Fully Linear PCPs and their
Cryptographic Applications

Niv Gilboa — Ben-Gurion University

Based On

* Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai, "Fully Linear PCPs and their Cryptographic Applications”, Crypto
20109.

* Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof, =~ Practical Fully
Secure Three-Party Computation via Sublinear Distributed Zero-
Knowledge Proofs”, ACM-CCS 20109.

Goal

[Party, — x; Party,— X, J

/ * Compute f(xy,...,X,)

* Semi-honest adversary

[Party, — x, Party, — X, J

* Prove correctness
 Com. =o(circuit size)

—> Malicious com. =~ semi-
honest com.

3

Flavors of Malicious Security

e Security with abort
* Incorrect execution
 Who's the bad guy? =»
e Abort

* Full security — guaranteed output delivery

* Incorrect execution
e What we want
* What we actually get

Zero-knowledge proofs

[GMR89]

3-coloring of G

ZK for NP Statements (3-Colorability)

-~

Verifier V

, Commit to
colors
a [N >
Expose edge e
Prover P P .p.g.
k j >

Repeat k times to

improve prob.

\

~

J

Proof: polynomial
size in input length

This talk
Zero-knowledge proofs on distributed data

T G,

Verifier V, }-' ‘%‘ ’
.GZ o

3-coloring
of G; + G

This talk
Zero-knowledge proofs on distributed data

.......:::::‘.:‘-T[Verifier I3 }-@
Pttty - -
: 1
—{ Prover P l

Verifier V, }-' 'ﬁ' ’
.GZ L

3-coloring
of G; + G

k-round protocol = As in other multiparty protocols
Public coin = Verifiers’ messages to prover are random strings

More than two verifiers

Special case

Zero-knowledge proofs on secret-shared data
Language £ € [F", for finite field F.

x € F"

forx = x; +

Fully Linear PCP / IOP

Linear Probabilistically Checkable Proofs (PCPs) (ikoo7;

Finite field IF, language £L € F" g A
T € ™
Linear PCP proof is a vector . S Y,
A -
Linear PCP verifier query answer
— takes x as input, geF™*: :a=(qm)€F
— makes O(1) linear queries to . 4 j '
LPCP Verifier
Must satisfy notions of completeness, soundness, x € F"
and zero knowledge. - ‘

llx E LII

11

Fully linear probabilistically checkable proofs (PCPs)

[This line of work]

Finite field IF, language £L € F" f h
x € F" e
Fully linear PCP proof is a vector . \)
A .
Fully linear PCP verifier query answer
-—takes-x-asinput--e ‘ qgeF*™™: :a=(qx|m€EF
— makes O(1) linear queries to (x||7T). - 4 ', ,
T : FLPCP Verifier
Must satisfy notions of completeness, soundness,
and zero knowledge. - ‘

llx E LII

12

Fully linear IOPs

An interactive analogue of fully linear PCPs
Linear analogue + ZK of: [BCS16], [RRR16]

Prover Verifier Atthe end of the

- ~ \ T, € F™ ‘ 4 N interaction, verifier

makes linear queries

challenge to

(x|my T ... |TTe)

—‘ M, € F™ }_* and accepts or

challenge, rejects.
O R
. Naturally captures many
. i existing proof protocols
_) - g (GKR, ...) y

If language L has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

1. Generate FLPCP proof and split it using secret sharing.

Verifier I, x, € F/? }

Prover 5
(x1llxz) € L] T

k» -
; Verifier V, x, € F/2 }

14

If language L has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

2. Sample query vectors using common randomness.

{Verifier 74 x, € F/2 T4 }

Query q = B RE N EANAKEE

[Verifier V5 x, € F/2 T, }

15

If language L has an efficient fully linear PCP/IOP,
it has an efficient ZK proof on distributed data.

3. Publish shares of query answers and reconstruct.

{Verifier 74 x, € F/2 T4 }

Vigx, |im)eF
|
T <q; xZ ”11'2) e F

[Verifier V5 x, € F/2 o }

= (q, x||(1r1 + 72))
= (g, x||r) = answer

16

If language L has an efficient fully linear PCP/IOP,

it has an efficient ZK proof on distributed data.

4. Recover O(1) query answers, run FLPCP verifier.

Communication:
|proof| + 0(1)

[Verifier 74 x, € F/2 T4
aq, ..., ao(l)
[Verifier V5 x, € F/2 o

)xEL]

17

Selected results: New ZK proofs |

F - finite field, L € F™- language (n < |F|), G: F* — F- algebraic gate

Theorem. If L isrecognized by a circuit C that has M (G-gates, and
some addition gates, there is a public-coin ZK proof on distributed

data for L with:

* 0(1) rounds and
* communicationcost O(L + M(deg. G)). (elements of IF)

Selected results: New ZK proofs Il

Theorem. If L has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for £ with:
. k rounds and
e communication cost O(n01/k) mproves: (n) [BC17])

Extensions to:
* Rings Z,
* Degree O(1) circuits

Constructions

Short proofs for
structured circuits |

* |deas similar to [LFKN92, AW09, GGPR13]

e Circuit over field IF :
—Linear gates

—“Large” algebraic G-gates
* Order gates :ﬁ;/
* Define Polynomials fi(1)
* f, —leftinputs
e f,,— middle inputs :mg;:

* f, —right inputs £ (1)
M

21

Short proofs for
structured circuits ||

* p=G(f ,f,,fz) defines outputs
* p(1)
* p(2)

* p(3)
* p(#G gates)=C(x)

Short proofs for
structured circuits ||

* Prover sends p
* Length: (#G gates)(degree G)

e Verifier checks
* p(#G gates)=0(x € L)
* p(r)=G(f,,f,fz)(r) for random r

* Verifier work requires

* Interpolation T :
* Evaluation Inear:

* ZK by extra randomization of f /f,,/f

23

Corollary

. O(\/n) FL-PCP for any degree 2 circuit (Improves: Prio (L(n) [BC17])
* C(x) degree 2 =» C(x) = x*Ax for some matrix A
* C(x) = (x, Ax)

* C made up of
* G gate — inner product on length n¥/2 inputs
* Linear gates

e Proof size: 2n1/?

24

Reducing communication
for simple languages

Let [F be a finite field. Let L € [F" be a language. (n « F)

Theorem. If L has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for L with:

* O(logn) rounds and
* communication cost O(logn).

e Uses our new FLPCP

* |dea: Recursively outsource the verifier’s work to the prover.

25

FL-Interactive Oracle Proof (FLIOP)

Prover Verifier
- ~ 4 2 For circuits with
T, € F™ e “SIMD” structure,
proof size shrinks:
“Prove to me that the FLPCP verifier 0, (lC’D — 0(108 |€|)

would have accepted 1y,

using random coins r.” : :
Low-degree circuits

have the necessary

—‘ m, € ™ }—-» structure

_ J . - /

Semi-Honest to Malicious MPC Compiler

Secure Multi-Party Computation (MPC)

What is the communication complexity of securely evaluating f?

* HE: O(Ia b, c| +|f(a b,c)|) (G09,BGI16a] iy L

atographic tools \ /

Allowed: Black-box g
use of PRG elements/party, small const a = 2 ¢

proving « in various settings

a =2 Step 2: (standard) “active” security &\

Lightweight &« =1 Step 1: (weak) “passive” security C = (Boolean/arithmetic)

circuit representation of f

Results

* Generic MPC: compiler from semi-honest to malicious
e “Natural” protocols
* Semi-honest majority
* Any number of parties — secure with abort
e Constant Number of parties — full security
* In this talk — focus on 3PC
e Sub-linear communication (in circuit size)
* Soundness — 1/|F|, but reduce by extension field

* Specific MPC functionalities

 Even better communication!

Comparison of 3PC Protocols

of elements sent per party per multiplication gate

The :) .) Circuits over Full
Boolean Circuits Circuits over) .
protocol . . — , large finite fields | security?
Circuits over [os the ring Zoss (|F| > 240)
Aralki et al. _ _ _ _ N
[ABF*17] f : f : o
Chaf—éf}:‘hgglga al. T[Gﬂiine}+4f3[online} - T(oﬂiine)—l—4/3[online) - No
Chida et al. ? | -
[CGH*I'&] 41 § 41 2 No
Eerikson et al.) - _
This work 1 1 1 1 Yes

30

3PC: Main Theorem

Given any passive-secure 3PC protocol with “natural” structure,
then can achieve active security with +o(|C|)/party extra comm

|II

“Natura

3PC protocol: Input Shares of Adv: Before final message:
Commit to his input Total random garbage

If... Some degree-2 relation holds on msgs
... then [robustly shared y] = C(a, b, ¢)

Final round: Robust shares of output

Natural Protocol — Example [AFLNO16]

Step O: Represent f
as circuit

f(X11X21X3) W

32

Natural Protocol - Example

Step 1: Secret
Share inputs

Party 1

<

Seed k

Party 2

a

Seed k

| |

9
9

9

Step 2: Secret
Share zeros

|

a+b+c=x

d+e+f=x

9
9

Party 1

a,b

~

Party 2

b, c

e, f

~

Long shared mask,

Party 3

a, C

d, f

Natural Protocol - Example

|

Step 3: distributed
evaluation of every

gate

|

9
9

a+b+c=x

d+e+f=y

Party 1

a+d,
b+e

a(d+e)+
b(d+e)

Party 2

b+e,
c+f

bf+ce W

Party 3

a+d,
c+f

|

af+cd

Mask
Re-share values)

~

3PC “Passive” secure protocol

Communication, Using PRG tricks k& protocol instructions

1 /input 1. Secret share inputs
(note: linear shares)

Oamort | 2. Generate |C| sets of shares of O

3. Gate-by-gate evaluation
+: Locally on shares
x : Cross-terms a;b; computable!

Locally: Compute additive shares

@ Compute, mask, & send share

1 Joutput 4. Output gate: Exchange final shares

Comm Cost: 1 elmt/party/multiplication

Verifying Correct Execution

Party 1 Party 2

Party 3

Shares of
af+cd+masks

Degree 2 function of
shared input

36

Collective 3PC Protocol

Total extra communication:
|proof| + |verifier comm| = o(|C|)

Each party proves in ZK their messages in I’

were computed correctly

Final Message (robust shares, expect
same message from two parties Fully secure — abort leads to identifying

“good” party

3PC Summary

* Fully Linear PCPs: Proving on secret shared / committed / distributed data
* New (passive — active) security compiler for 3PC

* Concrete efficiency:
« 220 gate circuit
* 0.5 Kbyte communication

* 30 field operations per gate GF(24’) t + 0(| C|) communication
* Soundness 24

(Standard) active security

(Weak) passive security

Protocols with a particular
“natural” structure

Extending to n > 3 Parties

* Challenge: Malicious prover + verifier(s)
* Even defining soundness becomes non-trivial
* Requires “robustness” of pieces of statement x

* Challenge: In MPC protocol with n>3,
Prover no longer knows the full robust statement

* Involves messages Prover wasn’t involved in

* Challenge: Replication based protocol inefficient for ®(1) servers

* Approach — Parties distribute role of prover. Stay tuned...

Thank You!

III

Applying Our Compiler to “Natural” Protocols

3 parties, 1 corruption (“3PC”)

* Motivated setting: “Minimal” across MPC settings eg:
[MRZ15,AFLN+16,ABFL+17,LN17,FLNW17,CGHI+18,GR018,NV18,EnOP+19]

Over large field: a =2 [CGHIKLN18, NV18]
Over Boolean: a =7 [ABFLLNOWW17]
Any fieldorZ, a =1 [Thiswork]
Compiling eg, [AFLNO16,KKW18]

* Comparison:

* Constant n € O(1) parties, t corruptions, n =2t +1

Over large field: a=3 [CGHIKLN18]

Over Boolean/sz: a>40 [CGHIKLN18]

Any field or Z, a=3t/(2t+1) < 1.5 [Thisline of work]
Compiling [DNO7]

