a lower bound here):
* Approximate number of AND gates in circuit: 4 X 58,120 x 2048 = 476,119,040
* Size of circuit = 32 bytes per AND gate; approx 14GB

* This is not happening anytime soon from a mobile...

28

Constructing BIP-032 Compliant Wallets

* Run two-party MPC of HMAC-SHA512
* Three HMAC-SHA512 for a derivation (BIP-044)

e But isn’t two-party malicious secure computation very
expensive?

29

HD Derivation — It’s Not So Simple

* MPC ensures that the computation is correct; it says nothing
about the inputs (think about trusted black box)

* What forces the parties to input the correct shares of the seed in
the derivation?

* What forces the parties to use the correct output shares from the
derivation?

 Computing the public key in the circuit would add tens of millions of
gates

* Input and output enforcement mechanisms need to be added

31

Constructing BIP-Compliant Wallets

Imported wallet

* Only have mnemonic, and anyway it was already in one place, so do local
key generation and then split

* Any later hardened derivations are via MPC on the seed with BIP-032

New wallet — fully BIP-039 compliant
e Can do the same as above (still much better than standard wallets)

New wallet — BIP-032 compliant
e Can generate the seed and run MPC to generate all keys
* Expensive but possible

New wallet — not BIP compliant; can export keys only

32

MPC-Friendly HD Wallets

* Use an MPC-friendly derivation function
* This means that it is amenable to efficient MPC
* Typically functions with nice algebraic structure

 Same problems of input and output enforcement exist
* Not considered by most existing solutions (as far as what I've seen)

Summary

 MPC wallets can solve some of the major problems of usability
e Easier backup since only one share
* Achieve effect of “password reset”
* Enable policy enforcement, fraud management, etc.

 MPC solutions required:

Standard key generation, signing, refresh etc.
Publicly-verifiable backup

HD wallet derivation with input/output enforcement
MPC-friendly derivation

And more, like deterministic signing, EdDSA key-compatibility,...

34

Thank You

coinbase

Building MPC Wallets -
Technical Detalls enptograher

Technical Details

Publicly-verifiable backup

BIP-032 derivation in MPC
* Computation
* Input and output enforcement

MPC-friendly HD derivation

Deterministic signing
 Why is this needed?

EdDSA key-compatibility

 What’s the problem? Isn’t EADSA just Schnorr (ignoring nonce
generation)?

38

Publicly-Verifiable Backup

* Task: given private x and public Q = x - G, and given public
encryption key pk, generate C so that
* Given (C, Q,pk) an efficiently verify that C encrypts the dlog of Q

* This is quite easy using additively homomorphic encryption

 We want to use any encryption scheme (RSA, ECIES, etc.)

* Enables storage of backup keys in HSMs, smartcards, secure
enclaves, or anywhere

* Note: when doing distributed key generation, each party will
backup their share of the private key

39

Interactive Proof with Soundness %

* Input: (x, Q,pk)
* Prover commit:
* Choose random x,, x; suchthat xy + x; = x
e ComputeQy =x5-GandQ; =x; -G
* Compute Cy = Encyi(xo;19) and C; = Ency (xq;711)
* Sends (Qo, Co, @1, (1)

» Verifier challenge: send random challenge b to open first or second

* Prover response: send (x;, 1)

* Verifier: check that Soundness: if both checks would pass, then this

* Cp = Encyr(xp; 1) implies that the encryptions sum to dlog of Q
* Qp=xp-G Zero-knowledge: revealing only one ciphertext
« Q=0Q,+0, gives nothing (just random garbage); simulate by

computing (xp, 1, Cp, Qp) and take Q1_p, = Q — @y

40

Non-Interactive Proof

* Needed for public verifiability

* Solution:
 Run in parallel 128 times and use Fiat-Shamir
* Optimizations
* Provide randomness and not ciphertext
* Reduce bandwidth (and increase work) by building tree

41

BIP-032 Compliant HD Wallets

BIP 32 - Hierarchical Deterministic Wallets

Master Master Wallets / Wallet Addresses

\ Seed Node Accounts Chains
| 25 R ... (2§
External Q
B e e 18]~ -m/0/0/0_ m00/L - mi0/O/K
- m/0/0 T '
‘ /O Internal t SJ t 5,[t_5 L \t ;J
¢ 0, 7 2 =
| . m KD(m/0, 1) m/0/1 \.__,‘i_?_::; nl/011/0__ mlOIl/_l_ s m/0/1/k
CKD{(m, 0), >4 i o
/1 External (@ 2)
\ Entropy > CKO(mAL, 0) l_g‘
| 128 bits " cKkom. 1) t 8 m/1/0
HMAC-SHAS12 % Intemal 18 ®
vl - e nterna 3
| -2 & M/l comn in .
| S m \-_1 CKD(m, 1) ol Y
| .
N °
\ \ External]
: CKD{myi, 0) Lt_)
t % m/i/0
4 o7 o —re
. Internal ‘t o Lt 3_1 t %) * o lt JJ
| m/i CKO(mA 1) T e —-MA/0 _ MmNl e miflk
Depth =0 Depth =1 Depth = 2 Depth = 3

Child Key Dérivation Funcfion ~ CKD(x,n) - HMAC-SHA512(X chain » X pubkey || N)
42

Constructing BIP-032 Compliant Wallets

* Naive: run fully malicious 2PC on derivation circuit per key

e Each derivation requires 3 HMAC-SHA512 computations:
 Each HMAC is four SHA computations

* Size: 4 X 58,120 X 3 = 687,440 AND gates (size of a single garbled
circuit =21.3MB

* Fully malicious protocols

e Garbled-circuit cut-and-choose: about 40-60x m = path

* Authenticated garbling: about 10x K & ipad 1 |
e Can be too expensive i : :
K @ opad
v > > > Derived key x

43

Stage 1 — Smaller Circuit

 Sometimes big improvements come from small observations

* In BIP-032, the HMAC key is the (non or semi-private) chain code
* If we provide the chain code to both MPC parties, then can reduce
HMAC from 4 to 2 SHA512 computations

* This requires breaking the circuit computation into 3 parts and
forcing correct (private) output to be used

> Derived key x

45

Stage 1 — Smaller Circuit

 Sometimes big improvements come from small observations
* Further improvement by keeping intermediate values in tree

BIP 32 - Hierarchical Deterministic Wallets

Master Master Wallets / Wallet Addresses
Seed Node Accoun! ts Chains
s 18 28 ... (L8
External N E
Lo i (¥ m/0/0/0 _ m/0/0/1 - m/0/0/k
[t :] m/0/0
b Internal (¥ W & eeo
m/ aomo. D i~ ~m/0/1/0 _ m/0/1/1 - m/0/1/k

xxxxxx al
Entropy 7 kom0 t

128 bits CKD(m, 1) t g — m/1/0
& T °
§ HMAC-SHAS12 (@ & o Internal 8
-1 & ’ <
g@ L!,J m/l cxom V1, 1) il °
S .
CKD(m. i)

m

L]
.
External -
cnnm'\'r‘,.‘o» 28
t S m/i/0
[J E) 9 ... @
mfi - eomiy ~miino__ min - Mk

Depth = 0 Depth = 1 Depth = 2 Depth = 3
Child Key Derivation Function ~ CKD(x,n) = HMAC-SHAS512(X chain » X puskey || N)

46

Stage 2 — Malicious Two-Party Computation

 Dual execution

* Basic garbled circuit construction is secure against malicious
evaluator (if OT is malicious secure)

e OT + garbled circuit
e Challenge for achieving malicious security
* Garbled circuit can be incorrect and can even reveal secrets
* The dual execution method
e Run basic construction in both directions (evaluator gets output only)
* Compare results and only reveal output if the same

47

Stage 2 — Malicious Two-Party Computation

* Dual execution is leaky
* Malicious circuit: “if first bit input is O then output correct; else output garbage”

* The party learns the bit from whether or not there’s an abort

* Dual execution isn’t sufficient for many standard MPC tasks

* Can reveal “most important bit”

* Dual execution for key derivation
* Inputis random and learning a bit is OK
* Challenges
* If can run many in parallel, then can learn entire key

e Party can always abort if it’s about to be caught in equality check, and claim
“my machine fell”

48

Dual Execution — Distinguishing Aborts

 Aim: ensure recovery from accidental aborts

* Solution:
* In equality check, encrypt recovery information (small)
* Use encryption key in backup
* If equality check doesn’t conclude, then set flag to recover
e After recovery check, reset flag
* Check flag before any execution

 And make sure no parallelization

49

Output Enforcement — The Problem

* We run dual execution to obtain private shares x{, x, of
derived key

e At this point, we can run distributed key generation using these
values (instead of choosing random shares)

* But:
* What forces the parties to actually input x4, x,?
 If they don’t, backup will be invalid!

50

Output Enforcement — Naive Solution

* Naive solution
* Garbled circuit computes Q = x - G and outputs it
* After key generation, compare to given Q

* Problem

* This requires millions of gates!

51

Output Enforcement — Solution

* Parties also input random a, b; and a,, b,
* Circuit computes derived key x (shares x4, x»)
 Circuit also outputst = (a; + ay) - x + (by + by)

* Prefer computation over integers; can set a of 64 bits, and b of size 64
bigger than a - x (concretely 384)

After execution:

Party 1 sends commitmentto Q; = x; - G and B; = by - G and a4
Party 2sends Q, = x, - Gand B, = b, - G and a,

Party 1 decommits

Both check thatt - G = (a; + a,) - (Q; + Q,) + (B; + B,)

If yes, they output Q

52

Output Enforcement — Solution

* Recall
e t=(a; +a,) x+ (b; +by)
* Both checkthatt-G = (a; +a,) - (Q; +Q,) + (B; + B,)

* Soundness
» Parties reveal their values before seeing the others
* If Party 1 wants to change Q; to Q; then it needs to find a;, By such that
* (a; +ay) (x; +x3) + (by + by) = (a3 + az) - (x1 + x3) + (by + by)
e ©a-x+b=((@+A) (x+A,)+(b+A4p)
e ©0=a Ay +A,-x+A,- A, + 4
* But ais not known

* Privacy: b is large enough to hide a, given t

Input Enforcement

e But parties can input different seed in different computations
* In particular, can input different seed than what was backed up

e Solution
* Generate seed and back it up
* Using publicly-verifiable backup, we know a public Q;,, for the seed
* Run a circuit computation with input seed shares

* Can use the same method of output enforcement on Q;;, as well
e Can also compute one-time MAC for future executions

54

MPC-Friendly HD Wallets

* Use an MPC-friendly derivation function
 This means that it is amenable to efficient MPC

* Based on functions with nice algebraic structure
* Strongly recommend against circuit-efficient hash

 We will give an imperfect yet reasonable solution here

* Tool — VRF (party committed to PRF)
* For example:
* In setup, provide K = k - G; H is random oracle to curve
Y =PRF,(m) =k - H(m) (by DDH, this looks random)
* Proof that (G, H(m), K,Y) is a Diffie-Hellman tuple (easy proof)

55

Imperfect MPC-Friendly Derivation

Hold shares of a root key x,, x, with publickey Q = (x; + x,) - G

Each party uses a VRF (with a different key) to derive some A, A,
from the path, andset A = A; + A,

The derived public keyis Q0,,,,, =0 +A- G
The private key shares are x; + A and x,,

This is like normal derivation, except only MPC parties can compute it

* Doesn’t support delegation or export of some keys (typically OK)

* Unlinkability is still supported for anyone except MPC participants (but
they can link anyway)

56

Deterministic Signing —why do we care?

 Maybe you are concerned about randomness generation
* Personally I’'m less concerned in an MPC setting, but...

* Sometimes you have no choice
 How do some dApps utilize wallets that can only do ECDSA/EdDSA
but they want to do other things?
* Upon enrollment, ask for two signatures on a random message
* If they are the same, then support the wallet; else reject
* Derive the key by asking for a signature on a fixed message
* Interesting fact: H(Signg,(m)) is a PRF

57

Deterministic Signing — Danger

* Naive solution: each party uses PRF to locally derive randomness

* Attack
* Attacker uses different randomness on two signatures
e Schnorr
* R=7r-G; s=r+H(m||R) -k
* r =1, + 1, chosen by the parties
* Attacker setsr;y = r; + A for a known A
« Givens=r+H(m||R)-kands’' =r+ A+ H(m||R) - k, compute

58

EdDSA

* Key setup
 SHA512 hash key k to 512 bits
* First part: signing private key x; signing publickey Q = x - G
e Second part: derivation key d
* Sigh message m
* Nonce:r = SHA512(d,m)andR =71-G
« e =SHA512(R,Q,m)
* s=r-+e-x modqg
* Output (R,s)
* EADSA is Schnorr with key and randomness derivation
e Schnorr is very MPC friendly

59

EdDSA Compatibility

* |If we don’t care about deterministic signatures, we can simply
use any MPC protocol for Schnorr

* This is indistinguishable (up to signing twice on same message)
* In many (or most) cases this is “good enough”

 What about compatibility?
* No problem: export generated Schnorr key as EdADSA-derived x

* This will work for all EADSA implementations (take d random)

* Regeneration of signatures won’t work — not sure it matters

60

EdDSA Export Compatibility

* But all wallets expect to receive the pre-derivation key k
* This is true also of wallets that enable key import (and not just BIP
import)
* This means that | need to generate shares of x from shares of
k, so that it can be exported

e Or | could provide my own proprietary code, but...

e Solution:

* Everything we saw with BIP derivation and enforcement, but just
one SHA512 computation

61

Summary

 MPC wallets solve a lot of problems and are a great fit
* But naive solutions can be very dangerous

* There are many advanced MPC techniques needed here, and
lots of research questions for improving them

62

Thank You

