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Bilinear maps
Background



Bilinear maps

Setup describing (p, G1,G,,Gr, e, g, h)

e Primep
- Size of prime related to security level, could for instance choose |p| = 256

e Cyclic groups G4, G,, G of order p
- Written multiplicatively with neutral elements 1 in this talk
- Generators g, h such that G; = (g), G, = (h)

[ Mape:Gl XGZ 4 GT
- Non-degenerate: e(g,h) + 1
- Bilinear: For all a,b € Z,;:e(g% h?) = e(g, h)*



Generic bilinear group operations

e Canonical representation of group elements
- So easy to determine whether u = v

e Efficient algorithms to
- Decide membership in the three groups, e.g., u € G;
- Compute group operations in the three groups, e.g., u-vin G,
- Evaluate the bilinear map, e.g., e(u, v)

e \We refer to these as the generic group operations



Types of bilinear maps

e In pairing-based cryptography, usually the source groups G, (G,) are
subgroups of elliptic curves over a finite field F, (F,¢), the target group Gr a
multiplicative subgroup of sz, and the bilinear map a pairing e: G; X G, = G

e The underlying mathematical details of the groups and the bilinear map will

not be important for these lectures, but it is worth noting the classification of
Galbraith, Paterson and Smart [GPS04]

o Type I: Symmetric setting where G; = G,
o Type ll: Asymmetric setting G; # G, with an efficiently computable isomorphism y: G, = G,

o Type lll: Asymmetric setting G, # G, where there is no efficiently computable isomorphism in
either direction



Efficiency

e Type lll pairings are currently the most efficient
o So unless otherwise specified we work in the type lll setting
e Size of group element representations
o Fora€Z,uc€G;,ve€EGy,weGr expect |al < [ul <|[v] <|w|
e Cost of operations
o Multiplications in G; cheaper than multiplications in G, cheaper than multiplications in G

o Exponentiations in G; cheaper than exponentiations in G, cheaper than exponentiations in G

o Bilinear map the most expensive



Getting used to bilinear maps

e Recalle:G; X G, = Gp

- Non-degenerate: e(g,h) # 1

- Bilinear: For all a,b € Z,,:e(g% h?) = e(g, h)®
e EXxercises

o What does the equation e(u, v)e(u, w) = y%z implicitly assume about which groups
u,v,w,vy,z, a belong to?

o If you see the equation e(u,u) = z are you in a type |, Il or Ill setting?

o Reduce e(g% h)e(g’ h), e(g, h®e(g® h), e(g* h ?)e(u, v)e(f, h)°, [T, e(g, h)b

[

o Reduce e(u,v)e(u,w), e(u,vVe?,v), e(g*v"L)e(f,wle(u,v)°, ?zle(ua,vib)@

o Showthatife(u,v) =1thenu=1orv=1



CO
Answers

o What does the equation e(u, v)e(u,w) = y%z implicitly assume about which groups u,v,w,y, z, a
belong to?

U € Gqy,v,weEdGlyy z€eGar,a EZp

o If you see the equation e(u,u) = z are you in a type |, Il or Ill setting?

Type | because u € G, u € G, indicates G; = G,

o Reduce e(g% h)e(g® h), e(g h®e(g® h), e(g*% hP)e(u,v)e(g, h)¢, I, e(g, h%)P:

e(g%, h)e(gb,h) =e(g,h)%e(g,h)? = e(g, h)**?

e(g, h“)e(g”,h) =e(g,h)%(g, h)? = e(y, h)a+b

e(g% h~?)e(u, v)e(g, )¢ = e(g, k)~ Pe(g, h)°e(u,v) = e(g, )~ Pe(u, v)
Hlnzle(g» hai)bi = H?:l e(g, h)aibi =e(g, h)z?=1 aib;

o Interesting follow-up question, is e(g*?,h) or e(g,h**?) or e(g, R)**? more “reduced”?
- Recall cost hierarchy expo in G; < expo in G, < expo in Gy < pairing
- So maybe e(g%*?, h) cheaper to compute at cost of 1 expo in G; and 1 pairing
- However, if e(g, h) used often, precompute to get e(g, h)**? at amortized cost of 1 expo in G




Answers

€

o Reduce e(u,v)e(u,w), e(u,vHe(u?,v), e(ga,v_b)e(f,w)e(u,v)c, ?Zle(ua,vf’ ab

Because g generates G, we can write any u € G; as u = g*
Similarly, we can write any v,w € G, as v = hY and w = h”
- All we know is such x,y, z € Z,, exist, we may not know what they are

e(u, V)e(u,w) = e(g*, h¥)e(g*, h?) = e(g, h)*V*2) = e(u, vw)
e(u,vVe(ul,v) = e(u,v)%(u,v)? = e(u,v)**?
e(ga,v_b)e(flcl/_l/)e(u, V)¢ = e(g,v)"e(g*, v)°e(f,w) = e(g~"u’,v)e(f,w)

L Ci
—_ bh—L , i
=1 e(ua» Uib)ab =TI e(u,v) @ = [[, e(u, ) = e(u, l_[1i1=1'7iCl)

o Showthatife(u,v) =1thenu=1orv=1

e(u,v) = e(g*, hY) = e(g,h)* is the same as 1 = e(g, h)°
Since e(g, h) # 1 it generates Gy so we have xy = 0 implyingx =0ory =0




Decisional Diffie-Hellman assumption

e We will assume the DDH problem is hard in both G; and G,
- Also known as the Symmetric External DH (SXDH) assumption

e The DDH assumption in G; over setup (p, G1,G,,Gr, e, g, h)

o Define for adversary A the following experiment
b « {0,1}
X, ¥,z < Z,
u=g%5v=g’

w = gbxy+(1—b)z

b* « A(p,G4,G,,Gr,e,g,h,u,v,w)

~

o The assumption says that for any realistic (computationally bounded) adversary Pr[b = b*] =

N

e The DDH assumption in G, over setup (p, G4, G,, Gt, €, g, h) is defined similarly



ElGamal encryption

e Key generation in group G; assuming setup (p, G, G,, Gr, €, g, h)

o Pick x « Z, and let this be the secret key. Let the public key be y = g*

e Encryption of m € G,
o Pick r « Z, and return ciphertext ¢ = Enc(y,m;r) :== (g",y"m)
e Decryption of ¢ = (u,v) € G?#

o Return plaintext m = Dec(x,u,v) = vu™*

e [IND-CPA secure under DDH assumption in G,
e ElGamal encryption in G, similar



Pairing-based
proofs

Statements we want to prove



Groth-Sahai proofs

e Two computationally indistinguishable types of common reference string
o Binding common reference string g,u,g,u € Gy, hv,h, v €G,
m Perfect completeness
DDH
m Perfect soundness
o Hiding common reference string g,u,g,u' €Gy,h v h,vEG,

m Perfect completeness

m Perfect zero-knowledge



Statements OO

e |Instance ¢ = {eql, ...,eqq}, equations over variables X; € G,,Y; € G;,x;,y; € Z,

o Pairing product equation defined by A; € Gy, B; € G,,v;j € Z,,

1_[ i, Y) - 1_[ e(X;, B)) - 1_[ 1_[ e(X, )" =

JjE[n ie[m] je[n]
o Multi-exponentiation equation in G, defined by A;,T € G4,b;,v;j € Z,, (analogous for G,)
[T [T [T ] =
i€[m] je[n']

o Quadratic equations defined by a;, b;, y;;,t € Z,,

a;y; + Z xib; + 2 z XiVijyj =t
JE[n'] ie[m’] ie[m'] je[n']

o Witness Xy, ..., X;, € G, Y1, ..., Yy € Go, X4, o, X1, Y1, -0, Yt € Z,, Saisfying all eqy



NP completeness

e SAT formula ¢: (x1V =x, Vx3) A(mx3 VXxg Vxs) A
e Witness x; = true, x, = false,...

e Can rewrite ¢ as a set of quadratic equations

(@)

(@)

Encode true as 1 and false as O in Z,

For each variable x; have the quadratic equations x; -1+ 1-y; =0andx; -1+ x; -y; =0

The first equation gives us y; = —x;
The second equation gives us x; - (1 — x;) = 0 so x; € {0,1}, i.e., it encodes true or false

Translate each clause into a quadratic equation that involves an extra variable y’

Example (x; + (1 —x,) +x3) -y, =1, ((1—x3)+x4+x5) cy, =1, ...
Such inverses y;, y,, ... exist in Z,, if and only if the clauses are satisfied



Arithmetic circuit

0 e Arithmetic circuit over Z,,
e Instance describes circuit wiring, gates
and some of the inputs and outputs
e \Witness is values on the wires that satisfy
%, all gates

e (Can reduce an arithmetic circuit to
quadratic equations
Xy 1+x,- (1) +1-y,=0
X2:y1 =0




Practical cryptography

e \When constructing cryptographic protocols more likely to encounter
statement like “This is a ciphertext encrypting a signature on m”

o Suppose we have an ElGamal ciphertext (u,v) € G, under public key y € G,

1
o Suppose the claim is it encrypts a weak Boneh-Boyen signature m € Z,, of the form g = gx+m,

which satisfies the verification equation e(a, wh™) = e(g, h) where the public key is w = h*

o Instance defined by setup (p, Gy, G, Gr,e,g,h) and u, v,y € G;,w € G, m € Z,,
Witness is randomness r € Z,, used in encryption and secret signature o € G,

e Exercise

o Rewrite statement as a set of pairing-product, multi-exponentiation and quadratic equations



A solution

e When all equations satisfied, then indeed

Equations over variables o, f € G1,7 € Z,,

o Pairing-product equation defined by wh™, h € G,

e(oc,wh™)e(f,h) =1 <

Why not e(g, wh™) = e(g, h)?
Because Groth-Sahai proofs only
guarantee zero-knowledge when
the target elementis 1

(Can be generalized to ZK for this
equation though [G-Escala 2013])

o Multi-exponentiation equations

fl=9g"
g =u Y
y'o=v

(u, v) is an ElGamal ciphertext encrypting

Writing the top equation in full, it is
17 . O.Ofl . O.OrfOr — g—l
where with the previous notation
Al == 1,b1 == O,bz =1
Vi1 =0y, =0T =g7"

a weak Boneh-Boyen signature c on m € Z,,

satisfying the verification equation e(a, wh™) = e(g, h)




A warm-up proof
system

Perfect soundness, but modest privacy



Extended bilinear map

e We define an extended map E: G# X G5 — G7 by
€1 e(cy,dy) e(cy, dz))
E ,(dy, d =
<<C2> (d 2)> <6(C2»d1) e(cz, d)

o Show the map is bilinear on the left hand side, i.e.,

@) (b =E((“), (dy,d ") (d,d
Ay

using entry-wise product for the vectors and matrices

e Exercise

o And the same for the right hand side



Extended bilinear map

e We define an extended map E: G# X G5 — G7 by

C1 e(cy,dy) e(cq, dz))
E (dq,d =
((Cz) (d 2)> <e(cz,d1) e(cz, dy)
e Exercise solution

o Show the map is bilinear on the left hand side, i.e.,
E ar\ (bs (dy,dy) | = e(aiby,dy) 9(a1b1;d2)> _ <e(a1,d1)e(b1,d1) e(a1'd2)e(b1'd2)>
a,)\by)’ v e(azby,dy) e(azb,, dy) e(ay, di)e(by, dy) e(ay dy)e(by, dy)

_(e(ay,dy) e(aq,dy)\(e(by,dy) e(by,dy)\ aq b,
- <e(a;,d1) e(al,di)) <e(b;,d1) e(bi,di)) =E <<a2>'(d1;d2)>5 <<b2>,(d1,d2)>

using entry-wise product for the vectors and matrices



Warm-up proof system

e Common reference string consists of setup and random u € G,,v € G,

e Suppose we have an instance with a single pairing-product equation
e(X,Y)=T

e The prover encrypts X as (cy,¢;) = (g",u"X) and Y as (dy,d,) = (h®,v°Y)

e Let us apply the extended bilinear product to the ciphertexts

E <<:) (dy, d2)> —E ((i)r <)1(> , (dy, d2)>
_E ((‘Z ) (ds, dz)’”> E ((;) (dy,dy) >



Warm-up proof system

1
_E ((‘Z ) (ds, dz)’”> E (( X) (hv)S(1, Y)>

E ((‘z) (., dz)’"> E ((;)S (h, v ) E ( ;) a, Y))
(%) o )e((4) ()0 i)

using random t « Z,,
e The prover sets (1, ;) = (d]ht, d5vt) and (64,60,) = (g75 Xu™)
and returns the full proof (¢4, ¢y, d4, d,, 71,5, 04, 0,)



CO
Verification

e The verifier given the proof (¢y,c,,dq,d,, mq,m5,604,0,) for e(X,Y) = T accepts
if and only if

(S R e (G e (e T

e Perfect completeness when e(X,Y) = T follows from the calculations
e Exercise

o Show that the proof system gives a proof of knowledge of X,Y suchthate(X,Y) =T

o Hint: suppose you know the knowledge extraction keys a, b such that u = g%, v = h”. Now
decrypt the columns with a and the rows with b



Knowledge soundness

e Solution
o Let us define the knowledge extractor to return X = ¢;%c, and Y = d;?d,
o Recall that by definition
() wa)- () i)
o Decrypting the columns with a € Z,, gives us
(e(clr dy)"%e(cy,dy) ,e(cy, dy) %e(cy, dz)) = (e(cfacz, dy),e(cy %cy, dz))

o Decrypting the row with b € Z, gives us
e(cr%cy, dy)™Pe(ef %, da) = e(cyca, di " dy)

o  So vertical and horizontal decryption gives us e(X,Y)



Analyzing the verification equation

e The verification equation is

E ((2) L, d2)> ny ((‘Z) (s, n2)> E ((Zl) (h, v)> (1 ;)

e We just saw the left hand side decrypts to e(X,Y)
e The matrix E ((ﬂ) (nl,nz)) decrypts to e(g—au, nl—bnz) = e(l, nl—bnz) =1
e The matrix E ((g;) ,(h, v)) decrypts to e(el—aez,h—bv) =e(67%09,,1) =1

e And the matrix (1 1

1 T) decryptstoT sowegete(X,Y)=1-1-T



CO
Generalizing to more complex equation

e For a pairing-product equation defined by A; € G, B; € G,y;; € Z,,,T € Gr

Vij
[Tectsp- [T ewso- [T [T et =
l1E[m] ie[m] je[n]

JE[n]
e The prover ElGamal encrypts each variable

(cric2i) = (@ u"iX)  (dj1,d;,) = (R%,0°7Y))
e The prover computes

(T[er[Z) - 1_[ (11Bi)ri ’ 1_[ 1_[ (dj,ll dj,Z)Yijri ’ (h; v)_t
ie[m]

i€[m] je[n]

(64,602) = 1_[ (1,A,)SJ' , 1_[ 1_[ (1, X,)Y5 - (g, u)t
j€ln]

JE[n] ie[m]j



CO
Generalizing to more complex equation

e The verifier accepts the proof if and only if

[1e(( ) 1) o)

J€[n] IE[m

(€ cen)((2) )

e Perfect completeness
- Many calculations, home exercise
e Perfect soundness
- Proof of knowledge, as before by decrypting on both dimensions

(1) )

l



Multi-exponentiation equations

e Multi-exponentiation equation in G, defined by A;,T € G;, b;,v;j € Z,
[Ta [T T] [T -r
je[m'] i€[m] i€[m] je[n']

Can be mapped to pairing product equation by instead proving

1_[ e(4;,h)) - 1_[ e(X;, h"1) l—[ [ ] ecxinrnri = ey

m] je[n']

e Multi-exponentiation equation in G, similar



Quadratic equations

e Quadratic equation defined by a;, b;,y;;,t € Z,,

Z a;y; + Z x;b; + Z z XiYijyj =t

JE[n 1je[n’]

e (Can be mapped to pairing product equation by instead proving

[ [etornmon -] [elany | | | ] etomnr=ecgnr
ie[m] ie[m] je[n']

JE[n']



Multiple equations OO

e Instance ¢ = {eql, ...,eqq}, equations over variables X; € G,,Y; € Gy, x;,y; € Z,
o Witness Xy, ..., X;, € G1, Y1, ..., Yy € Go, X1, oo, Xy, Y1, -, Yt € Z, Satisfying all eqy

e The prover encrypts all variables in the witness as
(cric2i) = (g, u"iX;) (dj1,dj2) = (R*,v9Y})

(1 62:) = (gr"»urigxi) (d;,l, d;,z) = (hsj'vsjyj)
e For each equation eq, the prover generates proof elements m;, 1, g 5, 0y 1, Ok 2
e The full proof for all equations being simultaneously satisfiable is (cm, ...,quz)

e The verifier checks verification equations for k = 1, ..., q

. g . . . !/ !/
- Note the verification equations reuse the commitments (cy1,¢21, ..., d,r 4, dr, ) 1O

variables but each equation has a separate quadruple (my 1, Ty 2, Ok 1, Ok 2)



Security

e Perfect completeness
e Perfect soundness

o Each commitment decrypts to unique X;,Y; or g*i, h”J

o Decrypting the verification equations horizontally and vertically shows each equation satisfied
e Privacy?

o  Witness-indistinguishable in the generic group model where attacker can only do generic
group operations [Deshpande-G-Smeets]

o Provably not zero-knowledge in the generic group model [Deshpande-G-Smeets]

e But we want zero-knowledge under standard assumptions (DDH)!



Groth-Sahai
proofs

Soundness and witness-
indistinguishability/zero-knowledge



Commitments

e Let us extend the setup to include g,u,g’,u’ € G, h,v,h',v' € G,
e Now the prover will make commitments to X € G; and Y € G, of the form

(979" wr@w)"'x) and (hS(R)*,v5()*'Y)
e More precisely, for X € G, the prover picks random r,r" « Z,, and computes

a commitment as (¢;, ¢,) = (g,w)"(g',u)" (1, X)
e The core observation to make is that we can now have two setups

o Binding setup (g’,u") = (g% u%)
7 Indistinguishable under DDH
) [ ]

o Hiding setup (g',u") = (g% u%g™?

e Exercise: Show commitments are perfectly binding and hiding, respectively



Commitments

e Let us extend the setup to include g,u,g’,u’ € G, h,v,h',v' € G,
e For X € G, the prover picks random r,r’ « Z,, and computes a commitment

as (¢, ¢2) = (g,w)"(g",u)" (1, X)
e \We now have two computationally indistinguishable setups

o Binding setup (g',u") = (g%, u%)
o Hiding setup (g',v") = (g% u%*g™?)
e EXxercise solution
. . ! .
- In the binding setup (c¢q,¢,) = (g”“’” ,u”“’”'X) embeds unique X

- In the hiding setup (¢4, ¢;) = (g”‘”',u”“r' (g""X)) is random for all X



Proof example

e Common reference string with g,u, g’,u’ € G, h,v,h’,v" € G,
e Suppose we have an instance with a single pairing-product equation
e(X,Y)=T
e Provercommitsto X and Y as
(c1,2) = (g"(gN)" W @)'X) and (dy,dy) = (hS(R)*, w5 ()Y )
e Let us apply the extended bilinear map to the commitments

r /AN 1
E ((Eg) ’ (dl; d2)> =F (i) <i/> <X> ’ (dl' dZ)
/ ) 1
=F ((i) ) (dl; dz)r> E ((i/) ’ (dl; dZ)r ) E <<X> ) (dlr dZ) )



Proof example

- ((g ) (s, dz)r) E ((i > (dy, dz)r’> E ((;) ,(h,v)S(h, v (1, Y))

- o{(9) ) (£) cansor Yo () o) ()00 (3 com)
14 9 6/

= <(u> , (nl,n2)> E ((‘z,) , (11, 705) )E ((é) , (h, v)) E ((9;’) (W, v/)> G e(Xl, Y))

e The proof elements are then randomized using t,t',t",t"" « Z,,
(my,13) = (1, ) (R, v)E (R, 0D (01,6,) = (61,6,)(g,w) (g, u)™
(m1,m3) = (g, mp)(h, )t (R, v (01,0;) & (61,0)(g, W)~ (g, u)™*

I

S «Q

Q



Security
The verifier given the proof (cy, ¢y, d4, d,, 1, 5, 1, 5, 04, 65, 61, 65) for
e(X,Y) =T accepts if and only if

) ! , , 81 8{ / !
. <<c ) . d2)> _ E((z),(nl,n2)>E((i,>;(ﬂ1;ﬂz)>E<< 92>,(h,v)>E<<eé>,(h v ))(} )

Co

Perfect completeness when e(X,Y) = T follows from the calculations

On a binding setup, where (g',u") = (g,uw)* and (h',v") = (h, v)?, decryption
vertically and horizontally shows the proof system is perfectly sound



Privacy CO
e On a hiding setup, where (g',u") = (g%, u%*g™1) and (k',v") = (h#,vPR71),
the proof system is perfectly witness indistinguishable

o Commitments (¢, ¢y), (d4, d,) are uniformly random
o Proof elements n,, ,, 1, ™5 are uniformly random due to the rerandomization
o Conditioned on these the verification equation uniquely determines 6., 6,, 01, 6,

o Soimpossible to tell whether the prover used a witness (X,Y) such that e(X,Y) = T or used
another witness (X', Y") also satisfyinge(X',Y') =T
e What about zero-knowledge? Given T can we simulate a proof?

o Hard in general, given arbitrary T it is infeasible to find solution to []iL, e(4;,B;) = T so the
simulator cannot satisfy the verification equation

o Butif T =1 the problem is easy, just pick X =1,Y =1 and we have e(X,Y) =T
And because the proof is witness indistinguishable, this witness is as good as any other



Statements - witness indistinguishability o0

e Instance ¢ = {eql, eqq}, equations over variables X; € G,Y; € G3,x;,y; € Z,,

o Pairing product equation defined by A; € Gy, B; € G,,v;j € Z,,

Yij
[T [Tewwoo [T [Jetuny=r
i€[m] ie[m] je[n]

J€[n]

o Multi-exponentiation equation in G, defined by A;,T € G4,b;,v;j € Z,, (analogous for G,)
[T [T [T ]2
JE[n'] ie[m] ie[m] je[n']

o Quadratic equations defined by a;, b;, y;;,t € Z,,

JE[n'] ig[m'] ie[m'] je[n']

o Witness Xy, ..., X;, € G, Y1, ..., Yy € Go, X4, o, X1, Y1, -0, Yt € Z,, Saisfying all eqy



Statements - zero-knowledge -

e Instance ¢ = {eql, eqq}, equations over variables X; € G,Y; € G3,x;,y; € Z,,

o Pairing product equation defined by A; € Gy, B; € G,,v;j € Z,,

Yij
1_[ e(Aj:Yj) . l—[ e(X;,B;) - l_[ 1_[ e(Xi»Yj) I =1 _
i€[m] i€[m] je[n]

J€[n]

o Multi-exponentiation equation in G, defined by A;,T € G4,b;,v;j € Z,, (analogous for G,)
[T [T [T ]2
JE[n'] ie[m] ie[m] je[n']

o Quadratic equations defined by a;, b;, y;;,t € Z,,

JE[n'] ig[m'] ie[m'] je[n']

o Witness Xy, ..., X;, € G, Y1, ..., Yy € Go, X4, o, X1, Y1, -0, Yt € Z,, Saisfying all eqy



Commitments to field elements

e Setupincludes g,u,g’,u’ € Gy,h,v,h’,v' € G,
e Now the prover will make commitments to x € Z,, and y € Z,, of the form
(g"(gN*u"(w'g)*) and (h°(h")”,v*(v'g)*)
e More precisely, for x € Z,, the prover picks random r « Z,, and computes a
commitment as (¢, c,) = (g, u)"(g’,u’'g)*
e Recall the two setups

o Binding setup (g',u") = (g% u%)
> 7 Indistinguishable under DDH
1) .

o Hiding setup (g',u") = (g% u%g~

e So on binding setup (¢4, ;) = (g" %, u" % g*), an encryption of g*
e And on hiding setup (cq,¢c,) = (g™ %, u" %) where r perfectly hides x



Proof example for quadratic equation

e Common reference string with g,u, g',u' € G, h,v,h',v" € G,
e Suppose we have an instance with a single quadratic equation
xy =t
e Prover commitsto x,y as
(c1,c2) = (9" (@) u" (W g)*) and (dy,dy) = (h*(h')”,v*(v'h)?)
e Let us apply the extended bilinear map to the commitments

E <<:>» (d1»d2)> =FE ((i) (ug,g> ) (d1;d2)>
((9 : g\
=E <(u> ’ (dlr dZ) > E ((u,g> ’ (dl; d2)>



Proof example

<g> , (dy, dz)r> E (( 9 > , (h,v)* (', v'h)? )
u wyg
9 r .g, ” g, : -
—E ((u) ,(dy,d5) >E ((u,g> , (h, U)) E <<u19> ,(h',v'h)Y )
;)\ XS —t ! Y
(i (dy, dy) (R, v)t) E ((ugl > (9) ,(h, v)) E (( ‘g, >»(h"v'h)>
g) \u v

e The prover computes the proof elements as (using uniformly random t « Z,))
(T[]_) T[Z) — (dll dZ)T(h) v)t and (81) 82) — (g’; u’g)xs(g; u)_t



CO
Verification

e The verifier given the proof (c¢q,c,,d4,d,, 1,75, 04,0,) fOr xy =t accepts if
and only if

t
€1 B g 61 9' L
E ((Cz) ) (dll dZ)) - E ((u) ) (7T1)7T2)) E ((92) ) (h) U)) E ((u,g) ) (h' , U h) )

e Perfect completeness when xy = t follows from the calculations
e On a binding setup, where (g’,u") = (g,w)% and (h',v") = (h, v)?, decryption
vertically and horizontally shows the proof system is perfectly sound

o Itis not a proof of knowledge though, decryption gives you g* and hY instead of x, y
Take for instance (¢y,c;) = (9" (g")*, u"(u'g)*) = (g7 %, u"*** g*) and all you get is g*



CO
Withess indistinguishability

e On a hiding setup, where (g',u") = (g% u%g™1) and (h',v") = (hF,vPR71),
the proof system is perfectly witness indistinguishable

o Commitments (¢, ¢y), (d4, d,) are uniformly random

o The proof elements n;, ,, 84, 8, are uniformly random conditioned on satisfying the
verification equation

1 - g 91 g, o t
(G )@ (B on)e((2) o0e0)

m Randomization ((mr;, ;) = (d4,d,)" (h,v)t) makes m; uniformly random

m The top left corner of the verification equation then uniquely determines 6, the bottom
left corner uniquely determines 6,, and now the right top corner uniquely determines ,



Proof size GO

e The common reference string has 8 elements g,u, g’,u’ € G, h,v,h',v' € G,
e For asystem of equations {eq;, ..., eq,} over variables X;, Y}, x;, y;

Variable/equation Elements in G4 Elementsin G,

X€G,x€Z, 2 0
Y €G,y € Z, 0 2
Pairing product 4 4
Multi-exponentiation in G, 2 4
Multi-exponentiation in G, 4 2
Quadratic 2 2

e Proofs may in some cases be smaller than the instance
- For instance for g pairing-product equations over X3, ..., X, Y1, ..., ¥y,
with many non-trivial y;; instance size is around mnq and proof size is 2m + 2n + 8q



Statements - witness indistinguishability o0

e Instance ¢ = {eql, eqq}, equations over variables X; € G,Y; € G3,x;,y; € Z,,

o Pairing product equation defined by A; € Gy, B; € G,,v;j € Z,,

Yij
[T [Tewwoo [T [Jetuny=r
i€[m] ie[m] je[n]

J€[n]

o Multi-exponentiation equation in G, defined by A;,T € G4,b;,v;j € Z,, (analogous for G,)
[T [T [T ]2
JE[n'] ie[m] ie[m] je[n']

o Quadratic equations defined by a;, b;, y;;,t € Z,,

JE[n'] ig[m'] ie[m'] je[n']

o Witness Xy, ..., X;, € G, Y1, ..., Yy € Go, X4, o, X1, Y1, -0, Yt € Z,, Saisfying all eqy



Statements - zero-knowledge -

e Instance ¢ = {eql, eqq}, equations over variables X; € G,Y; € G3,x;,y; € Z,,

o Pairing product equation defined by A; € Gy, B; € G,,v;j € Z,,

Yij
1_[ e(Aj:Yj) . l—[ e(X;,B;) - l_[ 1_[ e(Xi»Yj) I =1 _
i€[m] i€[m] je[n]

J€[n]

o Multi-exponentiation equation in G, defined by A;,T € G4,b;,v;j € Z,, (analogous for G,)
[T [T [T ]2
JE[n'] ie[m] ie[m] je[n']

o Quadratic equations defined by a;, b;, y;;,t € Z,,

JE[n'] ig[m'] ie[m'] je[n']

o Witness Xy, ..., X;, € G, Y1, ..., Yy € Go, X4, o, X1, Y1, -0, Yt € Z,, Saisfying all eqy



Simulation strategy

Use trivial witness
Xi=1..,X,=1 Vi=1..%,=1 x;=0,...,y,y =
Works well for the pairing-product equations

1_[ Y- 1_[ e(X;, B;) - 1_[ 1_[ e(X, Y)Y =

jE[n
Maybe not so well for the other equatlons? For instance

2 a;yj + 2 x;b; + Z z Xiyijyj =t

JjE[n ie[m’]
with non-trivial t =0



Zero-knowledge for non-trivial targets

e A quadratic equation with t # 0 can be rewritten as

Zajyj+ Z x;b; +1-(—t)+ z z XiYijyj =0

je[n'] ie[m'] 1 je[n’]

e Observe (g',u'g) = (g,u)°(g’,u’'g)! is commitment to 1 with r = 0
o On a binding string (g',u’g) is perfectly binding to 1, so we have perfect soundness
o On a hiding string, (g’,u'g) = (g,wW)%(g’,u’g)° so it is also a commitment to 0
m The simulator can use x; = --- = y,» = 0 and “1 = 0” to simulate proof

m By perfect witness indistinguishability, the simulated proof looks exactly like a real proof



Zero-knowledge for non-trivial targets

e A multi-exponentiation equation in G; with T # 1 can be rewritten as
Yj —131 b; Yij¥j _
[] a7 [T ][]0 -
jem'] i€[m] i€[m] je[n']

e Using (h',v'h) = (h,v)°(h’,v'h)! is commitment to 1 with s = 0
o On a binding string it is unconditionally binding, so we have perfect soundness

o On a hiding string also commitment to 0 since (h',v'h) = (h,v)?(h',v'h)°, so we can simulate
a proof using the trapdoor

e Btw, the proofs you prove/simulate are exactly the same as in the WI case



Statements - zero-knowledge -

e Instance ¢ = {eq, ..., eq,}, equations over variables X; € G,Y; € G,,x;,y; € Z,,

o Pairing product equation defined by A; € Gy, B; € G,,v;j € Z,,

Yij
[T [T eowmn- [T [ ety =
ie[m] iE[m] jE[n]

J€[n]

o Multi-exponentiation equation in G, defined by A;,T € G4,b;,v;j € Z,, (analogous for G,)
[ [T T [T =
je[n'] ie[m] i€[m] je[n']

o Quadratic equations defined by a;, b;, y;;,t € Z,,

Cl]y] + z xibi + 2 2 xl)/l]y] =t
JE[n'] ig[m'] ie[m'] je[n']

e Simulate all proofs using X; = 1,Y; = 1,x; = 0,y; = 0 and trapdoors a,



