

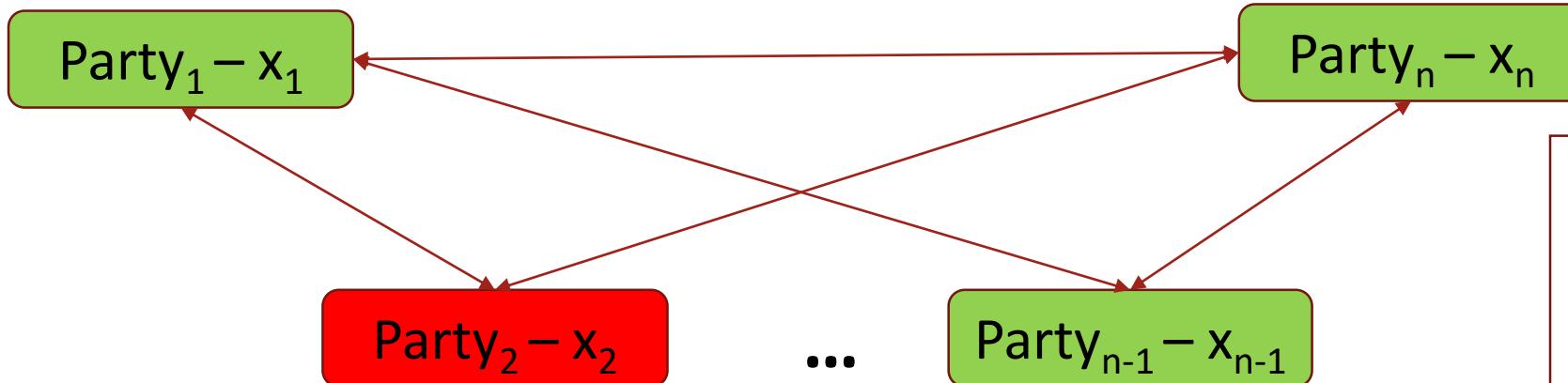
Fully Linear PCPs and their Cryptographic Applications

Niv Gilboa – Ben-Gurion University

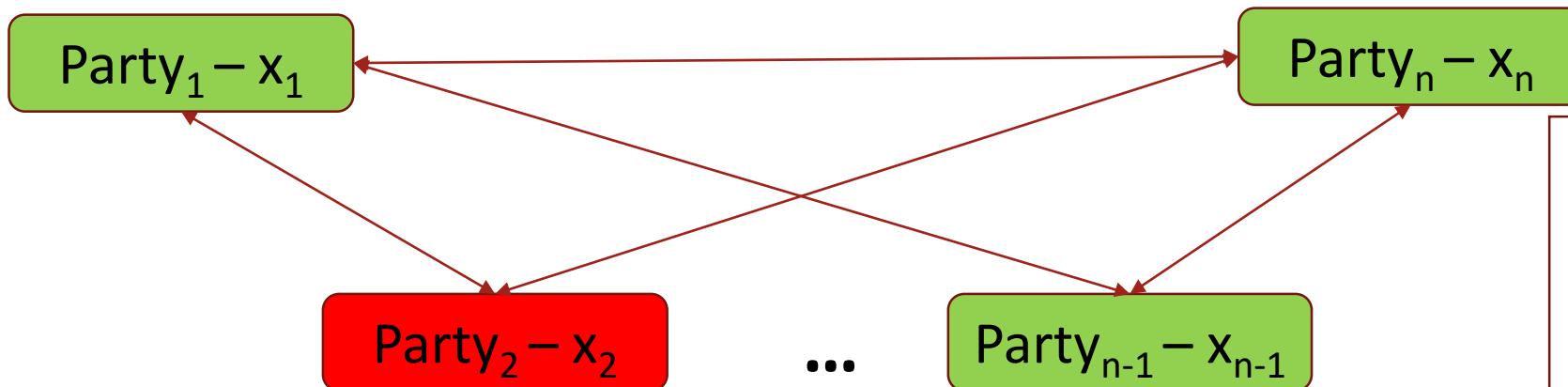
Based On

- Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai, ``Fully Linear PCPs and their Cryptographic Applications'', Crypto 2019.
- Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof, `` Practical Fully Secure Three-Party Computation via Sublinear Distributed Zero-Knowledge Proofs'', ACM-CCS 2019.

Goal



- Compute $f(x_1, \dots, x_n)$
- Semi-honest adversary

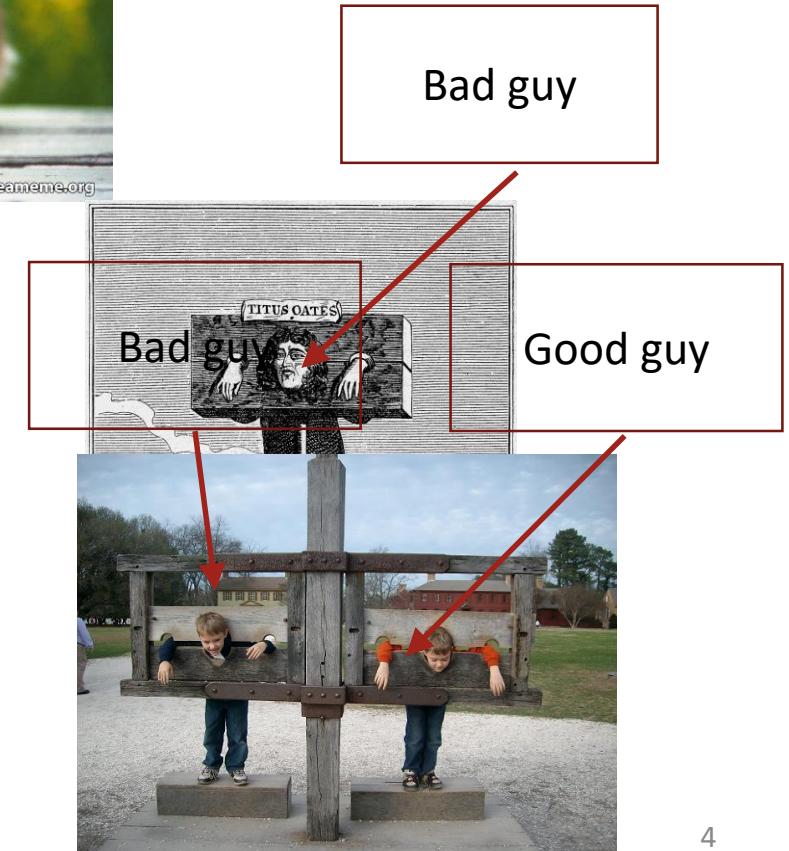


- Prove correctness
- Com. = $o(\text{circuit size})$

⇒ **Malicious com. \approx semi-honest com.**

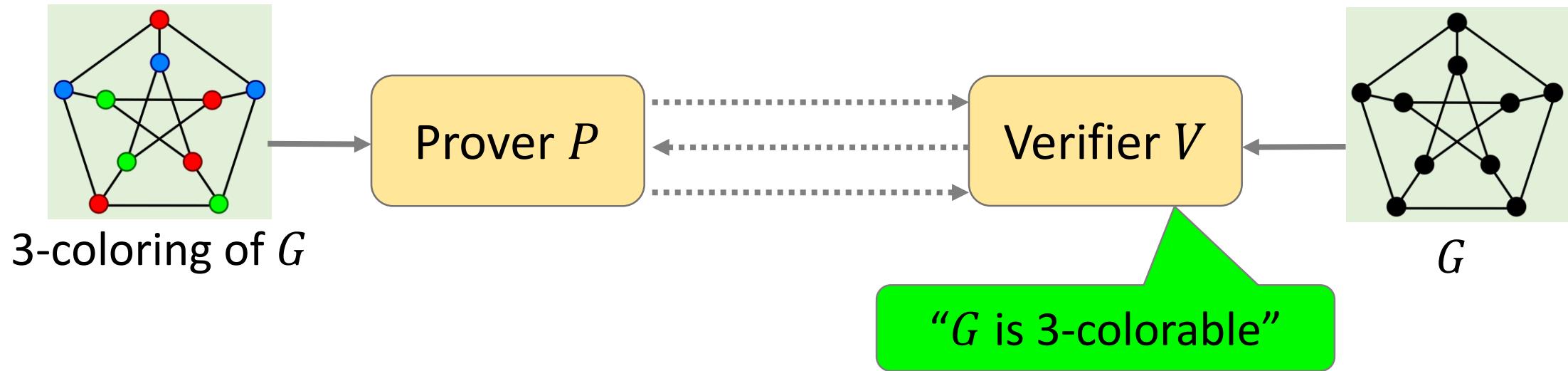
Flavors of Malicious Security

- Security with abort
 - Incorrect execution
 - Who's the bad guy? →
 - Abort
- Full security – guaranteed output delivery
 - Incorrect execution
 - What we want
 - What we actually get



Zero-knowledge proofs

[GMR89]



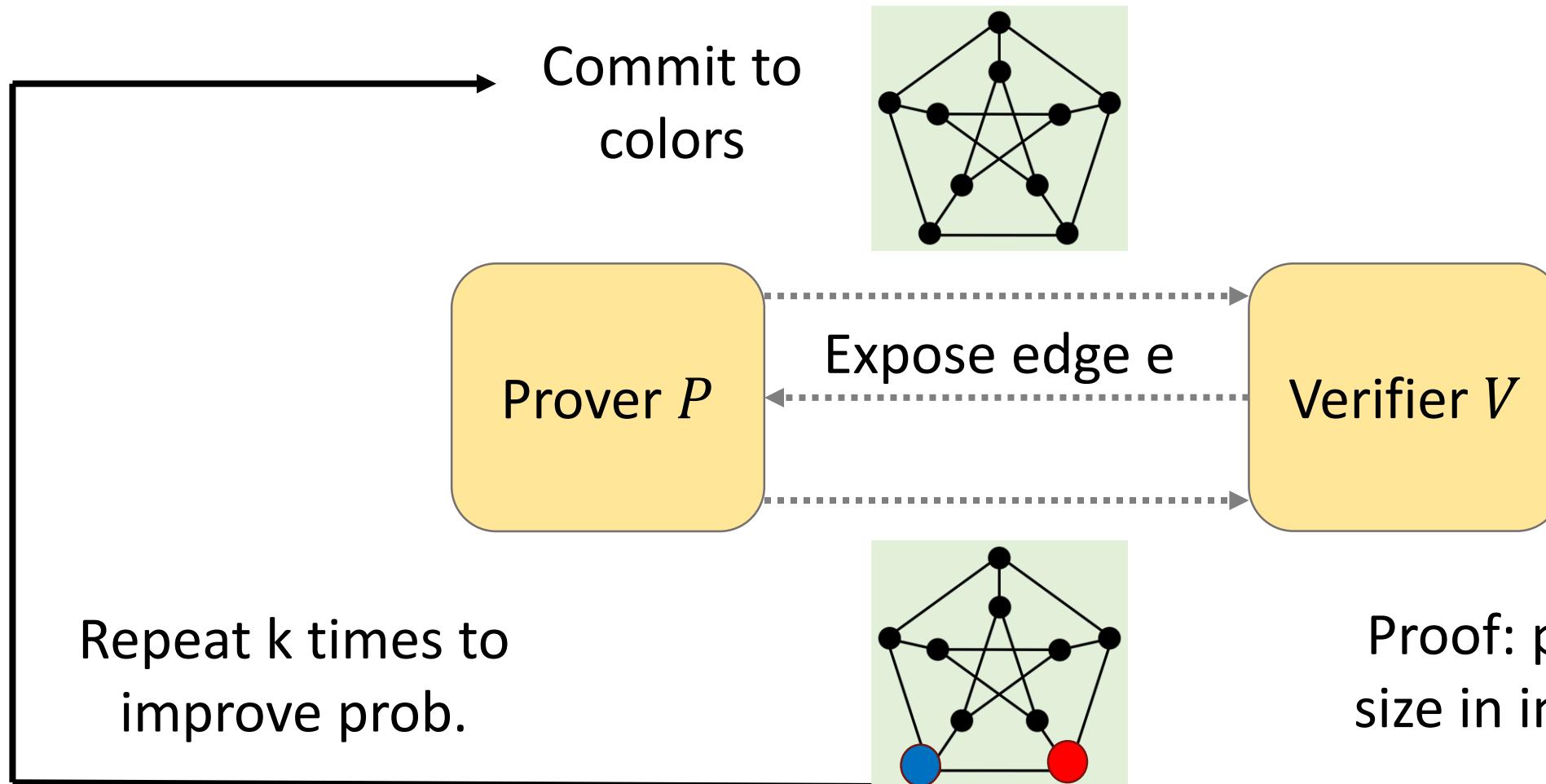
Complete. Honest P convinces honest V .

Sound. Dishonest P^* rarely fools honest V .

ZK. Dishonest V^* learns only that $G \in \text{3COL}$.
→ V^* learns nothing else about G

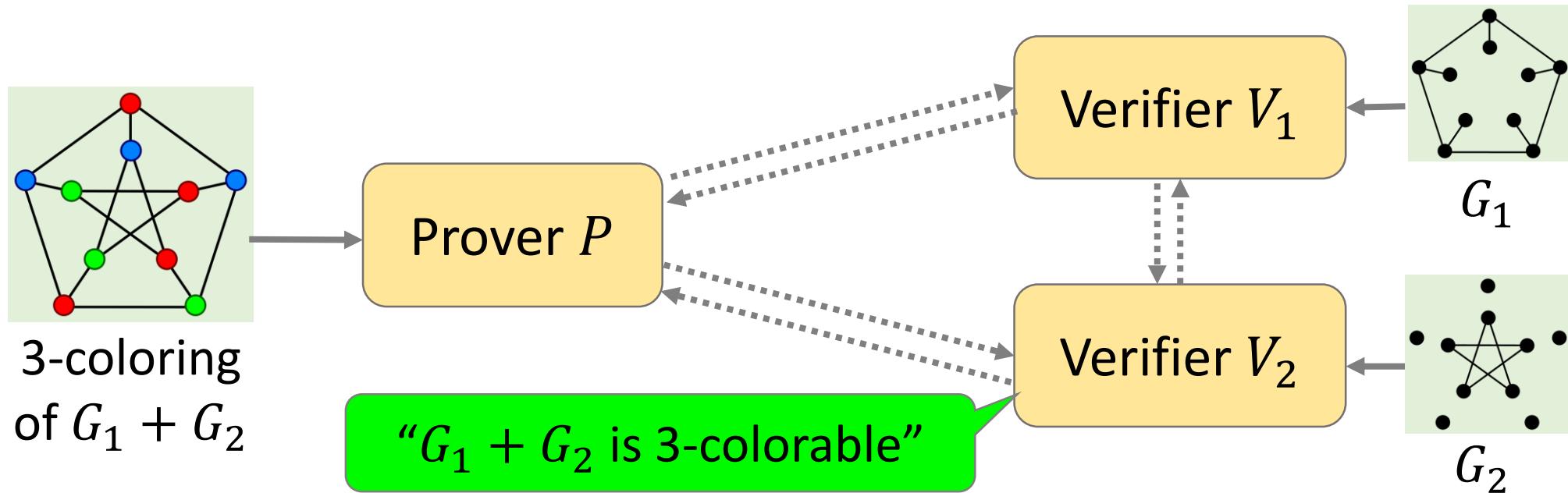
ZK for NP Statements (3-Colorability)

[GMW91]



This talk

Zero-knowledge proofs on **distributed** data



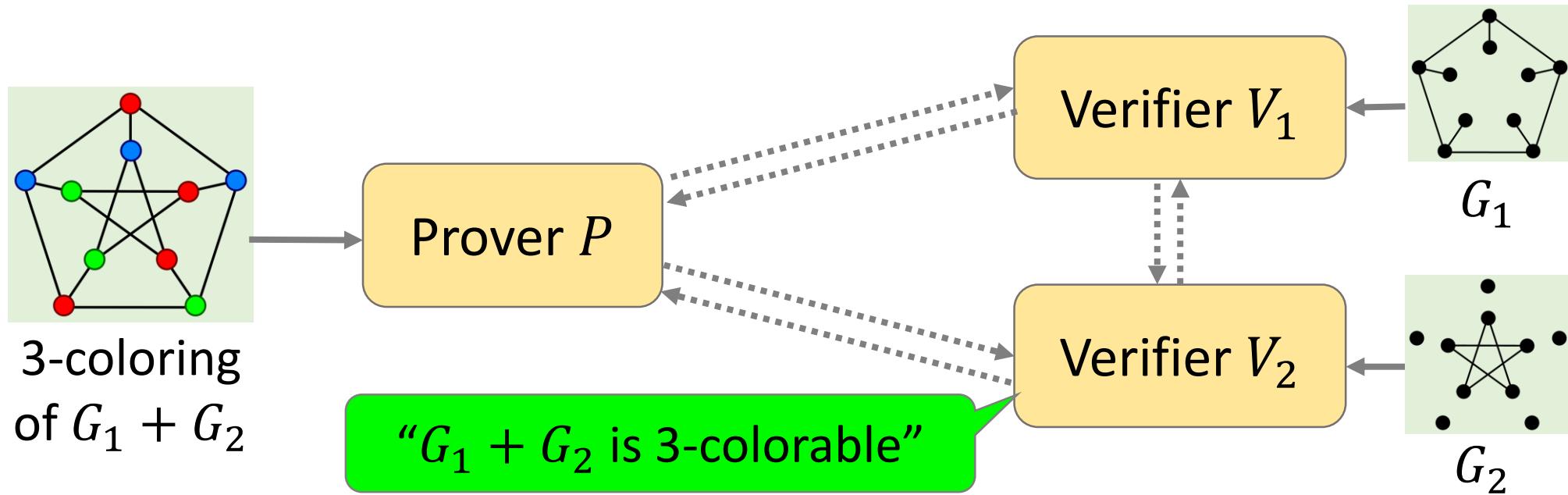
Complete. Honest P convinces honest (V_1, V_2) .

Sound. Dishonest P^* rarely fools honest (V_1, V_2) .

Strong ZK. Dishonest V_1^* (or V_2^*) learns only that $G_1 + G_2 \in \text{3COL}$.
→ V_1 learns nothing else about G_2

This talk

Zero-knowledge proofs on **distributed** data



k -round protocol = As in other multiparty protocols

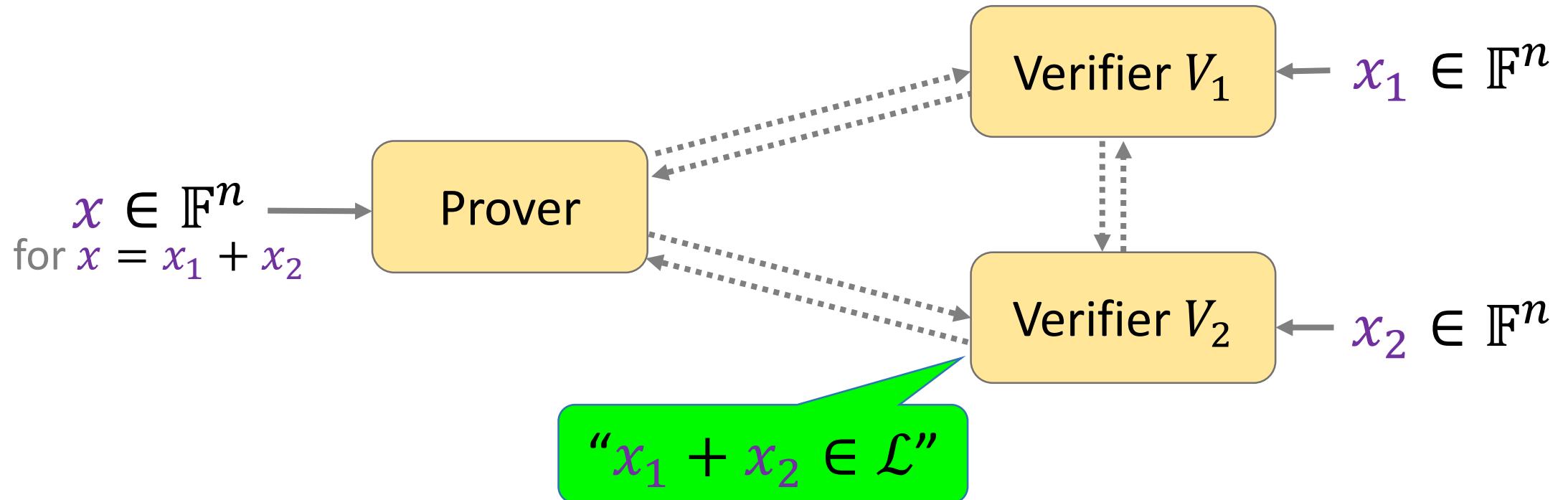
Public coin = Verifiers' messages to prover are random strings

More than two verifiers

Special case

Zero-knowledge proofs on **secret-shared** data

Language $\mathcal{L} \subseteq \mathbb{F}^n$, for finite field \mathbb{F} .



Fully Linear PCP / IOP

Linear Probabilistically Checkable Proofs (PCPs) [IKO07]

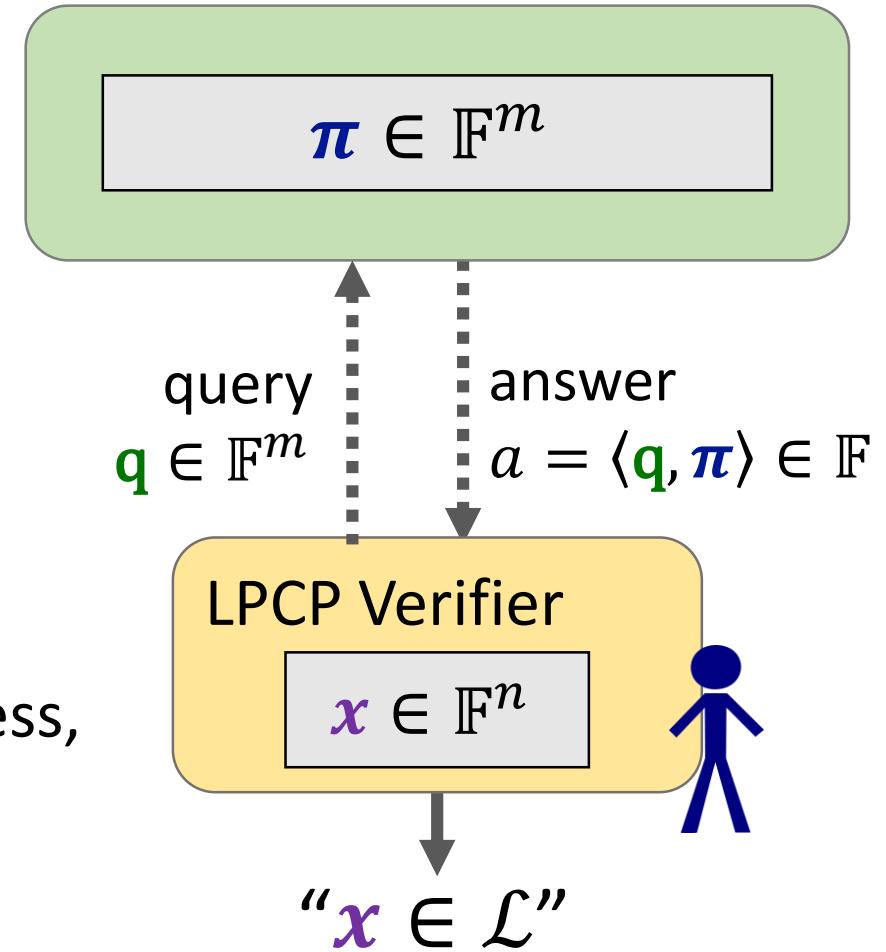
Finite field \mathbb{F} , language $\mathcal{L} \subseteq \mathbb{F}^n$

Linear PCP proof is a vector $\boldsymbol{\pi}$.

Linear PCP verifier

- takes \boldsymbol{x} as input,
- makes $O(1)$ linear queries to $\boldsymbol{\pi}$.

Must satisfy notions of completeness, soundness, and zero knowledge.



Fully linear probabilistically checkable proofs (PCPs)

[This line of work]

Finite field \mathbb{F} , language $\mathcal{L} \subseteq \mathbb{F}^n$

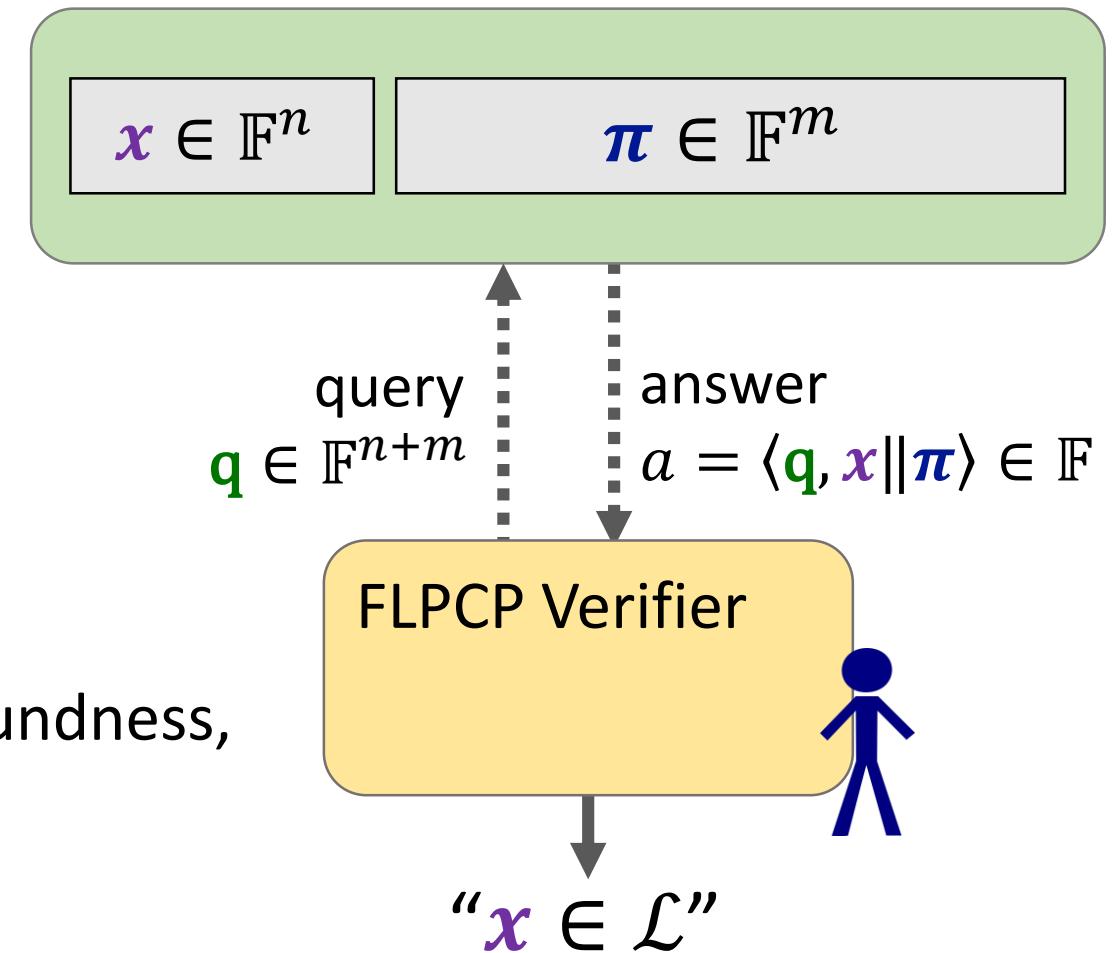
Fully linear PCP proof is a vector $\boldsymbol{\pi}$.

Fully linear PCP verifier

--- takes \boldsymbol{x} as input, ---

– makes $O(1)$ linear queries to $(\boldsymbol{x} \parallel \boldsymbol{\pi})$.

Must satisfy notions of completeness, soundness, and zero knowledge.

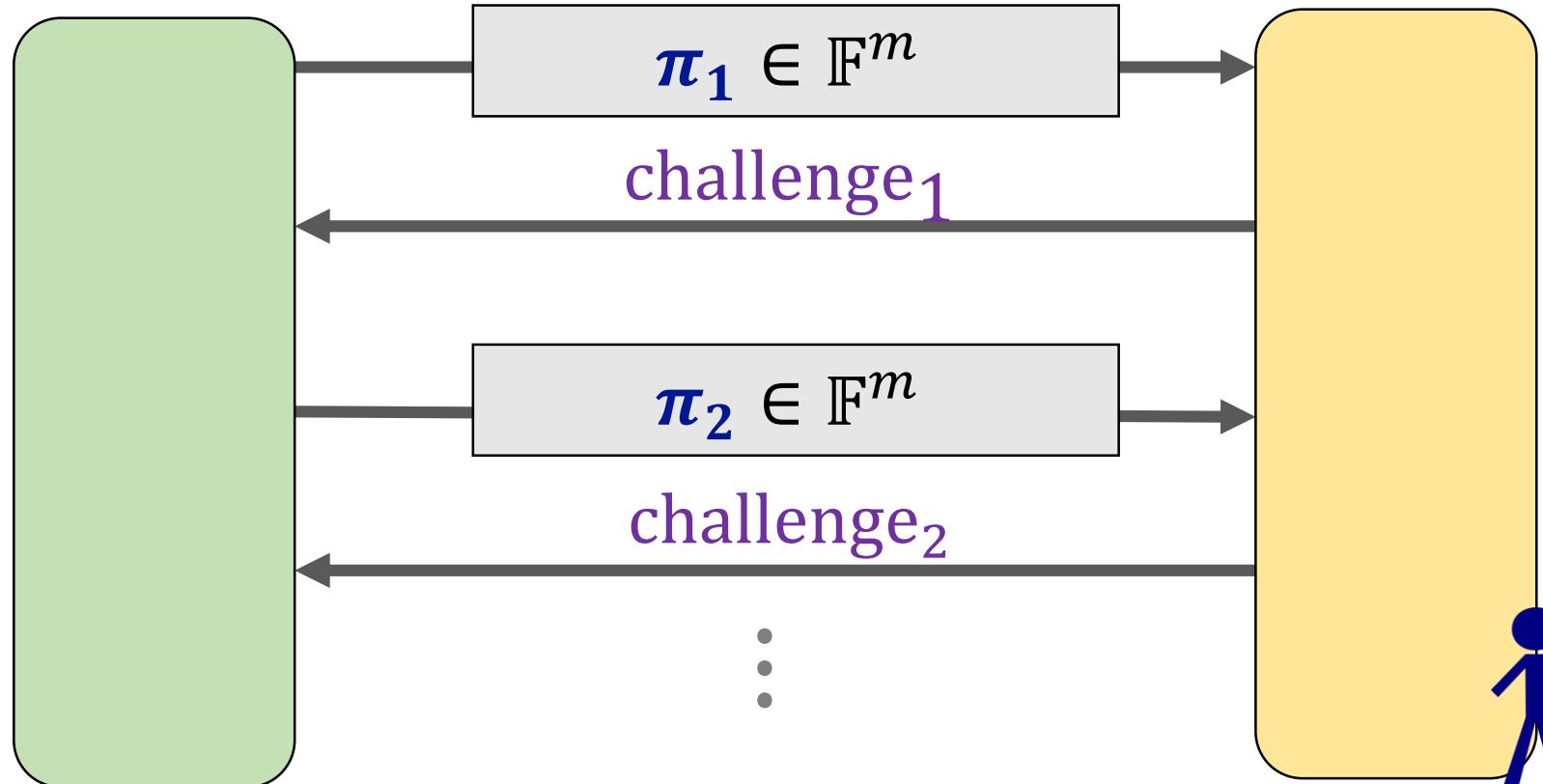


Fully linear IOPs

An interactive analogue of fully linear PCPs

Linear analogue + ZK of: [BCS16], [RRR16]

Prover



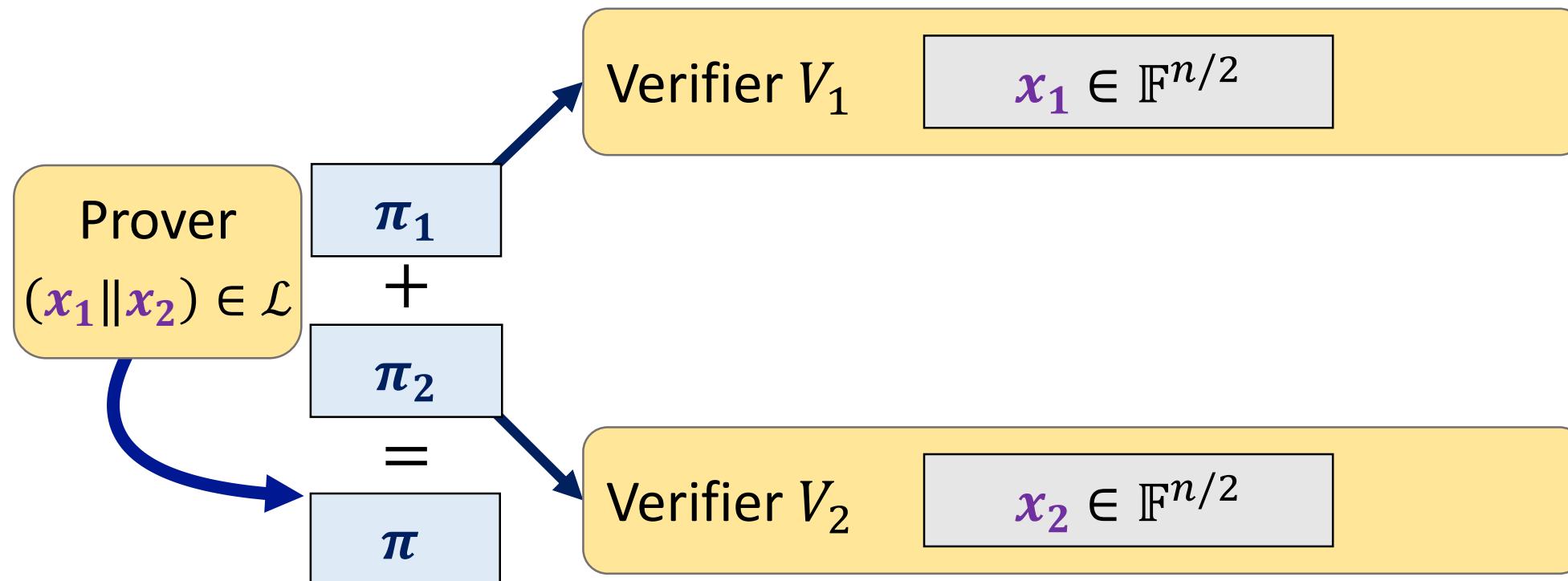
Verifier

At the end of the interaction, verifier makes linear queries to $(\text{challenge}_1 | \pi_1 | \pi_2 | \dots | \pi_t)$ and accepts or rejects.

Naturally captures many existing proof protocols (GKR, ...)

If language \mathcal{L} has an efficient fully linear PCP/IOP, it has an efficient ZK proof on distributed data.

1. Generate FLPCP proof and split it using secret sharing.



If language \mathcal{L} has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

2. Sample query vectors using common randomness.

Verifier V_1

$x_1 \in \mathbb{F}^{n/2}$

π_1

Query $\mathbf{q} = [5 | 1 | 2 | 7 | 4 | 9]$

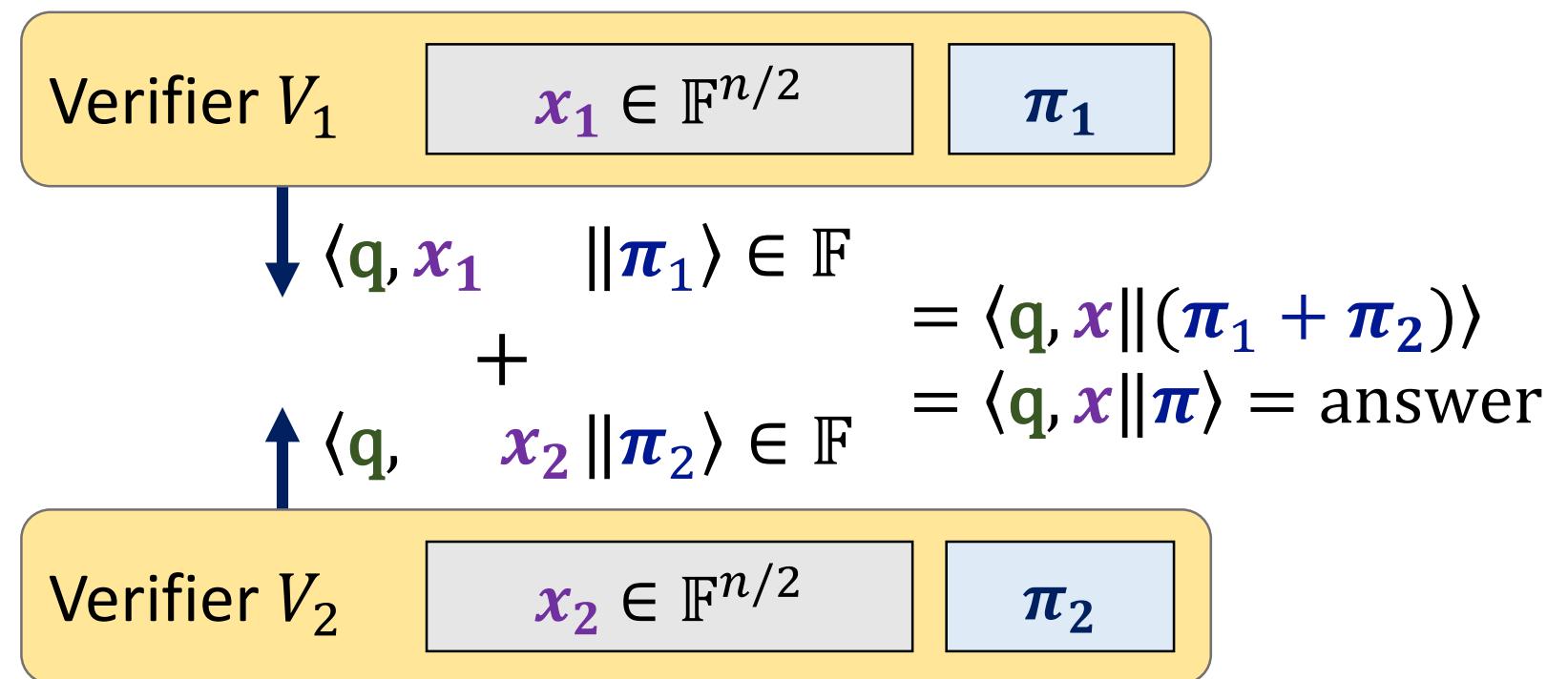
Verifier V_2

$x_2 \in \mathbb{F}^{n/2}$

π_2

If language \mathcal{L} has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

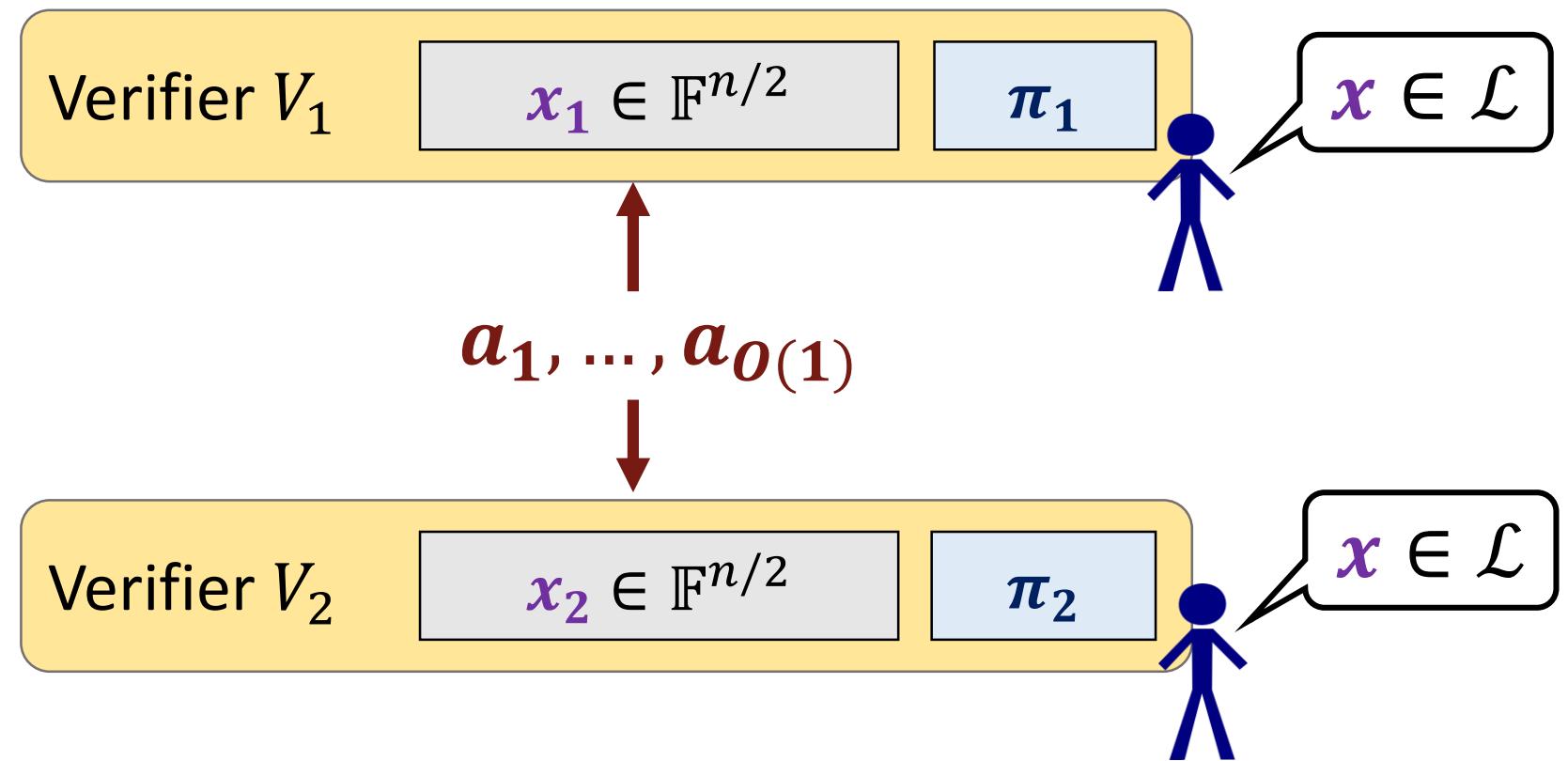
3. Publish shares of query answers and reconstruct.



If language \mathcal{L} has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

4. Recover $O(1)$ query answers, run FLP CP verifier.

Communication:
 $|\text{proof}| + O(1)$



Selected results: New ZK proofs I

\mathbb{F} - finite field, $\mathcal{L} \subseteq \mathbb{F}^n$ - language ($n \ll |\mathbb{F}|$), $G: \mathbb{F}^{\textcolor{red}{L}} \rightarrow \mathbb{F}$ - algebraic gate

Theorem. If \mathcal{L} is recognized by a circuit \mathcal{C} that has \mathbf{M} G -gates, and some addition gates, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- $\mathcal{O}(1)$ rounds and
- communication cost $\mathcal{O}(L + M(\deg. G))$. (elements of \mathbb{F})

Selected results: New ZK proofs II

Theorem. If \mathcal{L} has a **degree-two** arithmetic circuit, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- k rounds and
- communication cost $O(n^{o(1/k)})$ improves: $\Omega(n)$ [BC17]

19

Extensions to:

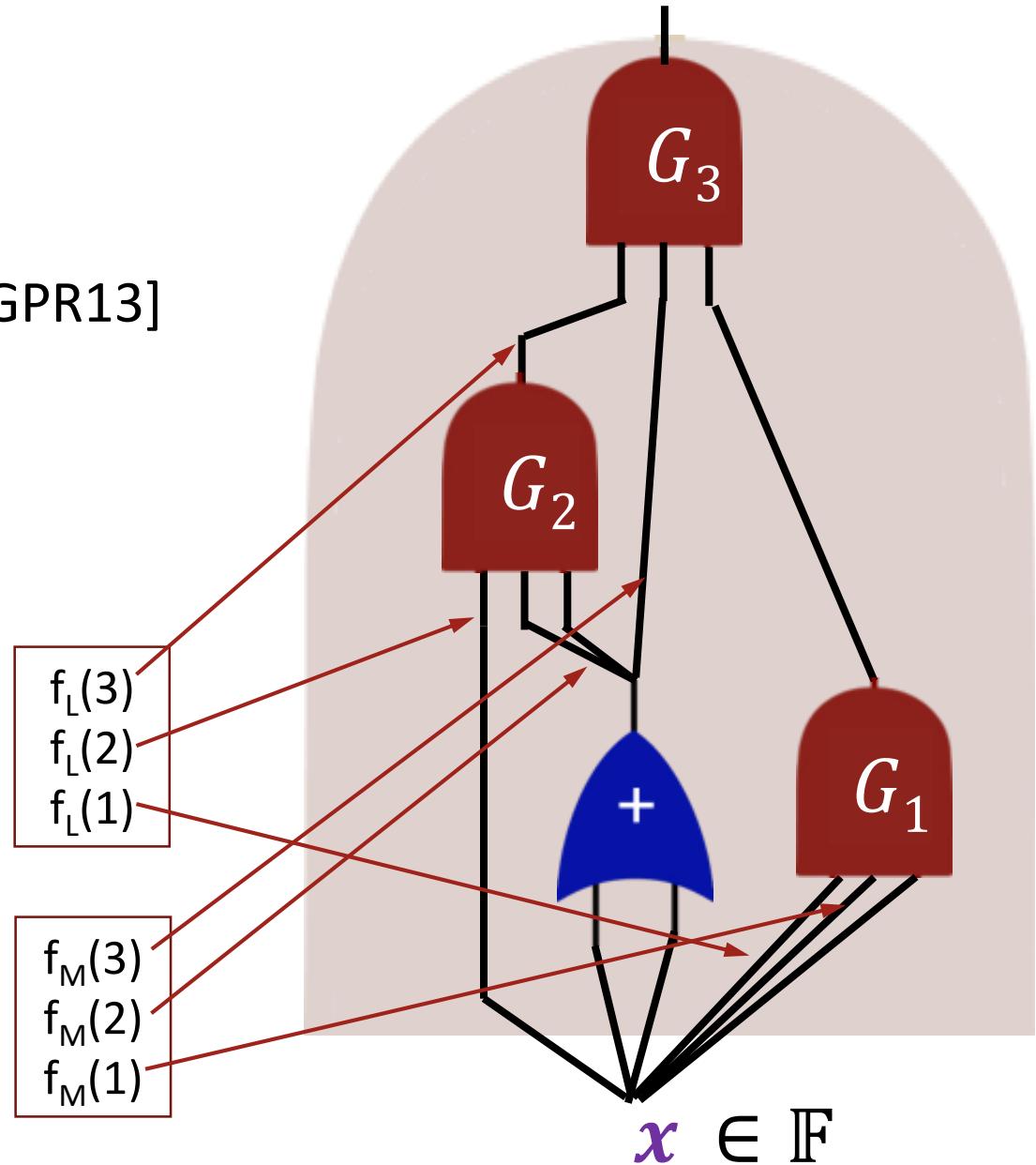
- Rings \mathbb{Z}_{2^k}
- Degree $O(1)$ circuits

19

Constructions

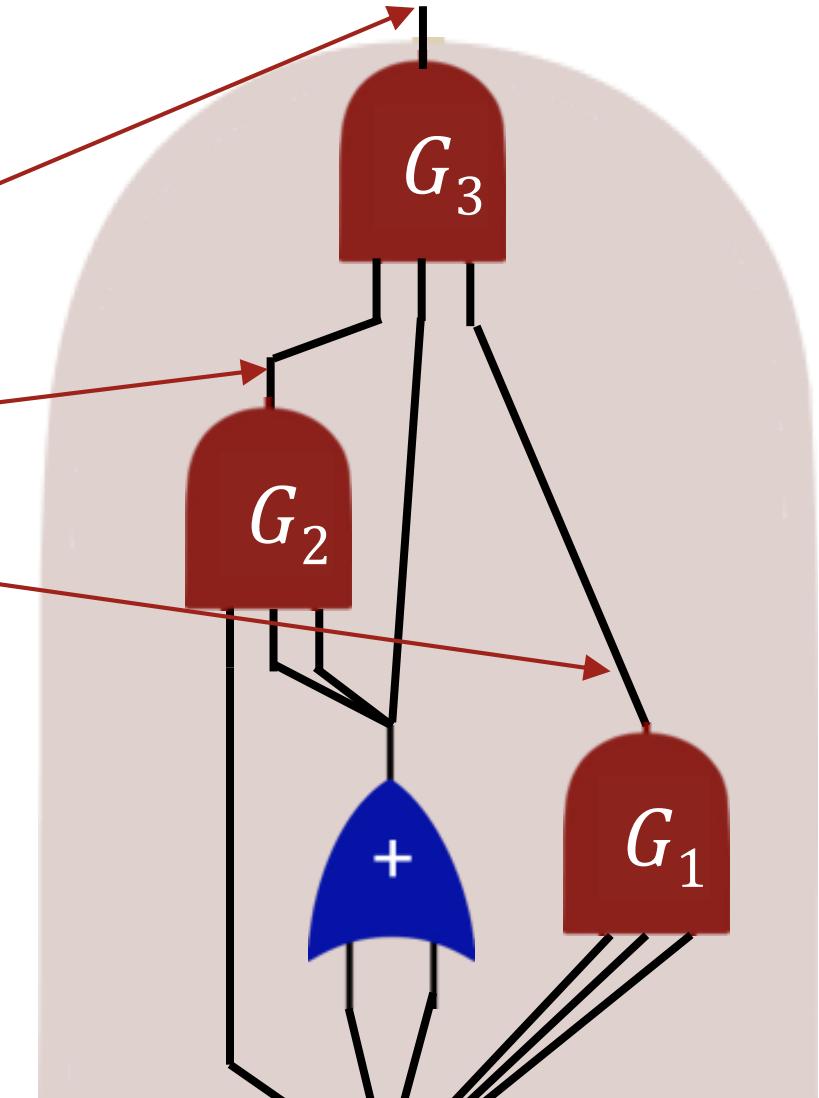
Short proofs for structured circuits I

- Ideas similar to [LFKN92, AW09, GGPR13]
- Circuit over field \mathbb{F} :
 - Linear gates
 - “Large” algebraic G-gates
- Order gates
- Define Polynomials
 - f_L – left inputs
 - f_M – middle inputs
 - f_R – right inputs



Short proofs for structured circuits II

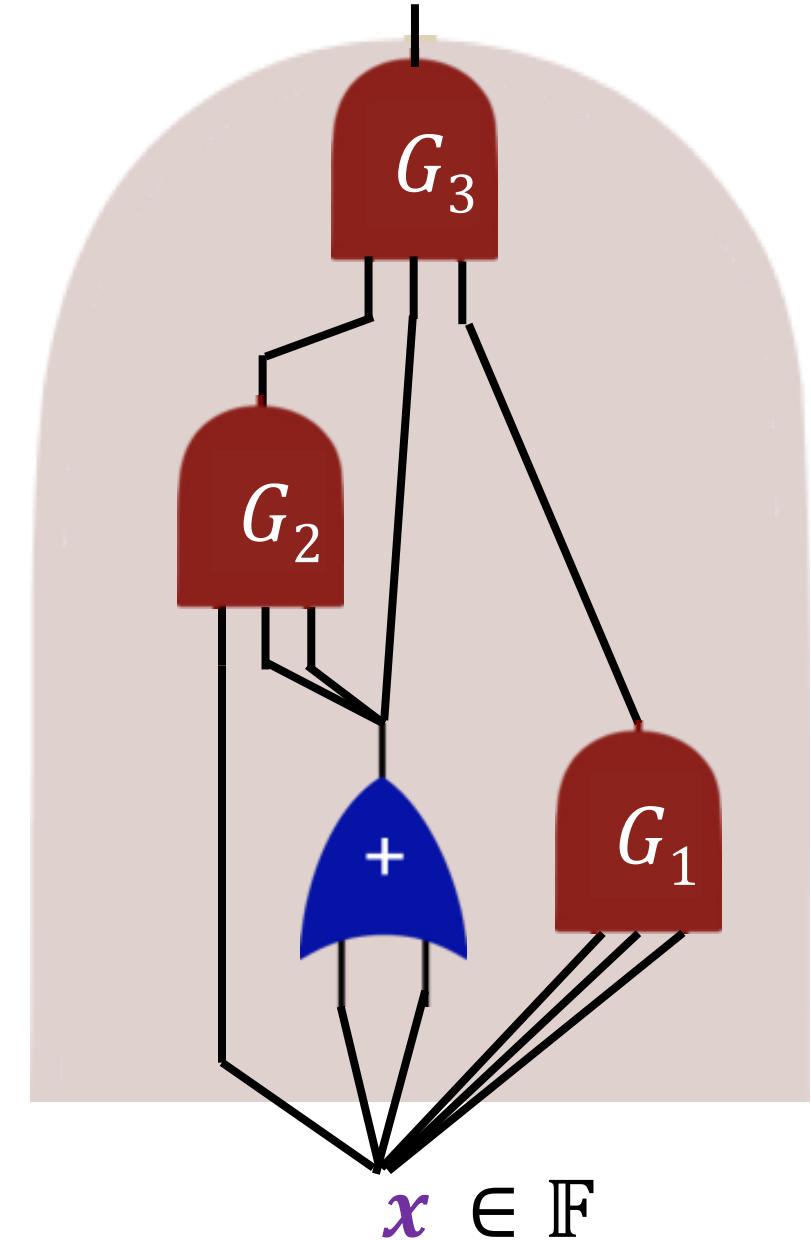
- $p = G(f_L, f_M, f_R)$ defines outputs
- $p(1)$
- $p(2)$
- $p(3)$
- $p(\#G \text{ gates}) = C(x)$



Short proofs for structured circuits II

- Prover sends p
- Length: $(\#G \text{ gates})(\text{degree } G)$
- Verifier checks
 - $p(\#G \text{ gates})=0$ ($x \in \mathcal{L}$)
 - $p(r)=G(f_L, f_M, f_R)(r)$ for random r
- Verifier work requires
 - Interpolation
 - Evaluation
- ZK by extra randomization of $f_L/f_M/f_R$

Linear!



Corollary

- $O(\sqrt{n})$ FL-PCP for **any** degree 2 circuit (Improves: Prio $\Omega(n)$ [BC17])
- $C(x)$ degree 2 $\rightarrow C(x) = x^{-1}Ax$ for some matrix A
- $C(x) = \langle x, Ax \rangle$
- C made up of
 - G gate – inner product on length $n^{1/2}$ inputs
 - Linear gates
- Proof size: $2n^{1/2}$

Reducing communication for simple languages

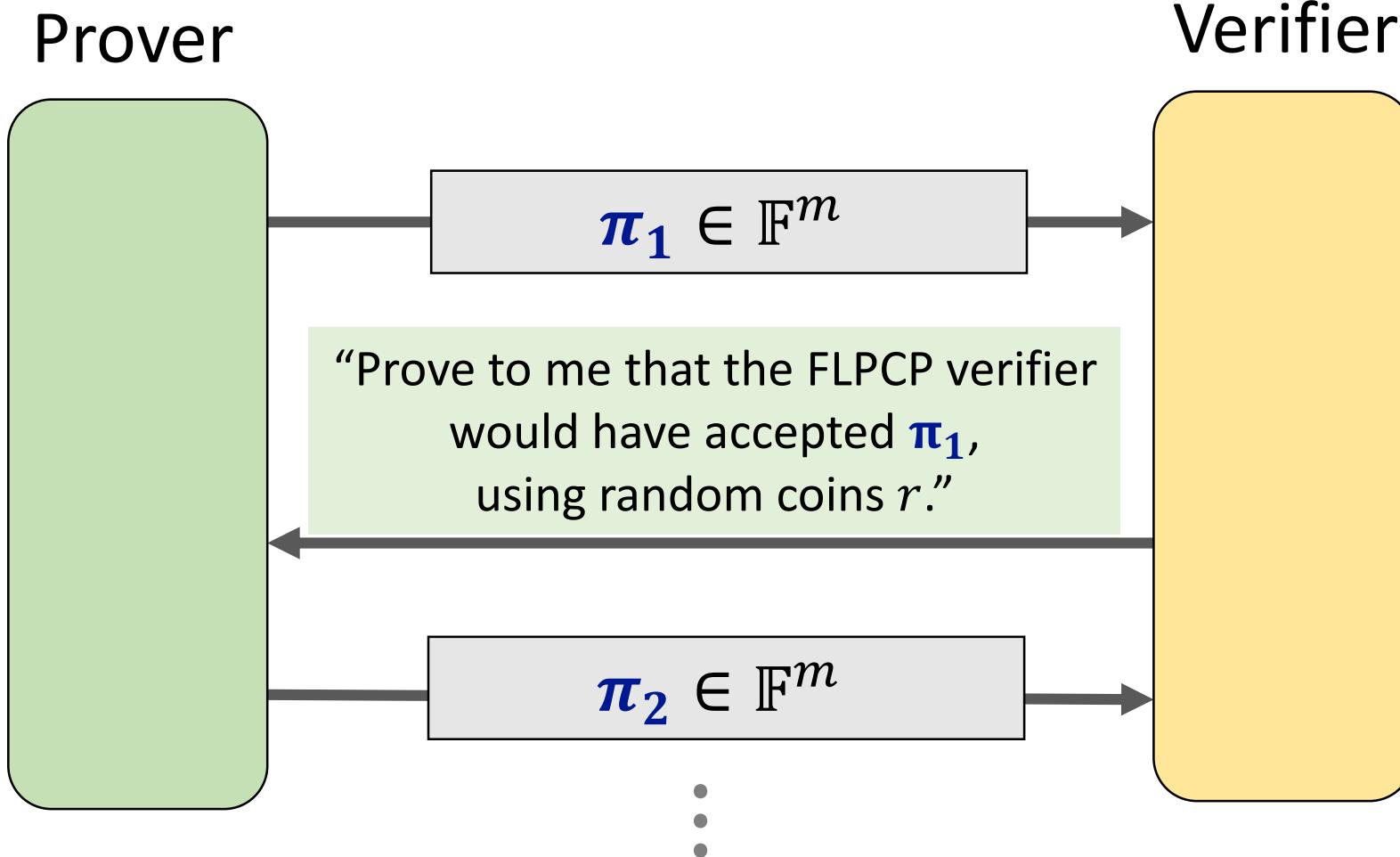
Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. ($n \ll |\mathbb{F}|$)

Theorem. If \mathcal{L} has a **degree-two** arithmetic circuit, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- $O(\log n)$ rounds and
- communication cost **$O(\log n)$** .

- Uses our new FLPCC
- Idea: Recursively outsource the verifier's work to the prover.

FL-Interactive Oracle Proof (FLIOP)



For circuits with
“SIMD” structure,
proof size shrinks:
 $O(|\mathcal{C}|) \rightarrow O(\log |\mathcal{C}|)$

Low-degree circuits
have the necessary
structure

Semi-Honest to Malicious MPC Compiler

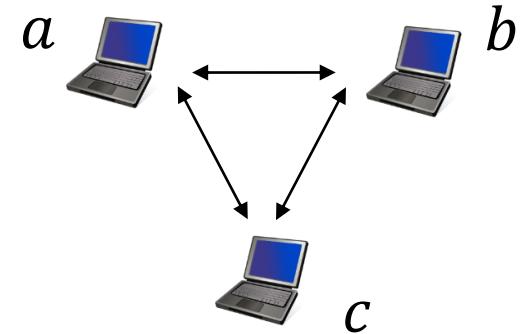
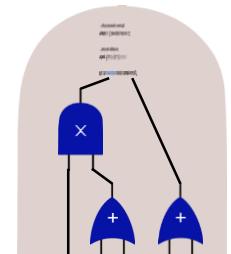
Secure Multi-Party Computation (MPC)

What is the **communication** complexity of **securely** evaluating f ?

- **HE:** $\tilde{O}(|a, b, c| + |f(a, b, c)|)$ [G09, BGI16a]
 - Based on heavy cryptographic tools
- Allowed: Black-box use of PRG
- α elements/party, small const $\alpha \geq 2$
- Building line of work: improving α in various settings

$\alpha \geq 2$ Step 2: (standard) “active” security

Lightweight $\alpha = 1$ Step 1: (weak) “passive” security



$C =$ (Boolean/arithmeti) circuit representation of f

Results

- Generic MPC: compiler from semi-honest to malicious
 - “Natural” protocols
 - Semi-honest majority
 - Any number of parties – **secure with abort**
 - **Constant** Number of parties – **full security**
 - In this talk – focus on 3PC
 - Sub-linear communication (in circuit size)
 - Soundness – $1/|F|$, but reduce by extension field
- Specific MPC functionalities
 - Even better communication!

Comparison of 3PC Protocols

The protocol	# of elements sent per party per multiplication gate				Full security?
	Boolean Circuits	Circuits over \mathbb{F}_{2^8}	Circuits over the ring $\mathbb{Z}_{2^{64}}$	Circuits over large finite fields ($ \mathbb{F} \geq 2^{40}$)	
Araki et al. [ABF ⁺ 17]	7	7	7	7	No
Chaudhari et al. [CCPS19]	7(offline)+4/3(online)	-	7(offline)+4/3(online)	-	No
Chida et al. [CGH ⁺ 18]	41	6	41	2	No
Erikson et al. [EOP ⁺ 19]	123	-	5	-	No
This work	1	1	1	1	Yes

3PC: Main Theorem

Given any **passive-secure 3PC** protocol with “natural” structure, then can achieve **active** security with $+o(|C|)/\text{party extra comm}$

“Natural” 3PC protocol:

Input Shares of Adv:
Commit to his input

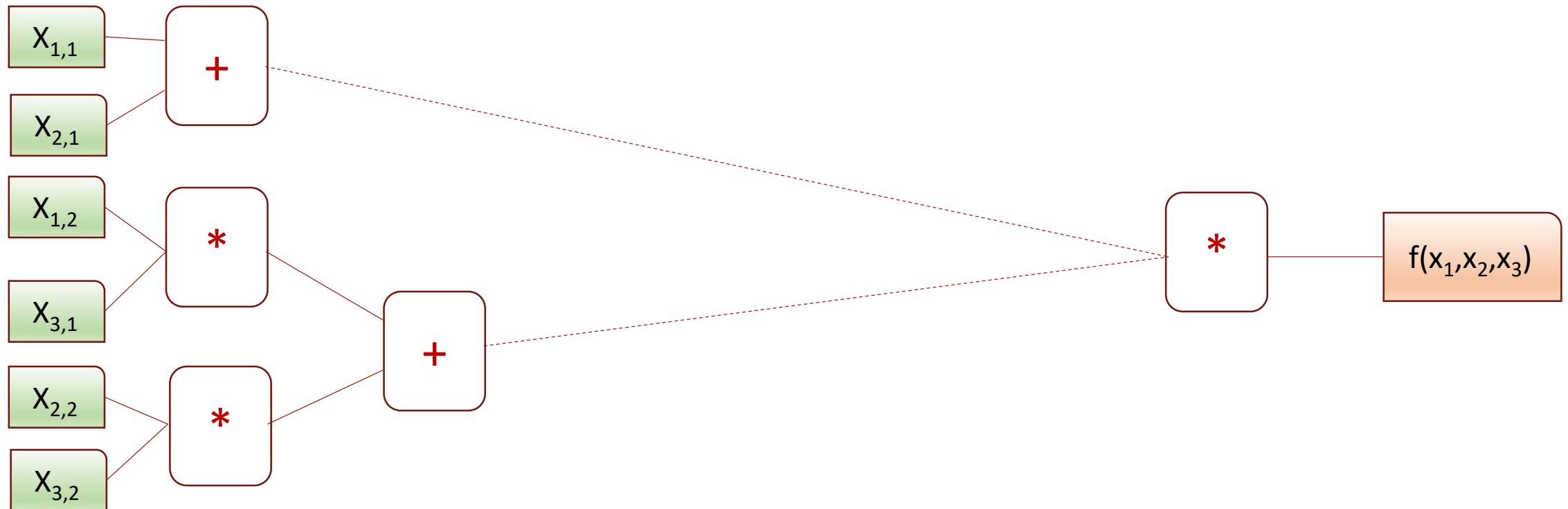
Before final message:
Total random garbage

If... Some degree-2 relation holds on msgs
... then [robustly shared y] = $C(a, b, c)$

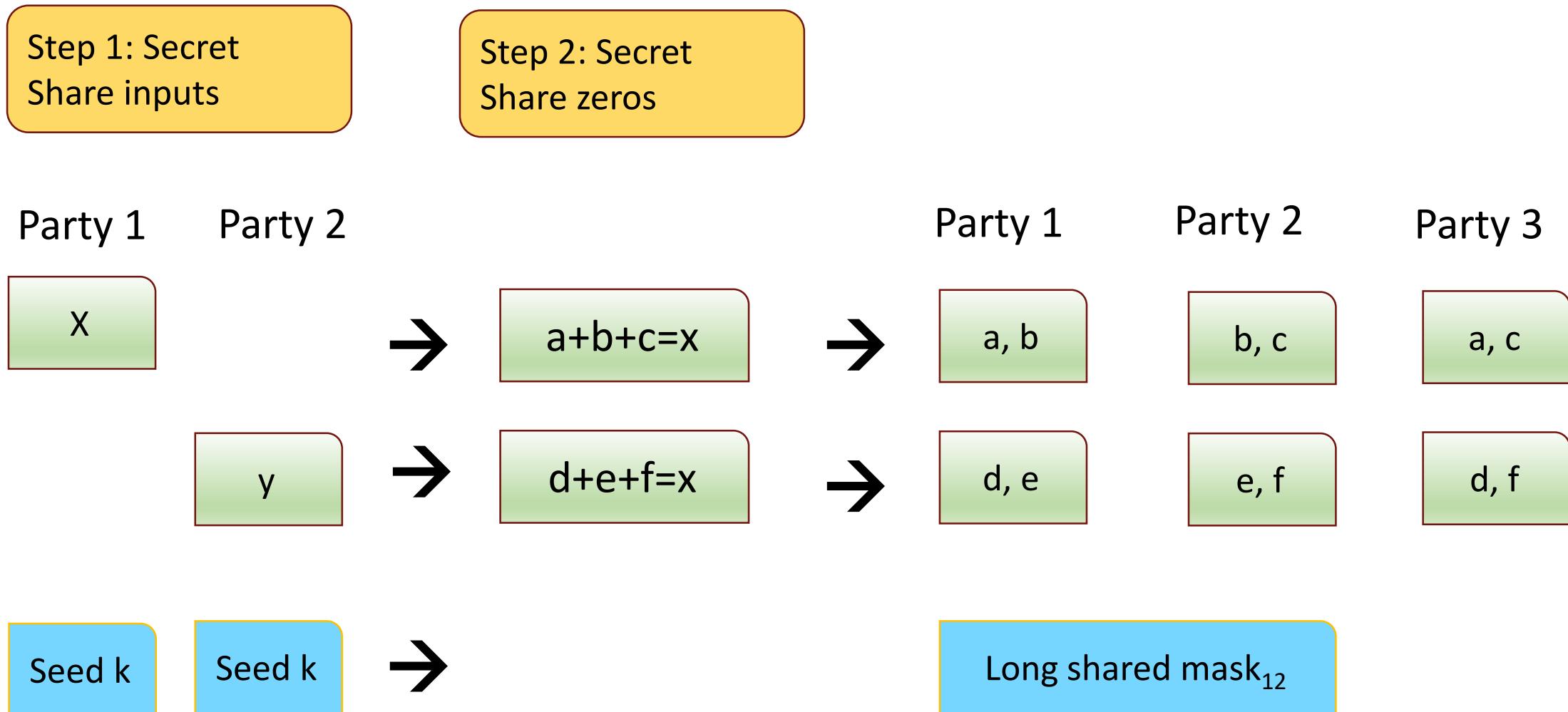
Final round: Robust shares of output

Natural Protocol – Example [AFLNO16]

Step 0: Represent f as circuit



Natural Protocol - Example



Natural Protocol - Example

Step 3: distributed evaluation of every gate

$$\begin{array}{ccc} x & \rightarrow & a+b+c=x \\ y & \rightarrow & d+e+f=y \end{array}$$

$x \oplus y$

$x \cdot y$

Party 1

a+d,
b+e

Party 2

b+e,
c+f

Party 3

a+d,
c+f

a(d+e)+
b(d+e)

bf+ce

af+cd

Mask
Re-share values

3PC “Passive” secure protocol

Communication, Using PRG tricks

ows protocol instructions

1 /input

1. Secret share inputs
(note: linear shares)

0 amort

2. Generate $|C|$ sets of shares of 0
3. Gate-by-gate evaluation
 - + : Locally on shares
 - x : Cross-terms $a_i b_j$ computable!
 - Locally: Compute additive shares
 - Compute, mask, & send share

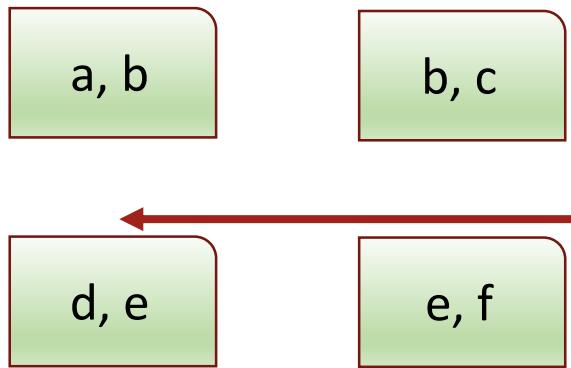
1 /mult

4. Output gate: Exchange final shares

Comm Cost: 1 elmt/party/multiplication

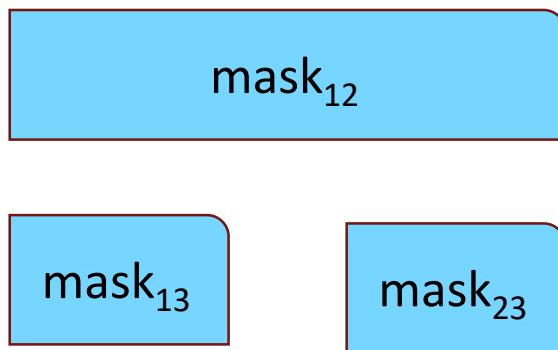
Verifying Correct Execution

Party 1 Party 2



Party 3

Shares of
 $af+cd+.masks$

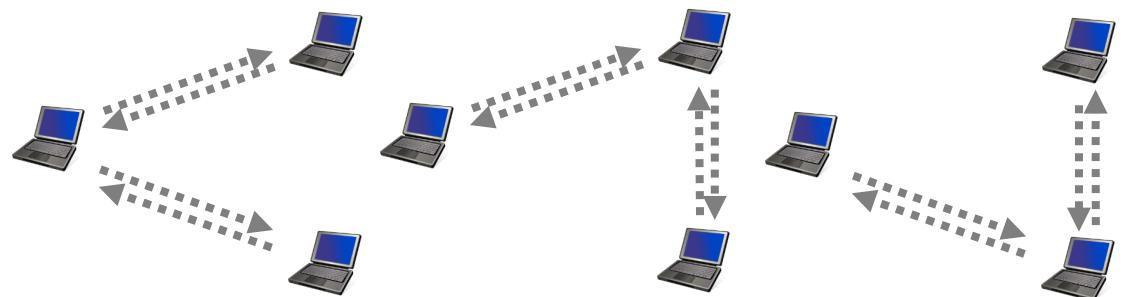


Degree 2 function of
shared input

Collective 3PC Protocol

Protocol Π'
(without final message)

Total extra communication:
 $|\text{proof}| + |\text{verifier comm}| = o(|C|)$



Each party proves in ZK their messages in Π'
were computed correctly

Final Message (robust shares, expect
same message from two parties)

Fully secure – abort leads to identifying
“good” party

3PC Summary

- Fully Linear PCPs: Proving on secret shared / committed / distributed data
- New (passive → active) security compiler for 3PC
- Concrete efficiency:
 - 2^{20} gate circuit
 - 0.5 Kbyte communication
 - 30 field operations per gate $GF(2^{47})$
 - Soundness 2^{-40}

(Standard) active security

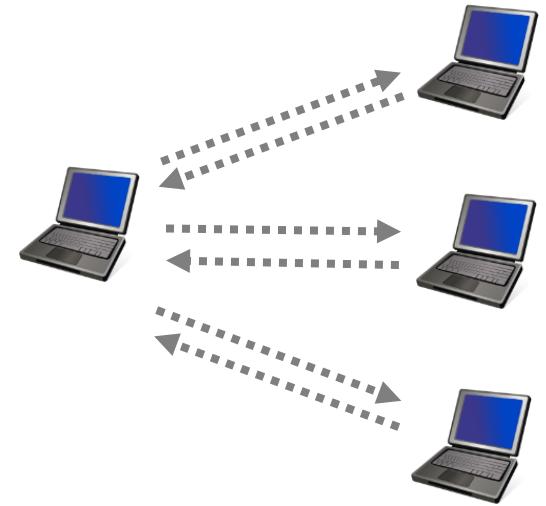
+ $o(|C|)$ communication

(Weak) passive security

Protocols with a particular
“natural” structure

Extending to $n > 3$ Parties

- Challenge: **Malicious prover + verifier(s)**
 - Even defining soundness becomes non-trivial
 - Requires “robustness” of pieces of statement x
- Challenge: In MPC protocol with $n > 3$,
Prover no longer knows the full robust statement
 - Involves messages Prover wasn’t involved in
- Challenge: Replication based protocol inefficient for $\omega(1)$ servers
- Approach – Parties distribute role of prover. Stay tuned...



Thank You!

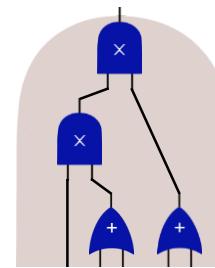
Applying Our Compiler to “Natural” Protocols

- **3 parties, 1 corruption (“3PC”)**

- Motivated setting: “Minimal” across MPC settings eg:
[MRZ15, AFLN+16, ABFL+17, LN17, FLNW17, CGHI+18, GR018, NV18, EnOP+19]

- Comparison:
 - Over large field: $\alpha = 2$ [CGHIKLN18, NV18]
 - Over Boolean: $\alpha = 7$ [ABFLLNOWW17]
 - Any field or \mathbb{Z}_N** $\alpha = 1$ [This work]

Compiling eg, [AFLNO16, KKW18]



- **Constant $n \in O(1)$ parties, t corruptions, $n = 2t + 1$**

Over large field: $\alpha = 3$ [CGHIKLN18]

Over Boolean/ \mathbb{Z}_{2^k} : $\alpha > 40$ [CGHIKLN18]

Any field or \mathbb{Z}_N $\alpha = 3t/(2t + 1) \leq 1.5$ [This line of work]

Compiling [DN07]