

Consensus

Via the information theoretic lens
(Part 2)

Ittai Abraham, VMware Research

Group blog: Decentralized Thoughts

Consensus [Lamport et al 78]

Parties have initial input

Can send messages via point-to-point channels

Termination (Liveness): In the end of the protocol each party must *decide* on a value

Safety: No two non-malicious parties decide on different values

Trivial: Always decide a default value

Make the problem not trivial:

- *Validity:* If all the non-faulty have the same input, then this must be the decision value
- *Fair Validity:* With constant probability an input of a non-faulty party is decided upon

Lamport Fischer 82: tolerating t crashes requires $t+1$ rounds

Using the Augilera Tueg 99 proof

A *configuration* of a system is the state of all the parties and the set of all pending, undelivered messages.

C is a *deciding* configuration: if all non-faulty parties have decided in C. We say that C is *1-deciding* if the common decision value is 1, and similarly that C is *0-deciding* if the decision is 0

C is an *uncommitted* configuration: if it has a future 0-deciding configuration and a future 1-deciding configuration. There exists $C \rightsquigarrow D_0$ and $C \rightsquigarrow D_1$ such that D_0 is 0-deciding and D_1 is 1-deciding

C is a *committed* configuration: if every future deciding configuration D (such that $C \rightsquigarrow D$) is deciding on the *same* value. We say that C is *1-committed* if every future ends in a 1-deciding configuration, and similarly that C is *0-committed* if every future ends in a 0-deciding configuration.

Not all beginnings are easy

Existance of an initial uncommitted configuration

Lemma: Every protocol solving consensus must have an initial configuration that is uncommitted

By contradiction, assume all are committed

Hybrid argument $(1,1,1), (0,1,1), (0,0,1), (0,0,0)$: must be two adjacent committed configurations for 1 and for 0

But a CRASH of one party will cause both execution to be indistinguishable!

Why one round is not enough?

Existence of an initial uncommitted configuration

Proof by example for $n=3$: Consider the 4 initial configurations $(1,1,1), (0,1,1), (0,0,1), (0,0,0)$

By validity, configuration $(1,1,1)$ must be 1-committed and configuration $(0,0,0)$ must be 0-committed

Seeking a contradiction, let's assume none of the 4 initial configurations is uncommitted. So both $(0,1,1)$ and $(0,0,1)$ are committed

Since all 4 initial configurations are committed there must be two adjacent configurations that are committed to different values. W.l.o.g. assume that $(0,1,1)$ is 1-committed and $(0,0,1)$ is 0-committed

In both configurations, party 2 crashes right at the start of the protocol: Clearly both configurations look like $(1, \text{CRASH}, 0)(1, \text{CRASH}, 0)$

Both worlds must decide the same, but this is a contradiction because one is 1-committed and the other is 0-committed

Tolerating t crashes requires $t+1$ rounds

[AT99] proof

The general case:

Lemma 1: exists an uncommitted configuration

Lemma 2: with $t-1$ crashes, there exists a round $t-1$ execution that leads to an uncommitted configuration

Lemma 3: you cannot always decide in round x if in round $x-1$ you may be uncommitted and there may be a crash

Theorem: cannot always terminate in t rounds \rightarrow need $t+1$ rounds in the worst case

Learning by Doing

4 parties, each with input in $\{0,1\}$

Adversary controls one party (malicious)

Write a protocol for consensus:

- Safety: no two non-faulty decide different values
- Liveness: All non-faulty parties decide
- Validity: If all the non-faulty have the same input x , then x is the decision value

Learning by Doing: solution

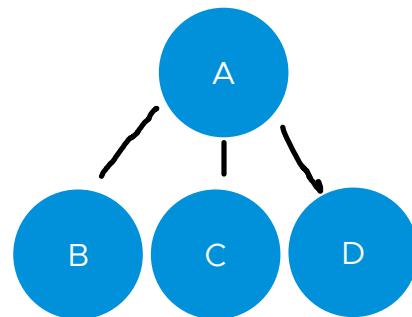
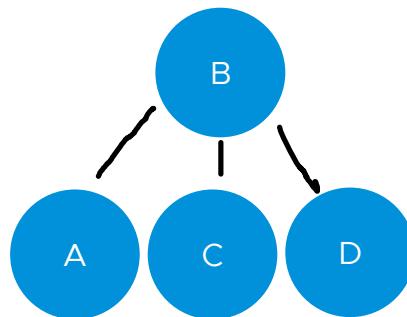
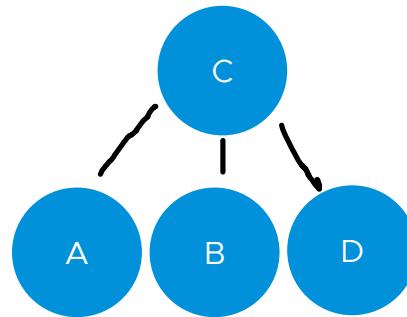
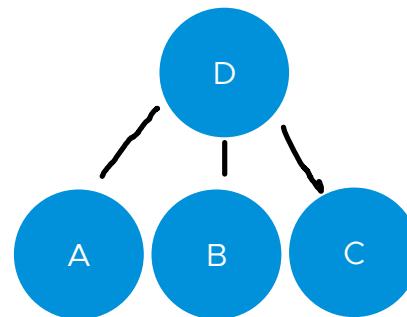
In two rounds, just think about full information

Round 1: Send one bit, receive 3 bits

Round 2: send 3 bits, receive 9 bits

Decide as function of [1 bit + 3 bit + 9 bits]

Its not about you or what you say, its about what others say about you



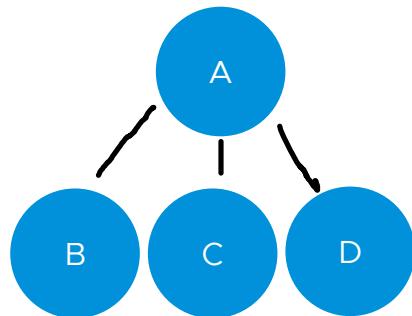
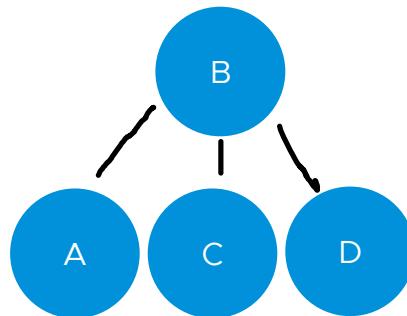
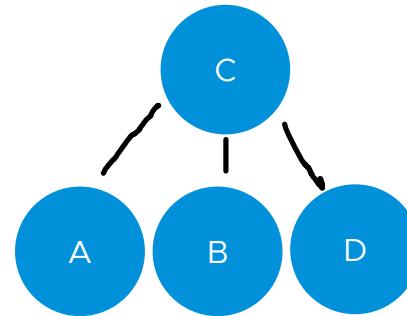
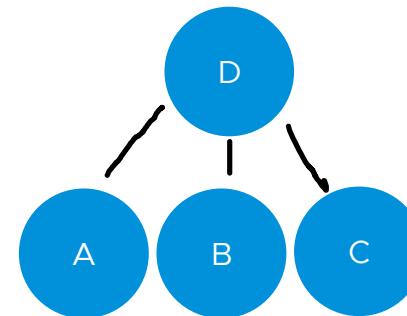
Learning by Doing: solution

Liveness: trivial

Safety:

- Non-faulty: majority gossip will be correct
- Faulty: gossip only by non-faulty - so everyone will agree!

Validity: take majority



Learning by Doing

3 parties, each with input in $\{0,1\}$

Adversary controls one party (omission failure)

Write a protocol for consensus:

- (Uniform) Safety: no two decide different values
- Liveness: All non-faulty parties decide
- Validity: If all the non-faulty have the same input x , then x is the decision value

Learning by Doing

7 parties, each with input in $\{0,1\}$

Adversary controls two parties (malicious)

Write a protocol for consensus:

- Safety: no two non-faulty decide different values
- Liveness: All non-faulty parties decide
- Validity: If all the non-faulty have the same input x , then x is the decision value

Byzantine Primary-Backup (at view v):

with Reliable Broadcast and locking

1. Primary sends $\langle \text{send}, (\text{value}, v, u) \rangle$ to all
2. Replica receives $\langle \text{send}, (\text{value}, v, u) \rangle$,
 - If $u = \text{lock}$, $n-f \langle \text{echo2}, (\text{value}, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle \text{echo1}, (\text{value}, v) \rangle$ to all
3. Replica gathers $n-f \langle \text{echo1}, (\text{value}, v) \rangle$,
then
 - Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all
4. Replica gathers $n-f \langle \text{echo2}, (\text{value}, v) \rangle$,
then (at view v)
 - Set lock:=v; lock value:=value
 - Sends $\langle \text{lock}, (\text{value}, v) \rangle$ to all
5. Replica gathers $n-f \langle \text{lock}, (\text{value}, v) \rangle$, *then*
 - Decide (value)

Replica gathers $f+1 \langle \text{echo2}, (\text{value}, v) \rangle$, *then*

- If did not send echo2
- Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all

View change:

- **Replica:**
 - Sends its lock and lock value
- **Primary:**
 - accept a lock (value',v') if also $n-f \langle \text{echo2}, (\text{value}, v) \rangle$ arrive
 - Wait for $n-f$ such locks
 - Choose the value with the highest lock (view)

Validity

If all non-faulty have input x then x must be the decision value

If a non-faulty is the first primary we are fine

But what if the first primaries are faulty?

Virtual primary!

Safety

Let v^* be the first view that any replica decided (value X , view v^*)

Prove by induction that any *accepted send* of view $v \geq v^*$ must be with value X

- for base case due to non-equivocation

Safety

Induction claim:

1. Any *accepted send* of view $v \geq v^*$ must be with value X
2. Existence of a *core* of $f+1$ non-faulty that have a lock on view at least v^* with value X
3. Any non-faulty, its maximal view lock is either:
 - On view v^* or larger and with value X
 - On a view smaller than v^*

Base case at view v^* :

- Core is the $n-2f$ out of the $n-f$ that sent a lock to decider
- Any other non-faulty: trivial since v^* is the highest view

Assume claim is true for $v >= v^*$ and prove for $v+1$:

- If a primary uses a view that is at least v^* , from induction it must be with value X
- If a primary uses a view that is lower than v^* : it needs $n-f$ echo1, but the core will block

Liveness

If a non-faulty primary is elected and the system is synchronous

Primary will hear locks from *all* non-faulty and will choose the maximum one

All non-faulty replicas will:

- See the accepted send from the old view that the primary used
- This accepted send is from a view that is at least their lock view
- Hence all non-faulty will echo1 the primary
- The rest of the protocol is unconditional

Responsivness: liveness in asynchrony

In asynchrony, non-faulty primary can wait for just $n-f$ responses during view change

- May miss a lock of a non-faulty
- So non-faulty primary may choose a lock that is smaller than the maximum
- Some non-faulty will block primary and $n-f$ echo1 will not be reached

Solution: add one more round ☺

- After seeing $n-f$ echo2, send *key*
- After seeing $n-f$ keys, send *lock*
- If a non-faulty has a lock, then there are at least $f+1$ non-faulty that have a key
- During view change, ask for keys
- Hearing from $n-f$ means that at least one key holder will be heard

Responsive Byzantine Primary-Backup (at view v):

Information Theoretic HotStuff

1. Primary sends $\langle send, (value, v, u) \rangle$ to all
2. Replica receives $\langle send, (value, v, u) \rangle$,
 - If $u \geq \text{lock}$, $n-f \langle echo2, (value, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle echo1, (value, v) \rangle$ to all
3. Replica gathers $n-f \langle echo1, (value, v) \rangle$, then
 - Sends $\langle echo2, (value, v) \rangle$ to all
4. Replica gathers $n-f \langle echo2, (value, v) \rangle$, then (at view v)
 - Set key:=v; key value:=value
 - Sends $\langle key, (value, v) \rangle$ to all
5. Replica gathers $n-f \langle key, (value, v) \rangle$ and $n-f \langle echo2, (value, v) \rangle$, then (at view v)
 - Set lock:=v
 - Sends $\langle lock, (value, v) \rangle$ to all
6. Replica gathers $n-f \langle lock, (value, v) \rangle$, then Decide (value)

Replica gathers $f+1 \langle echo2, (value, v) \rangle$, then

- If did not send echo2
- Sends $\langle echo2, (value, v) \rangle$ to all

View change:

- Replica:
 - Sends its key and key value
- Primary:
 - accept a key (value',v') if also $n-f \langle echo2, (value, v) \rangle$ arrive
 - Wait for $n-f$ such key
 - Choose the value with the highest key (view)

Liveness

If a non-faulty primary is elected

Primary will hear locks from *all* non-faulty and will choose the maximum one

Primary will hear the maximal key from $n-f$ during view change

- If a non-faulty is locked, its because of $n-f$ keys, $f+1$ of them are non-faulty
- At least one key holder will be in the $n-f$ view change quorum
- So the maximal key will be at least as high as the maximal lock of all non-faulty

All non-faulty replicas will:

- See the accepted send from the old view that the primary used
- This accepted send is from a view that is at least their lock view
- Hence all non-faulty will echo1 the primary
- The rest of the protocol is unconditional

Byzantine Paxos: adding randomness

Elect a random primary

Revolving coordinator

- After f view changes ($O(f)$ rounds) a non-faulty primary will be elected

Assume we have an *oblivious leader election* functionality

- At least $f+1$ honest must request the functionality to start
- Each party i outputs a leader $L(i)=j$
- With probability at least $\frac{1}{2}$ (can use any constant) :
 - all non-faulty output the same value j and,
 - j was non-faulty before functionality started

Good for a static adversary

Adaptive adversary will adaptively corrupt that chosen primary ☹

Byzantine Paxos: adaptive adversaries

Everyone is a Primary 😊

Adaptive adversary will shoot down the primary

Solution:

- Let everyone be a primary
- Then choose who the real primary is in hindsight (and all other are just decoys)

Liveness: with constant probability a good primary is chosen

Safety:

- In hindsight, looks like a single primary each view
- If a faulty primary or a confusion of primaries is chosen, then this is just like a faulty primary
 - Safety is maintained!

Responsive Byzantine Primary-Backup (at view v):

Deterministic version

1. Primary sends $\langle \text{send}, (\text{value}, v, u) \rangle$ to all
2. Replica receives $\langle \text{send}, (\text{value}, v, u) \rangle$,
 - If $u = \text{lock}$, $n-f \langle \text{echo2}, (\text{value}, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle \text{echo1}, (\text{value}, v) \rangle$ to all
3. Replica gathers $n-f \langle \text{echo1}, (\text{value}, v) \rangle$, then
 - Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all
4. Replica gathers $n-f \langle \text{echo2}, (\text{value}, v) \rangle$, then (at view v)
 - Set key:=v; key value:=value
 - Sends $\langle \text{key}, (\text{value}, v) \rangle$ to all
5. Replica gathers $n-f \langle \text{key}, (\text{value}, v) \rangle$ and $n-f \langle \text{echo2}, (\text{value}, v) \rangle$, then (at view v)
 - Set lock:=v
 - Sends $\langle \text{lock}, (\text{value}, v) \rangle$ to all
6. Replica gathers $n-f \langle \text{lock}, (\text{value}, v) \rangle$, then
 - Decide (value)

Replica gathers $f+1 \langle \text{echo2}, (\text{value}, v) \rangle$, then

- If did not send echo2
- Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all

View change:

- Replica:
 - Sends its key and key value
- Primary:
 - accept a key (value',v') if also $n-f \langle \text{echo2}, (\text{value}, v) \rangle$ arrive
 - Wait for $n-f$ such key
 - Choose the value with the highest key (view)

Responsive Byzantine Primary-Backup (at view v):

with random leader election

1. Each party as Primary, sends $\langle \text{send}, (\text{value}, v, u) \rangle$ to all
2. Run oblivious leader election to decide who to listen to
3. Replica receives $\langle \text{send}, (\text{value}, v, u) \rangle$,
 - If $u = \text{lock}$, $n-f \langle \text{echo2}, (\text{value}, u) \rangle$ arrive, and first send from primary in view v, then
 - sends : $\langle \text{echo1}, (\text{value}, v) \rangle$ to all
4. Replica gathers $n-f \langle \text{echo1}, (\text{value}, v) \rangle$, then
 - Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all
5. Replica gathers $n-f \langle \text{echo2}, (\text{value}, v) \rangle$, then (at view v)
 - Set key:=v; key value:=value
 - Sends $\langle \text{key}, (\text{value}, v) \rangle$ to all
6. Replica gathers $n-f \langle \text{key}, (\text{value}, v) \rangle$ and $n-f \langle \text{echo2}, (\text{value}, v) \rangle$, then (at view v)
 - Set lock:=v
 - Sends $\langle \text{lock}, (\text{value}, v) \rangle$ to all
7. Replica gathers $n-f \langle \text{lock}, (\text{value}, v) \rangle$, then
 - Decide (value)

Replica gathers $f+1 \langle \text{echo2}, (\text{value}, v) \rangle$, then

- If did not send echo2
- Sends $\langle \text{echo2}, (\text{value}, v) \rangle$ to all

View change:

- **Each Replica:**
 - Sends its key and key value *to everyone*
- **Each Primary:**
 - accept a key (value',v') if also $n-f \langle \text{echo2}, (\text{value}, v) \rangle$ arrive
 - Wait for $n-f$ such key
 - Choose the value with the highest key (view)

Oblivious Leader Election

Choosing a random leader is a simple MPC protocol

But MPC uses VSS, and VSS requires broadcast ☹

Solution:

- a notion that is weaker than VSS but strong enough for OLE
- Moderated VSS (KK06) and Graded VSS (MF88)
- Tailor made MPC (with a constant error probability)

Gradecast -> MVSS ->OLE ->O(1) time expected Byzantine Agreement

Gradecast (MF88, D81)

Dealer P^* has input m

Each party outputs a value m and a grade in $\{0,1,2\}$

If the dealer is non-faulty then all non-faulty output $(m, 2)$

If a non-faulty outputs $(m', 2)$ then all non-faulty output (m', g) with $g > 0$

(If two non-faulty have grade 1 then have same value)

Gradecast protocol (MF88)

round 1: Dealer P^* <sends m > to all

round 2: Party sends <echo1 m > to the first message it receives from the primary

round 3: If party gathers $n-f$ echo1 it sends <echo2 m >

End of round 3:

- Grade 2: If party gathers $n-f$ echo2; otherwise
- Grade 1: if party gathers $f+1$ echo2; otherwise
- Grade 0 (default value)

Gradecast proof (MF88)

round 1: Dealer P^* <sends m > to all

round 2: Party sends <echo1 m > to the first message it receives from the primary

round 3: If party gathers $n-f$ echo1 it sends <echo2 m >

End of round 3:

- Grade 2: If party gathers $n-f$ echo2;
otherwise
- Grade 1: if party gathers $f+1$ echo2;
otherwise
- Gread 0 (default value)

Echo1 causes non-equivocation \rightarrow any two grade 1 must have same value

Non-faulty dealer \rightarrow all non-faulty have $(m,2)$

Non-faulty has $(m',2)$ \rightarrow all nonfaulty have at least $f+1$ echo2 \rightarrow all non-faulty have (m,g) with $g>0$

Moderated VSS [KK06]

MVSS from VSS

Dealer P^*

Moderator P^{**}

Take any VSS that uses broadcast only in share phase

Replace $\langle \text{broadcast } m \text{ by party } j \rangle$ with:

- Party j runs gradecast (m)
- The moderator P^{**} takes the value m' of the gradecast and runs gradecast (m')

Outcome for party i :

- Let (m, g) be the outcome of the first gradecast
- Let (m', g') be the outcome of the first gradecast
- If $g' < 2$ or $(g' = 2 \text{ and } g = 2 \text{ and } m \neq m')$ then set $\text{OK} = \text{false}$

Proof for Moderated VSS

If $OK=true$ for any non-faulty then VSS properties hold

- Because all see the moderator's value and the moderator's value is consistent with any non-faulty broadcaster

If the moderator is non-faulty then all non-faulty have $OK=true$

- From the grade cast properties of an honest sender

Oblivious Leader Election

OLE from MVSS

For each i, j , do a MVSS with dealer i and moderator j (say random value in n^4)

The secret ballot for j will be the sum mod n^4 of all the VSS where j is a moderator

Reveal all the secret ballots for all parties

But if for some moderator j you see $OK=false$ in any MVSS then set secret ballot to 0

Choose the leader to be the party with the highest secret ballot

With large probability there are no collisions, and then with constant probability a non-faulty is elected

Its all about the adversary!

Can you solve Byzantine Agreement with sub-quadratic messages?

Static Adversary vs *Adaptive* Adversary

Byzantine agreement with sub quadratic messages is *easy* against a *Static* adversary

- With randomization
- Just use the US jury system: its a scalable consensus mechanism!

1. Choose a random poly-log size committee
2. Since the adversary is static, it controls a small fraction of the committee
3. Run Byzantine Agreement in the committee and then report back to everyone the verdict

Dolev Reischuk [82]

Cannot solve Broadcast against omission adversary with just $(f/2)^2$ messages

Assume that if a party receives no message it never decides 1

- Either decides 0 or does not decide

Proof approach:

- Create **World 1** where all honest decide 1 (with $f/2$ corrupt called C)
- Create **World 2** with $f/2$ more corrupt X and one old corrupt p becomes honest
 - For all honest (but p) in world 2: world 1 and world 2 are indistinguishable
 - Party p receives no messages

World 1

Set $|C| = f/2$ are corrupt

All honest decide 1

World 2

$C \setminus \{p\}$ are corrupt, p is honest

Additional set $|X| \leq f/2$ are corrupt

Honest p receives no messages

For all honest (but p) in world 2:
worlds 1, 2 are indistinguishable

Dolev Reischuk [PODC 1982]

Cannot solve Broadcast against omission adversary with just $(f/2)^2$ messages

World 1: Corrupt a set C of $f/2$ parties:

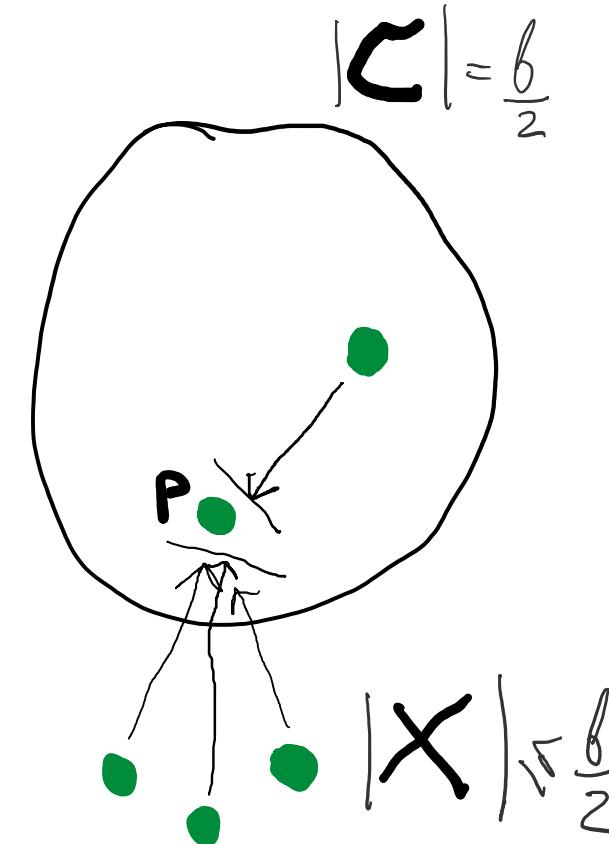
- Run them as honest; except
- For each member of C
 - Block all communication from other parties in C
 - Block the the first $f/2$ message from parties not in C
- Validity: all honest parties decide 1

Assume protocol sends just $(f/2)^2$ messages

- So one member, p of C must get at most $f/2$ message from a set of parties X not in C

World 2: un-corrupt p and corrupt X as follows:

- Run X as honest; other than:
 - Block the first $f/2$ messages to p from X
- All other honest cannot distinguish - must decide 1
- Honest party p hears nothing – cannot decide 1 ☺



Thank you

Moving to asynchrony

Responsivness: we added a key round

MVSS does not work:

- $n > 4f$, costnat time [MF]
- AVSS constnat time, but has non-zero deadlock [CR]
- ShunningAVSS no deadlock but polynomial time [ADH]

Attach $f+1$ secrets. Honest attach only after the RB works