
Hash Proof Systems and Password Protocols

III – SPHF-based PAKE

David Pointcheval

CNRS, Ecole normale supérieure/PSL & INRIA

8th BIU Winter School – Key Exchange
February 2018

CNRS/ENS/PSL/INRIA David Pointcheval 1/53

Intuition of PAKE with a Commitment

We denote Lpw the language of the commitments of pw
Alice sends CA, a commitment of pwA, to Bob (no leakage: hiding property)
Bob can ask to verify that CA ∈ LpwB

:
Bob sends hpB to Alice, and computes HA ← Hash(hkB,CA)
Alice can compute pHA ← ProjHash(hp,CA,wA)

HA = pHA ⇐⇒ pwA = pwB

Security: If pwB 6= pwA, HA is perfectly unpredictable to Alice (smoothness)

For a non-trivial language, the commitment must be perfectly binding
e.g., ElGamal encryption: CA = (gr ,hr × gpwA)

CNRS/ENS/PSL/INRIA David Pointcheval 2/53

SPHF-based PAKE: First Attempt

X = G2 and Lpw = {(gr ,hr × gpw)}
Alice sends CA = (u = gr ,e = hr × gpwA) to Bob

Bob generates hk = (α, β)
$← Zp and sends hp ← gαhβ

Bob computes H← uα(e/gpwB)β

Alice computes pH← hpr

}
HA = pHA = gαr hβr ⇐⇒ pwA = pwB

Security: If pwB 6= pwA, H is perfectly unpredictable to Alice (smoothness)

CA does not leak pwA under the DDH assumption
From the view of pH (Reveal-query), Bob can look for pw such that uα(e/gpw)β = pH
=⇒ Off-line dictionary attack!

CNRS/ENS/PSL/INRIA David Pointcheval 3/53

SPHF-based PAKE

We denote Lpw the language of the commitments of pw
Alice sends CA, a commitment of pwA, to Bob (no leakage: hiding property)
Bob can ask to verify that CA ∈ LpwB

:
Bob sends hpB to Alice, and computes HA ← Hash(hkB,CA)
Alice can compute pHA ← ProjHash(hp,CA,wA)

HA = pHA ⇐⇒ pwA = pwB

Bob must also prove his knowledge of pwB = pwA before having access to pH
Either with an implicit proof [Gennaro–Lindell – Eurocrypt ’03]

Or with an explicit proof [Groce-Katz – CCS ’10]

CNRS/ENS/PSL/INRIA David Pointcheval 4/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 5/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 6/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 7/53

SPHF-based PAKE: Implicit Proof

We denote LA/LB the languages of the commitments of pwA/pwB

Alice sends CA, a commitment of pwA, to Bob
Bob can ask to verify that CA ∈ LB:

Bob sends hpB to Alice, and computes HA ← HashB(hkB,CA)
Alice can compute pHA ← ProjHashA(hpB,CA,wA)

Bob sends CB, a commitment of pwB, to Alice
Alice can ask to verify that CB ∈ LA:

Alice sends hpA to Bob, and computes HB ← HashA(hkA,CB)
Bob can compute pHB ← ProjHashB(hpA,CB,wB)

Bob computes KB ← HA ⊕ pHB

Alice computes KA ← pHA ⊕ HB

KB = HA ⊕ pHB = pHA ⊕ HB = KA ⇐⇒ pwA = pwB

CNRS/ENS/PSL/INRIA David Pointcheval 8/53

SPHF-based PAKE: Man-In-The-Middle Attack

X = G2 and Lpw = {(gr ,hr × gpw)}
Alice sends CA = (uA = grA ,eA = hrA × gpwA) to Bob

Bob generates hkB = (αB, βB)
$← Zp and sends hpB ← gαB hβB

Bob sends CB = (uB = grB ,eB = hrB × gpwB) to Bob

Alice generates hkA = (αA, βA)
$← Zp and sends hpA ← gαAhβA

Alice computes KA ← uαA
B · (eB/gpwA)βA × hprA

B

Bob computes KB ← hprB
A × uαB

A · (eA/gpwB)βB

}
KA = KB ⇐⇒ pwA = pwB

The adversary can do a man-in-the-middle attack:
forwards everything
excepted CB to Alice, that is replaced by C′

B = CB × (g,h)

K ′
A = uαA

B gαA · (eB/gpwA)βAhβA × hprA
B = KA × gαAhβA = KB × hpA

CNRS/ENS/PSL/INRIA David Pointcheval 9/53

SPHF-based PAKE: Man-In-The-Middle Attack

From the man-in-the-middle attack:
the adversary can ask for a Reveal-query to Alice
the adversary can ask for a Test-query to Bob (the session ID’s are different)
the adversary can check the relation between the keys to decide on b′

The commitment CB must be non-malleable or confirmed to Bob

CNRS/ENS/PSL/INRIA David Pointcheval 10/53

GL-PAKE
[Gennaro-Lindell – Eurocrypt ’03]

BobAlice

rA
$← $; CA ← Enc(pwA, rA)

CA hkB
$← HashKG(); hpB ← ProjKG(hkB)

HA ← HashB(hkB,CA)

rB
$← $; CB ← Enc′(pwB, rB)

hpB,CBpHA ← ProjHashA(hpB,CA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA)

HB ← HashA(hkA,CB)
hpA pHB ← ProjHashB(hpA,CB, rB)

KA ← HB × pHA KB ← pHB × HA

Which are the security properties of the encryption schemes ?

CNRS/ENS/PSL/INRIA David Pointcheval 11/53

GL-PAKE: Security Proof

Send-queries to Bob: Oracle-Generated CA with pwA = pwB = pw

Alice

rA
$← $; CA ← Enc(pw , rA)

pHA ← ProjHash(hpB,CA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA)

HB ← Hash(hkA,CB)

KA ← HB × pHA

Bob
CA

hpB,CB

hpA

hkB
$← HashKG(); hpB ← ProjKG(hkB)

HA ← Hash(hkB,CA)///////////////////////////
rB

$← $; CB ← Enc′(pw , rB)///////////////////////////////// CB ← Enc′($, $)

pHB ← ProjHash(hpA,CB, rB)///////////////////////////////////// pHB ← HB
KB ← pHB × HA//////////////////// KB ← KA

Oracle-generated CA should imply oracle-generated hpA

Correctness
Oracle-generated hpA should confirm hpB: Correctness
IND-CPA

CNRS/ENS/PSL/INRIA David Pointcheval 12/53

GL-PAKE: Security Proof

Send-queries to Bob: Oracle-Generated CA with pwA 6= pwB

Alice

rA
$← $; CA ← Enc(pwA, rA)

pHA ← ProjHashA(hpB,CA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA)

HB ← HashA(hkA,CB)

KA ← HB × pHA

Bob
CA

hpB,CB

hpA

hkB
$← HashKG(); hpB ← ProjKG(hkB)

HA ← HashB(hkB,CA)////////////////////////////
rB

$← $; CB ← Enc′(pw , rB)///////////////////////////////// CB ← Enc′($, $)

pHB ← ProjHashB(hpA,CB, rB)///////////////////////////////////////
KB ← pHB × HA//////////////////// KA ← $

Smoothness
IND-CPA

CNRS/ENS/PSL/INRIA David Pointcheval 13/53

GL-PAKE: Security Proof

Send-queries to Bob: Non Oracle-Generated CA

Bob
CA

hpB,CB

hpA

Dec′(CA)
?
= pwB : STOP&WIN

hkB
$← HashKG(); hpB ← ProjKG(hkB)

HA ← HashB(hkB,CA)////////////////////////////
rB

$← $; CB ← Enc′(pw , rB)///////////////////////////////// CB ← Enc′($, $)

pHB ← ProjHashB(hpA,CB, rB)///////////////////////////////////////
KB ← pHB × HA//////////////////// KB ← $

The adversary must encrypt the correct password: password-guessing probability
Smoothness
IND-CPA

CNRS/ENS/PSL/INRIA David Pointcheval 14/53

GL-PAKE: Security Proof

Send-queries to Alice: Oracle-Generated CB Oracle-Generated CA

Alice

hpB,CB
rA

$← $; CA ← Enc(pwA, rA)

//////////////////////////////////////pHA ← ProjHashA(hpB,CA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA)

////////////////////////////HB ← HashA(hkA,CB)

KA
$← $ ////////////////////KA ← HB × pHA

Bob
CA

hpA

hkB
$← HashKG(); hpB ← ProjKG(hkB)

CB ← Enc′($, $)

If pwA = pwB, KB ← KA
If pwA 6= pwB, KB ← $

Non Oracle-Generated CA

Bob
CA

hpB,CB
hpA

Dec′(CA)
?
= pwB : STOP&WIN

hkB
$← HashKG(); hpB ← ProjKG(hkB)

CB ← Enc′($, $)

KB ← $

Smoothness

CNRS/ENS/PSL/INRIA David Pointcheval 15/53

GL-PAKE: Security Proof

Send-queries to Alice: Non Oracle-Generated CB

Alice
CA

hpB,CB
hpA

rA
$← $; CA ← Enc(pwA, rA)

//////////////////////////////////////pHA ← ProjHashA(hpB,CA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA)

Dec′(CB)
?
= pwA : STOP&WIN
////////////////////////////HB ← HashA(hkA,CB)

KA
$← $ ////////////////////KA ← HB × pHA

The adversary must encrypt the correct password: password-guessing probability
Smoothness

CNRS/ENS/PSL/INRIA David Pointcheval 16/53

GL-PAKE: Security Proof

Oracle-Generated CB Oracle-Generated CA
Alice

hpB,CB
CA ← Enc($, $) //////////////////////////////////rA

$← $; CA ← Enc(pwA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA)

KA ← $

Bob
CA

hpA

hkB
$← HashKG(); hpB ← ProjKG(hkB)

CB ← Enc′($, $)

If pwA = pwB///////////////// If compatible oracles, KB ← KA
If pwA 6= pwB///////////////// If incompatible oracles, KB ← $

Non Oracle-Generated CB Non Oracle-Generated CA
Alice

hpB,CB

CA ← Enc($, $) //////////////////////////////////rA
$← $; CA ← Enc(pwA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA)

Dec′(CB) in P //////////////////////////////////////Dec′(CB)
?
= pwA : STOP&WIN

KA ← $

Bob
CA

hpA

Dec(CA)
?
= pwB : STOP&WIN////////////////////////////////////// Dec(CA) in P

hkB
$← HashKG(); hpB ← ProjKG(hkB)

CB ← Enc′($, $)

KB ← $

IND-CCA + No abort anymore: difference if the guesses are correct

CNRS/ENS/PSL/INRIA David Pointcheval 17/53

GL-PAKE: Security Proof

To be more precise, in the final game
The Execute-queries just work as Send-queries with oracle-generated flows
The actual passwords are not set at the beginning, but randomly chosen at the end
WIN = a random password (with Player ID) is in P: the probability is qS/N

Encryption schemes:
(Enc,Dec): SPHF-friendly L-IND-CCA encryption scheme ` = (A,B, vk)
=⇒ where vk is the verification key of a OT-Signature
=⇒ Labeled Cramer-Shoup Encryption
(Enc′,Dec′): SPHF-friendly IND-CPA encryption scheme
=⇒ ElGamal Encryption
(CA,hpB,CB,hpA) signed by A: OT-signature (sk , vk)
=⇒ an oracle-generated CA implies the same oracle-generated hpA,

and confirms the received (hpB,CB)
CNRS/ENS/PSL/INRIA David Pointcheval 18/53

Labeled Cramer-Shoup Ciphertext Languages

Cramer-Shoup Encryption Scheme is an L-IND-CCA PKE:

C = (u1 = gr
1,u2 = gr

2,e = hr m, v = (cd t)r) with t = H(`,u1,u2,e)

C is a CS ciphertext of pw iff (u1,u2,e/pw , v) is an r -th power of (g1,g2,h, cd t)

HashKG() : hk = (α, β, γ, δ)
$← Z4

q ProjKG(hk ,C) : hp = gα1 gβ2 hγ(cd t)δ

Hash(hk ,C) : H = uα1 uβ2 (e/pw)γvδ ProjHash(hp,C, r) : pH = hpr

This is not a CS-SPHF, hence the GL relaxation [Gennaro-Lindell – Eurocrypt ’03]

CNRS/ENS/PSL/INRIA David Pointcheval 19/53

GL-PAKE: Complete Protocol
[Gennaro-Lindell – Eurocrypt ’03]

BobAlice

(sk , vk)
$← SignKG(); ` = (A,B, vk)

rA
$← $; CA ← CS`(pwA, rA)

vk ,CA

hkB
$← HashKG(); hpB ← ProjKG(hkB,CA)

HA ← HashB(hkB,CA)

rB
$← $; CB ← EG(pwB, rB)

hpB,CB

pHA ← ProjHashA(hpB,CA, rA)

hkA
$← HashKG(); hpA ← ProjKG(hkA,CB)

HB ← HashA(hkA,CB)

Σ← Sign(sk , (CA,hpB,CB,hpA))
hpA,Σ

Verif(vk , (CA,hpB,CB,hpA),Σ)?
pHB ← ProjHashB(hpA,CB, rB)

KA ← HB × pHA KB ← HA × pHB

A key confirmation can be added to the third flow: Explicit Authentication of Alice
CNRS/ENS/PSL/INRIA David Pointcheval 20/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 21/53

SPHF-based PAKE: Explicit Proof

We denote LA/LB the languages of the commitments C of pwA/pwB

Alice sends CA, a commitment of pwA with random coins rA, to Bob
Bob can ask to verify that CA ∈ LB:

Bob sends hpB to Alice, and computes HA ← HashB(hkB,CA)
Alice can compute pHA ← ProjHashA(hp,CA, rA)

Alice parses pHA as r ′B‖KA

Bob parse HA as rB‖KB

Bob sends CB, a commitment of pwB with random coins rB, to Alice
Alice can recompute the commitment C′

B of pwA with random coins r ′B
and check whether C′

B
?
= CB

For a non-trivial language, the commitment CA must be perfectly binding
To avoid false positive on C′

B
?
= CB, the commitment CB must be perfectly binding

e.g., Public-Key Encryption Scheme
CNRS/ENS/PSL/INRIA David Pointcheval 22/53

GK-PAKE
[Groce-Katz – CCS ’10]

BobAlice

rA
$← $; CA ← Enc(pwA, rA)

CA hkB
$← HashKG(); hpB ← ProjKG(hkB)

rB‖KB = HA ← Hash(hkB,CA)

CB ← Enc′(pwB, rB)
hpB,CBr ′B‖KA = pHA ← ProjHash(hpB,CA, rA)

C′
B ← Enc′(pwA, r ′B)

C′
B

?
= CB

Which are the security properties of the encryption schemes ?

CNRS/ENS/PSL/INRIA David Pointcheval 23/53

GK-PAKE: Security Proof

Send-query to Alice: Oracle-Generated CB with pwB = pwA = pw

Alice

rA
$← $; CA ← Enc(pw , rA)

KA ← KB //r ′B‖KA ← ProjHash(hpB,CA, rA)

C′
B ← CB ///////////////////////C′

B ← Enc′(pw , r ′B)

OK ///////////C′
B

?
= CB

CA

hpB,CB

Bob

hkB
$← HashKG(); hpB ← ProjKG(hkB)

rB‖KB ← Hash(hkB,CA)

CB ← Enc′(pw , rB)

CB must be specific to this execution
Oracle-Generated CB must imply Oracle-Generated hpB

Correctness

CNRS/ENS/PSL/INRIA David Pointcheval 24/53

GK-PAKE: Security Proof

Send-query to Alice: Oracle-Generated CB with pwB 6= pwA

Alice

rA
$← $; CA ← Enc(pwA, rA)

///r ′B‖KA ← ProjHashA(hpB,CA, rA)

/////////////////////////C′
B ← Enc′(pwA, r ′B)

NOK ///////////C′
B

?
= CB

CA

hpB,CB

Bob

hkB
$← HashKG(); hpB ← ProjKG(hkB)

rB‖KB ← HashB(hkB,CA)

CB ← Enc′(pwB, rB)

pwA 6= pwB =⇒ C′
B 6= CB

CNRS/ENS/PSL/INRIA David Pointcheval 25/53

GK-PAKE: Security Proof

Send-query to Alice: Non Oracle-Generated CB

Alice

rA
$← $; CA ← Enc(pwA, rA)

///r ′B‖KA ← ProjHashA(hpB,CA, rA)

Dec′(CB)
?
= pwA : STOP&WIN //////////////////////////C′

B ← Enc′(pwA, r ′B)

NOK ///////////C′
B

?
= CB

CA

hpB,CB

CB specific to this execution, and non-malleable
The adversary must encrypt the correct password: password-guessing probability
Dec′(CB) 6= pwA =⇒ C′

B 6= CB

CNRS/ENS/PSL/INRIA David Pointcheval 26/53

GK-PAKE: Security Proof

Send-query to Alice: Oracle-Generated CB

Alice

CA ← Enc($, $) //////////////////////////////////rA
$← $; CA ← Enc(pwA, rA)

If pwA = pwB, KA ← KB, OK
If pwA 6= pwB, NOK

CA

hpB,CB

Bob

hkB
$← HashKG(); hpB ← ProjKG(hkB)

rB‖KB ← HashB(hkB,CA)

CB ← Enc′(pwP , rB)

Send-query to Alice: Non Oracle-Generated CB

Alice

CA ← Enc($, $) //////////////////////////////////rA
$← $; CA ← Enc(pwA, rA)

Dec′(CB)
?
= pwA : STOP&WIN

NOK

CA

hpB,CB

IND-CPA

CNRS/ENS/PSL/INRIA David Pointcheval 27/53

GK-PAKE: Security Proof

Send-query to Bob: Oracle-Generated CA

Alice

CA ← Enc($, $)

If pwA = pwB, KA ← KB, OK
If pwA 6= pwB, NOK

CA

hpB,CB

Bob

hkB
$← HashKG(); hpB ← ProjKG(hkB)

rB‖KB ← HashB(hkB,CA)//////////////////////////////// KB
$← $

CB ← Enc′(pwB, rB)///////////////////////// CB ← Enc′($, $)

Correctness + IND-CCA

CNRS/ENS/PSL/INRIA David Pointcheval 28/53

GK-PAKE: Security Proof

Send-query to Bob: Non Oracle-Generated CA

CA

hpB,CB

Bob

hkB
$← HashKG(); hpB ← ProjKG(hkB)

Dec(CA)
?
= pwB : STOP&WIN

rB‖KB ← HashB(hkB,CA)//////////////////////////////// KB
$← $

CB ← Enc′(pwB, rB)///////////////////////// CB ← Enc′($, $)

The adversary must encrypt the correct password: password-guessing probability
Smoothness + IND-CCA

CNRS/ENS/PSL/INRIA David Pointcheval 29/53

GK-PAKE: Security Proof

Oracle-Generated CB Oracle-Generated CA
Alice

CA ← Enc($, $)

If compatible oracles /////////////////If pwA = pwB, KA ← KB, OK
If incompatible oracles /////////////////If pwA 6= pwB, NOK

hpB,CB

CA

Bob

hkB
$← HashKG(); hpB ← ProjKG(hkB)

KB
$← $

CB ← Enc′($, $)

Non Oracle-Generated CB Non Oracle-Generated CA
Alice

CA ← Enc($, $)

Dec′(CB) in P //////////////////////////////////////Dec′(CB)
?
= pwA : STOP&WIN

NOK

hpB,CB

CA

Bob

hkB
$← HashKG(); hpB ← ProjKG(hkB)

Dec(CA)
?
= pwB : STOP&WIN////////////////////////////////////// Dec(CA) in P

KB
$← $

CB ← Enc′($, $)

No abort anymore: difference if the guesses are correct

CNRS/ENS/PSL/INRIA David Pointcheval 30/53

GK-PAKE: Security Proof

To be more precise, in the final game
The Execute-queries just work as Send-queries with oracle-generated flows
The actual passwords are not set at the beginning, but randomly chosen at the end
WIN = a random password (with Player ID) is in P: the probability is qS/N

Encryption schemes:
(Enc,Dec): SPHF-friendly IND-CPA encryption scheme
=⇒ ElGamal Encryption
(Enc′,Dec′): L-IND-CCA encryption scheme: `′ = (A,B,CA,hpB)
=⇒ this makes CB specific to this execution because of CA
=⇒ an oracle-generated CB implies the same oracle-generated hpB
=⇒ Labeled Cramer-Shoup Encryption

CNRS/ENS/PSL/INRIA David Pointcheval 31/53

GK-PAKE
[Groce-Katz – CCS ’10]

Alice generates and sends CA = (u ← grA ,e← hrAgpwA) ∈ G2

Bob
generates hkB = (α, β) and hpB = gαhβ

computes rB‖KB = KDF (uα · (e/gpwB)β)
generates CB = (u1 = grB

1 ,u2 = grB
2 ,e = hrB gpwB , v = (cd t)rB),

with t = H(A,B,CA,hpB,u1,u2,e)
sends (hpB,CB) ∈ G5

Alice
computes r ′B‖KA = KDF (hprA

B)

generates C′
B = (u′

1 = gr ′B
1 ,u

′
2 = gr ′B

2 ,e = hr ′B gpwA , v ′ = (cd t′)r ′B ,
with t ′ = H(A,B,CA,hpB,u

′
1,u

′
2,e

′)
aborts if C′

B 6= CB

A key confirmation can be added to the second flow: Explicit Authentication of Bob

CNRS/ENS/PSL/INRIA David Pointcheval 32/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 33/53

Better Efficiency

IND-PCA

Security proofs: WIN = a random password (with Player ID) is in P
One either decrypts every C into pw and checks whether pw ∈ P or not
=⇒ need of decryption oracle
Or one checks for every pw ∈ P whether C encrypts pw for some ciphertext C
=⇒ need of plaintext-checking oracle

The previous proofs work for IND-PCA encryption schemes, instead of IND-CCA

KV-SPHF

Number of flows in GL-PAKE: 3 flows because hp depends on/after x
With hp possibly sent before x : 1-round protocol with KV-SPHF

CNRS/ENS/PSL/INRIA David Pointcheval 34/53

IND-PCA Encryption from KEM

KeyGen() : (sk ,pk)
$← EncapsKG()

hk $← HashKG(),hp ← ProjKG(hk)
sk ′ = (sk ,hk),pk ′ = (pk ,hp)

Enc(pk ′ = (pk ,hp),m) : (K , c)
$← Encaps(pk , r),e← m + K

x = (K , c),w = r
t = H(c,e), v = ProjHash(hp, x , t ,w)
C = (c,e, v)

Dec(sk ′ = (sk ,hk),C = (c,e, v)) : K ← Decaps(sk , c),m← e − K
x = (K , c), t ← H(c,e), v ′ ← Hash(hk , x , t)
If (v ′ 6= v) =⇒ Reject
Else Return m

CNRS/ENS/PSL/INRIA David Pointcheval 35/53

IND-PCA Security Proof

(sk ,pk)← EncapsKG(),hk $← HashKG(),hp ← ProjKG(hk)
pk ′ = (pk ,hp)

m0,m1 ∈ G m0,m1 b $← {0,1}
x = (K , c)

$← Encaps(pk ,w)//////////////////////////////////// x = ($, c), (K , c)
$← Encaps(pk , $)

e← K + mb//////////////// e $← G
t = H(c,e); v ← ProjHash(hp, x , t ,w)//////////////////////////////// v ← Hash(hk , x , t)
C ← (c,e, v)C

b′ ∈ {0,1} b′
b′ ?

= b

PCA(sk ′,m′,C′) : K ′ ← Decaps(sk , c′),m′′ ← e′ − K ′///
sk ′ = (sk , hk)///////////// sk ′ = (hk) x ′ ← (e′ −m′, c′), t ′ ← H(c′,e′) C′ 6= C =⇒ (x ′, t ′) 6= (x , t)
C′ = (c′, e′, v ′) v ′′ ← Hash(hk , x ′, t ′)

v ′′ 6= v ′ or m′′ 6= m′/////////////// =⇒ Reject
Smoothness (soundness): v ′′ = v ′ =⇒ e′ −m′ valid key =⇒ m′ valid plaintext

+ 2-Universal Smoothness (simulation-soundness)
Correctness + Indistinguishability/Hard Subset Membership =⇒ Pr[b′ = b] = 1

2

CNRS/ENS/PSL/INRIA David Pointcheval 36/53

SCS: Short Cramer-Shoup
[Abdalla-Benhamouda-P. – PKC ’15]

KeyGen() : sk = (s,hk1 = (x1, x2),hk2 = (y1, y2))
$← Z5

q
pk = (h← gs

1,hp1 ← gx1
1 gx2

2 ,hp2 ← gy1
1 gy2

2)

Enc(pk ,m) : r $← Zq; u = gr
1,e← hr ×m

v = (hp1 × hp2
t)r , with t ← H(u,e)

Dec(sk , (u,e, v)) : m = e/us, v ?
= ux1+tx2 × (e/m)x2+ty2 , with t ← H(u,e)

Theorem (IND-PCA Security)

This SCS encryption scheme is IND-PCA under the DDH assumption

CNRS/ENS/PSL/INRIA David Pointcheval 37/53

GK-SPOKE (Simple Password-Only Key Exchange)
[Abdalla-Benhamouda-P. – PKC ’15]

Alice generates and sends CA = (u ← grA ,e← hrAgpwA) ∈ G2

Bob
generates hkB = (α, β) and hpB = gαhβ

computes rB‖KB = KDF (uα · (e/gpwB)β)
generates CB = (u = grB

1 ,e = grB
2 gpwB , v = (cd t)rB),

with t = H(A,B,CA,hpB,u,e)
sends (hpB,CB) ∈ G4

Alice
computes r ′B‖KA = KDF (hprA

B)

generates C′
B = (u′ = gr ′B

1 ,e
′ = gr ′B

2 gpwA , v ′ = (cd t′)r ′B ,
with t ′ = H(A,B,CA,hpB,u

′,e′)
aborts if C′

B 6= CB

Instead of 7 group elements, only 6 group elements with a 2-flow protocol

CNRS/ENS/PSL/INRIA David Pointcheval 38/53

GL-PAKE: Reminder of the Idea
[Gennaro-Lindell – Eurocrypt ’03]

Alice

Alice sends CA, a commitment of pwA, to Bob
Bob can ask to verify that CA ∈ LB (language of commitments of pwB):

Bob sends hpB to Alice, and computes HA ← HashB(hkB,CA)
Alice can compute pHA ← ProjHashA(hpB,CA,wA)

Bob

Bob sends CB, a commitment of pwB, to Alice
Alice can ask to verify that CB ∈ LA (language of commitments of pwA):

Alice sends hpA to Bob, and computes HB ← HashA(hkA,CB)
Bob can compute pHB ← ProjHashB(hpA,CB,wB)

KB = HA ⊕ pHB = pHA ⊕ HB = KA ⇐⇒ pwA = pwB
CNRS/ENS/PSL/INRIA David Pointcheval 39/53

KV-PAKE: Katz-Vaikuntanathan’s Idea
[Katz-Vaikuntanathan – TCC ’11]

Both are sent in parallel:
Alice sends CA,hpA to Bob
Bob sends CB,hpB to Alice

Upon reception of the partner’s flow:
Alice computes pHA ← ProjHashA(hpB,CA,wA) and HB ← HashA(hkA,CB)

Bob computes pHB ← ProjHashB(hpA,CB,wB) and HA ← HashB(hkB,CA)

Then
KB = HA ⊕ pHB = pHA ⊕ HB = KA

CNRS/ENS/PSL/INRIA David Pointcheval 40/53

KV Smoothness
[Katz-Vaikuntanathan – TCC ’11]

KV-Smoothness

∀f → X\L, with the probability space hk $← HashKG(),hp ← ProjKG(hk)

{(hp,H) |H← Hash(hk , f (hp))} ≈ {(hp,H) |H $← Π}

Given hp, no adversary can find x ∈ \L for which it can distinguish Hash(hk , x)

KV-SPHF for SCS Ciphertexts of m [Abdalla-Benhamouda-P. – PKC ’15]

c = (u = gr ,e = hr m, v = (cd t)r) with t = H(u,e)

hk = (α, β, γ, δ) hp = (hp1 ← gαhγcδ,hp2 ← gβdδ)

Hash(hk , c) = uα+tβ(e/m)γvδ = (hp1hpt
2)r = ProjHash(hp, c, r)

CNRS/ENS/PSL/INRIA David Pointcheval 41/53

KV-SPOKE (Simple Password-Only Key Exchange)
[Abdalla-Benhamouda-P. – PKC ’15]

Alice generates
hkA = (α, β, γ, δ) and hpA = (hp1 ← gαhγcδ,hp2 ← gβdδ)
CA = (u ← grA ,e← hrAgpwA , v ← (cd tA)rA) for tA = H(A,B,u,e,hpA)

Alice sends CA ∈ G3 and hpA ∈ G2

Alice receives CB = (u′,e′, v ′) ∈ G3 and hpB = (hp′
1,hp′

2) ∈ G2 from Bob
Alice computes

tB = H(B,A,u′,e′,hpB)

HB = u′α+tBβ(e′/pwA)γv ′δ

pHA = (hp′
1hp′

2
tA)rA

KA = pHA × HB

Only 5 group elements sent by each player in a 2-simultaneously flow protocol

CNRS/ENS/PSL/INRIA David Pointcheval 42/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 43/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 44/53

SPHF-Based PAKE: Protocol

BobAlice

hkA
$← HashKG(); hpA ← ProjKG(hkA)

`A = (A,B,hpA), rA
$← $,CA ← Enc`A(pwA, rA)

hpA,CA hkB
$← HashKG(); hpB ← ProjKG(hkB)

`B = (B,A,hpB), rB
$← $; CB ← Enc`

′
(pwB, rB)

hpB,CB

HB ← HashA(hkA,CB) HA ← HashB(hkB,CA)

pHA ← ProjHashA(hpB,CA, rA) pHB ← ProjHashB(hpA,CB, rB)

KA ← HB × pHA KB ← HA × pHB

UC-secure against static corruptions

CNRS/ENS/PSL/INRIA David Pointcheval 45/53

SPHF-Based PAKE: Simulation

BobAlice

hkA
$← HashKG(); hpA ← ProjKG(hkA)

`A = (A,B,hpA), rA
$← $,CA ← Enc`A(pwA, rA)

hpA,CA hkB
$← HashKG(); hpB ← ProjKG(hkB)

`B = (B,A,hpB), rB
$← $; CB ← Enc`

′
(pwB, rB)

hpB,CB

HB ← HashA(hkA,CB) HA ← HashB(hkB,CA)

pHA ← ProjHashA(hpB,CA, rA) pHB ← ProjHashB(hpA,CB, rB)

KA ← HB × pHA KB ← HA × pHB

NewSession: for U with U ′

hk $← HashKG(); hp ← ProjKG(hk)

` = (U,U ′,hp), r $← $,C ← Enc`(pw , r)

Flow hp′,C′

Oracle-Generated from U ′: hk ′,hp′ ← ProjKG(hk ′),C′ ← Enc`
′
(pw ′, r ′)

H← Hash(hk ,C′)

pH← ProjHash(hp′,C, r)//////////////////////////////// pH← Hash(hk ′,C)

K ← H× pH

Non Oracle-Generated: pw ′ ← Dec`
′
(C′) and TestPwd(pw ′)

H← Hash(hk ,C′)/////////////////////// H $← $ if incorrect guess

pH← ProjHash(hp′,C, r)

K ← H× pH//////////////// K $← $ if incorrect guess

Passwords known for corrupted players

CNRS/ENS/PSL/INRIA David Pointcheval 46/53

SPHF-Based PAKE: Simulation

BobAlice

hkA
$← HashKG(); hpA ← ProjKG(hkA)

`A = (A,B,hpA), rA
$← $,CA ← Enc`A(pwA, rA)

hpA,CA hkB
$← HashKG(); hpB ← ProjKG(hkB)

`B = (B,A,hpB), rB
$← $; CB ← Enc`

′
(pwB, rB)

hpB,CB

HB ← HashA(hkA,CB) HA ← HashB(hkB,CA)

pHA ← ProjHashA(hpB,CA, rA) pHB ← ProjHashB(hpA,CB, rB)

KA ← HB × pHA KB ← HA × pHB

Passwords known for corrupted players

NewSession: for U with U ′

hk $← HashKG(); hp ← ProjKG(hk)

` = (U,U ′,hp), r $← $,C ← Enc`(pw , r)////////////////////////////// C ← Enc`($, $)

Flow hp′,C′

Oracle-Generated from U ′: hk ′,hp′ ← ProjKG(hk ′),C′ ← Enc`
′
(pw ′, r ′)

H← Hash(hk ,C′)/////////////////////// H← $

pH← Hash(hk ′,C)///////////////////////// pH← H′, if pw ′ = pw ; pH $← $, if pw ′ 6= pw

K ← H× pH//////////////// Same $ as compatible partner, independent $ if incompatible partner

Non Oracle-Generated: pw ′ ← Dec`
′
(C′) and TestPwd(pw ′)

K $← $ if incorrect guess / possibly chosen by the adversary otherwise

CNRS/ENS/PSL/INRIA David Pointcheval 47/53

SPHF-Based PAKE: Simulation

BobAlice

hkA
$← HashKG(); hpA ← ProjKG(hkA)

`A = (A,B,hpA), rA
$← $,CA ← Enc`A(pwA, rA)

hpA,CA hkB
$← HashKG(); hpB ← ProjKG(hkB)

`B = (B,A,hpB), rB
$← $; CB ← Enc`

′
(pwB, rB)

hpB,CB

HB ← HashA(hkA,CB) HA ← HashB(hkB,CA)

pHA ← ProjHashA(hpB,CA, rA) pHB ← ProjHashB(hpA,CB, rB)

KA ← HB × pHA KB ← HA × pHB

NewSession: for U with U ′

hk $← HashKG(); hp ← ProjKG(hk)

` = (U,U ′,hp),C ← Enc`($, $)

Flow hp′,C′

Oracle-Generated from U ′: hk ′,hp′ ← ProjKG(hk ′),C′ ← Enc`
′
(pw ′, r ′)

Same $ as compatible partner, independent $ if incompatible partner// NewKey

Non Oracle-Generated: pw ′ ← Dec`
′
(C′) and TestPwd(pw ′)

K $← $ if incorrect guess / possibly chosen by the adversary otherwise// NewKey

CNRS/ENS/PSL/INRIA David Pointcheval 48/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 49/53

SPHF-Based PAKE: Protocol

BobAlice

hkA
$← HashKG(); hpA ← ProjKG(hkA)

`A = (A,B,hpA), rA
$← $,CA ← Com`A(pwA, rA)

hpA,CA hkB
$← HashKG(); hpB ← ProjKG(hkB)

`B = (B,A,hpB), rB
$← $; CB ← Com`′(pwB, rB)

hpB,CB

HB ← HashA(hkA,CB) HA ← HashB(hkB,CA)

pHA ← ProjHashA(hpB,CA, rA) pHB ← ProjHashB(hpA,CB, rB)

KA ← HB × pHA KB ← HA × pHB

With Com = Enc, if r required for ProjHash(hp,C, r):
=⇒ no security against adaptive corruptions

Extractable and equivocable commitment (i.e. UC-secure) and SPHF-friendly:
=⇒ security against adaptive corruptions

CNRS/ENS/PSL/INRIA David Pointcheval 50/53

SPHF-Friendly Commitments

Based on Cramer-Shoup (extractability) and Pedersen (equivocability)
Inspired from the Canetti-Fischlin commitment [Canetti-Fischlin – Crypto ’01]

=⇒ Commitment size linear in mk2 [Abdalla-Chevalier-P. – Crypto ’09]

Improvement with Haralambiev (equivocability) [Haralambiev – PhD Thesis ’11]

=⇒ Commitment size linear in mk [Abdalla-Benhamouda-Blazy-Chevalier-P. – Asiacrypt ’13]

SPHF-Friendly variant of FLM commitment [Fischlin-Libert-Manulis – Asiacrypt ’11]

=⇒ Commitment size linear in k [Blazy-Chevalier – Asiacrypt ’16]

m = length of the password k = security parameter

CNRS/ENS/PSL/INRIA David Pointcheval 51/53

Outline

Introduction

1 Game-based Security
Gennaro-Lindell PAKE
Groce-Katz PAKE
Improvements

2 Universal Composability
UC-Secure PAKE: Static Corruptions
UC-Secure PAKE: Adaptive Corruptions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 52/53

Conclusion

In the line of the KOY protocol [Katz-Ostrovsky-Yung – Crypto ’01]

the GL methodology widely used for PAKE [Gennaro–Lindell – Eurocrypt ’03]

BPR-secure protocols
UC-secure protocols for static corruptions [Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt ’05]

UC-secure protocols for adaptive corruptions [Abdalla-Chevalier-P. – Crypto 09]

One-Round protocols (BPR and UC) [Katz-Vaikuntanathan – TCC ’11]

UC-secure protocols for adaptive corruptions without erasures
[Abdalla-Benhamouda-P. – PKC ’17]

Equivalently, SPHF can be used for Oblivious Transfer

CNRS/ENS/PSL/INRIA David Pointcheval 53/53

