
Fully Linear PCPs and their
Cryptographic Applications

Niv Gilboa – Ben-Gurion University

Based On

• Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai, ``Fully Linear PCPs and their Cryptographic Applications’’, Crypto
2019.

• Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof, `` Practical Fully
Secure Three-Party Computation via Sublinear Distributed Zero-
Knowledge Proofs’’, ACM-CCS 2019.

2

Goal

3

Party1 – x1

Party2 – x2

Partyn – xn

• Compute f(x1,…,xn)
• Semi-honest adversaryPartyn-1 – xn-1…

• Prove correctness
• Com. =o(circuit size)
 Malicious com.  semi-
honest com.

Party1 – x1

Party2 – x2

Partyn – xn

Partyn-1 – xn-1…

Flavors of Malicious Security

• Security with abort
• Incorrect execution

• Who’s the bad guy? ➔

• Abort

• Full security – guaranteed output delivery
• Incorrect execution

• What we want

• What we actually get

4

Bad guy

Bad guy Good guy

Zero-knowledge proofs

5

Verifier 𝑉

3-coloring of 𝐺 𝐺

“𝐺 is 3-colorable”

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉.

Sound. Dishonest 𝑃∗ rarely fools honest 𝑉.

ZK. Dishonest 𝑉∗ learns only that 𝐺 ∈ 3COL.
→ 𝑉∗ learns nothing else about 𝐺

[GMR89]

ZK for NP Statements (3-Colorability)

6

[GMW91]

Verifier 𝑉Prover 𝑃

Commit to
colors

Expose edge e

Repeat k times to
improve prob.

Proof: polynomial
size in input length

𝐺1

This talk

Zero-knowledge proofs on distributed data

7

Verifier 𝑉1

3-coloring
of 𝐺1 + 𝐺2

Verifier 𝑉2

𝐺2

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉1, 𝑉2 .

Sound. Dishonest 𝑃∗ rarely fools honest (𝑉1, 𝑉2).

Strong ZK. Dishonest 𝑉1
∗ (or 𝑉2

∗) learns only that 𝐺1 + 𝐺2 ∈ 3COL.
→ 𝑉1 learns nothing else about 𝐺2

“𝐺1 + 𝐺2 is 3-colorable”

𝐺1

This talk

Zero-knowledge proofs on distributed data

8

Verifier 𝑉1

3-coloring
of 𝐺1 + 𝐺2

Verifier 𝑉2

𝐺2

Prover 𝑃

𝒌-round protocol = As in other multiparty protocols

Public coin = Verifiers’ messages to prover are random strings

More than two verifiers

“𝐺1 + 𝐺2 is 3-colorable”

Special case

Zero-knowledge proofs on secret-shared data

9

Prover

“𝑥1 + 𝑥2 ∈ ℒ”

Language ℒ ⊆ 𝔽𝑛, for finite field 𝔽.

𝑥1 ∈ 𝔽𝑛

𝑥2 ∈ 𝔽𝑛

Verifier 𝑉1

Verifier 𝑉2

𝑥 ∈ 𝔽𝑛
for 𝑥 = 𝑥1 + 𝑥2

Fully Linear PCP / IOP

10

Linear Probabilistically Checkable Proofs (PCPs) [IKO07]

11

“𝒙 ∈ ℒ”

𝝅 ∈ 𝔽𝑚

LPCP Verifier

query
q ∈ 𝔽𝑚

answer
𝑎 = q,𝝅 ∈ 𝔽

Finite field 𝔽, language ℒ ⊆ 𝔽𝑛

Linear PCP proof is a vector 𝝅.

Linear PCP verifier
– takes 𝒙 as input,
– makes 𝑂(1) linear queries to 𝝅.

Must satisfy notions of completeness, soundness,
and zero knowledge.

𝒙 ∈ 𝔽𝑛

Fully linear probabilistically checkable proofs (PCPs)
[This line of work]

12

𝝅 ∈ 𝔽𝑚𝒙 ∈ 𝔽𝑛

query
q ∈ 𝔽𝑛+𝑚

answer
𝑎 = q, 𝒙‖𝝅 ∈ 𝔽

Finite field 𝔽, language ℒ ⊆ 𝔽𝑛

Fully linear PCP proof is a vector 𝝅.

Fully linear PCP verifier
– takes 𝒙 as input,
– makes 𝑂(1) linear queries to (𝒙‖𝝅).

Must satisfy notions of completeness, soundness,
and zero knowledge.

“𝒙 ∈ ℒ”

FLPCP Verifier

Fully linear IOPs
An interactive analogue of fully linear PCPs

13

Prover

challenge1

challenge2

⋮

Verifier At the end of the
interaction, verifier
makes linear queries
to
(𝒙|𝛑𝟏|𝛑𝟐| … |𝝅𝒕)

and accepts or
rejects.

Linear analogue + ZK of: [BCS16], [RRR16]

𝝅𝟏 ∈ 𝔽𝑚

𝝅𝟐 ∈ 𝔽𝑚

Naturally captures many
existing proof protocols

(GKR, …)

If language ℒ has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

14

Verifier 𝑉1

Verifier 𝑉2

𝒙𝟏 ∈ 𝔽𝑛/2

𝝅𝟏

𝒙𝟐 ∈ 𝔽𝑛/2

𝝅𝟐

𝝅

=

+
Prover

1. Generate FLPCP proof and split it using secret sharing.

𝒙𝟏‖𝒙𝟐 ∈ ℒ

If language ℒ has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

15

5 1 2 | 7 | 4 | 9Query 𝐪 =

Verifier 𝑉1

Verifier 𝑉2

𝒙𝟏 ∈ 𝔽𝑛/2

𝒙𝟐 ∈ 𝔽𝑛/2

𝝅𝟏

𝝅𝟐

2. Sample query vectors using common randomness.

If language ℒ has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

16

Verifier 𝑉1

Verifier 𝑉2

𝒙𝟏 ∈ 𝔽𝑛/2

𝒙𝟐 ∈ 𝔽𝑛/2

𝝅𝟏

𝝅𝟐

q, 𝒙𝟏 ‖𝝅1 ∈ 𝔽

3. Publish shares of query answers and reconstruct.

q, 𝒙𝟐‖𝝅2 ∈ 𝔽
+

= q, 𝒙‖(𝝅1 + 𝝅𝟐)
= q, 𝒙‖𝝅 = answer

If language ℒ has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

17

Verifier 𝑉1

Verifier 𝑉2

𝒙𝟏 ∈ 𝔽𝑛/2

𝒙𝟐 ∈ 𝔽𝑛/2

𝝅𝟏

𝝅𝟐

4. Recover 𝑂 1 query answers, run FLPCP verifier.

𝒙 ∈ ℒ

𝒙 ∈ ℒ

𝒂𝟏, … , 𝒂𝑶(𝟏)
Communication:

proof + 𝑂(1)

Selected results: New ZK proofs I

𝔽 - finite field, ℒ ⊆ 𝔽𝑛- language (𝑛 ≪ |𝔽|), 𝐺: 𝔽𝑳 → 𝔽– algebraic gate

Theorem. If ℒ is recognized by a circuit 𝓒 that has M 𝐺-gates, and
some addition gates, there is a public-coin ZK proof on distributed
data for ℒ with:

• 𝑶(𝟏) rounds and
• communication cost 𝑶(𝑳 +𝑴(𝒅𝒆𝒈. 𝑮)). (elements of 𝔽)

Selected results: New ZK proofs II

19

Extensions to:
• Rings Z2k

• Degree O(1) circuits

19

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏). (Improves: Ω(𝑛) [BC17])

𝒌
𝒏𝑶 𝟏/𝒌

Constructions

20

Short proofs for
structured circuits I

• Ideas similar to [LFKN92, AW09, GGPR13]

• Circuit over field 𝔽 :
– Linear gates

– “Large” algebraic G-gates

• Order gates

• Define Polynomials
• fL – left inputs

• fM – middle inputs

• fR – right inputs

21
𝒙 ∈ 𝔽

𝐺

𝐺

𝐺𝐺1

𝐺2

𝐺3

fL(3)
fL(2)
fL(1)

fM(3)
fM(2)
fM(1)

Short proofs for
structured circuits II

• p=G(fL,fM,fR) defines outputs

• p(1)

• p(2)

• p(3)

• p(#G gates)=C(x)

22
𝒙 ∈ 𝔽

𝐺

𝐺

𝐺𝐺1

𝐺2

𝐺3

Short proofs for
structured circuits II

• Prover sends p

• Length: (#G gates)(degree G)

• Verifier checks
• p(#G gates)=0 (𝒙 ∈ ℒ)

• p(r)=G(fL,fM,fR)(r) for random r

• Verifier work requires
• Interpolation

• Evaluation

• ZK by extra randomization of fL/fM/fR

23
𝒙 ∈ 𝔽

𝐺

𝐺

𝐺𝐺1

𝐺2

𝐺3

Linear!

Corollary

• O(n) FL-PCP for any degree 2 circuit (Improves: Prio Ω(𝑛) [BC17])

• C(x) degree 2 ➔ C(x) = x-1Ax for some matrix A

• C(x) = x, 𝐴𝑥

• C made up of
• G gate – inner product on length n1/2 inputs

• Linear gates

• Proof size: 2n1/2

24

Reducing communication
for simple languages
Let 𝔽 be a finite field. Let ℒ ⊆ 𝔽𝑛 be a language. (𝑛 ≪ 𝔽)

25

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏).

• Uses our new FLPCP

• Idea: Recursively outsource the verifier’s work to the prover.

FL-Interactive Oracle Proof (FLIOP)

26

Prover Verifier

“Prove to me that the FLPCP verifier
would have accepted 𝛑𝟏,

using random coins 𝑟.”

For circuits with
“SIMD” structure,
proof size shrinks:
𝑂 𝒞 → 𝑂(log |𝒞|)

⋮

𝝅𝟏 ∈ 𝔽𝑚

𝝅𝟐 ∈ 𝔽𝑚

Low-degree circuits
have the necessary
structure

Semi-Honest to Malicious MPC Compiler

27

Secure Multi-Party Computation (MPC)

What is the communication complexity of securely evaluating f?

• HE: ෨𝑂(𝑎, 𝑏, 𝑐 + 𝑓 𝑎, 𝑏, 𝑐) [G09,BGI16a]

• Based on heavy cryptographic tools

• In practice: (𝛼 ⋅ 𝐶) elements/party, small const 𝛼 ≥ 2
• Long line of work improving 𝛼 in various settings

𝑏

𝑐

𝑎

C = (Boolean/arithmetic)
circuit representation of f

Step 1: (weak) “passive” security

Step 2: (standard) “active” security

Lightweight 𝜶 = 𝟏

𝜶 ≥ 𝟐

Allowed: Black-box
use of PRG

Results

• Generic MPC: compiler from semi-honest to malicious
• “Natural” protocols
• Semi-honest majority
• Any number of parties – secure with abort
• Constant Number of parties – full security
• In this talk – focus on 3PC
• Sub-linear communication (in circuit size)
• Soundness – 1/|𝐹|, but reduce by extension field

• Specific MPC functionalities
• Even better communication!

29

Comparison of 3PC Protocols

30

3PC: Main Theorem

Given any passive-secure 3PC protocol with “natural” structure,
then can achieve active security with +o(|C|)/party extra comm

“Natural” 3PC protocol:

Final round: Robust shares of output

Before final message:
Total random garbage

If… Some degree-2 relation holds on msgs
… then [robustly shared y] = 𝑪(𝒂, 𝒃, 𝒄)

Input Shares of Adv:
Commit to his input

Natural Protocol – Example [AFLNO16]

32

Step 0: Represent f
as circuit

X1,1

X1,2

X3,1

X3,2

X2,1

X2,2

f(x1,x2,x3)

+

+

*

**

Natural Protocol - Example

33

Step 1: Secret
Share inputs

X

Party 3

→a+b+c=x

Party 1 Party 2Party 2

a, b b, c a, c

→y →d+e+f=x d, e e, f d, f

Party 1

→

Seed k Seed k → Long shared mask12

Step 2: Secret
Share zeros

Natural Protocol - Example

34

Step 3: distributed
evaluation of every
gate

X
Party 3

xy
a+b+c=x

→
Party 1 Party 2

a+d,
b+e

b+e,
c+f

a+d,
c+f

y d+e+f=y
→

xy a(d+e)+
b(d+e)

bf+ce af+cd

Mask
Re-share values

3PC “Passive” secure protocol

1. Secret share inputs
(note: linear shares)

2. Generate |C| sets of shares of 0

3. Gate-by-gate evaluation
+ : Locally on shares
x : Cross-terms 𝑎𝑖𝑏𝑗 computable!

Locally: Compute additive shares
Compute, mask, & send share

4. Output gate: Exchange final shares

Comm Cost: 1 elmt/party/multiplication

Assuming corrupt party follows protocol instructions

1 /input

0 amort

1 /mult

1 /output

Communication, Using PRG tricks

Verifying Correct Execution

36

Party 1 Party 2

a, b b, c

d, e e, f

mask12

mask13 mask23

Party 3

Shares of
af+cd+masks

Degree 2 function of
shared input

Collective 3PC Protocol

Protocol Π′
(without final message)

Final Message (robust shares, expect
same message from two parties

Each party proves in ZK their messages in Π′
were computed correctly

Total extra communication:
|proof| + |verifier comm| = o(|C|)

Fully secure – abort leads to identifying
“good” party

3PC Summary

• Fully Linear PCPs: Proving on secret shared / committed / distributed data

• New (passive → active) security compiler for 3PC

• Concrete efficiency:
• 220 gate circuit

• 0.5 Kbyte communication

• 30 field operations per gate GF(247)

• Soundness 2-40

(Weak) passive security

(Standard) active security

Protocols with a particular
“natural” structure

+ o(|C|) communication

Extending to 𝑛 > 3 Parties

• Challenge: Malicious prover + verifier(s)
• Even defining soundness becomes non-trivial
• Requires “robustness” of pieces of statement 𝑥

• Challenge: In MPC protocol with n>3,
Prover no longer knows the full robust statement
• Involves messages Prover wasn’t involved in

• Challenge: Replication based protocol inefficient for (1) servers

• Approach – Parties distribute role of prover. Stay tuned…

Thank You!

40

Applying Our Compiler to “Natural” Protocols

• 3 parties, 1 corruption (“3PC”)
• Motivated setting: “Minimal” across MPC settings eg:

[MRZ15,AFLN+16,ABFL+17,LN17,FLNW17,CGHI+18,GR018,NV18,EnOP+19]

• Comparison:

• Constant 𝒏 ∈ 𝑶(𝟏) parties, 𝒕 corruptions, 𝑛 = 2𝑡 + 1

Over large field: 𝜶 = 𝟐 [CGHIKLN18, NV18]
Over Boolean: 𝜶 = 𝟕 [ABFLLNOWW17]
Any field or ℤ𝑁 𝜶 = 𝟏 [This work]

Compiling eg, [AFLNO16,KKW18]

Over large field: 𝜶 = 𝟑 [CGHIKLN18]
Over Boolean/ℤ

2
𝑘: 𝜶 > 𝟒𝟎 [CGHIKLN18]

Any field or ℤ𝑁 𝜶 = 𝟑𝒕/(𝟐𝒕 + 𝟏) ≤ 1.5 [This line of work]
Compiling [DN07]

