consensus

Via the information theoretic lens
(Part 2)

Ittal Abraham, VMware Research

Group blog: Decentralized Thoughts

mwa re ©2019 VMware, Inc.

Consensus [Lamport etal 78]

Parties have initial input

Can send messages via point-to-point channels

Termination (Liveness): In the end of the protocol each party must decide on a value
Safety: No two non-malicious parties decide on different values

Trivial: Always decide a default value

Make the problem not trivial:
 Validity: If all the non-faulty have the same input, then this must be the decision value

« Fair Validity. With constant probability an input of a non-faulty party is decided upon

®
mwa re ©2020 VMware, Inc.

Lamport Fischer 82: tolerating t crashes requires t+1 rounds
Using the Augilera Tueg 99 proof

A configuration of a system is the state of all the parties and the set of all pending,
undelivered messages.

C is a deciding configuration: if all non-faulty parties have decided in C. We say that Cis 7-
deciding if the common decision value is 1, and similarly that C is O-deciding if the decision
is O

C is an uncommitted configuration: if it has a future O-deciding configuration and a future 1-
deciding configuration. There exists CwD, and C+wD, such that D, is O-deciding and D; is 1-
deciding

C is a committed configuration: if every future deciding configuration D (such that CwD) is
deciding on the samevalue. We say that Cis 7-committedif every future ends in a 1-
deciding configuration, and similarly that C is O-committedif every future ends in a O-
deciding configuration.

®
mwa re ©2020 VMware, Inc. 3

Not all beginnings are easy

Existance of an initial uncommitted configuration

Lemma: Every protocol solving consensus must have an initial configuration that is
uncommitted

By contradiction, assume all are committed

Hybrid argument (1,1,1),(0,1,1),(0,0,1),(0,0,0): must be two adjacent committed
configurations for 1 and for O

But a CRASH of one party will cause both execution to be indistinguishable!

®
mwa re ©2020 VMware, Inc.

Why one round is not enough?

Existance of an initial uncommitted configuration

Proof by example for n=3: Consider the 4 initial configurations (1,1,1),(0,1,1),(0,0,1),(0,0,0)

By validity, configuration (1,1,1) must be 1-committed and configuration (O,0,0) must be O-
committed

Seeking a contradiction, lets assume none of the 4 initial configurations is uncommitted. So
both (0,1,1) and (0,0,1) are committed

Since all 4 initial configurations are committed there must be two adjacent configurations
that are committed to different values. W.l.0.g. assume that (0,1,1) is 1-committed
and (0,0,1) is O-committed

In both configurations, party 2 crashes right at the start of the protocol: Clearly both
configurations look like (1,CRASH,0)(1,CRASH,O)

Both worlds must decide the same, but this is a contradiction because one is 1-committed
and the other is O-committed

®
mwa re ©2020 VMware, Inc.

Tolerating t crashes requires t+1 rounds

[AT99] proof
The general case:
Lemma 1: exits an uncommitted configuration

Lemma 2: with t-1 crashes, there exists a round t-1 execution that leads to an uncommitted
configuration

Lemma 3: you cannot always decide in round x if in round x-1you may be uncommitted
and there may be a crash

Theorem: cannot always terminate in t rounds -> need t+1 rounds in the worst case

vmware .

Learning by Doing

4 parties, each with input in {O,1}
Adversary controls one party (malicious)

Write a protocol for consensus:

« Safety: no two non-faulty decide different vliaues
 Liveness: All non-fualty parties dedcide
« Validity: If all the non-faulty have the same input X, then x is the decision value

vmware

Learning by Doing: solution

In two rounds, just think about full information
Round 1: Send one bit, receive 3 bits

Round 2: send 3 bits, receive 9 bits

Decide as function of [1 bit + 3 bit + 9 bits]

Its not about you or what you say, its about what others say about you

/‘ /° /c /a

I\ 1\ L\ |\
000 000 000 000
vmware

Learning by Doing: solution

Liveness: trivial

Safety:

« Non-faulty: majority gossip will be correct
- Faulty: gossip only by non-faulty - so everyone will agree!

Validity: take majority

e o 6 O

\ \ \ \
000 000 000 000

®
mwa re ©2020 VMware, Inc.

Learning by Doing

3 parties, each with input in {O,1}
Adversary controls one party (omission failure)

Write a protocol for consensus:

« (Uniform) Safety: no two decide different vlaues
 Liveness: All non-fualty parties dedcide
« Validity: If all the non-faulty have the same input X, then x is the decision value

vmware

Learning by Doing

/ parties, each with input in {O,1}
Adversary controls two partes (malicious)

Write a protocol for consensus:

« Safety: no two non-faulty decide different vliaues
 Liveness: All non-fualty parties dedcide
« Validity: If all the non-faulty have the same input X, then x is the decision value

vmware

Byzantine Primary-Backup (at view Vv):
with Reliable Boradcast and locking

1. Primary sends <send, (value, v, u)>to all

2. Replica receives <send, (value, v, u)>,
« |f u>=lock, n-f <echoZ2, (value, u)>
arrive, and first send from primary in

view v, then
- sends : <echol, (value, v)>to all

3. Replica gathers n-f <echol, (value, v)>,
then
« Sends <echoZ, (value, v)>to all

4. Replica gathers n-f <echoZ (value, v)>,
then (at view v)

» Set lock:=v; lock value:=value
« Sends </ock, (value, v)>1to all

5. Replica gathers n-f <lock, (value, v)>, then

« Decide (value)

®
mwa re ©2020 VMware, Inc.

Replica gathers f+7 <echo?Z, (value, v)>, then
* If did not send echo?2
« Sends <echoZ, (value, v)>to all

View change:

- Replica:
« Sends its lock and lock value

« Primary:

« accept a lock (value’,v’) if also n-f <echo’Z,
(value, v)>arrive

« Wait for n-f such locks

« Choose the value with the highest lock
(view)

12

Validity

If all non-faulty have input x then x must be the decision value
If @ non-faulty is the first primary we are fine
But what if the first primaries are faulty?

Virtual primary!

vmware

Safety

Let v*be the first view that any replica decided (value X, view v

Prove by induction that any accepted send of view v = v* must be with

value X
- for base case due to non-equivocation

vmware

Safety

Induction claim:
1. Any accepted send of view v>v"* must be with value X
2. Existence of a core of f+7non-faulty that have a lock on view at least v* with value X
3. Any non-faulty, its maximal view lock is either:

- Onview v* or larger and with value X
- On aview smaller than v*

Base case at view v*:

« Core is the n-2f out of the n-f that sent a lock to decider
« Any other non-faulty: trivial since v* is the highest view

Assume claim is true for v>=v* and prove for v+1:
* If @ primary uses a view that is at least v*, from induction it must be with value X
« If @ primary uses a view that is lower than v*: it needs n-f echo1, but the core will block

®
mwa re ©2020 VMware, Inc.

Liveness

If a non-faulty primary is elected and the system is synchronous
Primary will hear locks from a/f non-faulty and will choose the maximum one

All non-faulty replicas will:
« See the accepted send from the old view that the primary used
« This accepted send is from a view that is at least their lock view
« Hence all non-faulty will echol the primary
« The rest of the protocol is unconditional

®
mwa re ©2020 VMware, Inc.

Responsivness: liveness in asynchrony

In asynchrony, non-faulty primary can wait for just n-f responses during
view change

« May miss a lock of a non-fualty

« SO non-faulty primary may choose a lock that is smaller than the maximum
« Some non-faulty will block primary and n-f echol will not be reached

Solution: add one more round ©
- After seeing n-f echo2, send key
« After seeing n-f keys, send /ock
o If a non-fualty has a lock, then there are at least f+1 non-faulty that have a key
« During view change, ask for keys
« Hearing from n-f means that at least one key holder will be heard

®
mwa re ©2020 VMware, Inc.

Responsive Byzantine Primary-Backup (at view v):

Information Theoretic HotStuff

1. Primary sends <send, (value, v, u)>to all Replica gathers f+7 <echoZ, (value, v)>, then
« If did not send echo?2

2. Replica receives <send, (value, v, u)>
eplica receives <send, (value, v, u)>, « Sends <echo?2, (value, v)>to all

« If u>=lock, n-f <echoZ2, (value, u)>arrive, and first send

from primary in view v, then

- sends: <echol, (value, v)>to all View change'

3. Replica gathers n-f <echol, (value, v)>, then - Replica:
« Sends <echo2, (value, v)>to all « Sends its key and key value

4. Replica gathers n-f <echoZ (value, v)>, then (at view v) - Primary:
* Set key:=v; key value:=value « accept a key (value’, V) if also n-f <echoZ, (value,
« Sends <key, (value, v)>to all v)> arrive

« Wait for n-f such key

5. Replica gathers n-f <key, (value, v)> and n-f <echoZ (value, : _ _
« Choose the value with the highest key (view)

v)>, then (at view v)
« Set lock:=v
« Sends </ock, (value, v)>to all

6. Replica gathers n-f <lock, (value, v)>, then Decide (value)

®
mwa re ©2020 VMware, Inc. 18

Liveness

If a non-faulty primary is elected

Primary will hear the maximal key from n-f during view change
« If a non-faulty is locked, its because of n-f keys, f+1 of them are non-faulty
« At least one key holder will be in the n-f view change quorum
« So the maximal key will be at least as high as the maximal lock of all non-fualty

All non-faulty replicas will:
« See the accepted send from the old view that the primary used
« This accepted send is from a view that is at least their lock view
« Hence all non-faulty will echol the primary
« The rest of the protocol is unconditional

®
mwa re ©2020 VMware, Inc.

Byzantine Paxos: adding randomness

Elect a random primary

Revolving coordinator
« After f view changes (O(f) rounds) a non-faulty primary will be elected

Assume we have an oblivious leader election functionality
« At least f+1 honest must request the functionality to start
« Each party i outputs a leader L(i)=j
« With probabilty at least %2 (can use any constant) :
—-all non-fualty output the same value j and,
—-j was non-faulty before functionality started

Good for a static adversary

Adaptive adversary will adaptivly corrupt that chosen primary ®

®
mwa re ©2020 VMware, Inc.

20

Byzantine Paxos: adaptive adversaries

Everyone is a Priamry ©

Adaptive adversary will shoot down the primary

Solution:
- Let everyone be a primary
* Then choose who the real primary is in hindsight (and all other are just decoys)

Liveness: with constant probability a good primary is chosen

Safety:
 In hindsight, looks like a single primary each view

o If a faulty primary or a confusion of primaries is chosen, then this is just like a faulty
primary
—-Safety is maintained!

vmware

Responsive Byzantine Primary-Backup (at view v):

Determinstic version

1. Primary sends <send, (value, v, u)>to all Replica gathers f+7 <echo2, (value, v)>,
2. Replica receives <send, (value, v, u)>, then ,
. If u>=lock, n-f <echo2, (value, u)>arrive, and first send » If did not send echo2
from primary in view v, then - Sends <echo?2, (value, v)>to all

- sends : <echol, (value, v)>to all

3. Replica gathers n-f <echol, (value, v)>, then

- Sends <echo?2, (value, v)>to all View change:

« Replica:
4. Replica gathers n-f <echoZ2 (value, v)>, then (at view v) . Serl?ds its key and key value
« Set key:=v; key value:=value
« Sends <key, (value, v)>to all _
« Primary:
5. F\)eplica gathers n-r <ke)/, (VC?/U@, V)> and n-f <echoZ2 (Va/UG, V)>, - accept a key (value’,v’) if also n-f
then (at view V) <echo2, (value, v)>arrive

e Set lock:=v

. Sends </ock, (value, v)>to all - Wait for n-f such key

« Choose the value with the highest
6. Replica gathers n-f <lock, (value, v)>, then key (view)
« Decide (value)

®
mwa re ©2020 VMware, Inc. 22

Responsive Byzantine Primary-Backup (at view v):

with random leader election

1. Each party as Primary, sends <send, (value, v, u)>to all Replica gathers f+7 <echo2, (value, v)>,

2. Run oblivious leader election to decide who to listen to then
« If did not send echo?2

« Sends <echo’2, (value, v)>to all

W

Replica receives <send, (value, v, u)>,

« If u>=lock, n-f <echo?2, (value, u)>arrive, and first send from
primary in view v, then

- sends: <echol, (value, v)>to all

4. Replica gathers n-f <echol, (value, v)>, then View change: .
« Sends <echo2, (value, v)>to all - Each Replica:

« Sends its key and key value fo

5. Replica gathers n-f <echoZ (value, v)>, then (at view v)
everyone

» Set key:=v; key value:=value
« Sends <key, (value, v)>to all

6. Replica gathers n-f <key, (value, v)> and n-f <echoZ2 (value, v)>, then (at » Each Primary:

view v) « accept a key (value’,Vv) if also n-f
+ Set lock:=v <echo2, (value, v)>arrive
« Sends </ock, (value, v)>to all - Wait for n-f such key
7. Replica gathers n-f <lock, (value, v)>, then « Choose the value with the highest
« Decide (value) key (view)
mwa reo ©2020 VMware, Inc. 23

ODblivious Leader Election

Choosing a random leader is a simple MPC protocol
But MPC uses VSS, and VSS requires broadcast ®

Solution:

« a notion that is weaker than VSS but strong enough for OLE
« Moderated VSS (KKO6) and Graded VSS (MF88)
« Tailor made MPC (with a constnat error probabilty)

Gradecast -> MVSS ->0OLE ->0O(1) time expected Byzantine Agreement

vmware

Gradecast (MF88, D81)

Dealer P* has inoput m

Each party outputs a vlaue m and a grade in {O,1,2}

If the dealer is no-fualty then all non-fualty output (m,2)

If a non-fualty outputs (m’,2) then all non-fulaty output (m’,g) with g>0

(If two non-faulty have grade 1 then have same value)

®
mwa re ©2020 VMware, Inc.

Gradecast protocol (MF88)

round 1: Dealer P* <sends m> to all

round 2: Party sends <echol m> to the first message it recives from the
primary
round 3: If party gathers n-f echol it sends <echo2 m>

End of round 3;

- Grade 2: If party gatheres n-f echo2; otherwise
« Grade 1: if party gathers f+1 echo2; otherwise
- Gread O (default value)

vmware

Gradecast proof (MF88)

round 1;: Dealer P* <sends m> to all

round 2: Party sends <echol m> to the first
message it recives from the primary

round 3: If party gathers n-f echol it sends
<echo2 m>

End of round 3:

- Grade 2: If party gatheres n-f echo2;
otherwise

« Grade 1: if party gathers f+1 echo2;
otherwise

« Gread O (default value)

®
mwa re ©2020 VMware, Inc.

Echol causes non-equivocation -> any two
grade 1 must have same value

Non-fualty dealer -> all non-fulty have
(mM,2)

Non-fualty has (m’,2) -> all nonfaulty have
at lesT f+1 echo2 -> all non-fualty have
(m,g) with g>0

Moderated VSS [KKO6]

MVSS from VSS

Dealer P*
Moderator P**
Take any VSS that uses broadcast only in share phase

Replace <broadcast m by party j> with:

« Party j runs gradecast (m)
« The moderator P** takes the value m’ of the gradecast and runs gradecast (m’)

Outcome for party i:
- Let (M,qg) be the outcome of the first gradecast
- Let (M’,9’) be the outcome of the first gradecast

|If g’<2 or (9’=2 and g=2 and m#m’) then set OK=false

vmware

Proof for Moderated VSS

If OK=true for any non-faulty then VSS properties hold

- Because all see the moderator’s value and the moderator's value is consistent with any
non-faulty broadcaster

If the moderator is non-faulty then all non-faulty have OK=true
« From the grade cast properties of an honest sender

vmware

Oblivious Leader Eelection
OLE from MVSS

For each i,j, do a MVSS with dealer i and moderator j (say random value in n%)

The secret ballot for j will be the sum mod n# of all the VSS where j is a moderator
Reveal all the secret ballots for all parties

But if for some moderator j you see OK=false in any MVSS then set secret ballot to O
Choose the leader to be the party with the highest secret ballot

With large probability there are no collisions, and then with constant probability a non-
faulty is elected

®
mwa re ©2020 VMware, Inc. 30

Its all about the adversary!

Can you solve Byzantine Agreement with sub-quadratic messages?

Static Adversary vs Adaptive Adversary

Byzantine agreement with sub quadratic messages is easy against a Static

adversary
« With randomization
« Just use the US jury system: its a scalable consensus mechanism!

Choose a random poly-log size committee
Since the adversary is static, it controls a small fraction of the committee

Run Byzantine Agreement in the committee and then report back to
everyone the verdict

vmware

Dolev Reischuk [82]

Cannot solve Broadcast against omission adversary with just (f/2)"2 messages

Assume that if a party receives no message it never decides 1
« Either decides O or does not decide

Proof approach:

- Create World 1 where all honest decide 1 (with f/2 corrupt called ©
- Create World 2 with f/2 more corrupt Xand one old corrupt p becomes honest

—For all honest (but p) in world 2: world 1 and world 2 are indistinguishable
—Party preceives no messages

World 1 World 2
Set |C| = f/2 are corrupt C \ {p} are corrupt, p is honest
All honest decide 1 Additional set |X| < f/2 are corrupt

Honest p receives no messages
For all honest (but p) in world 2:
worlds 1, 2 are indistinguishable

®
mwa re ©2020 VMware, Inc.

32

Dolev Reischuk [PODC 1982]

Cannot solve Broadcast against omission adversary with just (f/2)"2 messages

World 1: Corrupt a set Cof f/2 parties:
« Run them as honest; except
- For each member of C
-Block all communication from other parties in C
—-Block the the first f/2 message from parties not in C
« Validity: all honest parties decide 1

Assume protocol sends just (f/2)"2 messages

- SO one member, p of Cmust get at most f/2 message
from a set of parties Xnotin C

World 2: un-corrupt pand corrupt Xas follows:
« Run X'as honest; other than:
—-Block the first /2 messages to pfrom X
« All other honest cannot distinguish - must decide 1
- Honest party p hears nothing - cannot decide 1 ®

{

®
mwa re ©2020 VMware, Inc. 33

Thank you

vmware c

Moving to asynchrony

Responsivness: we added a key round

MVSS does not work:
- n>4f, costnat time [MF]
« AVSS constnat time, but has non-zero deadlock [CR]
« ShunningAVSS no deadlock but polynomial time [ADH]

Attach f+1 secrets. Honest attach only after the RB works

vmware

