

Consensus

Via the information theoretic lens
(Part 1)

Ittai Abraham, VMware Research

Group blog: Decentralized Thoughts

Consensus

Via the information theoretic lens

A fundamental problem that captures the essence of coordination in the face of failures

- Multi Party Computation
- Used in many large-scale compute infrastructures
- Cryptocurrency and blockchain disruption

Deep connections between (information theoretic) cryptography and (information theoretic) distributed computing

- Lower bounds for consensus are lower bounds for MPC
- Broadcast (consensus) is used for MPC
- MPC techniques are used for obtaining efficient (randomized) consensus protocols

My background:

- I do research in algorithms and distributed computing
- Wannabe Cryptographer

“The proof-of-work chain is a solution to the Byzantine Generals’ Problem. I’ll try to rephrase it in that context”

Satoshi Nakamoto, email archive, 2008

“Bitcoin is the first practical solution to a longstanding problem in computer science called the Byzantine Generals Problem”

Marc Andreessen, Why Bitcoin Matters, NYT, 2014

Consensus: Approach for today and tomorrow

Traditional way to learn distributed computing and fault tolerance: learning isolated Islands

Today: a foundational view on traditional (and new) protocols

- Not a historical survey
- Not islands, highlight connections
- Understanding the connections allows better abstractions, theory, protocols, systems

Why via the information theoretic lens?

- **Everything should be made as simple as possible, but not simpler**

On Learning

- First via intuition then via rigor
- Learning by asking
- Learning by doing (no shortcuts)

Consensus: plan for today and tomorrow

Focus on information theoretic solutions

A call for multidisciplinary research

Adversary and Network Models

Consensus: definitions, upper and lower bounds

Paxos (Synchrony)

Byzantine Paxos (Synchrony)

$O(1)$ exp time Byzantine Paxos (Synchrony)

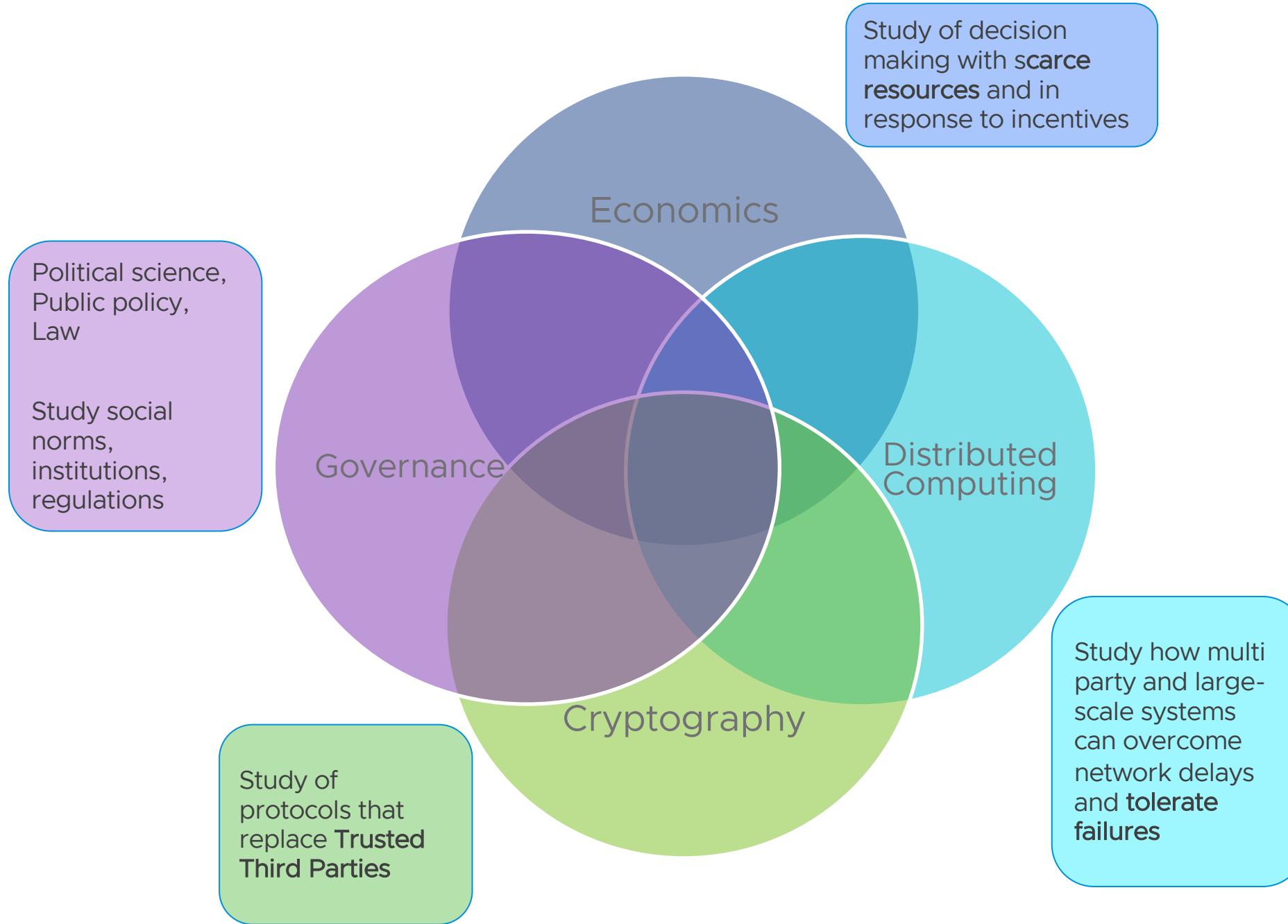
Paxos (Partial Synchrony)

Reliable Broadcast

Byzantine Paxos (Partial Synchrony)

A-MW + A-VSS + ARandElect

$O(1)$ exp time Byzantine Paxos (Asynchrony)



Distributed Computing 101

Synchrony, Asynchrony and Partial synchrony and flavors of Partial Synchrony

Asynchrony: adversary can delay messages by any finite amount

Synchrony: adversary can delay messages by some known Δ

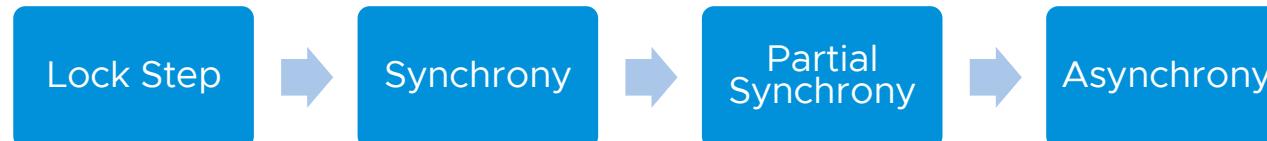
- lock step: all messages take exactly $\Delta=1$

[DLS88]: Partial Synchrony (Global Stabilization Time):

- adversary can delay messages by any finite amount
- until some unknown finite point in time called GST (Global Stabilization Time)
- adversary can delay messages by some known Δ

[DLS88]: Partial Synchrony (Unknown Latency):

- adversary must set Δ at the beginning of the execution



Power of the Adversary

[Blog post](#)

Passive adversary (semi honest, honest-but-curious)

Crash failure

Omission failure (“bubble adversary”)

Byzantine failure (malicious)

- Covert (malicious but does not want to be detected)
- ϵ -covert (malicious but only if probability of detection is low)

Consensus [Lamport et al 78]

Parties have initial input

Can send messages via point-to-point channels

Termination (Liveness): In the end of the protocol each party must *decide* on a value

Safety: No two non-malicious parties decide on different values

Trivial: Always decide a default value

Make the problem not trivial:

- *Validity:* If all the non-faulty have the same input, then this must be the decision value
- *Fair Validity:* With constant probability an input of a non-faulty server is decided upon

Not required:

- *Security:* that the view of the adversary in the ideal world is indistinguishable from a simulated view generated from the view of the adversary in the real world

Consensus: Broadcast vs Agreement

Safety: all non-malicious parties decide the same value

Liveness: all non-faulty parties eventually decide

Broadcast:

- Designated sender P^*
- Validity: if the sender is non-faulty with input m then m is the decision value

Agreement:

- *Validity*: If all the non-faulty have the same input, then this must be the decision value
- *Fair Validity*: With constant probability an input of a non-faulty server is decided upon

Broadcast from Agreement (in synchrony):

- Given agreement, sender sends to all, then parties run agreement

Agreement from Broadcast (in synchrony):

- Given broadcast (and $f < n/2$), each party broadcasts its input, then use say majority

Goal:

- Upper bounds for Agreement
- Lower bounds for Broadcast

Consensus results in one slide: deterministic

	Synchrony	Partial Synchrony
Crash	$n > f$ (primary backup)	$n \leq 2f$ (DLS “split”)
Omission	$n \leq 2f$ (uniform)	$n > 2f$ (Sync Paxos) $n > 2f$ (Paxos)
Byzantine (cannot simulate)		$n > 2f$ (Auth Byz) $n \leq 3f$ (DLS “split”)
Byzantine (unbounded)	$n \leq 3f$ (FLM the “hexagon”)	$n > 3f$ (Sync Byz) $n > 3f$ (PBFT)

FLP85: every protocol solving asynchronous consensus for 1 crash must have an infinite execution

LF82: every protocol solving synchronous consensus for f crashes must have a $f+1$ round execution

DR82: deterministic consensus needs $\Omega(f^2)$ messages

Consensus results in one slide: randomized, with private channels

	Synchrony	Partial Synchrony	Asynchrony
Crash	$n > f$ (primary backup)	$n \leq 2f$ (DLS88 “split brain”)	
Omission	$n \leq 2f$ (uniform)	$n > 2f$, $O(1)$ expected time	$n > 2f$, $O(1)$ expected time
Byzantine (cannot simulate)	$n > 2f$, Auth, $O(1)$ exp. Time (KK06)	$n \leq 3f$ (DLS88 “split brain”)	
Byzantine (unbounded)	$n \leq 3f$ (FLM86 the “hexagon”)	$n > 3f$, $O(1)$ expected time (MF88, KK06)	$n > 3f$, $O(1)$ expected time <p>VSS $n \leq 4f$ must have error (BKR94)</p> <ol style="list-style-type: none"> $n > 4f$, $O(1)$ exp. “time” (BCG93) $n > 3f$, error, $O(1)$ (CR93) $n > 3f$, no error, poly exp. “time” (ADH)

Primary-Backup in the omission model [Lamport, Oki Liskov, DLS,]

The omission model

- There are n replicas
- The adversary corrupts f replicas which can fail by not receiving or not sending each message

Systems works in *views*, in each view

- One replica is designated as Primary
- All the rest of the replicas are Backups

For simplicity: in view i the primary is $(i \bmod n)$

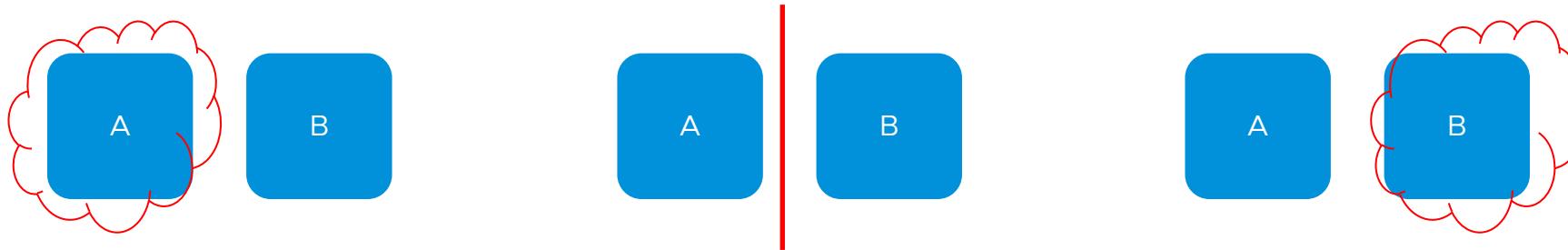
Many other options:

- Randomized leader election
- Back-off protocols

Primary-Backup in the omission model: Lower bound for $n \leq 2f$ (DLS 88)

$n=2$ and one omission failure

1. In Partial synchrony
2. In Synchrony, assuming *uniform* consensus
 - Safety for omission faulty parties



Learning by Doing

3 parties, each with input in $\{0,1\}$

Adversary controls one party (omission)

Write a protocol for consensus:

- (Uniform) Safety: no two decide different values
- Liveness: All non-faulty parties decide
- Validity: If all the non-faulty have the same input x , then x is the decision value

Primary-Backup in the omission model: Foundations

The only math you will need:

- Quorum intersection (pigeonhole principle)
- Given a set of n elements: two sub-sets of $n-f$ elements must intersect at $n-2f$ elements
- For $n=2f+1$, any two sets of $f+1$ must intersect at one element
- For $n=3f+1$, any two sets of $2f+1$ must intersect at $f+1$ elements

Primary-Backup in the omission model: What could possibly go wrong?

Primary chooses its input: x

- decide x
- Sends $\langle \text{decide } x \rangle$ to all replicas

Primary chooses its input: x

- Sends $\langle \text{propose } x \rangle$ to all replicas
- decide x

Main challenge: the first primary may decide x , but the next primary decides x'

Primary-Backup in the omission model: View Change protocol

Use a **view change** protocol to guarantee safety:

- Before a new primary starts, it runs a view change protocol
- If there is any possibility that some value was previously decided, the new primary must *adopt* that value

Three challenges:

1. Only decide a value after you are sure later primaries can recover and adopt this value
2. Make the view change safe: only choose safe values to adopt
3. Make the view change live: don't get stuck waiting

Primary-Backup: Algorithm structure – three simple parts!

1. Normal case protocol
 - allow the primary to decide
2. View change trigger protocol
 - trigger the replacement of a primary
3. View change protocol
 - a way for a new primary to make safe choices

Primary-Backup in the omission model: Normal case

1. Send:
 - Primary (of view v) sends $\langle \text{propose } x \text{ in view } v \rangle$ to all replicas
2. Ack:
 - Replica sends $\langle \text{ack } x \text{ in view } v \rangle$ to all
 - Unless it has moved to a higher view
3. Decide:
 - Replica wait for $n-f$ messages of $\langle \text{ack } x \text{ in view } v \rangle$ to *decide* x

View Change Trigger: Revolving coordinator, random leader, stable leader

View change to replace a failed primary

- Use synchronized heartbeat mechanisms to have all replicas move to the next view
- For now: simple revolving coordinator
- Later: random leader election
- In practice: use a stable leader for many consensus decisions

View Change

Maybe the previous primary caused a decision?

Maybe one of the previous primary caused a decision?

New primary may need to adopt a value instead of choosing its own

Quorum intersection to the rescue:

- If some primary decided, then it used a write quorum (of $n-f$)
- So reading from a quorum of $n-f$:
 - Is safe: primary will see intersection (since $n-2f>0$)
 - Is live: can always be done

Primary-Backup in the omission model: Normal case

1. Send:
 - Primary (of view v) sends $\langle \text{propose } x \text{ in view } v \rangle$ to all replicas
2. Ack:
 - Replica sends $\langle \text{ack } x \text{ in view } v \rangle$ to all
 - Unless it has moved to a higher view
3. Decide:
 - Replica wait for $n-f$ messages of $\langle \text{ack } x \text{ in view } v \rangle$ to *decide* x

View Change: from view v to view $v+1$

New primary for view $v+1$:

- (Send message \langle view change for view $v+1$ \rangle to all)
- A replica responds with \langle my maximal propose is x' at view v' \rangle
 - Using the *propose* with maximal view v' it heard
 - Or send \langle null at view 0 \rangle if heard no propose

Primary waits for $n-f=f+1$ responses:

- Adopts the proposed value associated with the *maximal view number*, or
- Uses its own value if every message is \langle null at view 0 \rangle

Primary-Backup in the omission model for $n > 2f$

Three simple parts

1. Normal case protocol

- Send: Primary (of view v) sends $\langle \text{propose } x \text{ in view } v \rangle$ to all replicas
- Ack: Replicas send $\langle \text{ack } x \text{ in view } v \rangle$ to all (update their maximal propose)
 - Unless it has moved to a higher view
- Decide: Replicas wait for $n-f$ messages of $\langle \text{ack } x \text{ in view } v \rangle$ to decide x

2. View change trigger protocol

- Revolving coordinator: wait for enough time (4 rounds) to replace primary with next primary

3. View change protocol

- Each replica sends to new primary $\langle \text{my maximal propose is } x' \text{ at view } v' \rangle$
 - Using the propose with maximal view v' it heard
 - Or send $\langle \text{null at view } 0 \rangle$ if heard no propose
- Primary waits for $n-f$ responses:
 - Adopts the proposed value associated with the maximal view number; or
 - Uses its own value if every message is $\langle \text{null at view } 0 \rangle$

Safety

Let v^* be the first view that some replica decides, say on value x

Base case: all decisions in view v^* must be to x

By induction on $v > v^*$: any primary must adopt the value x

- Set G of $f+1$:
 - Each member of G : maximal propose is on value x
 - Each member outside of G : has an equal or higher maximal propose than any member of G , then it must be on value x

This argument does not use synchrony! It works for asynchrony

Termination (liveness)

Claim: Eventually all non-faulty replicas will learn the decision value

Any faulty primary that does not make progress will eventually be replaced

A non-faulty primary will cause termination

(here we use synchrony)

Primary-Backup in Partial Synchrony

Asynchrony: adversary can delay messages by any finite amount

Synchrony: adversary can delay messages by some known finite value Δ

Partial Synchrony:

- adversary can delay messages by any finite amount
- until some unknown finite point in time called GST (Global Stabilization Time)
- adversary can delay messages by some known finite value Δ

The Partial Synchrony paradigm:

- Safety holds in asynchrony
- Termination holds in synchrony
- Extremely successful in industry
- Gateway to asynchrony

Byzantine Adversaries!

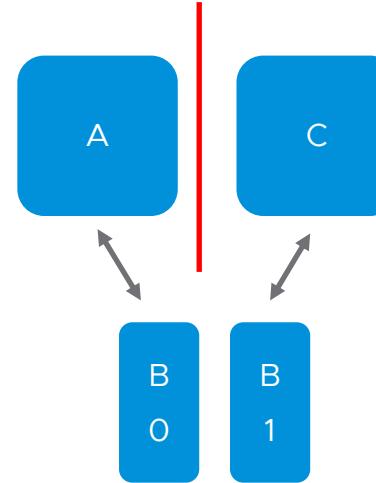
Can we reach agreement in synchrony for $n=2f+1$?

Can we reach agreement in partial synchrony for $n=2f+1$?

Byzantine adversaries

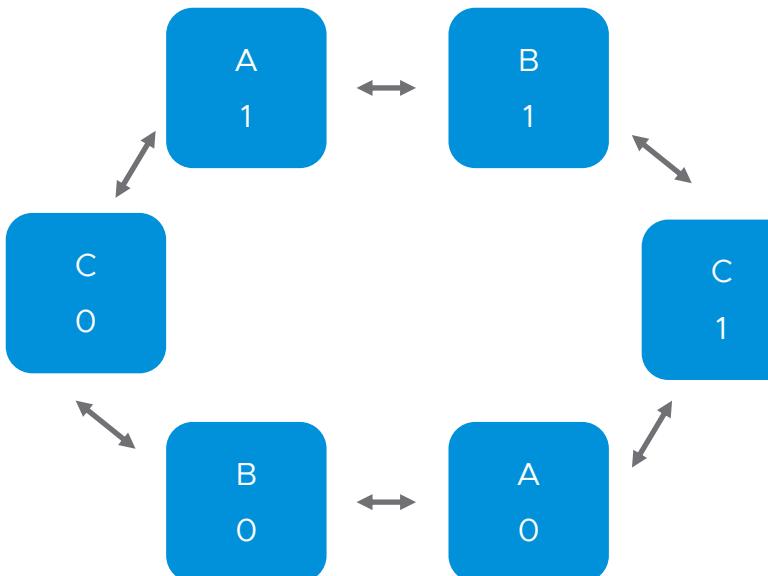
$n=3, f=1$ is impossible

In partial synchrony, the split-brain attack [DLS]:



In synchrony, the hexagon [FLM]:

- Any edge defines a legal world with two non-faulty parties around edge
- Non-faulty party decide the same for left edge and right edge worlds



Byzantine Model in Partial Synchrony

Two primary attacks:

- Equivocate: tell different replicas different things
- Unsafe: adopt a non-safe value after view change
 - Invent a value
 - Choose a non-maximal value

Solution approach:

- Add a sub-protocol to force primary to act like omission (no equivocation)
- Add a sub-protocol to guarantee the primary will fail if using un-safe values
 - Key idea: replica that sent a value *lock* on it, primary has to prove value is real

Byzantine Primary-Backup (at view v):

Straw Man 1: with $n=3f+1$, what could possibly go wrong?

Primary can send different values to different replicas ☹, need to block equivocation

1. Primary sends $\langle send, (value, v) \rangle$ to all
2. Replica accepts $\langle send, (value, v) \rangle$, then
 - Set $lock := v$; $lock\ value := value$
 - Sends $\langle lock, (value, v) \rangle$ to all
3. Replica gathers $n-f$ $\langle lock, (value, v) \rangle$, then
 - Decide $(value)$

The good: cannot decide different values

The bad: If non-faulty commits, there may be conflicting locks for the view change

- How do we choose which one?
- Want all the locks to be the same

Non-Equivocation:

Goal: given a (potentially) Byzantine primary, **transform** its send-to-all to a (potentially) omission fault primary send-to-all

$n > 3f$

1. Primary sends $\langle \text{send}(\text{value}, v) \rangle$ to all
2. Replica sends $\langle \text{echo}(\text{value}, v) \rangle$ to all for the *first* $\langle \text{send}(\text{value}, v) \rangle$ it hears from primary
3. If a replica sees $n-f$ $\langle \text{echo}(\text{value}, v), \text{proof} \rangle$ from different replicas,
 - *then* it accepts $\langle \text{send}(\text{value}, v) \rangle$

Non-Equivocation: Proof

Claim: If a replica accepts $\langle \text{send}(\text{value}, v) \rangle$ then no replica will accept $\langle \text{send}(\text{value}', v) \rangle$ with $\text{value} \neq \text{value}'$

Proof by contradiction:

1. One replica sees $n-f \langle \text{echo}(\text{value}, v) \rangle$ and another sees $n-f \langle \text{echo}(\text{value}', v) \rangle$
2. The intersection is at least $f+1$, so at least one non-faulty in the intersection
3. Non-faulty will send at most one echo per view

Byzantine Primary-Backup (at view v):

Straw Man 2: with equivocation

Primary can send any value it wants 😊, how can we protect a decision value?

1. Primary sends $\langle send, (value, v) \rangle$ to all
2. Replica receives $\langle send, (value, v) \rangle$, then
 - If first send from primary in view v, then
 - sends : $\langle echo, (value, v) \rangle$ to all
3. Replica gathers $n-f$ $\langle echo, (value, v) \rangle$, then
 - Set lock:=v; lock value:=value
 - Sends $\langle lock, (value, v) \rangle$ to all
4. Replica gathers $n-f$ $\langle lock, (value, v) \rangle$, then
 - Decide (value)

The good: all locks will be the same

The bad: how do we force the new primary to choose the highest lock?

Recall: View Change from view v to view $v+1$

New primary for view $v+1$:

- A replica responds with $\langle \text{my maximal propose is } x' \text{ at view } v' \rangle$
 - Using the *propose* with maximal view v' it heard
 - Or send $\langle \text{null at view } 0 \rangle$ if heard no propose

Primary waits for n -responses:

- **Adopts** the proposed value associated with the *maximal view number*, or
- Uses its own value if every message is $\langle \text{null at view } 0 \rangle$

Can we force new primary to adopt the maximum value?

- Information theoretically possible, a PBFT type view change (see Castro's thesis)

Can Primary prove the (value) its using was indeed sent in some view $u < v$?

- Yes, this will allow a Tendermint, HotStuff type view change

Safety:

- Replica that is locked on (value, v) will ignore primary with (value', v') if $v' < v$
- $f+1$ locked replicas will block a malicious primary

Force primary to prove: the (value) its using was indeed sent in some view $u < v$

Primary of view u could sign its message!

- We don't have signatures 😞

We have non-equivocation on primary, would like stronger property:

- If I **accept** the primary message then all parties **weakly accept** (and eventually **accept** it)
- Bracha's Reliable Broadcast, (Micali and Feldmans's Gradecast)

1. Primary sends $\langle \text{send}(\text{value}, v) \rangle$ to all
2. Replica sends $\langle \text{echo1}(\text{value}, v) \rangle$ to all for *first* $\langle \text{send}(\text{value}, v) \rangle$ it hears from primary
3. If a replica sees $n-f$ $\langle \text{echo1}(\text{value}, v), \text{proof} \rangle$ from *different replicas*,
 - *then* it sends $\langle \text{echo2}(\text{value}, v) \rangle$ to all
4. If a replica sees $n-f$ $\langle \text{echo2}(\text{value}, v), \text{proof} \rangle$ from *different replicas*,
 - *then* it accepts $\langle \text{send}(\text{value}, v) \rangle$
5. If a replica sees $f+1$ $\langle \text{echo2}(\text{value}, v), \text{proof} \rangle$ from *different replicas*,
 - *then* it weakly accepts and sends $\langle \text{echo2}(\text{value}, v) \rangle$ to all

Reliable Broadcast (at view v):

1. Primary sends $\langle \text{send}(\text{value}, v) \rangle$ to all
2. Replica sends $\langle \text{echo1}(\text{value}, v) \rangle$ to all for *first* $\langle \text{send}(\text{value}, v) \rangle$ it hears in view v from Primary
3. If a replica sees $n-f$ $\langle \text{echo1}(\text{value}, v), \text{proof} \rangle$ from different replicas,
 - *then* it sends $\langle \text{echo2}(\text{value}, v) \rangle$ to all
4. If a replica sees $n-f$ $\langle \text{echo2}(\text{value}, v), \text{proof} \rangle$ from different replicas,
 - *then* it accepts $\langle \text{send}(\text{value}, v) \rangle$
5. If a replica sees $f+1$ $\langle \text{echo2}(\text{value}, v), \text{proof} \rangle$ from different replicas,
 - *then* it weakly accepts and sends $\langle \text{echo2}(\text{value}, v) \rangle$ to all

Claim 0: all accepted values are the same (non-equivocation)

Claim 1: If a non-faulty accepts (in synchrony), then all non-faulty will at least weakly accept

Claim 2: If a non-faulty accepts (in asynchrony), then all non-faulty will eventually accept

Byzantine Primary-Backup (at view v):

Straw Man 3: with Reliable Broadcast

Primary can prove its using a real value

1. Primary sends $\langle send, (value, v) \rangle$ to all
2. Replica receives $\langle send, (value, v) \rangle$, then
 - If first send from primary in view v, then
 - sends : $\langle echo1, (value, v) \rangle$ to all
3. Replica gathers $n-f \langle echo1, (value, v) \rangle$,
then
 - Sends $\langle echo2, (value, v) \rangle$ to all
4. Replica gathers $n-f \langle echo2 (value, v) \rangle$,
then (at view v)
 - **Set lock:=v; lock value:=value**
 - Sends $\langle lock, (value, v) \rangle$ to all
5. Replica gathers $n-f \langle lock, (value, v) \rangle$, *then*
 - **Decide (value)**

Replica gathers $f+1 \langle echo2, (value, v) \rangle$, *then*

- If did not send echo2
- Sends $\langle echo2, (value, v) \rangle$ to all

View change:

- **Replica:**
 - Sends its lock and lock value
- **Primary:**
 - accept a lock (value',v') if also n-f $\langle echo2, (value, v) \rangle$ arrive
 - Wait for n-f such locks
 - Choose the value with the highest lock (view)

Byzantine Primary-Backup (at view v):

with Reliable Broadcast and locking

1. Primary sends $\langle send, (value, v, u) \rangle$ to all
2. Replica receives $\langle send, (value, v, u) \rangle$,
 - If $u = \text{lock}$, $n-f \langle echo2, (value, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle echo1, (value, v) \rangle$ to all
3. Replica gathers $n-f \langle echo1, (value, v) \rangle$,
then
 - Sends $\langle echo2, (value, v) \rangle$ to all
4. Replica gathers $n-f \langle echo2, (value, v) \rangle$,
then (at view v)
 - Set lock:=v; lock value:=value
 - Sends $\langle lock, (value, v) \rangle$ to all
5. Replica gathers $n-f \langle lock, (value, v) \rangle$, *then*
 - Decide (value)

Replica gathers $f+1 \langle echo2, (value, v) \rangle$, *then*

- If did not send echo2
- Sends $\langle echo2, (value, v) \rangle$ to all

View change:

- **Replica:**
 - Sends its lock and lock value
- **Primary:**
 - accept a lock (value',v') if also $n-f \langle echo2, (value, v) \rangle$ arrive
 - Wait for $n-f$ such locks
 - Choose the value with the highest lock (view)

Safety

Let v^* be the first view that any replica decided (value X , view v^*)

Prove by induction that any accepted send of view $v \geq v^*$ must be consistent with value X

- for base case due to non-equivocation

Induction argument:

- Existence of a *core* of $f+1$ non-faulty that have a **lock on view at least v^* with value X**
 - Base case: core is the $n-2f$ out of the $n-f$ that sent a lock to decider
- Any accepted value from a primary of view at least v^* must be X
 - By induction, core will block any other value
 - Core members can only gain a higher lock but then primary uses the same value.

Liveness

If a non-faulty primary is elected and the system is synchronous

Primary will hear locks from *all* non-faulty and will choose the maximum one

All non-faulty replicas will also see same lock and hence will echo1 the primary

Responsivness: liveness in asynchrony

In asynchrony the non-faulty primary can wait for $n-f$ responses during view change

May miss a lock of a non-faulty

- Will cause a liveness problem!

Solution: add one more round ☺

- After seeing $n-f$ echo2, send *key*
- After seeing $n-f$ keys, send *lock*
- If I have a lock then there are at least $f+1$ non-faulty that have a key
- During view change, ask for keys

Responsive Byzantine Primary-Backup (at view v):

Information Theoretic HotStuff

1. Primary sends $\langle send, (value, v, u) \rangle$ to all
2. Replica receives $\langle send, (value, v, u) \rangle$,
 - If $u \geq \text{lock}$, $n-f \langle echo2, (value, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle echo1, (value, v) \rangle$ to all
3. Replica gathers $n-f \langle echo1, (value, v) \rangle$, then
 - Sends $\langle echo2, (value, v) \rangle$ to all
4. Replica gathers $n-f \langle echo2, (value, v) \rangle$, then (at view v)
 - Set key:=v; key value:=value
 - Sends $\langle key, (value, v) \rangle$ to all
5. Replica gathers $n-f \langle key, (value, v) \rangle$ and $n-f \langle echo2, (value, v) \rangle$, then (at view v)
 - Set lock:=v
 - Sends $\langle lock, (value, v) \rangle$ to all
6. Replica gathers $n-f \langle lock, (value, v) \rangle$, then Decide (value)

Replica gathers $f+1 \langle echo2, (value, v) \rangle$, then

- If did not send echo2
- Sends $\langle echo2, (value, v) \rangle$ to all

View change:

- Replica:
 - Sends its key and key value
- Primary:
 - accept a key (value',v') if also $n-f \langle echo2, (value, v) \rangle$ arrive
 - Wait for $n-f$ such key
 - Choose the value with the highest key (view)

Byzantine Paxos: adding randomness

Elect a random primary

Revolving coordinator

- After f view changes ($O(f)$ rounds) a non-faulty primary will be elected

Assume we have a *oblivious leader election* functionality

- At least $f+1$ honest must request for functionality to start
- Each party i outputs a leader $L(i)=j$
- With probability at least $\frac{1}{2}$ (can use any constant) :
 - all non-faulty output the same value j and,
 - j was non-faulty before functionality started

Good for a static adversary

Adaptive adversary will adaptively corrupt that chosen primary ☹

Byzantine Paxos: adaptive adversaries

Everyone is a Primary 😊

Adaptive adversary will shoot down the primary

Solution:

- Let everyone be a primary
- Then choose who the real primary is in hindsight (and all other are just decoys)

Liveness: with constant probability a good primary is chosen

Safety:

- In hindsight, looks like a single primary each view
- If a faulty primary or a confusion of primaries is chosen then this is just like a faulty primary
 - Safety is maintained!

Responsive Byzantine Primary-Backup (at view v):

Deterministic version

1. Primary sends $\langle \text{send}, (\text{value}, v, u) \rangle$ to all
2. Replica receives $\langle \text{send}, (\text{value}, v, u) \rangle$,
 - If $u = \text{lock}$, $n-f \langle \text{echo2}, (\text{value}, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle \text{echo1}, (\text{value}, v) \rangle$ to all
3. Replica gathers $n-f \langle \text{echo1}, (\text{value}, v) \rangle$, then
 - Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all
4. Replica gathers $n-f \langle \text{echo2}, (\text{value}, v) \rangle$, then (at view v)
 - Set key:=v; key value:=value
 - Sends $\langle \text{key}, (\text{value}, v) \rangle$ to all
5. Replica gathers $n-f \langle \text{key}, (\text{value}, v) \rangle$ and $n-f \langle \text{echo2}, (\text{value}, v) \rangle$, then (at view v)
 - Set lock:=v
 - Sends $\langle \text{lock}, (\text{value}, v) \rangle$ to all
6. Replica gathers $n-f \langle \text{lock}, (\text{value}, v) \rangle$, then
 - Decide (value)

Replica gathers $f+1 \langle \text{echo2}, (\text{value}, v) \rangle$, then

- If did not send echo2
- Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all

View change:

- Replica:
 - Sends its key and key value
- Primary:
 - accept a key (value',v') if also $n-f \langle \text{echo2}, (\text{value}, v) \rangle$ arrive
 - Wait for $n-f$ such key
 - Choose the value with the highest key (view)

Responsive Byzantine Primary-Backup (at view v):

with random leader election

1. Each party as Primary, sends $\langle send, (value, v, u) \rangle$ to all
2. Run oblivious leader election to decide who to listen to
3. Replica receives $\langle send, (value, v, u) \rangle$,
 - If $u = \text{lock}$, $n-f \langle echo2, (value, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle echo1, (value, v) \rangle$ to all
4. Replica gathers $n-f \langle echo1, (value, v) \rangle$, then
 - Sends $\langle echo2, (value, v) \rangle$ to all
5. Replica gathers $n-f \langle echo2, (value, v) \rangle$, then (at view v)
 - Set key:=v; key value:=value
 - Sends $\langle key, (value, v) \rangle$ to all
6. Replica gathers $n-f \langle key, (value, v) \rangle$ and $n-f \langle echo2, (value, v) \rangle$, then (at view v)
 - Set lock:=v
 - Sends $\langle lock, (value, v) \rangle$ to all
7. Replica gathers $n-f \langle lock, (value, v) \rangle$, then
 - Decide (value)

Replica gathers $f+1 \langle echo2, (value, v) \rangle$, then

- If did not send echo2
- Sends $\langle echo2, (value, v) \rangle$ to all

View change:

- Replica:
 - Sends its key and key value
- Primary:
 - accept a key (value',v') if also $n-f \langle echo2, (value, v) \rangle$ arrive
 - Wait for $n-f$ such key
 - Choose the value with the highest key (view)

Oblivious Leader Election

Choosing a random leader is a simple MPC protocol

But MPC uses VSS, and VSS requires broadcast ☹

Solution:

- a notion that is weaker than VSS but strong enough for OLE
- Moderated VSS (KK06) and Graded VSS (MF88)
- Tailor made MPC (with a constant error probability)

Gradecast -> MVSS ->OLE ->O(1) time expected Byzantine Agreement

Gradecast (MF88, D81)

Dealer P^* has input m

Each party outputs a value m and a grade in $\{0,1,2\}$

If the dealer is non-faulty then all non-faulty output $(m,2)$

If a non-faulty outputs $(m',2)$ then all non-faulty output (m',g) with $g > 0$

(If two non-faulty have grade 1 then have same value)

Gradecast protocol (MF88)

round 1: Dealer P^* <sends m > to all

round 2: Party sends <echo1 m > to the first message it receives from the primary

round 3: If party gathers $n-f$ echo1 it sends <echo2 m >

End of round 3:

- Grade 2: If party gathers $n-f$ echo2; otherwise
- Grade 1: if party gathers $f+1$ echo2; otherwise
- Grade 0 (default value)

Gradecast proof (MF88)

round 1: Dealer P^* <sends m > to all

round 2: Party sends <echo1 m > to the first message it receives from the primary

round 3: If party gathers $n-f$ echo1 it sends <echo2 m >

End of round 3:

- Grade 2: If party gathers $n-f$ echo2;
otherwise
- Grade 1: if party gathers $f+1$ echo2;
otherwise
- Gread 0 (default value)

Echo1 causes non-equivocation \rightarrow any two grade 1 must have same value

Non-faulty dealer \rightarrow all non-faulty have $(m, 2)$

Non-faulty has $(m', 2)$ \rightarrow all nonfaulty have at least $f+1$ echo2 \rightarrow all non-faulty have (m, g) with $g > 0$

Moderated VSS [KK06]

MVSS from VSS

Dealer P^*

Moderator P^{**}

Take any VSS that uses broadcast only in share phase

Replace $\langle \text{broadcast } m \text{ by party } j \rangle$ with:

- Party j runs gradecast (m)
- The moderator P^{**} takes the value m' of the gradecast and runs gradecast (m')

Outcome for party i :

- Let (m, g) be the outcome of the first gradecast
- Let (m', g') be the outcome of the first gradecast
- If $g' < 2$ or $(g' = 2 \text{ and } g = 2 \text{ and } m \neq m')$ then set $\text{OK} = \text{false}$

Proof for Moderated VSS

If $OK=true$ for any non-faulty then VSS properties hold

- Because all see the moderator's value and the moderator's value is consistent with any non-faulty broadcaster

If the moderator is non-faulty then all non-faulty have $OK=true$

- From the grade cast properties of an honest sender

Oblivious Leader Election

OLE from MVSS

For each i, j , do a MVSS with dealer i and moderator j (say random value in n^4)

The secret ballot for j will be the sum mod n^4 of all the VSS where j is a moderator

Reveal all the secret ballots for all parties

But if for some moderator j you see $OK=false$ in any MVSS then set secret ballot to 0

Choose the leader to be the party with the highest secret ballot

With large probability there are no collisions, and then with constant probability a non-faulty is elected

Moving to asynchrony

Responsivness: we added a key round

MVSS does not work:

- $n > 4f$, costnat time [MF]
- AVSS constnat time, but has non-zero deadlock [CR]
- ShunningAVSS no deadlock but polynomial time [ADH]

Attach $f+1$ secrets. Honest attach only after the RB works

Liveness even in asynchrony ?

Primary-Backup and Byzantine Primary-Backup:

- Always safe; live when system is synchronous

Problems with asynchrony:

- Adversary can attack the primary
- Adversary can delay the primary
- Cannot tell the difference
- Choose a random leader?
- Works for a static adversary
- Replace leaders quickly: works for an adaptive adversary that is slow
- What about an adaptive adversary that is not slow?

Asynchrony: Lower bounds and solutions

1985: Fischer, Lynch and Patterson:

- Impossible to decide on one command even with $f=1$ crash failure
- For any safe protocol there is an adversary strategy (on delays) that forces the protocol to make an infinite number of steps (never terminate)

Solutions:

- Assume eventually the system is synchronous (so no progress in DDoS)
- Use randomization so the infinite execution have probability (measure) 0
- In fact $O(1)$ expected rounds!

Building State Machine Replication

- Weak validity: is not enough assuming asynchronous client communication
- Binary agreement is not enough (can be a building block)
- External Validity [CKPS 01] is key for SMR implementation

Start the election after $n-f$ are done [AMS PODC19]

Primary i gets a proof that $n-f$ learned its commit decision

- call this a *done-proof*, sends signed $\langle done \text{ (done-proof)} \rangle_i$

Barrier: Start leader election after seeing $n-f$ valid $\langle done (*) \rangle$ messages

Safety does not change

Liveness:

- With constant probability we chose a primary that made progress!

Thank you