
©2019 VMware, Inc.

Consensus
Via the information theoretic lens
(Part 1)

Ittai Abraham, VMware Research

Group blog: Decentralized Thoughts

©2020 VMware, Inc. 2

A fundamental problem that captures the essence of coordination in the face of failures
• Multi Party Computation
• Used in many large-scale compute infrastructures
• Cryptocurrency and blockchain disruption

Deep connections between (information theoretic) cryptography and (information
theoretic) distributed computing
• Lower bounds for consensus are lower bounds for MPC
• Broadcast (consensus) is used for MPC
• MPC techniques are used for obtaining efficient (randomized) consensus protocols

My background:
• I do research in algorithms and distributed computing
• Wannabe Cryptographer

Via the information theoretic lens
Consensus

3│ ©2019 VMware, Inc.

“The proof-of-work chain is a solution to
the Byzantine Generals’ Problem. I’ll try
to rephrase it in that context”

Satoshi Nakamo, email archive, 2008

4│ ©2019 VMware, Inc.

“Bitcoin is the first practical solution to
a longstanding problem in computer
science called the Byzantine Generals
Problem”

Marc Andreessen, Why Bitcoin Matters, NYT, 2014

©2020 VMware, Inc. 5

Traditional way to learn distributed computing and fault tolerance: learning
isolated Islands

Today: a foundational view on traditional (and new) protocols
•Not a historical survey
•Not islands, highlight connections
• Understanding the connections allows better abstractions, theory, protocols, systems

Why via the information theoretic lens?
• Everything should be made as simple as possible, but not simpler

On Learning
• First via intuition then via rigor
• Learning by asking
• Learning by doing (no shortcuts)

Consensus: Approach for today and tomorrow

©2020 VMware, Inc. 6

Consensus: plan for today and tomorrow
Focus on information theoretic solutions

A call for multidisciplinary research

Adversary and Network Models

Consensus: definitions, upper and lower
bounds

Paxos (Synchrony)

GradeCast

Byzantine Paxos (Synchrony)

Multiword + MVSS + RandElect

O(1) exp time Byzantine Paxos (Synchrony)

Paxos (Partial Synchrony)

Reliable Broadcast

Byzantine Paxos (Partial Synchrony)

A-MW + A-VSS + ARandElect

O(1) exp time Byzantine Paxos
(Asynchrony)

©2020 VMware, Inc. 7

Economics

Distributed
Computing

Cryptography

Governance

Political science,
Public policy,
Law

Study social
norms,
institutions,
regulations

Study of decision
making with scarce
resources and in
response to incentives

Study of
protocols that
replace Trusted
Third Parties

Study how multi
party and large-
scale systems
can overcome
network delays
and tolerate
failures

©2020 VMware, Inc. 8

Lock Step Synchrony Partial
Synchrony Asynchrony

Asynchrony: adversary can delay messages by any finite amount

Synchrony: adversary can delay messages by some known Δ
• lock step: all messages take exactly Δ=1

[DLS88]: Partial Synchrony (Global Stabilization Time):
• adversary can delay messages by any finite amount
• until some unknown finite point in time called GST (Global Stabilization Time)
• adversary can delay messages by some known Δ

[DLS88]: Partial Synchrony (Unknown Latency):
• adversary must set Δ at the beginning of the execution

Synchrony, Asynchrony and Partial synchrony and flavors of Partial Synchrony
Distributed Computing 101

https://decentralizedthoughts.github.io/2019-06-01-2019-5-31-models/
https://decentralizedthoughts.github.io/2019-09-13-flavours-of-partial-synchrony/

©2020 VMware, Inc. 9

Passive Crash Omission Covert Byzantine

Passive adversary (semi honest, honest-but-curious)

Crash failure

Omission failure (“bubble adversary”)

Byzantine failure (malicious)

• Covert (malicious but does not want to be detected)
• 𝝴-covert (malicious but only if probability of detection is low)

Blog post
Power of the Adversary

https://decentralizedthoughts.github.io/2019-06-07-modeling-the-adversary/

©2020 VMware, Inc. 10

Parties have initial input

Can send messages via point-to-point channels

Termination (Liveness): In the end of the protocol each party must decide on a value

Safety: No two non-malicious parties decide on different values

Trivial: Always decide a default value

Make the problem not trivial:
• Validity: If all the non-faulty have the same input, then this must be the decision value
• Fair Validity: With constant probability an input of a non-faulty server is decided upon

Nor required:
• Security: that the view of the adversary in the ideal world is indistinguishable from a simulated

view generated from the view of the adversary in the real world

Consensus [Lamport etal 78]

©2020 VMware, Inc. 11

Consensus: Broadcast vs Agreement

Safety: all non-malicious parties decide the
same value

Liveness: all non-faulty parties eventually
decide

Broadcast:
• Designated sender P*
• Validity: if the sender is non-faulty with input

m then m is the decision value

Agreement:
• Validity :If all the non-faulty have the same

input, then this must be the decision value
• Fair Validity: With constant probability an

input of a non-faulty server is decided upon

Broadcast from Agreement (in synchrony):
• Given agreement, sender sends to to all,

then parties run agreement

Agreement from Broadcast (in synchrony):
• Given broadcast (and f<n/2), each party

broadcasts its input, then use say majority

Goal:
• Upper bounds for Agreement
• Lower bounds for Broadcast

©2020 VMware, Inc. 12

Synchrony Partial Synchrony

Crash n>f (primary
backup)

n≦2f (DLS “split”)

Ommision n≦2f (uniform) n>2f (Sync Paxos) n>2f (Paxos)

Byzantine (cannot
simulate)

n>2f (Auth Byz) n≦3f (DLS “split”)

Byzantine
(unbounded)

n≦3f (FLM the
“hexagon”)

n>3f (Sync Byz) n>3f (PBFT)

Consensus results in one slide: deterministic

FLP85: every protocol solving asynchronous consensus for 1 crash must have an infinite execution
LF82: every protocol solving synchronous consensus for f crashes must have a f+1 round execution
DR82: deterministic consensus needs Ω(f^2) messages

©2020 VMware, Inc. 13

Synchrony Partial Synchrony Asynchrony

Crash n>f (primary
backup)

n≦2f (DLS88
“split brain”)

Ommision n≦2f (uniform) n>2f, O(1)
expected time

n>2f, O(1)
expected
time

n>2f, O(1) expected
“time”

Byzantine
(cannot
simulate)

n>2f, Auth, O(1)
exp. Time
(KK06)

n≦3f (DLS88
“split brain”)

Byzantine
(unbounded)

n≦3f (FLM86
the “hexagon”)

n>3f, O(1)
expected time
(MF88, KK06)

n>3f, O(1)
expected
time

VSS n≦4f
must have
error
(BKR94)

1. n>4f, O(1) exp.
“time” (BCG93)

2. n>3f, error, O(1)
(CR93)

3. n>3f, no error, poly
exp. “time” (ADH)

Consensus results in one slide: randomized, with private channels

©2020 VMware, Inc.

Primary-Backup in the omission model [Lamport, Oki Liskov, DLS,]

The omission model
• There are n replicas
• The adversary corrupts f replicas which can fail by not receiving or not sending each
message

Systems works in views, in each view
•One replica is designated as Primary
• All the rest of the replicas are Backups

For simplicity: in view i the primary is (i mod n)

Many other options:
• Randomized leader election
• Back-off protocols

©2020 VMware, Inc.

Primary-Backup in the omission model:
Lower bound for 𝑛 ≤ 2𝑓 (DLS 88)

n=2 and one omission failure

1. In Partial synchrony

2. In Synchrony, assuming uniform consensus
• Safety for omission faulty parties

A B A B A B

©2020 VMware, Inc. 17

3 parties, each with input in {0,1}

Adversary controls one party (ommision)

Write a protocol for consensus:
• (Uniform) Safety: no two decide different vlaues
• Liveness: All non-fualty parties dedcide
• Validity: If all the non-faulty have the same input x, then x is the decision value

Learning by Doing

©2020 VMware, Inc.

Primary-Backup in the omission model:
Foundations

The only math you will need:
•Quorum intersection (pigeonhole principle)
•Given a set of n elements: two sub-sets of n-f elements must intersect at

n-2f elements
•For n=2f+1, any two sets of f+1 must intersect at one element
•For n=3f+1, any two sets of 2f+1 must intersect at f+1 elements

©2020 VMware, Inc.

Primary-Backup in the omission model:
What could possibly go wrong?

Primary chooses its input: x
•decide x
•Sends <decide x> to all replicas

Primary chooses its input: x
•Sends <propose x> to all replicas
•decide x

Main challenge: the first primary may decide x, but the next
primary decides x’

©2020 VMware, Inc.

Primary-Backup in the omission model:
View Change protocol

Use a view change protocol to guarantee safety:
•Before a new primary starts, it runs a view change protocol
• If there is any possibility that some value was previously decided, the
new primary must adopt that value

Three challenges:
1. Only decide a value after you are sure later primaries can recover and

adopt this value
2. Make the view change safe: only choose safe values to adopt
3. Make the view change live: don’t get stuck waiting

©2020 VMware, Inc. 21

1. Normal case protocol
–allow the primary to decide

2. View change trigger protocol
–trigger the replacement of a primary

3. View change protocol
–a way for a new primary to make safe choices

Primary-Backup:
Algorithm structure – three simple parts!

©2020 VMware, Inc.

Primary-Backup in the omission model:
Normal case

1. Send:
• Primary (of view v) sends <propose x in view v> to all replicas

2. Ack:
• Replica sends <ack x in view v> to all
•Unless it has moved to a higher view

3. Decide:
• Replica wait for n-f messages of <ack x in view v> to decide x

©2020 VMware, Inc.

View Change Trigger:
Revolving coordinator, random leader, stable leader

View change to replace a failed primary

•Use synchronized heartbeat mechanisms to have all replicas move to the
next view
•For now: simple revolving coordinator
•Later: random leader election
• In practice: use a stable leader for many consensus decisions

©2020 VMware, Inc. 24

Maybe the previous primary caused a decision?

Maybe one of the previous primary caused a decision?

New primary may need to adopt a value instead of choosing its own

Quorum intersection to the rescue:
• If some primary decided, then it used a write quorum (of n-f)
• So reading from a quorum of n-f:
–Is safe: primary will see intersection (since n-2f>0)
–Is live: can always be done

View Change

©2020 VMware, Inc.

Primary-Backup in the omission model:
Normal case

1. Send:
• Primary (of view v) sends <propose x in view v> to all replicas

2. Ack:
• Replica sends <ack x in view v> to all
•Unless it has moved to a higher view

3. Decide:
• Replica wait for n-f messages of <ack x in view v> to decide x

©2020 VMware, Inc.

View Change:
from view v to view v+1

New primary for view v+1:
• (Send message <view change for view v+1> to all)
•A replica responds with <my maximal propose is x’ at view v’>
–Using the propose with maximal view v’ it heard
–Or send <null at view 0> if heard no propose

Primary waits for n-f=f+1 responses:
•Adopts the proposed value associated with the maximal view number; or
•Uses its own value if every message is <null at view 0>

©2020 VMware, Inc. 27

1. Normal case protocol
–Send: Primary (of view v) sends <propose x in view v> to all replicas
–Ack: Replicas send <ack x in view v> to all (update their maximal propose)
• Unless it has moved to a higher view

–Decide: Replicas wait for n-f messages of <ack x in view v> to decide x

2. View change trigger protocol
–Revolving coordinator: wait for enough time (4 rounds) to replace primary with next
primary

3. View change protocol
–Each replica sends to new primary <my maximal propose is x’ at view v’>
• Using the propose with maximal view v’ it heard
• Or send <null at view 0> if heard no propose

–Primary waits for n-f responses:
• Adopts the proposed value associated with the maximal view number; or
• Uses its own value if every message is <null at view 0>

Three simple parts
Primary-Backup in the omission model for n>2f

©2020 VMware, Inc.

Safety

Let v* be the first view that some replica decides, say on value x

Base case: all decisions in view v* must be to x

By induction on v>v* : any primary must adopt the value x
•Set G of f+1:
–Each member of G: maximal propose is on value x
–Each member outside of G: has an equal or higher maximal propose
than any member of G, then it must be on value x

This argument does not use synchrony! It works for asynchrony

©2020 VMware, Inc.

Termination (liveness)

Claim: Eventually all non-faulty replicas will learn the decision value

Any faulty primary that does not make progress will eventually be replaced

A non-faulty primary will cause termination

(here we use synchrony)

©2020 VMware, Inc.

Primary-Backup in Partial Synchrony

Asynchrony: adversary can delay messages by any finite amount

Synchrony: adversary can delay messages by some known finite value Δ

Partial Synchrony:
• adversary can delay messages by any finite amount
• until some unknown finite point in time called GST (Global Stabilization Time)
• adversary can delay messages by some known finite value Δ

The Partial Synchrony paradigm:
• Safety holds in asynchrony
• Termination holds in synchrony
• Extremely successful in industry
• Gateway to asynchrony

©2020 VMware, Inc. 31

Can we reach agreement in synchrony for n=2f+1?

Can we reach agreement in partial synchrony for n=2f+1?

Byzantine Adversaries!

©2020 VMware, Inc. 32

In partial synchrony, the split-
brain attack [DLS]:

In synchrony, the hexagon [FLM]:
• Any edge defines a legal world

with two non-faulty parties
around edge
• Non-faulty party decide the same

for left edge and right edge
worlds

n=3, f=1 is impossible
Byzantine adversaries

A C

B

0

B

1

A

1

B

1

C

1

A

0

B

0

C

0

©2020 VMware, Inc. 33

Two primary attacks:
• Equivocate: tell different replicas different things
• Unsafe: adopt a non-safe value after view change

–Invent a value
–Choose a non-maximal value

Solution approach:
• Add a sub-protocol to force primary to act like omission (no equivocation)
• Add a sub-protocol to guarantee the primary will fail if using un-safe values
–Key idea: replica that sent a value lock on it, primary has to prove value is real

Byzantine Model in Partial Synchrony

©2020 VMware, Inc. 34

1. Primary sends <send, (value, v)> to all

2. Replica accepts <send, (value, v)>, then
• Set lock:=v; lock value:=value
• Sends <lock, (value, v)> to all

3. Replica gathers n-f <lock, (value, v)>, then
•Decide (value)

The good: cannot decide different values

The bad: If non-faulty commits, there may be conflicting locks for the view
change
•How do we choose which one?
•Want all the locks to be the same

Straw Man 1: with n=3f+1, what could possibly go wrong?
Byzantine Primary-Backup (at view v):

Primary can send different values to different replicas L, need to block equivocation

©2020 VMware, Inc.

Non-Equivocation:

Goal: given a (potentially) Byzantine primary, transform its send-to-all to a
(potentially) omission fault primary send-to-all

n>3f

1. Primary sends <send (value,v)> to all

2. Replica sends <echo (value,v)> to all for the first <send (value,v)> it hears
from primary

3. If a replica sees n-f <echo (value,v) ,proof> from different replicas,
• then it accepts <send (value,v)>

©2020 VMware, Inc.

Non-Equivocation:
Proof

Claim: If a replica accepts <send (value,v) > then no replica will accept
<send,(value’,v)> with 𝑣𝑎𝑙𝑢𝑒 ≠ 𝑣𝑎𝑙𝑢𝑒’

Proof by contradiction:

1. One replica sees n-f <echo (value,v)> and another sees n-f <echo
(value’,v)>

2. The intersection is at least f+1, so at least one non-faulty in the
intersection

3. Non-faulty will send at most one echo per view

©2020 VMware, Inc. 37

1. Primary sends <send, (value, v)> to all

2. Replica receives <send, (value, v)>, then
• If first send from primary in view v, then
• sends : <echo, (value, v)> to all

3. Replica gathers n-f <echo, (value, v)>, then
• Set lock:=v; lock value:=value
• Sends <lock, (value, v)> to all

4. Replica gathers n-f <lock, (value, v)>, then
•Decide (value)

The good: all locks will be the same

The bad: how do we force the new primary to choose the highest lock?

Straw Man 2: with equvocation
Byzantine Primary-Backup (at view v):

Primary can send any value it wants L, how can we protect a decision value?

©2020 VMware, Inc. 38

New primary for view v+1:
• A replica responds with <my maximal propose is x’ at view v’>
–Using the propose with maximal view v’ it heard
–Or send <null at view 0> if heard no propose

Primary waits for n-f responses:
• Adopts the proposed value associated with the maximal view number; or
• Uses its own value if every message is <null at view 0>

Can we force new primary to adopt the maximum value?
• Information theoretically possible, a PBFT type view change (see Castro’s thesis)

Can Primary prove the (value) its using was indeed sent in some view u<v?
• Yes, this will allow a Tendermint, HotStuff type view change

Safety:
• Replica that is locked on (value, v) will Ignore primary with (value’,v’) if v’<v
• f+1 locked replicas will block a malicious primary

Recall: View Change from view v to view v+1

©2020 VMware, Inc. 39

Primary of view u could sign its message!
• We don’t have signatures L
We have non-equivocation on primary, would like stronger property:
• If I accept the primary message then all parties weakly accept (and eventually accept it)
• Bracha’s Reliable Broadcast, (Micali and Feldmans’s Gradecast)

1. Primary sends <send (value,v)> to all

2. Replica sends <echo1 (value,v)> to all for first <send (value,v)> it hears from primary

3. If a replica sees n-f <echo1 (value,v) ,proof> from different replicas,
• then it sends <echo2 (value,v)> to all

4. If a replica sees n-f <echo2 (value,v) ,proof> from different replicas,
• then it accepts <send (value,v)>

5. If a replica sees f+1 <echo2 (value,v) ,proof> from different replicas,
• then it weakly accepts and sends <echo2 (value,v)> to all

Force primary to prove: the (value) its using was indeed sent in some view u<v

©2020 VMware, Inc. 40

1. Primary sends <send (value,v)> to all

2. Replica sends <echo1 (value,v)> to all for first <send (value,v)> it hears in view v from
Primary

3. If a replica sees n-f <echo1 (value,v) ,proof> from different replicas,
• then it sends <echo2 (value,v)> to all

4. If a replica sees n-f <echo2 (value,v) ,proof> from different replicas,
• then it accepts <send (value,v)>

5. If a replica sees f+1 <echo2 (value,v) ,proof> from different replicas,
• then it weakly accepts and sends <echo2 (value,v)> to all

Claim 0: all accepted values are the same (non-equivocation)

Claim 1: If a non-fualty accepts (in synchrony), then all non-fauty will at least weakly accept

Claim 2: If a non-fauty accepts (in asynchrony), then all non-fualty will eventually accept

Reliable Broadcast (at view v):

©2020 VMware, Inc. 41

Byzantine Primary-Backup (at view v):
Straw Man 3: with Reliable Boradcast

1. Primary sends <send, (value, v)> to all

2. Replica receives <send, (value, v)>, then
• If first send from primary in view v, then
• sends : <echo1, (value, v)> to all

3. Replica gathers n-f <echo1, (value, v)>,
then
• Sends <echo2, (value, v)> to all

4. Replica gathers n-f <echo2 (value, v)>,
then (at view v)
• Set lock:=v; lock value:=value
• Sends <lock, (value, v)> to all

5. Replica gathers n-f <lock, (value, v)>, then
• Decide (value)

Primary can prove its using a real value

Replica gathers f+1 <echo2, (value, v)>, then
• If did not send echo2
• Sends <echo2, (value, v)> to all

View change:
• Replica:
• Sends its lock and lock value

• Primary:
• accept a lock (value’,v’) if also n-f <echo2,

(value, v)> arrive
• Wait for n-f such locks
• Choose the value with the highest lock

(view)

©2020 VMware, Inc. 42

Byzantine Primary-Backup (at view v):
with Reliable Boradcast and locking

1. Primary sends <send, (value, v, u)> to all

2. Replica receives <send, (value, v, u)>,
• If u>=lock, n-f <echo2, (value, u)>

arrive, and first send from primary in
view v, then

– sends : <echo1, (value, v)> to all

3. Replica gathers n-f <echo1, (value, v)>,
then
• Sends <echo2, (value, v)> to all

4. Replica gathers n-f <echo2 (value, v)>,
then (at view v)
• Set lock:=v; lock value:=value
• Sends <lock, (value, v)> to all

5. Replica gathers n-f <lock, (value, v)>, then
• Decide (value)

Replica gathers f+1 <echo2, (value, v)>, then
• If did not send echo2
• Sends <echo2, (value, v)> to all

View change:
• Replica:
• Sends its lock and lock value

• Primary:
• accept a lock (value’,v’) if also n-f <echo2,

(value, v)> arrive
• Wait for n-f such locks
• Choose the value with the highest lock

(view)

©2020 VMware, Inc.

Safety

Let v* be the first view that any replica decided (value X, view v*)

Prove by induction that any accepted send of view 𝑣 ≥ 𝑣∗ must be
consistent with value X
• for base case due to non-equivocation

Induction argument:
• Existence of a core of f+1 non-faulty that have a lock on view at least v* with value X
–Base case: core is the n-2f out of the n-f that sent a lock to decider

• Any accepted value from a primary of view at least v* must be X
–By induction, core will block any other value
–Core members can only gain a higher lock but then primary uses the same value.

©2020 VMware, Inc.

Liveness

If a non-faulty primary is elected and the system is synchronous

Primary will hear locks from all non-faulty and will choose the maximum one

All non-faulty replicas will also see same lock and hence will echo1 the primary

©2020 VMware, Inc. 45

In asynchrony the non-faulty primary can wit for n-f responses during view
change

May miss a lock of a non-fualty
•Will casue a livenss problem!

Solution: add one more round J
• After seeing n-f echo2, send key
• After seeing n-f keys, send lock
• If I have a lock then there are at least f+1 non-faulty that have a key
•During view change, ask for keys

Responsivness: liveness in asynchrony

©2020 VMware, Inc. 46

Responsive Byzantine Primary-Backup (at view v):
Information Theoretic HotStuff

1. Primary sends <send, (value, v, u)> to all

2. Replica receives <send, (value, v, u)>,
• If u>=lock, n-f <echo2, (value, u)> arrive, and first send

from primary in view v, then
– sends : <echo1, (value, v)> to all

3. Replica gathers n-f <echo1, (value, v)>, then
• Sends <echo2, (value, v)> to all

4. Replica gathers n-f <echo2 (value, v)>, then (at view v)
• Set key:=v; key value:=value
• Sends <key, (value, v)> to all

5. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value,
v)>, then (at view v)

• Set lock:=v
• Sends <lock, (value, v)> to all

6. Replica gathers n-f <lock, (value, v)>, then Decide (value)

Replica gathers f+1 <echo2, (value, v)>, then
• If did not send echo2
• Sends <echo2, (value, v)> to all

View change:
• Replica:
• Sends its key and key value

• Primary:
• accept a key (value’,v’) if also n-f <echo2, (value,

v)> arrive
• Wait for n-f such key
• Choose the value with the highest key (view)

©2020 VMware, Inc. 47

Revolving coordinator
• After f view changes (O(f) rounds) a non-faulty primary will be elected

Assume we have a oblivious leader election functionality
• At least f+1 honest must request for functionality to start
• Each party i outputs a leader L(i)=j
•With probabilty at least ½ (can use any constant) :
–all non-fualty output the same value j and,
–j was non-faulty before functionality started

Good for a static adversary

Adaptive adversary will adaptivly corrupt that chosen primary L

Elect a random primary
Byzantine Paxos: adding randomness

©2020 VMware, Inc. 48

Adaptive adversary will shoot down the primary

Solution:
• Let everyone be a primary
• Then choose who the real primary is in hindsight (and all other are just decoys)

Liveness: with constant probability a good primary is chosen

Safety:
• In hindsight, looks like a single primary each view
• If a faulty primary or a confusion of primaries is chosen then this is just like a faulty
primary
–Safety is maintained!

Everyone is a Priamry J
Byzantine Paxos: adaptive adversaries

©2020 VMware, Inc. 49

Responsive Byzantine Primary-Backup (at view v):
Determinstic version

1. Primary sends <send, (value, v, u)> to all

2. Replica receives <send, (value, v, u)>,
• If u>=lock, n-f <echo2, (value, u)> arrive, and first send

from primary in view v, then
– sends : <echo1, (value, v)> to all

3. Replica gathers n-f <echo1, (value, v)>, then
• Sends <echo2, (value, v)> to all

4. Replica gathers n-f <echo2 (value, v)>, then (at view v)
• Set key:=v; key value:=value
• Sends <key, (value, v)> to all

5. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value, v)>,
then (at view v)
• Set lock:=v
• Sends <lock, (value, v)> to all

6. Replica gathers n-f <lock, (value, v)>, then
• Decide (value)

Replica gathers f+1 <echo2, (value, v)>,
then
• If did not send echo2
• Sends <echo2, (value, v)> to all

View change:
• Replica:
• Sends its key and key value

• Primary:
• accept a key (value’,v’) if also n-f

<echo2, (value, v)> arrive
• Wait for n-f such key
• Choose the value with the highest

key (view)

©2020 VMware, Inc. 50

Responsive Byzantine Primary-Backup (at view v):
with random leader election

1. Each party as Primary, sends <send, (value, v, u)> to all

2. Run oblivious leader election to decide who to listen to

3. Replica receives <send, (value, v, u)>,
• If u>=lock, n-f <echo2, (value, u)> arrive, and first send from

primary in view v, then
– sends : <echo1, (value, v)> to all

4. Replica gathers n-f <echo1, (value, v)>, then
• Sends <echo2, (value, v)> to all

5. Replica gathers n-f <echo2 (value, v)>, then (at view v)
• Set key:=v; key value:=value
• Sends <key, (value, v)> to all

6. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value, v)>, then (at
view v)

• Set lock:=v
• Sends <lock, (value, v)> to all

7. Replica gathers n-f <lock, (value, v)>, then
• Decide (value)

Replica gathers f+1 <echo2, (value, v)>,
then
• If did not send echo2
• Sends <echo2, (value, v)> to all

View change:
• Replica:
• Sends its key and key value

• Primary:
• accept a key (value’,v’) if also n-f

<echo2, (value, v)> arrive
• Wait for n-f such key
• Choose the value with the highest

key (view)

©2020 VMware, Inc. 51

Choosing a random leader is a simple MPC protocol

But MPC uses VSS, and VSS requires broadcast L

Solution:
• a notion that is weaker than VSS but strong enough for OLE
•Moderated VSS (KK06) and Graded VSS (MF88)
• Tailor made MPC (with a constnat error probabilty)

Gradecast -> MVSS ->OLE ->O(1) time expected Byzantine Agreement

Oblivious Leader Election

©2020 VMware, Inc. 52

Dealer P* has inoput m

Each party outputs a vlaue m and a grade in {0,1,2}

If the dealer is no-fualty then all non-fualty output (m,2)

If a non-fualty outputs (m’,2) then all non-fulaty output (m’,g) with g>0

(If two non-faulty have grade 1 then have same value)

Gradecast (MF88, D81)

©2020 VMware, Inc. 53

round 1: Dealer P* <sends m> to all

round 2: Party sends <echo1 m> to the first message it recives from the
primary

round 3: If party gathers n-f echo1 it sends <echo2 m>

End of round 3:
• Grade 2: If party gatheres n-f echo2; otherwise
• Grade 1: if party gathers f+1 echo2; otherwise
• Gread 0 (default value)

Gradecast protocol (MF88)

©2020 VMware, Inc. 54

Gradecast proof (MF88)

round 1: Dealer P* <sends m> to all

round 2: Party sends <echo1 m> to the first
message it recives from the primary

round 3: If party gathers n-f echo1 it sends
<echo2 m>

End of round 3:
• Grade 2: If party gatheres n-f echo2;
otherwise
• Grade 1: if party gathers f+1 echo2;
otherwise
• Gread 0 (default value)

Echo1 causes non-equivocation -> any two
grade 1 must have same value

Non-fualty dealer -> all non-fulty have
(m,2)

Non-fualty has (m’,2) -> all nonfaulty have
at lesT f+1 echo2 -> all non-fualty have
(m,g) with g>0

©2020 VMware, Inc. 55

Dealer P*

Moderator P**

Take any VSS that uses broadcast only in share phase

Replace <broadcast m by party j> with:
• Party j runs gradecast (m)
• The moderator P** takes the value m’ of the gradecast and runs gradecast (m’)

Outcome for party i:
• Let (m,g) be the outcome of the first gradecast
• Let (m’,g’) be the outcome of the first gradecast
• If g’<2 or (g’=2 and g=2 and m≠m’) then set OK=false

MVSS from VSS
Moderated VSS [KK06]

©2020 VMware, Inc. 56

If OK=true for any non-faulty then VSS properties hold
• Because all see the moderator’s value and the moderator's value is consistent with any
non-faulty broadcaster

If the moderator is non-faulty then all non-faulty have OK=true
• From the grade cast properties of an honest sender

Proof for Moderated VSS

©2020 VMware, Inc. 57

For each i,j, do a MVSS with dealer i and moderator j (say random value in n4)

The secret ballot for j will be the sum mod n4 of all the VSS where j is a moderator

Reveal all the secret ballots for all parties

But if for some moderator j you see OK=false in any MVSS then set secret ballot to 0

Choose the leader to be the party with the highest secret ballot

With large probability there are no collisions, and then with constant probability a non-
faulty is elected

OLE from MVSS
Oblivious Leader Eelection

©2020 VMware, Inc. 58

Responsivness: we added a key round

MVSS does not work:
• n>4f, costnat time [MF]
• AVSS constnat time, but has non-zero deadlock [CR]
• ShunningAVSS no deadlock but polynomial time [ADH]

Attach f+1 secrets. Honest attach only after the RB works

Moving to asynchrony

©2020 VMware, Inc.

Liveness even in asynchrony ?

Primary-Backup and Byzantine Primary-Backup:
• Always safe; live when system is synchronous

Problems with asynchrony:
• Adversary can attack the primary
• Adversary can delay the primary
• Cannot tell the difference
• Choose a random leader?
•Works for a static adversary
• Replace leaders quickly: works for an adaptive adversary that is slow
•What about an adaptive adversary that is not slow?

©2020 VMware, Inc.

Asynchrony:
Lower bounds and solutions

1985: Fischer, Lynch and Patterson:
• Impossible to decide on one command even with f=1 crash failure
• For any safe protocol there is an adversary strategy (on delays) that forces the protocol
to make an infinite number of steps (never terminate)

Solutions:
• Assume eventually the system is synchronous (so no progress in DDoS)
• Use randomization so the infinite execution have probability (measure) 0
• In fact O(1) expected rounds!

Building State Machine Replication
•Weak validity: is not enough assuming asynchronous client communication
• Binary agreement is not enough (can be a building block)
• External Validity [CKPS 01] is key for SMR implementation

©2020 VMware, Inc.

Start the election after n-f are done [AMS PODC19]

Primary i gets a proof that n-f learned it’s commit decision
• call this a done-proof, sends singed <done (done-proof)>i

Barrier: Start leader election after seeing n-f valid <done (*)> messages

Safety does not change

Liveness:
•With constant probability we chose a primary that made progress!

©2020 VMware, Inc.

Thank you

