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Bilinear maps
Background



Bilinear maps

Setup describing (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑒, 𝑔, ℎ)

● Prime 𝑝

- Size of prime related to security level, could for instance choose 𝑝 ≈ 256

● Cyclic groups 𝐺1, 𝐺2, 𝐺𝑇 of order 𝑝

- Written multiplicatively with neutral elements 1 in this talk

- Generators 𝑔, ℎ such that 𝐺1 = 𝑔 , 𝐺2 = ⟨ℎ⟩

● Map 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇
- Non-degenerate: 𝑒 𝑔, ℎ ≠ 1

- Bilinear: For all 𝑎, 𝑏 ∈ 𝒁𝑝: 𝑒 𝑔𝑎 , ℎ𝑏 = 𝑒 𝑔, ℎ 𝑎𝑏



Generic bilinear group operations

● Canonical representation of group elements

- So easy to determine whether 𝑢 = 𝑣

● Efficient algorithms to

- Decide membership in the three groups, e.g., 𝑢 ∈ 𝐺1
- Compute group operations in the three groups, e.g., 𝑢 ⋅ 𝑣 in 𝐺2
- Evaluate the bilinear map, e.g., 𝑒(𝑢, 𝑣)

● We refer to these as the generic group operations



Types of bilinear maps

● In pairing-based cryptography, usually the source groups 𝐺1 (𝐺2) are 

subgroups of elliptic curves over a finite field 𝑭𝑞 (𝑭𝑞𝑒), the target group 𝐺𝑇 a 

multiplicative subgroup of 𝑭
𝑞𝑘
∗ , and the bilinear map a pairing 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇

● The underlying mathematical details of the groups and the bilinear map will 

not be important for these lectures, but it is worth noting the classification of 

Galbraith, Paterson and Smart [GPS04]

○ Type I: Symmetric setting where 𝐺1 = 𝐺2

○ Type II: Asymmetric setting 𝐺1 ≠ 𝐺2 with an efficiently computable isomorphism 𝜓: 𝐺2 → 𝐺1

○ Type III: Asymmetric setting 𝐺1 ≠ 𝐺2 where there is no efficiently computable isomorphism in 

either direction



Efficiency

● Type III pairings are currently the most efficient

○ So unless otherwise specified we work in the type III setting

● Size of group element representations 

○ For 𝑎 ∈ 𝒁𝑝, 𝑢 ∈ 𝐺1, 𝑣 ∈ 𝐺2, 𝑤 ∈ 𝐺𝑇 expect  𝑎 < 𝑢 < 𝑣 < 𝑤

● Cost of operations

○ Multiplications in 𝐺1 cheaper than multiplications in 𝐺2 cheaper than multiplications in 𝐺𝑇

○ Exponentiations in 𝐺1 cheaper than exponentiations in 𝐺2 cheaper than exponentiations in 𝐺𝑇

○ Bilinear map the most expensive



Getting used to bilinear maps
● Recall 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇

- Non-degenerate: 𝑒 𝑔, ℎ ≠ 1

- Bilinear: For all 𝑎, 𝑏 ∈ 𝒁𝑝: 𝑒 𝑔𝑎, ℎ𝑏 = 𝑒 𝑔, ℎ 𝑎𝑏

● Exercises

○ What does the equation 𝑒 𝑢, 𝑣 𝑒 𝑢,𝑤 = 𝑦𝑎𝑧 implicitly assume about which groups 

𝑢, 𝑣, 𝑤, 𝑦, 𝑧, 𝑎 belong to?

○ If you see the equation 𝑒 𝑢, 𝑢 = 𝑧 are you in a type I, II or III setting?

○ Reduce  𝑒 𝑔𝑎, ℎ 𝑒 𝑔𝑏, ℎ ,  𝑒 𝑔, ℎ𝑎 𝑒 𝑔𝑏, ℎ , 𝑒 𝑔𝑎, ℎ−𝑏 𝑒 𝑢, 𝑣 𝑒 𝑓, ℎ 𝑐 ,  ς𝑖=1
𝑛 𝑒 𝑔, ℎ𝑎𝑖 𝑏𝑖

○ Reduce  𝑒 𝑢, 𝑣 𝑒(𝑢,𝑤) ,  𝑒 𝑢, 𝑣𝑎 𝑒(𝑢𝑏, 𝑣) ,  𝑒 𝑔𝑎, 𝑣−𝑏 𝑒 𝑓,𝑤 𝑒 𝑢, 𝑣 𝑐 ,  ς𝑖=1
𝑛 𝑒 𝑢𝑎, 𝑣𝑖

𝑏
𝑐𝑖
𝑎𝑏

○ Show that if 𝑒 𝑢, 𝑣 = 1 then 𝑢 = 1 or 𝑣 = 1



Answers
○ What does the equation 𝑒 𝑢, 𝑣 𝑒 𝑢,𝑤 = 𝑦𝑎𝑧 implicitly assume about which groups 𝑢, 𝑣, 𝑤, 𝑦, 𝑧, 𝑎

belong to?

○ If you see the equation 𝑒 𝑢, 𝑢 = 𝑧 are you in a type I, II or III setting?

○ Reduce  𝑒 𝑔𝑎, ℎ 𝑒 𝑔𝑏, ℎ ,  𝑒 𝑔, ℎ𝑎 𝑒 𝑔𝑏, ℎ , 𝑒 𝑔𝑎, ℎ−𝑏 𝑒 𝑢, 𝑣 𝑒 𝑔, ℎ 𝑐 ,  ς𝑖=1
𝑛 𝑒 𝑔, ℎ𝑎𝑖 𝑏𝑖

○ Interesting follow-up question, is 𝑒 𝑔𝑎+𝑏, ℎ or 𝑒 𝑔, ℎ𝑎+𝑏 or 𝑒 𝑔, ℎ 𝑎+𝑏 more “reduced”?

- Recall cost hierarchy expo in 𝐺1 ≤ expo in 𝐺2 ≤ expo in 𝐺𝑇 ≤ pairing

- So maybe 𝑒(𝑔𝑎+𝑏, ℎ) cheaper to compute at cost of 1 expo in 𝐺1 and 1 pairing 

- However, if 𝑒(𝑔, ℎ) used often, precompute to get 𝑒 𝑔, ℎ 𝑎+𝑏 at amortized cost of 1 expo in 𝐺𝑇

𝑢 ∈ 𝐺1, 𝑣, 𝑤 ∈ 𝐺2, 𝑦, 𝑧 ∈ 𝐺𝑇 , 𝑎 ∈ 𝒁𝑝

Type I because 𝑢 ∈ 𝐺1, 𝑢 ∈ 𝐺2 indicates 𝐺1 = 𝐺2

𝑒 𝑔𝑎, ℎ 𝑒 𝑔𝑏, ℎ = 𝑒 𝑔, ℎ 𝑎𝑒 𝑔, ℎ 𝑏 = 𝑒 𝑔, ℎ 𝑎+𝑏

𝑒 𝑔, ℎ𝑎 𝑒 𝑔𝑏, ℎ = 𝑒 𝑔, ℎ 𝑎𝑒 𝑔, ℎ 𝑏 = 𝑒 𝑔, ℎ 𝑎+𝑏

𝑒 𝑔𝑎, ℎ−𝑏 𝑒 𝑢, 𝑣 𝑒 𝑔, ℎ 𝑐 = 𝑒 𝑔, ℎ −𝑎𝑏𝑒 𝑔, ℎ 𝑐𝑒 𝑢, 𝑣 = 𝑒 𝑔, ℎ 𝑐−𝑎𝑏𝑒(𝑢, 𝑣)

ς𝑖=1
𝑛 𝑒 𝑔, ℎ𝑎𝑖 𝑏𝑖 = ς𝑖=1

𝑛 𝑒 𝑔, ℎ 𝑎𝑖𝑏𝑖 = 𝑒 𝑔, ℎ σ𝑖=1
𝑛 𝑎𝑖𝑏𝑖



Answers

○ Reduce  𝑒 𝑢, 𝑣 𝑒(𝑢,𝑤) ,  𝑒 𝑢, 𝑣𝑎 𝑒(𝑢𝑏, 𝑣) ,  𝑒 𝑔𝑎, 𝑣−𝑏 𝑒 𝑓,𝑤 𝑒 𝑢, 𝑣 𝑐 ,  ς𝑖=1
𝑛 𝑒 𝑢𝑎, 𝑣𝑖

𝑏
𝑐𝑖
𝑎𝑏

○ Show that if 𝑒 𝑢, 𝑣 = 1 then 𝑢 = 1 or 𝑣 = 1

Because 𝑔 generates 𝐺1 we can write any 𝑢 ∈ 𝐺1 as 𝑢 = 𝑔𝑥

Similarly, we can write any 𝑣, 𝑤 ∈ 𝐺2 as 𝑣 = ℎ𝑦 and 𝑤 = ℎ𝑧

- All we know is such 𝑥, 𝑦, 𝑧 ∈ 𝒁𝑝 exist, we may not know what they are

𝑒 𝑢, 𝑣 𝑒 𝑢,𝑤 = 𝑒 𝑔𝑥, ℎ𝑦 𝑒 𝑔𝑥, ℎ𝑧 = 𝑒 𝑔, ℎ 𝑥 𝑦+𝑧 = 𝑒(𝑢, 𝑣𝑤)

𝑒 𝑢, 𝑣𝑎 𝑒 𝑢𝑏, 𝑣 = 𝑒 𝑢, 𝑣 𝑎𝑒 𝑢, 𝑣 𝑏 = 𝑒 𝑢, 𝑣 𝑎+𝑏

𝑒 𝑔𝑎, 𝑣−𝑏 𝑒 𝑓,𝑤 𝑒 𝑢, 𝑣 𝑐 = 𝑒 𝑔, 𝑣 −𝑎𝑏𝑒 𝑔𝑥, 𝑣 𝑐𝑒(𝑓, 𝑤) = 𝑒 𝑔−𝑎𝑏𝑢𝑐, 𝑣 𝑒(𝑓, 𝑤)

ς𝑖=1
𝑛 𝑒 𝑢𝑎, 𝑣𝑖

𝑏
𝑐𝑖
𝑎𝑏 = ς𝑖=1

𝑛 𝑒 𝑢, 𝑣𝑖
𝑎𝑏⋅

𝑐𝑖
𝑎𝑏 = ς𝑖=1

𝑛 𝑒 𝑢, 𝑣𝑖
𝑐𝑖 = 𝑒 𝑢,ς𝑖=1

𝑛 𝑣𝑖
𝑐𝑖

𝑒 𝑢, 𝑣 = 𝑒 𝑔𝑥, ℎ𝑦 = 𝑒 𝑔, ℎ 𝑥𝑦 is the same as 1 = 𝑒 𝑔, ℎ 0

Since 𝑒 𝑔, ℎ ≠ 1 it generates 𝐺𝑇 so we have 𝑥𝑦 = 0 implying 𝑥 = 0 or 𝑦 = 0



Decisional Diffie-Hellman assumption

● We will assume the DDH problem is hard in both 𝐺1 and 𝐺2
- Also known as the Symmetric External DH (SXDH) assumption

● The DDH assumption in 𝐺1 over setup (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑒, 𝑔, ℎ)

○ Define for adversary 𝐴 the following experiment

𝑏 ← 0,1

𝑥, 𝑦, 𝑧 ← 𝒁𝑝
∗

𝑢 = 𝑔𝑥, 𝑣 = 𝑔𝑦

𝑤 = 𝑔𝑏𝑥𝑦+ 1−𝑏 𝑧

𝑏∗ ← 𝐴 𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑒, 𝑔, ℎ, 𝑢, 𝑣, 𝑤

○ The assumption says that for any realistic (computationally bounded) adversary Pr 𝑏 = 𝑏∗ ≈
1

2

● The DDH assumption in 𝐺2 over setup (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑒, 𝑔, ℎ) is defined similarly



ElGamal encryption

● Key generation in group 𝐺1 assuming setup (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑒, 𝑔, ℎ)

○ Pick 𝑥 ← 𝑍𝑝 and let this be the secret key. Let the public key be 𝑦 = 𝑔𝑥

● Encryption of 𝑚 ∈ 𝐺1

○ Pick 𝑟 ← 𝑍𝑝 and return ciphertext 𝑐 = Enc 𝑦,𝑚; 𝑟 ≔ 𝑔𝑟 , 𝑦𝑟𝑚

● Decryption of 𝑐 = 𝑢, 𝑣 ∈ 𝐺1
2

○ Return plaintext 𝑚 = Dec 𝑥, 𝑢, 𝑣 ≔ 𝑣𝑢−𝑥

● IND-CPA secure under DDH assumption in 𝐺1
● ElGamal encryption in 𝐺2 similar



Pairing-based 
proofs
Statements we want to prove



Groth-Sahai proofs

● Two computationally indistinguishable types of common reference string

○ Binding common reference string 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ
′, 𝑣′ ∈ 𝐺2

■ Perfect completeness

■ Perfect soundness

○ Hiding common reference string 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ
′, 𝑣′ ∈ 𝐺2

■ Perfect completeness

■ Perfect zero-knowledge

? DDH



Statements

● Instance 𝜙 = 𝑒𝑞1, … , 𝑒𝑞𝑞 , equations over variables 𝑋𝑖 ∈ 𝐺1, 𝑌𝑗 ∈ 𝐺2, 𝑥𝑖 , 𝑦𝑗 ∈ 𝒁𝑝

○ Pairing product equation defined by 𝐴𝑗 ∈ 𝐺1, 𝐵𝑖 ∈ 𝐺2, 𝛾𝑖𝑗 ∈ 𝒁𝑝

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗 , 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗

= 1

○ Multi-exponentiation equation in 𝐺1 defined by 𝐴𝑗 , 𝑇 ∈ 𝐺1, 𝑏𝑖 , 𝛾𝑖𝑗 ∈ 𝒁𝑝 (analogous for 𝐺2)

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗
⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗
= 𝑇

○ Quadratic equations defined by 𝑎𝑗, 𝑏𝑖 , 𝛾𝑖𝑗 , 𝑡 ∈ 𝒁𝑝

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

● Witness 𝑋1, … , 𝑋𝑚 ∈ 𝐺1, 𝑌1, … , 𝑌𝑛 ∈ 𝐺2, 𝑥1, … , 𝑥𝑚′ , 𝑦1, … , 𝑦𝑛′ ∈ 𝒁𝑝 satisfying all 𝑒𝑞𝑘



NP completeness

● SAT formula 𝜙: (𝑥1∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥3 ∨ 𝑥4 ∨ 𝑥5) ∧ ⋯

● Witness 𝑥1 = true, 𝑥2 = false,…

● Can rewrite 𝜙 as a set of quadratic equations

○ Encode true as 1 and false as 0 in 𝒁𝑝

○ For each variable 𝑥𝑖 have the quadratic equations 𝑥𝑖 ⋅ 1 + 1 ⋅ 𝑦𝑖 = 0 and 𝑥𝑖 ⋅ 1 + 𝑥𝑖 ⋅ 𝑦𝑖 = 0

The first equation gives us 𝑦𝑖 = −𝑥𝑖
The second equation gives us 𝑥𝑖 ⋅ (1 − 𝑥𝑖) = 0 so 𝑥𝑖 ∈ {0,1}, i.e., it encodes true or false

○ Translate each clause into a quadratic equation that involves an extra variable 𝑦′

Example 𝑥1 + 1− 𝑥2 + 𝑥3 ⋅ 𝑦1
′ = 1 ,  1 − 𝑥3 + 𝑥4 + 𝑥5 ⋅ 𝑦2

′ = 1 , …

Such inverses 𝑦1
′ , 𝑦2

′ , … exist in 𝒁𝑝 if and only if the clauses are satisfied



Arithmetic circuit

● Arithmetic circuit over 𝒁𝑝
● Instance describes circuit wiring, gates 

and some of the inputs and outputs

● Witness is values on the wires that satisfy 

all gates

● Can reduce an arithmetic circuit to 

quadratic equations

𝑥1 ⋅ 1 + 𝑥2 ⋅ −1 + 1 ⋅ 𝑦1 = 0

𝑥2 ⋅ 𝑦1 = 0

0

𝑥1 𝑦1

𝑥2



Practical cryptography

● When constructing cryptographic protocols more likely to encounter 

statement like “This is a ciphertext encrypting a signature on 𝑚”

○ Suppose we have an ElGamal ciphertext 𝑢, 𝑣 ∈ 𝐺1 under public key 𝑦 ∈ 𝐺1

○ Suppose the claim is it encrypts a weak Boneh-Boyen signature 𝑚 ∈ 𝒁𝑝 of the form 𝜎 = 𝑔
1

𝑥+𝑚, 

which satisfies the verification equation 𝑒 𝜎,𝑤ℎ𝑚 = 𝑒(𝑔, ℎ) where the public key is 𝑤 = ℎ𝑥

○ Instance defined by setup (𝑝, 𝐺1, 𝐺2, 𝐺𝑇 , 𝑒, 𝑔, ℎ) and 𝑢, 𝑣, 𝑦 ∈ 𝐺1, 𝑤 ∈ 𝐺2, 𝑚 ∈ 𝒁𝑝

Witness is randomness 𝑟 ∈ 𝒁𝑝 used in encryption and secret signature 𝜎 ∈ 𝐺1

● Exercise

○ Rewrite statement as a set of pairing-product, multi-exponentiation and quadratic equations



A solution

● Equations over variables 𝜎, 𝑓 ∈ 𝐺1, 𝑟 ∈ 𝒁𝑝

○ Pairing-product equation defined by 𝑤ℎ𝑚, ℎ ∈ 𝐺2
𝑒 𝜎,𝑤ℎ𝑚 𝑒 𝑓, ℎ = 1

○ Multi-exponentiation equations

𝑓1 = 𝑔−1

𝑔𝑟 = 𝑢

𝑦𝑟𝜎 = 𝑣

● When all equations satisfied, then indeed

(𝑢, 𝑣) is an ElGamal ciphertext encrypting 

a weak Boneh-Boyen signature 𝜎 on 𝑚 ∈ 𝒁𝑝
satisfying the verification equation 𝑒 𝜎, 𝑤ℎ𝑚 = 𝑒(𝑔, ℎ)

Why not 𝑒 𝑔,𝑤ℎ𝑚 = 𝑒(𝑔, ℎ)?
Because Groth-Sahai proofs only 

guarantee zero-knowledge when 

the target element is 1

(Can be generalized to ZK for this 

equation though [G-Escala 2013])

Writing the top equation in full, it is

1𝑟 ⋅ 𝜎0𝑓1 ⋅ 𝜎0𝑟𝑓0𝑟 = 𝑔−1

where with the previous notation 

𝐴1 = 1, 𝑏1 = 0, 𝑏2 = 1
𝛾11 = 0, 𝛾12 = 0, 𝑇 = 𝑔−1



A warm-up proof
system
Perfect soundness, but modest privacy



Extended bilinear map

● We define an extended map 𝐸: 𝐺1
2 × 𝐺2

2 → 𝐺𝑇
4 by

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) =
𝑒(𝑐1, 𝑑1) 𝑒(𝑐1, 𝑑2)
𝑒(𝑐2, 𝑑1) 𝑒(𝑐2, 𝑑2)

● Exercise

○ Show the map is bilinear on the left hand side, i.e.,

𝐸
𝑎1
𝑎2

𝑏1
𝑏2

, (𝑑1, 𝑑2) = 𝐸
𝑎1
𝑎2

, (𝑑1, 𝑑2) 𝐸
𝑏1
𝑏2

, (𝑑1, 𝑑2)

using entry-wise product for the vectors and matrices

○ And the same for the right hand side



Extended bilinear map

● We define an extended map 𝐸: 𝐺1
2 × 𝐺2

2 → 𝐺𝑇
4 by

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) =
𝑒(𝑐1, 𝑑1) 𝑒(𝑐1, 𝑑2)
𝑒(𝑐2, 𝑑1) 𝑒(𝑐2, 𝑑2)

● Exercise solution

○ Show the map is bilinear on the left hand side, i.e.,

𝐸
𝑎1
𝑎2

𝑏1
𝑏2

, (𝑑1, 𝑑2) =
𝑒(𝑎1𝑏1, 𝑑1) 𝑒(𝑎1𝑏1, 𝑑2)
𝑒(𝑎2𝑏2, 𝑑1) 𝑒(𝑎2𝑏2, 𝑑2)

=
𝑒 𝑎1, 𝑑1 𝑒(𝑏1, 𝑑1) 𝑒 𝑎1, 𝑑2 𝑒(𝑏1, 𝑑2)

𝑒 𝑎2, 𝑑1 𝑒(𝑏2, 𝑑2) 𝑒 𝑎2, 𝑑2 𝑒(𝑏2, 𝑑2)

=
𝑒(𝑎1, 𝑑1) 𝑒(𝑎1, 𝑑2)
𝑒(𝑎2, 𝑑1) 𝑒(𝑎2, 𝑑2)

𝑒(𝑏1, 𝑑1) 𝑒(𝑏1, 𝑑2)
𝑒(𝑏2, 𝑑1) 𝑒(𝑏2, 𝑑2)

= 𝐸
𝑎1
𝑎2

, (𝑑1, 𝑑2) 𝐸
𝑏1
𝑏2

, (𝑑1, 𝑑2)

using entry-wise product for the vectors and matrices



Warm-up proof system

● Common reference string consists of setup and random 𝑢 ∈ 𝐺1, 𝑣 ∈ 𝐺2
● Suppose we have an instance with a single pairing-product equation

𝑒 𝑋, 𝑌 = 𝑇

● The prover encrypts 𝑋 as 𝑐1, 𝑐2 = (𝑔𝑟, 𝑢𝑟𝑋) and 𝑌 as 𝑑1, 𝑑2 = ℎ𝑠, 𝑣𝑠𝑌

● Let us apply the extended bilinear product to the ciphertexts

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢

𝑟 1

𝑋
, (𝑑1, 𝑑2)

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
1

𝑋
, (𝑑1, 𝑑2)



Warm-up proof system

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
1

𝑋
, ℎ, 𝑣 𝑠 1, 𝑌

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
1

𝑋

𝑠

, ℎ, 𝑣 𝐸
1

𝑋
, 1, 𝑌

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 ℎ, 𝑣 𝑡 𝐸
1

𝑋

𝑠
𝑔

𝑢

−𝑡

, ℎ, 𝑣
1 1
1 𝑒(𝑋, 𝑌)

using random 𝑡 ← 𝒁𝑝

● The prover sets 𝜋1, 𝜋2 = (𝑑1
𝑟ℎ𝑡, 𝑑2

𝑟𝑣𝑡) and 𝜃1, 𝜃2 = 𝑔−𝑡, 𝑋𝑢−𝑡

and returns the full proof (𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝜋1, 𝜋2, 𝜃1, 𝜃2)



Verification

● The verifier given the proof (𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝜋1, 𝜋2, 𝜃1, 𝜃2) for 𝑒 𝑋, 𝑌 = 𝑇 accepts 

if and only if

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢
, (𝜋1, 𝜋2) 𝐸

𝜃1
𝜃2

, ℎ, 𝑣
1 1
1 𝑇

● Perfect completeness when 𝑒 𝑋, 𝑌 = 𝑇 follows from the calculations

● Exercise

○ Show that the proof system gives a proof of knowledge of 𝑋, 𝑌 such that 𝑒 𝑋, 𝑌 = 𝑇

○ Hint: suppose you know the knowledge extraction keys 𝑎, 𝑏 such that 𝑢 = 𝑔𝑎, 𝑣 = ℎ𝑏. Now 

decrypt the columns with 𝑎 and the rows with 𝑏



Knowledge soundness

● Solution

○ Let us define the knowledge extractor to return 𝑋 = 𝑐1
−𝑎𝑐2 and 𝑌 = 𝑑1

−𝑏𝑑2

○ Recall that by definition

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) =
𝑒 𝑐1, 𝑑1 𝑒(𝑐1, 𝑑2)
𝑒(𝑐2, 𝑑1) 𝑒(𝑐2, 𝑑2)

○ Decrypting the columns with 𝑎 ∈ 𝒁𝑝 gives us 

𝑒 𝑐1, 𝑑1
−𝑎𝑒 𝑐2, 𝑑1 , 𝑒 𝑐1, 𝑑2

−𝑎𝑒 𝑐2, 𝑑2 = 𝑒 𝑐1
−𝑎𝑐2, 𝑑1 , 𝑒 𝑐1

−𝑎𝑐2, 𝑑2

○ Decrypting the row with 𝑏 ∈ 𝑍𝑝 gives us

𝑒 𝑐1
−𝑎𝑐2, 𝑑1

−𝑏𝑒 𝑐1
−𝑎𝑐2, 𝑑2 = 𝑒(𝑐1

−𝑎𝑐2, 𝑑1
−𝑏𝑑2)

○ So vertical and horizontal decryption gives us 𝑒(𝑋, 𝑌)



Analyzing the verification equation

● The verification equation is

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢
, (𝜋1, 𝜋2) 𝐸

𝜃1
𝜃2

, ℎ, 𝑣
1 1
1 𝑇

● We just saw the left hand side decrypts to 𝑒(𝑋, 𝑌)

● The matrix 𝐸 𝑔
𝑢
, (𝜋1, 𝜋2) decrypts to 𝑒 𝑔−𝑎𝑢, 𝜋1

−𝑏𝜋2 = 𝑒 1, 𝜋1
−𝑏𝜋2 = 1

● The matrix 𝐸 𝜃1
𝜃2

, ℎ, 𝑣 decrypts to 𝑒 𝜃1
−𝑎𝜃2, ℎ

−𝑏𝑣 = 𝑒 𝜃1
−𝑎𝜃2, 1 = 1

● And the matrix 
1 1
1 𝑇

decrypts to 𝑇 so we get 𝑒 𝑋, 𝑌 = 1 ⋅ 1 ⋅ 𝑇



Generalizing to more complex equation

● For a pairing-product equation defined by 𝐴𝑗 ∈ 𝐺1, 𝐵𝑖 ∈ 𝐺2, 𝛾𝑖𝑗 ∈ 𝒁𝑝, 𝑇 ∈ 𝐺𝑇

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗 , 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗 = 𝑇

● The prover ElGamal encrypts each variable

𝑐1,𝑖 , 𝑐2,𝑖 = 𝑔𝑟𝑖 , 𝑢𝑟𝑖𝑋 𝑑𝑗,1, 𝑑𝑗,2 = (ℎ𝑠𝑗 , 𝑣𝑠𝑗𝑌𝑗)

● The prover computes

𝜋1, 𝜋2 = ෑ

𝑖∈ 𝑚

1, 𝐵𝑖
𝑟𝑖 ⋅ ෑ

𝑖∈ 𝑚

ෑ

𝑗∈ 𝑛

𝑑𝑗,1, 𝑑𝑗,2
𝛾𝑖𝑗𝑟𝑖 ⋅ ℎ, 𝑣 −𝑡

𝜃1, 𝜃2 = ෑ

𝑗∈ 𝑛

1, 𝐴𝑗
𝑠𝑗 ⋅ ෑ

𝑖∈ 𝑚

ෑ

𝑗∈ 𝑛

1, 𝑋𝑖
𝛾𝑖𝑗 ⋅ 𝑔, 𝑢 𝑡



Generalizing to more complex equation

● The verifier accepts the proof if and only if

ෑ

𝑗∈[𝑛]

𝐸
1

𝐴𝑗
, 𝑑𝑗,1, 𝑑𝑗,2 ⋅ ෑ

𝑖∈ 𝑚

𝐸
𝑐1,𝑖
𝑐2,𝑖

, 1, 𝐵𝑗 ⋅ ෑ

𝑖∈ 𝑚

ෑ

𝑗∈ 𝑛

𝐸
𝑐1,𝑖
𝑐2,𝑖

, 𝑑𝑗,1, 𝑑𝑗,2

𝛾𝑖𝑗

= 𝐸
𝑔

𝑢
, 𝜋1, 𝜋2 ⋅ 𝐸

𝜃1
𝜃2

, ℎ, 𝑣 ⋅
1 1
1 𝑇

● Perfect completeness

- Many calculations, home exercise

● Perfect soundness

- Proof of knowledge, as before by decrypting on both dimensions



Multi-exponentiation equations

● Multi-exponentiation equation in 𝐺1 defined by 𝐴𝑗 , 𝑇 ∈ 𝐺1, 𝑏𝑖 , 𝛾𝑖𝑗 ∈ 𝒁𝑝

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗
⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗
= 𝑇

●

Can be mapped to pairing product equation by instead proving

ෑ

𝑗∈[𝑛′]

𝑒 𝐴𝑗 , ℎ
𝑦𝑗 ⋅ ෑ

𝑖∈ 𝑚

𝑒 𝑋𝑖 , ℎ
𝑏𝑖 ⋅ ෑ

𝑖∈ 𝑚

ෑ

𝑗∈ 𝑛′

𝑒 𝑋𝑖 , ℎ
𝑦𝑗 𝛾𝑖𝑗 = 𝑒(𝑇, ℎ)

● Multi-exponentiation equation in 𝐺2 similar



Quadratic equations

● Quadratic equation defined by 𝑎𝑗 , 𝑏𝑖 , 𝛾𝑖𝑗 , 𝑡 ∈ 𝒁𝑝

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

● Can be mapped to pairing product equation by instead proving

ෑ

𝑗∈[𝑛′]

𝑒 𝑔𝑎𝑗 , ℎ𝑦𝑗 ⋅ ෑ

𝑖∈ 𝑚

𝑒 𝑔𝑥𝑖 , ℎ𝑏𝑖 ⋅ ෑ

𝑖∈ 𝑚

ෑ

𝑗∈ 𝑛′

𝑒 𝑔𝑥𝑖 , ℎ𝑦𝑗 𝛾𝑖𝑗 = 𝑒 𝑔, ℎ 𝑡



Multiple equations

● Instance 𝜙 = 𝑒𝑞1, … , 𝑒𝑞𝑞 , equations over variables 𝑋𝑖 ∈ 𝐺1, 𝑌𝑗 ∈ 𝐺2, 𝑥𝑖 , 𝑦𝑗 ∈ 𝒁𝑝

● Witness 𝑋1, … , 𝑋𝑚 ∈ 𝐺1, 𝑌1, … , 𝑌𝑛 ∈ 𝐺2, 𝑥1, … , 𝑥𝑚′ , 𝑦1, … , 𝑦𝑛′ ∈ 𝒁𝑝 satisfying all 𝑒𝑞𝑘

● The prover encrypts all variables in the witness as

𝑐1,𝑖 , 𝑐2,𝑖 = 𝑔𝑟𝑖 , 𝑢𝑟𝑖𝑋𝑖 𝑑𝑗,1, 𝑑𝑗,2 = ℎ𝑠𝑗 , 𝑣𝑠𝑗𝑌𝑗

𝑐1,𝑖
′ , 𝑐2,𝑖

′ = 𝑔𝑟𝑖
′
, 𝑢𝑟𝑖

′
𝑔𝑥𝑖 𝑑𝑗,1

′ , 𝑑𝑗,2
′ = ℎ𝑠𝑗

′

, 𝑣𝑠𝑗
′

𝑌𝑗

● For each equation 𝑒𝑞𝑘 the prover generates proof elements 𝜋𝑘,1, 𝜋𝑘,2, 𝜃𝑘,1, 𝜃𝑘,2

● The full proof for all equations being simultaneously satisfiable is 𝑐1,1, … , 𝜃𝑞,2

● The verifier checks verification equations for 𝑘 = 1, … , 𝑞

- Note the verification equations reuse the commitments (𝑐1,1, 𝑐2,1, … , 𝑑𝑛′,1
′ , 𝑑𝑛′,2

′ ) to 

variables but each equation has a separate quadruple (𝜋𝑘,1, 𝜋𝑘,2, 𝜃𝑘,1, 𝜃𝑘,2)



Security

● Perfect completeness

● Perfect soundness

○ Each commitment decrypts to unique 𝑋𝑖 , 𝑌𝑗 or 𝑔𝑥𝑖 , ℎ𝑦𝑗

○ Decrypting the verification equations horizontally and vertically shows each equation satisfied

● Privacy?

○ Witness-indistinguishable in the generic group model where attacker can only do generic 

group operations [Deshpande-G-Smeets]

○ Provably not zero-knowledge in the generic group model [Deshpande-G-Smeets]

● But we want zero-knowledge under standard assumptions (DDH)!



Groth-Sahai 
proofs
Soundness and witness-
indistinguishability/zero-knowledge



Commitments

● Let us extend the setup to include 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ
′, 𝑣′ ∈ 𝐺2

● Now the prover will make commitments to 𝑋 ∈ 𝐺1 and 𝑌 ∈ 𝐺2 of the form

𝑔𝑟 𝑔′ 𝑟′ , 𝑢𝑟 𝑢′ 𝑟′𝑋 and ℎ𝑠 ℎ′ 𝑠′ , 𝑣𝑠 𝑣′ 𝑠′𝑌

● More precisely, for 𝑋 ∈ 𝐺1 the prover picks random 𝑟, 𝑟′ ← 𝒁𝑝 and computes 

a commitment as 𝑐1, 𝑐2 = 𝑔, 𝑢 𝑟 𝑔′, 𝑢′ 𝑟′ 1, 𝑋

● The core observation to make is that we can now have two setups

○ Binding setup 𝑔′, 𝑢′ = (𝑔𝛼 , 𝑢𝛼)

○ Hiding setup 𝑔′, 𝑢′ = 𝑔𝛼 , 𝑢𝛼𝑔−1

● Exercise: Show commitments are perfectly binding and hiding, respectively

Indistinguishable under DDH?



Commitments

● Let us extend the setup to include 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ
′, 𝑣′ ∈ 𝐺2

● For 𝑋 ∈ 𝐺1 the prover picks random 𝑟, 𝑟′ ← 𝒁𝑝 and computes a commitment 

as 𝑐1, 𝑐2 = 𝑔, 𝑢 𝑟 𝑔′, 𝑢′ 𝑟′ 1, 𝑋

● We now have two computationally indistinguishable setups

○ Binding setup 𝑔′, 𝑢′ = (𝑔𝛼 , 𝑢𝛼)

○ Hiding setup 𝑔′, 𝑢′ = 𝑔𝛼 , 𝑢𝛼𝑔−1

● Exercise solution

- In the binding setup 𝑐1, 𝑐2 = 𝑔𝑟+𝛼𝑟
′
, 𝑢𝑟+𝛼𝑟

′
𝑋 embeds unique 𝑋

- In the hiding setup 𝑐1, 𝑐2 = 𝑔𝑟+𝛼𝑟
′
, 𝑢𝑟+𝛼𝑟

′
𝑔−𝑟

′
𝑋 is random for all 𝑋



Proof example

● Common reference string with 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ
′, 𝑣′ ∈ 𝐺2

● Suppose we have an instance with a single pairing-product equation

𝑒 𝑋, 𝑌 = 𝑇

● Prover commits to 𝑋 and 𝑌 as 

𝑐1, 𝑐2 = (𝑔𝑟 𝑔′ 𝑟′ , 𝑢𝑟 𝑢′ 𝑟′𝑋) and 𝑑1, 𝑑2 = ℎ𝑠 ℎ′ 𝑠′ , 𝑣𝑠 𝑣′ 𝑠′𝑌

● Let us apply the extended bilinear map to the commitments

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢

𝑟 𝑔′

𝑢′

𝑟′
1

𝑋
, (𝑑1, 𝑑2)

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
𝑔′

𝑢′
, 𝑑1, 𝑑2

𝑟′ 𝐸
1

𝑋
, (𝑑1, 𝑑2)



Proof example

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
𝑔′

𝑢′
, 𝑑1, 𝑑2

𝑟′ 𝐸
1

𝑋
, ℎ, 𝑣 𝑠 ℎ′, 𝑣′ 𝑠′ 1, 𝑌

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
𝑔′

𝑢′
, 𝑑1, 𝑑2

𝑟′ 𝐸
1

𝑋

𝑠

, ℎ, 𝑣 𝐸
1

𝑋

𝑠′

, ℎ′, 𝑣′ 𝐸
1

𝑋
, 1, 𝑌

= 𝐸
𝑔

𝑢
, 𝜋1, 𝜋2 𝐸

𝑔′

𝑢′
, (𝜋1

′ , 𝜋2
′ ) 𝐸

𝜃1
𝜃2

, ℎ, 𝑣 𝐸
𝜃1
′

𝜃2′
, ℎ′, 𝑣′

1 1
1 𝑒(𝑋, 𝑌)

● The proof elements are then randomized using 𝑡, 𝑡′, 𝑡′′, 𝑡′′′ ← 𝒁𝑝

𝜋1, 𝜋2 ↦ 𝜋1, 𝜋2 ℎ, 𝑣 𝑡 ℎ′, 𝑣′ 𝑡′ 𝜃1, 𝜃2 ↦ 𝜃1, 𝜃2 𝑔, 𝑢 −𝑡 𝑔′, 𝑢′ −𝑡′′

𝜋1
′ , 𝜋2

′ ↦ 𝜋1
′ , 𝜋2

′ ℎ, 𝑣 𝑡′′ ℎ′, 𝑣′ 𝑡′′′ 𝜃1
′ , 𝜃2

′ ↦ 𝜃1
′ , 𝜃2

′ 𝑔, 𝑢 −𝑡′ 𝑔′, 𝑢′ −𝑡′′′



Security

● The verifier given the proof (𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝜋1, 𝜋2, 𝜋1
′ , 𝜋2

′ , 𝜃1, 𝜃2, 𝜃1
′ , 𝜃2

′ ) for 

𝑒 𝑋, 𝑌 = 𝑇 accepts if and only if

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢
, (𝜋1, 𝜋2) 𝐸

𝑔′

𝑢′
, (𝜋1

′ , 𝜋2
′ ) 𝐸

𝜃1
𝜃2

, ℎ, 𝑣 𝐸
𝜃1
′

𝜃2
′ , ℎ′, 𝑣′

1 1
1 𝑇

● Perfect completeness when 𝑒 𝑋, 𝑌 = 𝑇 follows from the calculations

● On a binding setup, where 𝑔′, 𝑢′ = 𝑔, 𝑢 𝛼 and ℎ′, 𝑣′ = ℎ, 𝑣 𝛽, decryption 

vertically and horizontally shows the proof system is perfectly sound



Privacy
● On a hiding setup, where 𝑔′, 𝑢′ = (𝑔𝛼, 𝑢𝛼𝑔−1) and ℎ′, 𝑣′ = ℎ𝛽, 𝑣𝛽ℎ−1 , 

the proof system is perfectly witness indistinguishable

○ Commitments 𝑐1, 𝑐2 , 𝑑1, 𝑑2 are uniformly random

○ Proof elements 𝜋1, 𝜋2, 𝜋1
′ , 𝜋2

′ are uniformly random due to the rerandomization

○ Conditioned on these the verification equation uniquely determines 𝜃1, 𝜃2, 𝜃1
′ , 𝜃2

′

○ So impossible to tell whether the prover used a witness (𝑋, 𝑌) such that 𝑒 𝑋, 𝑌 = 𝑇 or used 

another witness (𝑋′, 𝑌′) also satisfying 𝑒 𝑋′, 𝑌′ = 𝑇

● What about zero-knowledge? Given 𝑇 can we simulate a proof?

○ Hard in general, given arbitrary 𝑇 it is infeasible to find solution to ς𝑖=1
𝑛 𝑒 𝐴𝑖 , 𝐵𝑖 = 𝑇 so the 

simulator cannot satisfy the verification equation

○ But if 𝑇 = 1 the problem is easy, just pick 𝑋 = 1, 𝑌 = 1 and we have 𝑒 𝑋, 𝑌 = 𝑇

And because the proof is witness indistinguishable, this witness is as good as any other



Statements – witness indistinguishability

● Instance 𝜙 = 𝑒𝑞1, … , 𝑒𝑞𝑞 , equations over variables 𝑋𝑖 ∈ 𝐺1, 𝑌𝑗 ∈ 𝐺2, 𝑥𝑖 , 𝑦𝑗 ∈ 𝒁𝑝

○ Pairing product equation defined by 𝐴𝑗 ∈ 𝐺1, 𝐵𝑖 ∈ 𝐺2, 𝛾𝑖𝑗 ∈ 𝒁𝑝

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗, 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗

= 𝑇

○ Multi-exponentiation equation in 𝐺1 defined by 𝐴𝑗 , 𝑇 ∈ 𝐺1, 𝑏𝑖 , 𝛾𝑖𝑗 ∈ 𝒁𝑝 (analogous for 𝐺2)

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗
⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗
= 𝑇

○ Quadratic equations defined by 𝑎𝑗, 𝑏𝑖 , 𝛾𝑖𝑗 , 𝑡 ∈ 𝒁𝑝

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

● Witness 𝑋1, … , 𝑋𝑚 ∈ 𝐺1, 𝑌1, … , 𝑌𝑛 ∈ 𝐺2, 𝑥1, … , 𝑥𝑚′ , 𝑦1, … , 𝑦𝑛′ ∈ 𝒁𝑝 satisfying all 𝑒𝑞𝑘



Statements – zero-knowledge

● Instance 𝜙 = 𝑒𝑞1, … , 𝑒𝑞𝑞 , equations over variables 𝑋𝑖 ∈ 𝐺1, 𝑌𝑗 ∈ 𝐺2, 𝑥𝑖 , 𝑦𝑗 ∈ 𝒁𝑝

○ Pairing product equation defined by 𝐴𝑗 ∈ 𝐺1, 𝐵𝑖 ∈ 𝐺2, 𝛾𝑖𝑗 ∈ 𝒁𝑝

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗 , 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗

= 1

○ Multi-exponentiation equation in 𝐺1 defined by 𝐴𝑗 , 𝑇 ∈ 𝐺1, 𝑏𝑖 , 𝛾𝑖𝑗 ∈ 𝒁𝑝 (analogous for 𝐺2)

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗
⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗
= 𝑇

○ Quadratic equations defined by 𝑎𝑗, 𝑏𝑖 , 𝛾𝑖𝑗 , 𝑡 ∈ 𝒁𝑝

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

● Witness 𝑋1, … , 𝑋𝑚 ∈ 𝐺1, 𝑌1, … , 𝑌𝑛 ∈ 𝐺2, 𝑥1, … , 𝑥𝑚′ , 𝑦1, … , 𝑦𝑛′ ∈ 𝒁𝑝 satisfying all 𝑒𝑞𝑘



Commitments to field elements

● Setup includes 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ
′, 𝑣′ ∈ 𝐺2

● Now the prover will make commitments to 𝑥 ∈ 𝒁𝑝 and 𝑦 ∈ 𝒁𝑝 of the form

𝑔𝑟 𝑔′ 𝑥, 𝑢𝑟 𝑢′𝑔 𝑥 and ℎ𝑠 ℎ′ 𝑦 , 𝑣𝑠 𝑣′𝑔 𝑥

● More precisely, for 𝑥 ∈ 𝒁𝑝 the prover picks random 𝑟 ← 𝒁𝑝 and computes a 

commitment as 𝑐1, 𝑐2 = 𝑔, 𝑢 𝑟 𝑔′, 𝑢′𝑔 𝑥

● Recall the two setups

○ Binding setup 𝑔′, 𝑢′ = (𝑔𝛼 , 𝑢𝛼)

○ Hiding setup 𝑔′, 𝑢′ = 𝑔𝛼 , 𝑢𝛼𝑔−1

● So on binding setup 𝑐1, 𝑐2 = 𝑔𝑟+𝛼𝑥, 𝑢𝑟+𝛼𝑥𝑔𝑥 , an encryption of 𝑔𝑥

● And on hiding setup 𝑐1, 𝑐2 = 𝑔𝑟+𝛼𝑥, 𝑢𝑟+𝛼𝑥 , where 𝑟 perfectly hides 𝑥

Indistinguishable under DDH?



Proof example for quadratic equation

● Common reference string with 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ
′, 𝑣′ ∈ 𝐺2

● Suppose we have an instance with a single quadratic equation

𝑥𝑦 = 𝑡

● Prover commits to 𝑥, 𝑦 as

𝑐1, 𝑐2 = (𝑔𝑟 𝑔′ 𝑥, 𝑢𝑟 𝑢′𝑔 𝑥) and 𝑑1, 𝑑2 = ℎ𝑠 ℎ′ 𝑦 , 𝑣𝑠 𝑣′ℎ 𝑦

● Let us apply the extended bilinear map to the commitments

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢

𝑟 𝑔′

𝑢′𝑔

𝑥

, (𝑑1, 𝑑2)

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
𝑔′

𝑢′𝑔

𝑥

, 𝑑1, 𝑑2



Proof example

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
𝑔′

𝑢′𝑔

𝑥

, ℎ, 𝑣 𝑠 ℎ′, 𝑣′ℎ 𝑦

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 𝐸
𝑔′

𝑢′𝑔

𝑥𝑠

, ℎ, 𝑣 𝐸
𝑔′

𝑢′𝑔

𝑥

, ℎ′, 𝑣′ℎ 𝑦

= 𝐸
𝑔

𝑢
, 𝑑1, 𝑑2

𝑟 ℎ, 𝑣 𝑡 𝐸
𝑔′

𝑢′𝑔

𝑥𝑠
𝑔

𝑢

−𝑡

, ℎ, 𝑣 𝐸
𝑔′

𝑢′𝑔
, ℎ′, 𝑣′ℎ

𝑥𝑦

for any 𝑡 ∈ 𝒁𝑝

● The prover computes the proof elements as (using uniformly random 𝑡 ← 𝒁𝑝)

𝜋1, 𝜋2 = 𝑑1, 𝑑2
𝑟 ℎ, 𝑣 𝑡 and 𝜃1, 𝜃2 = 𝑔′, 𝑢′𝑔 𝑥𝑠 𝑔, 𝑢 −𝑡



Verification

● The verifier given the proof (𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝜋1, 𝜋2, 𝜃1, 𝜃2) for 𝑥𝑦 = 𝑡 accepts if 

and only if

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢
, (𝜋1, 𝜋2) 𝐸

𝜃1
𝜃2

, ℎ, 𝑣 𝐸
𝑔′

𝑢′𝑔
, ℎ′, 𝑣′ℎ

𝑡

● Perfect completeness when 𝑥𝑦 = 𝑡 follows from the calculations

● On a binding setup, where 𝑔′, 𝑢′ = 𝑔, 𝑢 𝛼 and ℎ′, 𝑣′ = ℎ, 𝑣 𝛽, decryption 

vertically and horizontally shows the proof system is perfectly sound

○ It is not a proof of knowledge though, decryption gives you 𝑔𝑥 and ℎ𝑦 instead of 𝑥, 𝑦

Take for instance 𝑐1, 𝑐2 = 𝑔𝑟 𝑔′ 𝑥, 𝑢𝑟 𝑢′𝑔 𝑥 = (𝑔𝑟+𝛼𝑥, 𝑢𝑟+𝛼𝑥𝑔𝑥) and all you get is 𝑔𝑥



Witness indistinguishability

● On a hiding setup, where 𝑔′, 𝑢′ = (𝑔𝛼, 𝑢𝛼𝑔−1) and ℎ′, 𝑣′ = ℎ𝛽, 𝑣𝛽ℎ−1 , 

the proof system is perfectly witness indistinguishable

○ Commitments 𝑐1, 𝑐2 , 𝑑1, 𝑑2 are uniformly random

○ The proof elements 𝜋1, 𝜋2, 𝜃1, 𝜃2 are uniformly random conditioned on satisfying the 

verification equation

𝐸
𝑐1
𝑐2

, (𝑑1, 𝑑2) = 𝐸
𝑔

𝑢
, (𝜋1, 𝜋2) 𝐸

𝜃1
𝜃2

, ℎ, 𝑣 𝐸
𝑔′

𝑢′𝑔
, ℎ′, 𝑣′ℎ

𝑡

■ Randomization ( 𝜋1, 𝜋2 = 𝑑1, 𝑑2
𝑟 ℎ, 𝑣 𝑡 ) makes 𝜋1 uniformly random

■ The top left corner of the verification equation then uniquely determines 𝜃1, the bottom 

left corner uniquely determines 𝜃2, and now the right top corner uniquely determines 𝜋2



Proof size
● The common reference string has 8 elements 𝑔, 𝑢, 𝑔′, 𝑢′ ∈ 𝐺1, ℎ, 𝑣, ℎ

′, 𝑣′ ∈ 𝐺2
● For a system of equations {𝑒𝑞1, … , 𝑒𝑞𝑞} over variables 𝑋𝑖 , 𝑌𝑗 , 𝑥𝑖 , 𝑦𝑗

● Proofs may in some cases be smaller than the instance

- For instance for 𝑞 pairing-product equations over 𝑋1, … , 𝑋𝑚 , 𝑌1, … , 𝑌𝑛
with many non-trivial 𝛾𝑖𝑗 instance size is around 𝑚𝑛𝑞 and proof size is 2𝑚 + 2𝑛 + 8𝑞

Variable/equation Elements in 𝑮𝟏 Elements in 𝑮𝟐

𝑋 ∈ 𝐺1, 𝑥 ∈ 𝒁𝑝 2 0

𝑌 ∈ 𝐺2, 𝑦 ∈ 𝒁𝑝 0 2

Pairing product 4 4

Multi-exponentiation in 𝐺1 2 4

Multi-exponentiation in 𝐺2 4 2

Quadratic 2 2



Statements – witness indistinguishability

● Instance 𝜙 = 𝑒𝑞1, … , 𝑒𝑞𝑞 , equations over variables 𝑋𝑖 ∈ 𝐺1, 𝑌𝑗 ∈ 𝐺2, 𝑥𝑖 , 𝑦𝑗 ∈ 𝒁𝑝

○ Pairing product equation defined by 𝐴𝑗 ∈ 𝐺1, 𝐵𝑖 ∈ 𝐺2, 𝛾𝑖𝑗 ∈ 𝒁𝑝

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗, 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗

= 𝑇

○ Multi-exponentiation equation in 𝐺1 defined by 𝐴𝑗 , 𝑇 ∈ 𝐺1, 𝑏𝑖 , 𝛾𝑖𝑗 ∈ 𝒁𝑝 (analogous for 𝐺2)

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗
⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗
= 𝑇

○ Quadratic equations defined by 𝑎𝑗, 𝑏𝑖 , 𝛾𝑖𝑗 , 𝑡 ∈ 𝒁𝑝

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

● Witness 𝑋1, … , 𝑋𝑚 ∈ 𝐺1, 𝑌1, … , 𝑌𝑛 ∈ 𝐺2, 𝑥1, … , 𝑥𝑚′ , 𝑦1, … , 𝑦𝑛′ ∈ 𝒁𝑝 satisfying all 𝑒𝑞𝑘



Statements – zero-knowledge

● Instance 𝜙 = 𝑒𝑞1, … , 𝑒𝑞𝑞 , equations over variables 𝑋𝑖 ∈ 𝐺1, 𝑌𝑗 ∈ 𝐺2, 𝑥𝑖 , 𝑦𝑗 ∈ 𝒁𝑝

○ Pairing product equation defined by 𝐴𝑗 ∈ 𝐺1, 𝐵𝑖 ∈ 𝐺2, 𝛾𝑖𝑗 ∈ 𝒁𝑝

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗 , 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗

= 1

○ Multi-exponentiation equation in 𝐺1 defined by 𝐴𝑗 , 𝑇 ∈ 𝐺1, 𝑏𝑖 , 𝛾𝑖𝑗 ∈ 𝒁𝑝 (analogous for 𝐺2)

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗
⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗
= 𝑇

○ Quadratic equations defined by 𝑎𝑗, 𝑏𝑖 , 𝛾𝑖𝑗 , 𝑡 ∈ 𝒁𝑝

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

● Witness 𝑋1, … , 𝑋𝑚 ∈ 𝐺1, 𝑌1, … , 𝑌𝑛 ∈ 𝐺2, 𝑥1, … , 𝑥𝑚′ , 𝑦1, … , 𝑦𝑛′ ∈ 𝒁𝑝 satisfying all 𝑒𝑞𝑘



Simulation strategy

● Use trivial witness

𝑋1 = 1,… , 𝑋𝑚 = 1 𝑌1 = 1,… , 𝑌𝑛 = 1 𝑥1 = 0,… , 𝑦𝑛′ = 0

● Works well for the pairing-product equations

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗 , 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗

= 1

● Maybe not so well for the other equations? For instance

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

with non-trivial 𝑡 ≠ 0



Zero-knowledge for non-trivial targets

● A quadratic equation with 𝑡 ≠ 0 can be rewritten as

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + 1 ⋅ (−𝑡) + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 0

● Observe 𝑔′, 𝑢′𝑔 = 𝑔, 𝑢 0 𝑔′, 𝑢′𝑔 1 is commitment to 1 with 𝑟 = 0

○ On a binding string (𝑔′, 𝑢′𝑔) is perfectly binding to 1, so we have perfect soundness

○ On a hiding string, 𝑔′, 𝑢′𝑔 = 𝑔, 𝑢 𝛼 𝑔′, 𝑢′𝑔 0 so it is also a commitment to 0

■ The simulator can use 𝑥1 = ⋯ = 𝑦𝑛′ = 0 and “1 = 0” to simulate proof

■ By perfect witness indistinguishability, the simulated proof looks exactly like a real proof



Zero-knowledge for non-trivial targets

● A multi-exponentiation equation in 𝐺1 with 𝑇 ≠ 1 can be rewritten as

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗 ⋅ (𝑇−1)1 ⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗 = 1

● Using ℎ′, 𝑣′ℎ = ℎ, 𝑣 0 ℎ′, 𝑣′ℎ 1 is commitment to 1 with 𝑠 = 0

○ On a binding string it is unconditionally binding, so we have perfect soundness

○ On a hiding string also commitment to 0 since ℎ′, 𝑣′ℎ = ℎ, 𝑣 𝛽 ℎ′, 𝑣′ℎ 0, so we can simulate 

a proof using the trapdoor 𝛽

● Btw, the proofs you prove/simulate are exactly the same as in the WI case



Statements – zero-knowledge

● Instance 𝜙 = 𝑒𝑞1, … , 𝑒𝑞𝑞 , equations over variables 𝑋𝑖 ∈ 𝐺1, 𝑌𝑗 ∈ 𝐺2, 𝑥𝑖 , 𝑦𝑗 ∈ 𝒁𝑝

○ Pairing product equation defined by 𝐴𝑗 ∈ 𝐺1, 𝐵𝑖 ∈ 𝐺2, 𝛾𝑖𝑗 ∈ 𝒁𝑝

ෑ

𝑗∈[𝑛]

𝑒(𝐴𝑗 , 𝑌𝑗) ⋅ ෑ

𝑖∈[𝑚]

𝑒(𝑋𝑖 , 𝐵𝑖) ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛]

𝑒 𝑋𝑖 , 𝑌𝑗
𝛾𝑖𝑗

= 1

○ Multi-exponentiation equation in 𝐺1 defined by 𝐴𝑗 , 𝑇 ∈ 𝐺1, 𝑏𝑖 , 𝛾𝑖𝑗 ∈ 𝒁𝑝 (analogous for 𝐺2)

ෑ

𝑗∈[𝑛′]

𝐴
𝑗

𝑦𝑗
⋅ ෑ

𝑖∈[𝑚]

𝑋𝑖
𝑏𝑖 ⋅ ෑ

𝑖∈[𝑚]

ෑ

𝑗∈[𝑛′]

𝑋
𝑖

𝛾𝑖𝑗𝑦𝑗
= 𝑇

○ Quadratic equations defined by 𝑎𝑗, 𝑏𝑖 , 𝛾𝑖𝑗 , 𝑡 ∈ 𝒁𝑝

෍

𝑗∈[𝑛′]

𝑎𝑗𝑦𝑗 + ෍

𝑖∈[𝑚′]

𝑥𝑖𝑏𝑖 + ෍

𝑖∈ 𝑚′

෍

𝑗∈[𝑛′]

𝑥𝑖𝛾𝑖𝑗𝑦𝑗 = 𝑡

● Simulate all proofs using 𝑋𝑖 = 1, 𝑌𝑗 = 1 , 𝑥𝑖 = 0, 𝑦𝑗 = 0 and trapdoors 𝛼, 𝛽


