
©2019 VMware, Inc.

Consensus
Via the information theoretic lens
(Part 2)

Ittai Abraham, VMware Research

Group blog: Decentralized Thoughts

©2020 VMware, Inc. 2

Parties have initial input

Can send messages via point-to-point channels

Termination (Liveness): In the end of the protocol each party must decide on a value

Safety: No two non-malicious parties decide on different values

Trivial: Always decide a default value

Make the problem not trivial:
• Validity: If all the non-faulty have the same input, then this must be the decision value

• Fair Validity: With constant probability an input of a non-faulty party is decided upon

Consensus [Lamport etal 78]

©2020 VMware, Inc. 3

A configuration of a system is the state of all the parties and the set of all pending,
undelivered messages.

C is a deciding configuration: if all non-faulty parties have decided in C. We say that C is 1-
deciding if the common decision value is 1, and similarly that C is 0-deciding if the decision
is 0

C is an uncommitted configuration: if it has a future 0-deciding configuration and a future 1-
deciding configuration. There exists C⇝D0 and C⇝D1 such that D0 is 0-deciding and D1 is 1-
deciding

C is a committed configuration: if every future deciding configuration D (such that C⇝D) is
deciding on the same value. We say that C is 1-committed if every future ends in a 1-
deciding configuration, and similarly that C is 0-committed if every future ends in a 0-
deciding configuration.

Using the Augilera Tueg 99 proof

Lamport Fischer 82: tolerating t crashes requires t+1 rounds

©2020 VMware, Inc. 4

Lemma: Every protocol solving consensus must have an initial configuration that is
uncommitted

By contradiction, assume all are committed

Hybrid argument (1,1,1),(0,1,1),(0,0,1),(0,0,0): must be two adjacent committed
configurations for 1 and for 0

But a CRASH of one party will cause both execution to be indistinguishable!

Existance of an initial uncommitted configuration

Not all beginnings are easy

©2020 VMware, Inc. 5

Proof by example for n=3: Consider the 4 initial configurations (1,1,1),(0,1,1),(0,0,1),(0,0,0)

By validity, configuration (1,1,1) must be 1-committed and configuration (0,0,0) must be 0-
committed

Seeking a contradiction, lets assume none of the 4 initial configurations is uncommitted. So
both (0,1,1) and (0,0,1) are committed

Since all 4 initial configurations are committed there must be two adjacent configurations
that are committed to different values. W.l.o.g. assume that (0,1,1) is 1-committed
and (0,0,1) is 0-committed

In both configurations, party 2 crashes right at the start of the protocol: Clearly both
configurations look like (1,CRASH,0)(1,CRASH,0)

Both worlds must decide the same, but this is a contradiction because one is 1-committed
and the other is 0-committed

Existance of an initial uncommitted configuration

Why one round is not enough?

©2020 VMware, Inc. 6

[AT99] proof

The general case:

Lemma 1: exits an uncommitted configuration

Lemma 2: with t-1 crashes, there exists a round t-1 execution that leads to an uncommitted
configuration

Lemma 3: you cannot always decide in round x if in round x-1 you may be uncommitted
and there may be a crash

Theorem: cannot always terminate in t rounds -> need t+1 rounds in the worst case

Tolerating t crashes requires t+1 rounds

©2020 VMware, Inc. 7

4 parties, each with input in {0,1}

Adversary controls one party (malicious)

Write a protocol for consensus:
• Safety: no two non-faulty decide different vlaues

• Liveness: All non-fualty parties dedcide

• Validity: If all the non-faulty have the same input x, then x is the decision value

Learning by Doing

©2020 VMware, Inc. 8

In two rounds, just think about full information

Round 1: Send one bit, receive 3 bits

Round 2: send 3 bits, receive 9 bits

Decide as function of [1 bit + 3 bit + 9 bits]

Its not about you or what you say, its about what others say about you

Learning by Doing: solution

A

B C D

B

A C D

C

A B D

D

A B C

©2020 VMware, Inc. 9

Liveness: trivial

Safety:
• Non-faulty: majority gossip will be correct

• Faulty: gossip only by non-faulty - so everyone will agree!

Validity: take majority

Learning by Doing: solution

A

B C D

B

A C D

C

A B D

D

A B C

©2020 VMware, Inc. 10

3 parties, each with input in {0,1}

Adversary controls one party (omission failure)

Write a protocol for consensus:
• (Uniform) Safety: no two decide different vlaues

• Liveness: All non-fualty parties dedcide

• Validity: If all the non-faulty have the same input x, then x is the decision value

Learning by Doing

©2020 VMware, Inc. 11

7 parties, each with input in {0,1}

Adversary controls two partes (malicious)

Write a protocol for consensus:
• Safety: no two non-faulty decide different vlaues

• Liveness: All non-fualty parties dedcide

• Validity: If all the non-faulty have the same input x, then x is the decision value

Learning by Doing

©2020 VMware, Inc. 12

Byzantine Primary-Backup (at view v):
with Reliable Boradcast and locking

1. Primary sends <send, (value, v, u)> to all

2. Replica receives <send, (value, v, u)>,
• If u>=lock, n-f <echo2, (value, u)>

arrive, and first send from primary in
view v, then

– sends : <echo1, (value, v)> to all

3. Replica gathers n-f <echo1, (value, v)>,
then

• Sends <echo2, (value, v)> to all

4. Replica gathers n-f <echo2 (value, v)>,
then (at view v)

• Set lock:=v; lock value:=value
• Sends <lock, (value, v)> to all

5. Replica gathers n-f <lock, (value, v)>, then
• Decide (value)

Replica gathers f+1 <echo2, (value, v)>, then
• If did not send echo2

• Sends <echo2, (value, v)> to all

View change:

• Replica:

• Sends its lock and lock value

• Primary:

• accept a lock (value’,v’) if also n-f <echo2,
(value, v)> arrive

• Wait for n-f such locks

• Choose the value with the highest lock
(view)

©2020 VMware, Inc.

Validity

If all non-faulty have input x then x must be the decision value

If a non-faulty is the first primary we are fine

But what if the first primaries are faulty?

Virtual primary!

©2020 VMware, Inc.

Safety

Let v* be the first view that any replica decided (value X, view v*)

Prove by induction that any accepted send of view 𝑣 ≥ 𝑣∗ must be with
value X
• for base case due to non-equivocation

©2020 VMware, Inc.

Safety

Induction claim:
1. Any accepted send of view 𝑣≥𝑣^∗ must be with value X

2. Existence of a core of f+1 non-faulty that have a lock on view at least v* with value X

3. Any non-faulty, its maximal view lock is either:
– On view v* or larger and with value X

– On a view smaller than v*

Base case at view v*:
•Core is the n-2f out of the n-f that sent a lock to decider
• Any other non-faulty: trivial since v* is the highest view

Assume claim is true for v>=v* and prove for v+1:
• If a primary uses a view that is at least v*, from induction it must be with value X

• If a primary uses a view that is lower than v*: it needs n-f echo1, but the core will block

©2020 VMware, Inc.

Liveness

If a non-faulty primary is elected and the system is synchronous

Primary will hear locks from all non-faulty and will choose the maximum one

All non-faulty replicas will:
• See the accepted send from the old view that the primary used

• This accepted send is from a view that is at least their lock view

• Hence all non-faulty will echo1 the primary

• The rest of the protocol is unconditional

©2020 VMware, Inc. 17

In asynchrony, non-faulty primary can wait for just n-f responses during
view change
•May miss a lock of a non-fualty
• So non-faulty primary may choose a lock that is smaller than the maximum

• Some non-faulty will block primary and n-f echo1 will not be reached

Solution: add one more round ☺
• After seeing n-f echo2, send key
• After seeing n-f keys, send lock
• If a non-fualty has a lock, then there are at least f+1 non-faulty that have a key

• During view change, ask for keys

• Hearing from n-f means that at least one key holder will be heard

Responsivness: liveness in asynchrony

©2020 VMware, Inc. 18

Responsive Byzantine Primary-Backup (at view v):
Information Theoretic HotStuff

1. Primary sends <send, (value, v, u)> to all

2. Replica receives <send, (value, v, u)>,

• If u>=lock, n-f <echo2, (value, u)> arrive, and first send
from primary in view v, then

– sends : <echo1, (value, v)> to all

3. Replica gathers n-f <echo1, (value, v)>, then

• Sends <echo2, (value, v)> to all

4. Replica gathers n-f <echo2 (value, v)>, then (at view v)

• Set key:=v; key value:=value

• Sends <key, (value, v)> to all

5. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value,
v)>, then (at view v)

• Set lock:=v

• Sends <lock, (value, v)> to all

6. Replica gathers n-f <lock, (value, v)>, then Decide (value)

Replica gathers f+1 <echo2, (value, v)>, then

• If did not send echo2

• Sends <echo2, (value, v)> to all

View change:

• Replica:

• Sends its key and key value

• Primary:

• accept a key (value’,v’) if also n-f <echo2, (value,
v)> arrive

• Wait for n-f such key

• Choose the value with the highest key (view)

©2020 VMware, Inc.

Liveness

If a non-faulty primary is elected

Primary will hear locks from all non-faulty and will choose the maximum one

Primary will hear the maximal key from n-f during view change
• If a non-faulty is locked, its because of n-f keys, f+1 of them are non-faulty

• At least one key holder will be in the n-f view change quorum

• So the maximal key will be at least as high as the maximal lock of all non-fualty

All non-faulty replicas will:
• See the accepted send from the old view that the primary used

• This accepted send is from a view that is at least their lock view

• Hence all non-faulty will echo1 the primary

• The rest of the protocol is unconditional

©2020 VMware, Inc. 20

Revolving coordinator
• After f view changes (O(f) rounds) a non-faulty primary will be elected

Assume we have an oblivious leader election functionality
• At least f+1 honest must request the functionality to start

• Each party i outputs a leader L(i)=j

• With probabilty at least ½ (can use any constant) :

–all non-fualty output the same value j and,

–j was non-faulty before functionality started

Good for a static adversary

Adaptive adversary will adaptivly corrupt that chosen primary 

Elect a random primary

Byzantine Paxos: adding randomness

©2020 VMware, Inc. 21

Adaptive adversary will shoot down the primary

Solution:
• Let everyone be a primary

• Then choose who the real primary is in hindsight (and all other are just decoys)

Liveness: with constant probability a good primary is chosen

Safety:
• In hindsight, looks like a single primary each view

• If a faulty primary or a confusion of primaries is chosen, then this is just like a faulty
primary

–Safety is maintained!

Everyone is a Priamry ☺

Byzantine Paxos: adaptive adversaries

©2020 VMware, Inc. 22

Responsive Byzantine Primary-Backup (at view v):
Determinstic version

1. Primary sends <send, (value, v, u)> to all

2. Replica receives <send, (value, v, u)>,
• If u>=lock, n-f <echo2, (value, u)> arrive, and first send

from primary in view v, then
– sends : <echo1, (value, v)> to all

3. Replica gathers n-f <echo1, (value, v)>, then
• Sends <echo2, (value, v)> to all

4. Replica gathers n-f <echo2 (value, v)>, then (at view v)
• Set key:=v; key value:=value
• Sends <key, (value, v)> to all

5. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value, v)>,
then (at view v)

• Set lock:=v
• Sends <lock, (value, v)> to all

6. Replica gathers n-f <lock, (value, v)>, then
• Decide (value)

Replica gathers f+1 <echo2, (value, v)>,
then

• If did not send echo2

• Sends <echo2, (value, v)> to all

View change:

• Replica:

• Sends its key and key value

• Primary:

• accept a key (value’,v’) if also n-f
<echo2, (value, v)> arrive

• Wait for n-f such key

• Choose the value with the highest
key (view)

©2020 VMware, Inc. 23

Responsive Byzantine Primary-Backup (at view v):
with random leader election

1. Each party as Primary, sends <send, (value, v, u)> to all

2. Run oblivious leader election to decide who to listen to

3. Replica receives <send, (value, v, u)>,
• If u>=lock, n-f <echo2, (value, u)> arrive, and first send from

primary in view v, then
– sends : <echo1, (value, v)> to all

4. Replica gathers n-f <echo1, (value, v)>, then
• Sends <echo2, (value, v)> to all

5. Replica gathers n-f <echo2 (value, v)>, then (at view v)
• Set key:=v; key value:=value
• Sends <key, (value, v)> to all

6. Replica gathers n-f <key, (value, v)> and n-f <echo2 (value, v)>, then (at
view v)

• Set lock:=v
• Sends <lock, (value, v)> to all

7. Replica gathers n-f <lock, (value, v)>, then
• Decide (value)

Replica gathers f+1 <echo2, (value, v)>,
then

• If did not send echo2

• Sends <echo2, (value, v)> to all

View change:

• Each Replica:

• Sends its key and key value to
everyone

• Each Primary:

• accept a key (value’,v’) if also n-f
<echo2, (value, v)> arrive

• Wait for n-f such key

• Choose the value with the highest
key (view)

©2020 VMware, Inc. 24

Choosing a random leader is a simple MPC protocol

But MPC uses VSS, and VSS requires broadcast 

Solution:
• a notion that is weaker than VSS but strong enough for OLE

• Moderated VSS (KK06) and Graded VSS (MF88)

• Tailor made MPC (with a constnat error probabilty)

Gradecast -> MVSS ->OLE ->O(1) time expected Byzantine Agreement

Oblivious Leader Election

©2020 VMware, Inc. 25

Dealer P* has inoput m

Each party outputs a vlaue m and a grade in {0,1,2}

If the dealer is no-fualty then all non-fualty output (m,2)

If a non-fualty outputs (m’,2) then all non-fulaty output (m’,g) with g>0

(If two non-faulty have grade 1 then have same value)

Gradecast (MF88, D81)

©2020 VMware, Inc. 26

round 1: Dealer P* <sends m> to all

round 2: Party sends <echo1 m> to the first message it recives from the
primary

round 3: If party gathers n-f echo1 it sends <echo2 m>

End of round 3:
• Grade 2: If party gatheres n-f echo2; otherwise

• Grade 1: if party gathers f+1 echo2; otherwise

• Gread 0 (default value)

Gradecast protocol (MF88)

©2020 VMware, Inc. 27

Gradecast proof (MF88)

round 1: Dealer P* <sends m> to all

round 2: Party sends <echo1 m> to the first
message it recives from the primary

round 3: If party gathers n-f echo1 it sends
<echo2 m>

End of round 3:

• Grade 2: If party gatheres n-f echo2;
otherwise

• Grade 1: if party gathers f+1 echo2;
otherwise

• Gread 0 (default value)

Echo1 causes non-equivocation -> any two
grade 1 must have same value

Non-fualty dealer -> all non-fulty have
(m,2)

Non-fualty has (m’,2) -> all nonfaulty have
at lesT f+1 echo2 -> all non-fualty have
(m,g) with g>0

©2020 VMware, Inc. 28

Dealer P*

Moderator P**

Take any VSS that uses broadcast only in share phase

Replace <broadcast m by party j> with:
• Party j runs gradecast (m)

• The moderator P** takes the value m’ of the gradecast and runs gradecast (m’)

Outcome for party i:
• Let (m,g) be the outcome of the first gradecast

• Let (m’,g’) be the outcome of the first gradecast

• If g’<2 or (g’=2 and g=2 and m≠m’) then set OK=false

MVSS from VSS

Moderated VSS [KK06]

©2020 VMware, Inc. 29

If OK=true for any non-faulty then VSS properties hold
• Because all see the moderator’s value and the moderator's value is consistent with any
non-faulty broadcaster

If the moderator is non-faulty then all non-faulty have OK=true
• From the grade cast properties of an honest sender

Proof for Moderated VSS

©2020 VMware, Inc. 30

For each i,j, do a MVSS with dealer i and moderator j (say random value in n4)

The secret ballot for j will be the sum mod n4 of all the VSS where j is a moderator

Reveal all the secret ballots for all parties

But if for some moderator j you see OK=false in any MVSS then set secret ballot to 0

Choose the leader to be the party with the highest secret ballot

With large probability there are no collisions, and then with constant probability a non-
faulty is elected

OLE from MVSS

Oblivious Leader Eelection

©2020 VMware, Inc. 31

Static Adversary vs Adaptive Adversary

Byzantine agreement with sub quadratic messages is easy against a Static
adversary
• With randomization

• Just use the US jury system: its a scalable consensus mechanism!

1. Choose a random poly-log size committee

2. Since the adversary is static, it controls a small fraction of the committee

3. Run Byzantine Agreement in the committee and then report back to
everyone the verdict

Can you solve Byzantine Agreement with sub-quadratic messages?

Its all about the adversary!

©2020 VMware, Inc. 32

Assume that if a party receives no message it never decides 1
• Either decides 0 or does not decide

Proof approach:
• Create World 1 where all honest decide 1 (with f/2 corrupt called C)

• Create World 2 with f/2 more corrupt X and one old corrupt p becomes honest

–For all honest (but p) in world 2: world 1 and world 2 are indistinguishable

–Party p receives no messages

World 1 World 2

Set |𝐶| = 𝑓/2 are corrupt 𝐶 ∖ {𝑝} are corrupt, p is honest

All honest decide 1 Additional set 𝑋 ≤ 𝑓/2 are corrupt

Honest p receives no messages

For all honest (but p) in world 2:

worlds 1, 2 are indistinguishable

Cannot solve Broadcast against omission adversary with just (f/2)^2 messages

Dolev Reischuk [82]

©2020 VMware, Inc. 33

World 1: Corrupt a set C of f/2 parties:
• Run them as honest; except

• For each member of C
–Block all communication from other parties in C
–Block the the first f/2 message from parties not in C

• Validity: all honest parties decide 1

Assume protocol sends just (f/2)^2 messages
• So one member, p of C must get at most f/2 message

from a set of parties X not in C

World 2: un-corrupt p and corrupt X as follows:
• Run X as honest; other than:

–Block the first f/2 messages to p from X
• All other honest cannot distinguish - must decide 1

• Honest party p hears nothing – cannot decide 1 

Cannot solve Broadcast against omission adversary with just (f/2)^2 messages

Dolev Reischuk [PODC 1982]

©2020 VMware, Inc.

Thank you

©2020 VMware, Inc. 35

Responsivness: we added a key round

MVSS does not work:
• n>4f, costnat time [MF]

• AVSS constnat time, but has non-zero deadlock [CR]

• ShunningAVSS no deadlock but polynomial time [ADH]

Attach f+1 secrets. Honest attach only after the RB works

Moving to asynchrony

