Consensus

Via the information theoretic lens
(Part 1)

Ittai Abraham, VMware Research

Group blog: Decentralized Thoughts

mwa re ©2019 VMware, Inc.



consensus
Via the information theoretic lens

A fundamental problem that captures the essence of coordination in the face of failures
« Multi Party Computation

« Used in many large-scale compute infrastructures
« Cryptocurrency and blockchain disruption

Deep connections between (information theoretic) cryptography and (information
theoretic) distributed computing

« Lower bounds for consensus are lower bounds for MPC
« Broadcast (consensus) is used for MPC

« MPC techniques are used for obtaining efficient (randomized) consensus protocols

My background:

« | do research in algorithms and distributed computing
« Wannabe Cryptographer

mwa re® ©2020 VMware, Inc.



“The proof-of-work chain is a solution to
the Byzantine Generals’ Problem. I'll try
to rephrase it in that context”

Satoshi Nakamo, email archive, 2008

vImWare: | cosuen



“Bitcoin is the first practical solution to
a longstanding problem in computer
science called the Byzantine Generals
Problem?”

Marc Andreessen, Why Bitcoin Matters, NYT, 2014

®
mwa re | ©2019 VMware, Inc.



Consensus: Approach for today and tomorrow

Traditional way to learn distributed computing and fault tolerance: learning
iIsolated Islands

Today: a foundational view on traditional (and new) protocols
« Not a historical survey

« Not islands, highlight connections

« Understanding the connections allows better abstractions, theory, protocols, systems
Why via the information theoretic lens?

« Everything should be made as simple as possible, but not simpler

On Learning

* First via intuition then via rigor
« Learning by asking
« Learning by doing (no shortcuts)

vmware

VMware, Inc.




Consensus: plan for today and tomorrow

Focus on information theoretic solutions

A call for multidisciplinary research
Adversary and Network Models

Consensus: definitions, upper and lower
bounds

PaXOS (SynCh I’Ohy) )

1 GradeCast
Byzantine Paxos (Synchrony)
§ Muttiword + MVss + RandElect
O(1) exp time Byzantine Paxos (Synchrony)

mwa re® ©2020 VMware, Inc.

Paxos (Partial Synchrony)
l Reliable Broadcast
Byzantine Paxos (Partial Synchrony)
1 A-MW + A-VSS + ARandElect

O(1) exp time Byzantine Paxos
(Asynchrony)




vmware

©2020 VMware, Inc.

-

Study how multi
party and large-
scale systems
can overcome
network delays
and tolerate
failures

~

/




Distributed Computing 101

Synchrony, Asynchrony and Partial synchrony and flavors of Partial Synchrony

Asynchrony: adversary can delay messages by any finite amount

Synchrony: adversary can delay messages by some known A
 lock step: all messages take exactly A=1

[DLS88]: Partial Synchrony (Global Stabilization Time):
- adversary can delay messages by any finite amount
- until some unknown finite point in time called GST (Global Stabilization Time)
- adversary can delay messages by some known A

[DLS88]: Partial Synchrony (Unknown Latency):
« adversary must set A at the beginning of the execution

Lock Step Synchrony Syﬁimglny Asynchrony

mwa re® ©2020 VMware, Inc.



https://decentralizedthoughts.github.io/2019-06-01-2019-5-31-models/
https://decentralizedthoughts.github.io/2019-09-13-flavours-of-partial-synchrony/

Power of the Adversary
Blog post

Passive adversary (semi honest, honest-but-curious)

Crash failure
Omission failure (“bubble adversary”)

Byzantine failure (malicious)

« Covert (malicious but does not want to be detected)
« g-covert (malicious but only if probability of detection is low)

®
mwa re ©2020 VMware, Inc.



https://decentralizedthoughts.github.io/2019-06-07-modeling-the-adversary/

Consensus [Lamport etal 78]

Parties have initial input

Can send messages via point-to-point channels

Termination (Liveness): In the end of the protocol each party must decide on a value
Safety: No two non-malicious parties decide on different values

Trivial: Always decide a default value

Make the problem not trivial:
- Validity: If all the non-faulty have the same input, then this must be the decision value
- Fair Validity. With constant probability an input of a non-faulty server is decided upon

Nor required:

« Security. that the view of the adversary in the ideal world is indistinguishable from a simulated
view generated from the view of the adversary in the real world

®
mwa re ©2020 VMware, Inc. 10



Consensus: Broadcast vs Agreement

Safety: all non-malicious parties decide the Broadcast from Agreement (in synchrony):

same value « Given agreement, sender sends to to all,

, , then parties run agreement
Liveness: all non-faulty parties eventually

decide Agreement from Broadcast (in synchrony):

- Given broadcast (and f<n/2), each party

Broadcast. broadcasts its input, then use say majority

- Designated sender P*

- Validity: if the sender is non-faulty with input Goal:
m then m is the decision value « Upper bounds for Agreement

- Lower bounds for Broadcast
Agreement.

- Validity Af all the non-faulty have the same
input, then this must be the decision value

« Fair Validity. With constant probability an
input of a non-faulty server is decided upon

mwa re® ©2020 VMware, Inc.



Consensus results in one slide: deterministic

Synchrony Partial Synchrony

Crash n>f (primary n=2f (DLS “split”)

backup)
Ommision n=2f (uniform) n>2f (Sync Paxos) n>2f (Paxos)
Byzantine (cannot n>2f (Auth Byz) n=3f (DLS “split”)
simulate)
Byzantine n=3f (FLM the n>3f (Sync Byz) n>3f (PBFT)
(unbounded) “hexagon”)

FLP85: every protocol solving asynchronous consensus for 1 crash must have an infinite execution
LF82: every protocol solving synchronous consensus for f crashes must have a f+1 round execution
DR82: deterministic consensus needs Q(f*2) messages

®
mwa re ©2020 VMware, Inc. 12



Consensus results in one slide: randomized, with private channels

Synchrony Partial Synchrony Asynchrony
Crash n>f (primary n=2f (DLS88
backup) “split brain”)
Ommision n=2f (uniform) n>2f, O(1) n>2f, O(1) n>2f, O(1) expected
expected time expected “time”
time
Byzantine n>2f, Auth, O(1) | n=3f (DLS88
(cannot exp. Time “split brain”)
simulate) (KKO®6)
Byzantine n=3f (FLM86 n>3f, O(1) n>3f, O(1) VSS n=4f 1. n>4f, O() exp.
(unbounded) the “hexagon”) expected time expected must have “time” (BCG93)
(MF88, KKO6) time error 2. n>3f, error, O)
(BKR94) (CR93)
3. n>3f, noerror, poly
exp. “time” (ADH)
mwa re® ©2020 VMware, Inc. 13



Primary-Backup in the omission model [Lamport, Oki Liskov, DLS,]

The omission model
* There are nreplicas

« The adversary corrupts freplicas which can fail by not receiving or not sending each
message

Systems works in views, in each view
« One replica is designated as Primary
« All the rest of the replicas are Backups

For simplicity: in view /the primary is (7t mod n)

Many other options:

« Randomized leader election
« Back-off protocols

vmware




Primary-Backup in the omission model:
Lower bound forn < 2f (DLS 88)

Nn=2 and one omission failure

1. In Partial synchrony

2. In Synchrony, assuming uniform consensus
Safety for omission faulty parties

vmware 2020 v -




Learning by Doing

3 parties, each with input in {O,1}
Adversary controls one party (ommision)

Write a protocol for consensus:

« (Uniform) Safety: no two decide different vlaues
 Liveness: All non-fualty parties dedcide
« Validity: If all the non-faulty have the same input x, then x is the decision value

mwa re® ©2020 VMware, Inc.



Primary-Backup in the omission model:
Foundations

The only math you will need:
« Quorum intersection (pigeonhole principle)
* Given a set of nelements: two sub-sets of n-felements must intersect at
n-2rfelements
« For n=27+17, any two sets of /+7 must intersect at one element
« For n=37f+1, any two sets of 27/+7 must intersect at /+7elements

vmware 2020 v -




Primary-Backup in the omission model:
What could possibly go wrong?

Primary chooses its input: x
«decide x
« Sends <decide x>to all replicas

Primary chooses its input: x
« Sends <propose x>to all replicas
«decide x

Main challenge: the first primary may decide x, but the next
primary decides x’

vmware 2020 v -




Primary-Backup in the omission model:
View Change protocol

Use a view change protocol to guarantee safety:
« Before a new primary starts, it runs a view change protocol

«|f there is any possibility that some value was previously decided, the
new primary must adoptthat value

Three challenges:

1. Only decide a value after you are sure later primaries can recover and
adopt this value

2. Make the view change safe: only choose safe values to adopt
3. Make the view change live: don’t get stuck waiting

vmware




Primary-Backup:
Algorithm structure — three simple parts!

Normal case protocol
—allow the primary to decide

View change trigger protocol
—trigger the replacement of a primary

View change protocol
—a way for a new primary to make safe choices



Primary-Backup in the omission model:
Normal case

Send:
« Primary (of view v) sends <propose X in view v> to all replicas

Ack:

« Replica sends <ack x in view v> to all
- Unless it has moved to a higher view

Decide:
« Replica wait for n-f messages of <ack x in view v> to decide x

vmware 2020 v -




View Change Trigger:
Revolving coordinator, random leader, stable leader

View change to replace a failed primary

« Use synchronized heartbeat mechanisms to have all replicas move to the
next view

« For now: simple revolving coordinator

« Later: random leader election

N practice: use a stable leader for many consensus decisions



View Change

Maybe the previous primary caused a decision?
Maybe one of the previous primary caused a decision?
New primary may need to adopt a value instead of choosing its own

Quorum intersection to the rescue:
« If some primary decided, then it used a write quorum (of n-f)
« So reading from a quorum of n-f:
—Is safe: primary will see intersection (since n-2f>0)
—Is live: can always be done

vmware .



Primary-Backup in the omission model:
Normal case

Send:
« Primary (of view v) sends <propose X in view v> to all replicas

Ack:

« Replica sends <ack x in view v> to all
- Unless it has moved to a higher view

Decide:
« Replica wait for n-f messages of <ack x in view v> to decide x

vmware 2020 v -




View Change:
from view v to view v+I]

New primary for view v+7.
«(Send message <view change for view v+1> to all)
« A replica responds with <my maximal propose is x’ at view v’>
-Using the propose with maximal view v’it heard
—Or send <null at view O> if heard no propose

Primary waits for n-f=r+7responses:
« Adopts the proposed value associated with the maximal view number, or
- Uses its own value if every message is <null at view 0>

vmware




Primary-Backup in the omission model for n>2f

Three simple parts

Normal case protocol

-Send: Primary (of view V) sends <propose x in view v> to all replicas

—Ack: Replicas send <ack x in view v> to all (update their maximal propose)
- Unless it has moved to a higher view

—Decide: Replicas wait for n-f messages of <ack x in view v> to decide X

View change trigger protocol

—-Revolving coordinator: wait for enough time (4 rounds) to replace primary with next
primary

View change protocol

—Each replica sends to new primary <my maximal propose is x’ at view v’>
« Using the propose with maximal view Vv’ it heard
« Or send <null at view O> if heard no propose

—-Primary waits for n-f responses:

- Adopts the proposed value associated with the maximal view number; or
- Uses its own value if every message is <null at view 0>

mwa re® ©2020 VMware, Inc.

27




Safety

Let v*be the first view that some replica decides, say on value x

Base case: all decisions in view v*must be to x

By induction on v>v*: any primary must adopt the value x
«Set G of f+1:

—~Each member of G: maximal propose is on value x

—~Each member outside of G: has an equal or higher maximal propose
than any member of G, then it must be on value x

This argument does not use synchrony! It works for asynchrony

vmware




Termination (liveness)

Claim: Eventually all non-faulty replicas will learn the decision value

Any faulty primary that does not make progress will eventually be replaced
A non-faulty primary will cause termination

(here we use synchrony)

vmware



Primary-Backup in Partial Synchrony

Asynchrony: adversary can delay messages by any finite amount

Synchrony: adversary can delay messages by some known finite value A

Partial Synchrony:
- adversary can delay messages by any finite amount

- until some unknown finite point in time called GST (Global Stabilization Time)
- adversary can delay messages by some known finite value A

The Partial Synchrony paradigm:
« Safety holds in asynchrony
« Termination holds in synchrony
« Extremely successful in industry
« Gateway to asynchrony

mwa re® ©2020 VMware, Inc.
e



Byzantine Adversaries!

Can we reach agreement in synchrony for n=2f+17?

Can we reach agreement in partial synchrony for n=2f+17

vmware



Byzantine adversaries

n=3, f=1is impossible

In partial synchrony, the split-
brain attack [DLS]:

In synchrony, the hexagon [FLM]:

- Any edge defines a legal world
with two non-faulty parties
around edge

« Non-faulty party decide the same
for left edge and right edge

worlds .
) A /
O

®
mwa re ©2020 VMware, Inc.

32




Byzantine Model in Partial Synchrony

Two primary attacks:
« Equivocate: tell different replicas different things

- Unsafe: adopt a non-safe value after view change
-Invent a value
—~Choose a non-maximal value

Solution approach:
« Add a sub-protocol to force primary to act like omission (no equivocation)
« Add a sub-protocol to guarantee the primary will fail if using un-safe values
—Key idea: replica that sent a value /ockon it, primary has to prove value is real

mwa re® ©2020 VMware, Inc.



Byzantine Primary-Backup (at view v):

Straw Man 1: with n=3f+1, what could possibly go wrong?

Primary can send different values to different replicas ®, need to block equivocation

Primary sends <send, (value, v)>to all

Replica accepts <send, (value, v)>, then
« Set lock:=v; lock value:=value
« Sends </ock, (value, v)>to all

Replica gathers n-f <lock, (value, v)>, then
« Decide (value)

The good: cannot decide different values

The bad: If non-faulty commits, there may be conflicting locks for the view

change
- How do we choose which one?
- Want all the locks to be the same

mwa re® ©2020 VMware, Inc.



Non-Equivocation:

Goal: given a (potentially) Byzantine primary, transform its send-to-all to a
(potentially) omission fault primary send-to-all

n>3f

Primary sends <send (value,v)> to all
Replica sends <echo (value,v)> to all for the first <send (value,v)> it hears
from primary

If a replica sees n-f <echo (value,v) ,proor> from different replicas,
then it accepts <send (value,v)>

vmware 2020 v -




Non-Equivocation:
Proof

Claim: If a replica accepts <send (value,v) >then no replica will accept
<send,(value’ v)>with value # value’

Proof by contradiction:

One replica sees n-f <echo (value,v)>and another sees n-f<echo
(value’,v)>

The intersection is at least f+7, so at least one non-faulty in the
intersection

Non-faulty will send at most one echo per view



Byzantine Primary-Backup (at view v):

Straw Man 2: with equvocation
Primary can send any value it wants ®, how can we protect a decision value?

1. Primary sends <send, (value, v)>to all

2. Replica receives <send, (value, v)>, then
o |If first send from primary in view v, then
« sends : <echo, (value, v)>to all

3. Replica gathers n-f <echo, (value, v)>, then
« Set lock:=v; lock value:=value
« Sends </ock, (value, v)>to all

4. Replica gathers n-f <lock, (value, v)>, then
« Decide (value)

The good: all locks will be the same

The bad: how do we force the new primary to choose the highest lock?

vmware




Recall: View Change from view v to view v+7

New primary for view v+T.
« A replica responds with <my maximal propose is x’ at view v’>
-Using the propose with maximal view v’it heard
-Or send <null at view O> if heard no propose

Primary waits for n-fresponses:
« Adopts the proposed value associated with the maximal view number, or
« Uses its own value if every message is <null at view 0>

Can we force new primary to adopt the maximum value?
- Information theoretically possible, a PBFT type view change (see Castro’s thesis)

Can Primary prove the (value) its using was indeed sent in some view u<v?
« Yes, this will allow a Tendermint, HotStuff type view change

Safety:
« Replica that is locked on (value, v) will Ignore primary with (value’,v’) if v’<v
 f+1 locked replicas will block a malicious primary

®
mwa re ©2020 VMware, Inc. 38



Force prima ry to Prove:. the (value) its using was indeed sent in some view u<v

Primary of view u could sign its message!

« We don’t have signatures ®
We have non-equivocation on primary, would like stronger property:

- If | accept the primary message then all parties weakly accept (and eventually accept it)
- Bracha’s Reliable Broadcast, (Micali and Feldmans’s Gradecast)

Primary sends <send (value,v)> to all
Replica sends <echol (value,v)> to all for first <send (value,v)> it hears from primary

If a replica sees n-f <echol’ (value,v) ,proor> from different replicas,
« thenit sends <echoZ (value,v)> to all

If a replica sees n-f <echoZ (value,v) ,proof> from different replicas,
« thenit accepts <send (value,v)>

If a replica sees f+1 <echoZ (value,v) ,proof> from different replicas,
« thenit weakly accepts and sends <echoZ (value,v)> to all

39

mwa re® ©2020 VMware, Inc.
e



Reliable Broadcast (at view v):

Primary sends <send (value,v)> to all

Replica sends <echol (value,v)> to all for first <send (value,v)> it hears in view v from
Primary

If a replica sees n-f <echol’ (value,v) ,proof> from different replicas,
then it sends <echoZ (value,v)> to all

If a replica sees n-f <echoZ (value,v) ,proof> from different replicas,
then it accepts <send (value,v)>

If a replica sees f+1 <echoZ (value,v) ,proof> from different replicas,
then it weakly accepts and sends <echoZ (value,v)> to all

Claim O: all accepted values are the same (hon-equivocation)
Claim 1: If a non-fualty accepts (in synchrony), then all non-fauty will at least weakly accept

Claim 2: If a non-fauty accepts (in asynchrony), then all non-fualty will eventually accept

mwa re® ©2020 VMware, Inc.



Byzantine Primary-Backup (at view v):

Straw Man 3: with Reliable Boradcast

Primary can prove its using a real value

1. Primary sends <send, (value, v)>1to all

2. Replica receives <send, (value, v)>, then
o If first send from primary in view v, then
« sends : <echol, (value, v)>to all

3. Replica gathers n-f <echol, (value, v)>,
then

« Sends <echoZ, (value, v)>to all

4. Replica gathers n-f <echoZ (value, v)>,
then (at view v)
« Set lock:=v; lock value:=value
- Sends </ock, (value, v)>1to all

5. Replica gathers n-f <lock, (value, v)>, then

« Decide (value)

mwa re® ©2020 VMware, Inc.

Replica gathers +7 <echo?2, (value, v)>, then
« |If did not send echo?2
« Sends <echoZ?, (value, v)>to all

View change:
+ Replica:
« Sends its lock and lock value

e Primary:

« accept a lock (value’,v’) if also n-f <echoZ,
(value, v)>arrive

« Wait for n-f such locks

« Choose the value with the highest lock
(view)

a1



Byzantine Primary-Backup (at view v):
with Reliable Boradcast and locking

1. Primary sends <send, (value, v, u)>to all

2. Replica receives <send, (value, v, u)>,
- |f u>=lock, n-f <echoZ2, (value, u)>
arrive, and first send from primary in

view v, then
- sends : <echol, (value, v)>to all

3. Replica gathers n-f <echol, (value, v)>,
then
« Sends <echoZ, (value, v)>to all

4. Replica gathers n-f <echoZ (value, v)>,
then (at view v)

« Set lock:=v; lock value:=value
« Sends </ock, (value, v)>1to all

5. Replica gathers n-f <lock, (value, v)>, then

« Decide (value)

mwa re® ©2020 VMware, Inc.

Replica gathers +7 <echo?2, (value, v)>, then
« |If did not send echo?2
« Sends <echoZ, (value, v)>to all

View change:

+ Replica:
« Sends its lock and lock value

e Primary:

« accept a lock (value’,v’) if also n-f <echo’Z,
(value, v)>arrive

« Wait for n-f such locks

« Choose the value with the highest lock
(view)

42



Safety

Let v*be the first view that any replica decided (value X, view v

Prove by induction that any accepted send of view v = v* must be
consistent with value X

 for base case due to non-equivocation

Induction argument:

« Existence of a core of /+7non-faulty that have a lock on view at least v* with value X
—Base case: core is the n-2f out of the n-f that sent a lock to decider

« Any accepted value from a primary of view at least v* must be X
-By induction, core will block any other value

—Core members can only gain a higher lock but then primary uses the same value.

mwa re® ©2020 VMware, Inc.



Liveness

If @ non-faulty primary is elected and the system is synchronous
Primary will hear locks from a/f non-faulty and will choose the maximum one

All non-faulty replicas will also see same lock and hence will echol the primary

mwa re® ©2020 VMware, Inc.



Responsivness: liveness in asynchrony

In asynchrony the non-faulty primary can wit for n-f responses during view
change

May miss a lock of a non-fualty
« Will casue a livenss problem!

Solution: add one more round ©
- After seeing n-f echo2, send key
- After seeing n-f keys, send /ock

« If | have a lock then there are at least f+1 non-faulty that have a key
« During view change, ask for keys

vmware



Responsive Byzantine Primary-Backup (at view v):

Information Theoretic HotStuff

1. Primary sends <send, (value, v, u)>to all Replica gathers f+7 <echo?2, (value, v)>, then
- If did not send echo?2

2. Replica receives <send, (value, v, u)>,
P (¢ ) - Sends <echo?Z, (value, v)>1to all

- If u>=lock, n-f <echo?Z, (value, u)>arrive, and first send
from primary in view v, then

- sends: <echol, (value, v)>to all View change:
3. Replica gathers n-f <echol, (value, v)>, then ‘ Replicg:
- Sends <echo2, (value, v)>to all - Sends its key and key value
4. Replica gathers n-f <echoZ (value, v)>, then (at view v) - Primary:
* Set key:=v; key value:=value . accept a key (value’,v") if also n-f <echo2, (value,
- Sends <key, (value, v)>to all v)>arrive

« Wait for n-f such key

5. Replica gathers n-f <key, (value, v)> and n-f <echoZ2 (value, _ _ _
« Choose the value with the highest key (view)

v)>, then (at view v)
« Set lock:=v
« Sends </ock, (value, v)>to all

6. Replica gathers n-f <lock, (value, v)>, then Decide (value)

®
mwa re ©2020 VMware, Inc. 46



Byzantine Paxos: adding randomness

Elect a random primary

Revolving coordinator
« After f view changes (O(f) rounds) a non-faulty primary will be elected

Assume we have a oblivious leader election functionality
« At least f+1 honest must request for functionality to start
« Each party i outputs a leader L(i)=j
« With probabilty at least % (can use any constant) :
—-all non-fualty output the same value j and,
—j was non-faulty before functionality started

Good for a static adversary

Adaptive adversary will adaptivly corrupt that chosen primary ®

mwa re® ©2020 VMware, Inc.




Byzantine Paxos: adaptive adversaries

Everyone is a Priamry ©

Adaptive adversary will shoot down the primary

Solution:
- Let everyone be a primary
* Then choose who the real primary is in hindsight (and all other are just decoys)

Liveness: with constant probability a good primary is chosen
Safety:

 In hindsight, looks like a single primary each view

o If a faulty primary or a confusion of primaries is chosen then this is just like a faulty
primary
—Safety is maintained!

mwa re® ©2020 VMware, Inc.



Responsive Byzantine Primary-Backup (at view v):

Determinstic version

1. Primary sends <send, (value, v, u)>to all Replica gathers F+7 <echo2, (value, v)>,
2. Replica receives <send, (value, v, u)>, then _
.« If u>=lock, n-f <echo2, (value, u)>arrive, and first send - If did not send echo2
from primary in view v, then « Sends <echoZ, (value, v)>to all

- sends : <echol, (value, v)>to all

3. Replica gathers n-f <echol, (value, v)>, then

. Sends <echoZ2, (value, v)>to all View change:

- Replica:
4. Replica gathers n-f <echoZ2 (value, v)>, then (at view v) . Sends its key and key value
« Set key:=v,; key value:=value
« Sends <key, (value, v)>to all _
« Primary:
5. Replica gathers n-f <key, (value, v)>and n-f <echoZ (value, v)>, . accept a key (value’,v’) if also n-f
then (at view v) <echo2, (value, v)>arrive

« Set lock:=v

- Sends </ock, (value, v)>to all - Wait for n-f such key

« Choose the value with the highest
6. Replica gathers n-f <lock, (value, v)>, then key (view)
« Decide (value)

®
mwa re ©2020 VMware, Inc. 49



Responsive Byzantine Primary-Backup (at view v):

with random leader election

1. Each party as Primary, sends <sena, (value, v, u)>to all Replica gathers 7+7 <echoZ, (value, v)>,

2. Run oblivious leader election to decide who to listen to then
 If did not send echo?2

3. Replica receives <send, (value, v, u)>
eplica receives <send, (value, v, U)>, - Sends <echoZ, (value, v)>1to all

« |If u>=lock, n-f <echo?Z, (value, u)>arrive, and first send from
primary in view v, then

- sends : <echol, (value, v)>to all

4. Replica gathers n-f <echol, (value, v)>, then View Change:
« Sends <echoZ2, (value, v)>to all - Replica:

5. Replica gathers n-f <echoZ (value, v)>, then (at view v) * Sends its key and key value

» Set key:=v; key value:=value
« Sends <key, (value, v)>to all « Primary:

6. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value, v)>, then (at * accept a key (value’,v’) if also n-f
view v) <echoZ2, (value, v)>arrive
* Setlock:=v - Wait for n-f such key
« Sends </ock, (value, v)>to all - Choose the value with the highest

7. Replica gathers n-f <lock, (value, v)>, then key (view)
» Decide (value)

®
mwa re ©2020 VMware, Inc. 50



ODblivious Leader Election

Choosing a random leader is a simple MPC protocol
But MPC uses VSS, and VSS requires broadcast ®

Solution:

« a notion that is weaker than VSS but strong enough for OLE
« Moderated VSS (KKO6) and Graded VSS (MF88)
« Tailor made MPC (with a constnat error probabilty)

Gradecast -> MVSS ->0OLE ->0O(1) time expected Byzantine Agreement

vmware 2020 v -




Gradecast (MF88, D81)

Dealer P* has inoput m

Each party outputs a vlaue m and a grade in {O,1,2}

If the dealer is no-fualty then all non-fualty output (m,2)

If @ non-fualty outputs (m’,2) then all non-fulaty output (m’,g) with g>0

(If two non-faulty have grade 1 then have same value)

mwa re® ©2020 VMware, Inc.



Gradecast protocol (MEF88)

round 1: Dealer P* <sends m> to all

round 2: Party sends <echol m> to the first message it recives from the
primary

round 3: If party gathers n-f echol it sends <echo2 m>

End of round 3:
« Grade 2: If party gatheres n-f echo2; otherwise
- Grade 1: if party gathers f+1 echo2; otherwise
« Gread O (default value)



Gradecast proof (MF88)

round 1: Dealer P* <sends m> to all

round 2: Party sends <echol m> to the first
message it recives from the primary

round 3: If party gathers n-f echol it sends
<echo2 m>

End of round 3:

« Grade 2: If party gatheres n-f echo2;
otherwise

- Grade 1: if party gathers f+1 echo2;
otherwise

« Gread O (default value)

mwa re® ©2020 VMware, Inc.

Echol causes non-equivocation -> any two
grade 1 must have same value

Non-fualty dealer -> all non-fulty have
(M,2)

Non-fualty has (m’,2) -> all nonfaulty have
at lesT f+1 echo2 -> all non-fualty have
(m,g) with g>0



Moderated VSS [KKOG6]

MVSS from VSS

Dealer P*
Moderator P**

Take any VSS that uses broadcast only in share phase

Replace <broadcast m by party j> with:
« Party j runs gradecast (m)
« The moderator P** takes the value m’ of the gradecast and runs gradecast (m’)

Outcome for party i:
- Let (m,g) be the outcome of the first gradecast
- Let (IM’,g’) be the outcome of the first gradecast

«If g’<2 or (g’=2 and g=2 and m+m’) then set OK=false

vmware




Proof for Moderated VSS

If OK=true for any non-faulty then VSS properties hold

- Because all see the moderator’s value and the moderator's value is consistent with any
non-faulty broadcaster

If the moderator is non-faulty then all non-faulty have OK=true
« From the grade cast properties of an honest sender

vmware



Oblivious Leader Eelection
OLE from MVSS

For each i,j, do a MVSS with dealer i and moderator j (say random value in n%)

The secret ballot for j will be the sum mod n# of all the VSS where j is a moderator
Reveal all the secret ballots for all parties

But if for some moderator j you see OK=false in any MVSS then set secret ballot to O
Choose the leader to be the party with the highest secret ballot

With large probability there are no collisions, and then with constant probability a non-
faulty is elected

mwa re® ©2020 VMware, Inc.



Moving to asynchrony

Responsivhess: we added a key round

MVSS does not work:
- n>4f, costnat time [MF]
« AVSS constnat time, but has non-zero deadlock [CR]
« ShunningAVSS no deadlock but polynomial time [ADH]

Attach f+1 secrets. Honest attach only after the RB works

vmware



Liveness even in asynchrony ?

Primary-Backup and Byzantine Primary-Backup:
« Always safe; live when system is synchronous

Problems with asynchrony:
« Adversary can attack the primary
« Adversary can delay the primary
« Cannot tell the difference
« Choose a random leader?
« Works for a static adversary
« Replace leaders quickly: works for an adaptive adversary that is slow
« What about an adaptive adversary that is not slow?

mwa re® ©2020 VMware, Inc.



Asynchrony:
Lower bounds and solutions

1985: Fischer, Lynch and Patterson:
« Impossible to decide on one command even with f=1 crash failure

« For any safe protocol there is an adversary strategy (on delays) that forces the protocol
to make an infinite number of steps (never terminate)

Solutions:

« Assume eventually the system is synchronous (so no progress in DDoS)
- Use randomization so the infinite execution have probability (measure) O
 In fact O(1) expected rounds!

Building State Machine Replication
« Weak validity: is not enough assuming asynchronous client communication
« Binary agreement is not enough (can be a building block)
« External Validity [CKPS 0O1] is key for SMR implementation

mwa re® ©2020 VMware, Inc.




Start the election after n-f are done [AMS PODCI19]

Primary i gets a proof that n-flearned it’s commit decision
- call this a done-proof, sends singed <done (done-proof)>;

Barrier: Start leader election after seeing n-fvalid <done (*)> messages
Safety does not change

Liveness:
« With constant probability we chose a primary that made progress!



Thank you



