Hash Proof Systems and Password Protocols

lll - SPHF-based PAKE

David Pointcheval

CNRS, Ecole normale supérieure/PSL & INRIA

B V 4
[| inlarmutlts/mamemutlts
8th BIU Winter School — Key Exchange
February 2018
CNRS/ENS/PSL/INRIA David Pointcheval 1/53

Intuition of PAKE with a Commitment

We denote L,y the language of the commitments of pw
m Alice sends C4, a commitment of pw 4, to Bob (no leakage: hiding property)

m Bob can ask to verify that C4 € Low,:

m Bob sends hpg to Alice, and computes Ha < Hash(hkpg, Ca)
m Alice can compute pH, < ProjHash(hp, Ca, wa)

Ha=pHy < pwy = pwp

Security: If pwg # pw 4, Ha is perfectly unpredictable to Alice (smoothness)

For a non-trivial language, the commitment must be perfectly binding
e.g., ElIGamal encryption: C4 = (9", h" x gP"4)

CNRS/ENS/PSL/INRIA David Pointcheval 2/53

SPHF-based PAKE: First Attempt

m Alice sends C4 = (u=9",e = h" x gP"») to Bob
m Bob generates hk = («, 8) & Z, and sends hp + g*h®
a pPwg\B
[Bc.>b computes H + u*(e/gP"s) Ha = pH, = goT BT s pw, = pwg
m Alice computes pH «+ hp’
Security: If pwg # pw 4, H is perfectly unpredictable to Alice (smoothness)
Ca does not leak pw 4 under the DDH assumption

From the view of pH (Reveal-query), Bob can look for pw such that u®(e/gP")”? = pH
= Off-line dictionary attack!

CNRS/ENS/PSL/INRIA David Pointcheval 3/53

SPHF-based PAKE

We denote L, the language of the commitments of pw
m Alice sends C4, a commitment of pw 4, to Bob (no leakage: hiding property)
m Bob can ask to verify that Ca € Lpw,:

m Bob sends hpg to Alice, and computes Ha < Hash(hkpg, Ca)
m Alice can compute pH, < ProjHash(hp, Ca, wa)

Ha = pHy <= pwy = pwg

Bob must also prove his knowledge of pwg = pw, before having access to pH

m Either with an implicit proof [Gennaro-Lindell — Eurocrypt '03]
m Or with an explicit proof [Groce-Katz — CCS "10]
CNRS/ENS/PSL/INRIA David Pointcheval 4/53

[l Introduction

El Game-based Security
m Gennaro-Lindell PAKE
m Groce-Katz PAKE
m Improvements

Bl Universal Composability
m UC-Secure PAKE: Static Corruptions
m UC-Secure PAKE: Adaptive Corruptions

I Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 5/53

Bl Game-based Security
m Gennaro-Lindell PAKE
m Groce-Katz PAKE
m Improvements

CNRS/ENS/PSL/INRIA David Pointcheval 6/53

Bl Game-based Security
m Gennaro-Lindell PAKE

CNRS/ENS/PSL/INRIA David Pointcheval 7/53

SPHF-based PAKE: Implicit Proof

We denote £,/ Lp the languages of the commitments of pw,/pwg

m Alice sends C4, a commitment of pw 4, to Bob
m Bob can ask to verify that C4 € Lg:

m Bob sends hpg to Alice, and computes Ha <— Hashg(hkg, Ca)
m Alice can compute pH, < ProjHash,(hpg, Ca, wa)

m Bob sends Cg, a commitment of pwpg, to Alice

m Alice can ask to verify that Cg € La:

m Alice sends hp, to Bob, and computes Hg < Hasha(hka, Cg)
m Bob can compute pHg < ProjHashg(hp,, Cs, wg)

m Bob computes Kg < Ha & pHpg
m Alice computes K < pH, @ Hp
K =Ha®pHpg =pHy © Hg = Ka <= pw, = pwpg

CNRS/ENS/PSL/INRIA David Pointcheval 8/53

SPHF-based PAKE: Man-In-The-Middle Attack

X =G?and Lpy = {(9", h" x gP")}
m Alice sends C4 = (uag = g4, e4 = h"A x gP"4) to Bob
m Bob generates hkg = (ap, B8) < Zp and sends hpg + g*&h’
m Bob sends Cg = (ug = 9’8, eg = h'8 x gP"¥s) to Bob
m Alice generates hk = (aa, Ba) & Zp and sends hp, < gAh®4
m Alice computes Ky < ugrA - (eg/gP"2)" x hp3 } Kn = Ko <o pW s — pWs
m Bob computes Kg < hp? x u3e - (ea/gPWs)e
The adversary can do a man-in-the-middle attack:
m forwards everything
m excepted Cp to Alice, that is replaced by C; = Cg x (g, h)
Ky = ug’g™ - (eg/gP"4)?2h’" x hp} = Ka x g™ h"4 = Kg x hp,

CNRS/ENS/PSL/INRIA David Pointcheval 9/53

SPHF-based PAKE: Man-In-The-Middle Attack

From the man-in-the-middle attack:
m the adversary can ask for a Reveal-query to Alice
m the adversary can ask for a Test-query to Bob (the session ID’s are different)
m the adversary can check the relation between the keys to decide on b/

The commitment Cg must be non-malleable or confirmed to Bob

CNRS/ENS/PSL/INRIA David Pointcheval 10/53

GL-PAKE

[Gennaro-Lindell — Eurocrypt '03]

(A 4 N\

Alice Bob
rs & $; Ca + Enc(pwp, ra) Ca hkp £~ HashKG(); hpg + ProjKG(hkp)
h c HA — HashB(th, CA)
pH, « ProjHash4(hpg, Ca, ra) P “5 rg & $; Cg « Enc'(pwg, rg)
hka & HashKG(); hpy < ProjKG(hk a) .
Hg < Hash(hka, Cg) Pa ~ pHg + ProjHashg(hp,, Cs, r5)
KA(—HBXpHA KB<—pHB><HA
(. J (. J

Which are the security properties of the encryption schemes ?

CNRS/ENS/PSL/INRIA David Pointcheval 11/53

GL-PAKE: Security Proof

Send-queries to Bob: Oracle-Generated C, with pw, = pwg = pw

() (

Alice Bob
rs & $; Ca < Enc(pw, ra) — — G hkg & HashKG(); hpg «+ ProjKG(hkg)
K i/ HEsh(hk g/ ChlY

pH, « ProjHash(hpg, Ca, ra) +— fPs: Co | 1218 Oy K ERE W/ ts) Cg < Enc/($,9)
hk 4 & HashKG(); hpa < ProjKG(hk) h
Hp « Hash(hkg, Cg) —> —PA_ | oy i PHOIHASK(KBK/CBIE) PHg « H
Ka < Hg x pH, Ky HIpHE S MA Kg «— Ka
J |

m Oracle-generated Cp should imply oracle-generated hp,
m Correctness

m Oracle-generated hp, should confirm hpg: Correctness
m IND-CPA

CNRS/ENS/PSL/INRIA David Pointcheval 12/53

GL-PAKE: Security Proof

Send-queries to Bob: Oracle-Generated Cp with pw, # pwpg

(N\ (

Alice Bob
ra & $; Ca « Enc(pwp, ra) —> — G hkg ¢~ HashKG(); hpg « ProjKG(hkg)
Hjy k1 HESh (K 5i/C)

OH, < ProjHash ,(hpg, Ca, ra) le— <"P8:C8_| st g0 wBinepourry) Co < Enc'(5,$)
hk 5 &~ HashKG(); hp, < ProjkKG(hk) h
Hp < Hasha(hka, Cg) —> —PA o iy kil /PoHAS (P A O/)

Ka <~ Hp x pHu Ky IOy ML Ky $
|\ J | J
m Smoothness
m IND-CPA
CNRS/ENS/PSL/INRIA David Pointcheval 13/53

GL-PAKE: Security Proof

Send-queries to Bob: Non Oracle-Generated Cy

1 Bob
—Ca o Dec/(Ca) 2 pwg : STOPEWIN
hkg ¢ HashKG(); hpg « ProjKG(hkg)
hon G | HAHHESHAURKBICA)
P8 TB L b i85/ C Y HERGBUIE) Cg < Enc'($.9)

—PPa | oy ks PrisAS I LT)
KYHHOHYHME K < §

m The adversary must encrypt the correct password: password-guessing probability
m Smoothness
m IND-CPA

CNRS/ENS/PSL/INRIA David Pointcheval 14/53

GL-PAKE: Security Proof

Send-queries to Alice: Oracle-Generated Cg Oracle-Generated Cy

N\ (

Bob

ra & $; Ca + Enc(pwp, ra) e . | ke & HashKG(); hpg + ProjKG(hkg)
B4 PrOHaST(Mo O 4) [+PE=B— < Cg « ENc/(5,9)
hk 4 €~ HashKG(); hp, < ProjKG(hk) — —Pa it pw, = pwg, Kg — Ka
H iy I HASH 4K ALIO) If pw, # pwg, Kg < $
Ka &S KKHHHE R BH
J

Alice

|\

Non Oracle-Generated C,
Bob

r

—A +IDec/(Cp) = pwy : STOP&WIN
Smoothness how G | ke & HashKG(); hpg « ProjkG(hks)
P T8 oo Enc($,$)
—L KB «—$
(.

CNRS/ENS/PSL/INRIA David Pointcheval 15/53

GL-PAKE: Security Proof

Send-queries to Alice: Non Oracle-Generated Cpg

()

Alice

ra & $; Ca — Enc(pwy, ra) h40/4(3>

B4/ 44/ PHOHASH(oH O 14) |+—B=2—

hka & HashKG(); hp, « ProjKG(hk) |——PA—»
Dec/(Cg) = pw, : STOP&WIN

H iy KA HASH 4K AL CB)

Ka &S KW KHHE K PHY

J

m The adversary must encrypt the correct password: password-guessing probability
m Smoothness

CNRS/ENS/PSL/INRIA David Pointcheval 16/53

GL-PAKE: Security Proof

Oracle-Generated Cpg

Oracle-Generated Cy

N\ (

Alice Bob

Cp ENc($,$) HAIH S/ CH K ERG(OW IrA) —=A » hkg & HashKG(); hpg < ProjKG(hkg)
hka & HashKG(); hp, + ProjKG(hk 4) 28— he1C8 Enc'($,$)
Ko $— — P4, ¥ jpw{ /= pMrg If compatible oracles, Kg <— Ka
1f jpwi{/# Mg If incompatible oracles, Kg + $
|\

(. J

Non Oracle-Generated Cg

J

Non Oracle-Generated Cy
Bob)

Ca ¢ ENC(S.8) Ty IHSCHMHIBRC(BWHIA) —> ——A—» DEG(CA)/L b4/ /STORBWIN Dec(Ca) in P
hkg & HashKG(); hpg + ProjKG(hkg)

Alice) f

hka & HashKG(); hp, « ProjKG(hk) |«Pe-C8_ - Cs + Enc/(5.5)
Dec'(Ca)in P DE6(Ch)L pw)/STOPEWIN | —> —PA oKy 8
KA «—$
|\ J \\§ J

m IND-CCA + No abort anymore: difference if the guesses are correct

CNRS/ENS/PSL/INRIA David Pointcheval 17/53

GL-PAKE: Security Proof

To be more precise, in the final game
m The Execute-queries just work as Send-queries with oracle-generated flows
m The actual passwords are not set at the beginning, but randomly chosen at the end
m WIN = a random password (with Player ID) is in P: the probability is qs/N
Encryption schemes:
m (Enc, Dec): SPHF-friendly L-IND-CCA encryption scheme ¢ = (A, B, vk)
— where vk is the verification key of a OT-Signature
— Labeled Cramer-Shoup Encryption
m (Enc’, Dec’): SPHF-friendly IND-CPA encryption scheme
— ElGamal Encryption
m (Cp, hpg, Cg, hp,) signed by A: OT-signature (sk, vk)
—> an oracle-generated C4 implies the same oracle-generated hp,,
and confirms the received (hpg, Cg)
CNRS/ENS/PSL/INRIA David Pointcheval 18/53

Labeled Cramer-Shoup Ciphertext Languages

Cramer-Shoup Encryption Scheme is an L-IND-CCA PKE:
C=(u =9}, uo=95e=hmv=_(cd))with t = H(¢, uy, Up, €)

C is a CS ciphertext of pw iff (uy, u2, /pw, v) is an r-th power of (g1, g2, h, cd?)

HashKG() : hk = (a, 8,7,0) & Z§ ProjKG(hk, C) : hp = g5 g5 h"(cd')’?
Hash(hk,C) : H = u?ug(e/pw)Vv‘s ProjHash(hp, C,r) : pH = hp"
This is not a CS-SPHF, hence the GL relaxation [Gennaro-Lindell — Eurocrypt '03]
CNRS/ENS/PSL/INRIA David Pointcheval 19/53

GL-PAKE: Complete Protocol

[Gennaro-Lindell — Eurocrypt '03]

(Alice) (Bob |
(sk, vk) & SignKG(); ¢ = (A, B, vk)
ra < $;Ca < CS'(pwp, ra) vk, Ca
hkg <~ HashKG(); hpg «+ ProjKG(hkg, Ca)
h C HA — HashB(th, CA)
Ps: L rg & $; Cg «+ EG(pwg,)
pH,4 < ProjHash 4(hpg, Ca, ra)
hk 4 & HashKG(); hp, < ProjKG(hk 4, Cg)
HB — HashA(hkA, CB) hpA y
Y « Sign(sk, (Ca, hpg, Cs, hpa)) :
Verif(vk, (Ca, hpg, Cg, hpa), X)?
pHp < ProjHashg(hp,, Cs, ra)
Ka < Hp x pHy Kp < Ha xpHg
| < S ’

A key confirmation can be added to the third flow: Explicit Authentication of Alice

CNRS/ENS/PSL/INRIA David Pointcheval 20/53

Bl Game-based Security

m Groce-Katz PAKE

CNRS/ENS/PSL/INRIA David Pointcheval 21/53

SPHF-based PAKE: Explicit Proof

We denote £,/ Lp the languages of the commitments C of pw,/pwg

m Alice sends C,4, a commitment of pw 4 with random coins r4, to Bob
m Bob can ask to verify that C4 € Lg:

m Bob sends hpg to Alice, and computes Ha < Hashg(hkg, Ca)
m Alice can compute pH, < ProjHash(hp, Ca, ra)

m Alice parses pH, as rg||Ka
m Bob parse Hy as rg||Ks
m Bob sends Cg, a commitment of pwg with random coins rg, to Alice
m Alice can recompute the commitment Cj of pw 4 with random coins rg
and check whether C, = Cs
For a non-trivial language, the commitment C4 must be perfectly binding

To avoid false positive on C; z Cg, the commitment Cg must be perfectly binding
e.g., Public-Key Encryption Scheme

CNRS/ENS/PSL/INRIA David Pointcheval 22/53

GK-PAKE

[Groce-Katz — CCS °10]

(A 4 N\

Alice Bob
rs & $; Ca + Enc(pwp, ra) Ca hkp £~ HashKG(); hpg + ProjKG(hkp)
rBHKB = HA — Hash(th, CA)
hpg, Cs

rgl|Ka = pH, < ProjHash(hpg, Ca, ra)
Cp «+ Enc’(pwé\, rg)
C/B =Cpg

Cg + ENc'(pwg, 18)

|\ |\ J

Which are the security properties of the encryption schemes ?

CNRS/ENS/PSL/INRIA David Pointcheval 23/53

GK-PAKE: Security Proof

Send-query to Alice: Oracle-Generated Cg with pwg = pw, = pw

Alice) (Bob
ra & Ca Enclow,ra) —A + . hkg & HashKG(); hog « ProiKG(hks)
o, € r5|| K < Hash(hkg, Cp)
Ka + Kg FYlKH H4/ RYOHESH(o/ G/ taY (+—E—E— <~—— Cg « Enc'(pw,)
Cl« Cp CYMHER pWr/rY)
OK CyH /04
J

m Cp must be specific to this execution
m Oracle-Generated Cg must imply Oracle-Generated hpg
m Correctness

CNRS/ENS/PSL/INRIA David Pointcheval 24/53

GK-PAKE: Security Proof

Send-query to Alice: Oracle-Generated Cg with pwg # pw 4

Alice) (Bob
ra & $; Ca < Enc(pwp, ra) L Ca — hkg & HashKG(); hpg + ProjKG(hkg)
h C rBHKB — HashB(th, CA)
P K M IPHOTHASI (g Ay |+ DB =B <~— Cg « Enc/(pwp, r5)
Ol k1 1BNGI(DW 4L i)
NOK G/ /04
J

B pwy # pwg = Cg # Cp

CNRS/ENS/PSL/INRIA David Pointcheval 25/53

GK-PAKE: Security Proof

Send-query to Alice: Non Oracle-Generated Cpg

Alice)
ra <i $; CA - Enc(pWA7 rA) I
A 4 POHASH (B G)y [+ 0B: CB

Dec'(Cg) = pw, : STOP&WIN (/44 Ehe (piwyj Y
NOK Gl /04
J

m Cp specific to this execution, and non-malleable
m The adversary must encrypt the correct password: password-guessing probability
m Dec/(Cp) # pw, = Cp # Cs

CNRS/ENS/PSL/INRIA David Pointcheval 26/53

GK-PAKE: Security Proof

Send-query to Alice: Oracle-Generated Cpg

-

Alice) Bob

Ca« ENc(S,S) Hi/BLSH O BRE(BWALIA) —A—~ ——» hkg & HashKG(); hpg « ProjKG(hkg)
h c rBHKB — HashB(th, CA)
If pw, = pwp, Ka « Kg, OK [« PB-“B_ « | Cg < Enc/(pwp, rg)
If pw, # pwg, NOK
J

|\

Send-query to Alice: Non Oracle-Generated Cg

Alice)
Ca ENC(S.5) H/dL/SHCH M/BRG(DW gAY | —CA— IND-CPA

h
Dec'(Cg) = pw 4 : STOP&WIN | Pe:Ca
NOK

J

CNRS/ENS/PSL/INRIA David Pointcheval 27/53

GK-PAKE: Security Proof

Send-query to Bob: Oracle-Generated Cy

N\ (

Bob

Ca < Enc($,$) — —A _» hkg & HashKG(); hpg « ProjKG(hkpg)
hoe. C PHI K KA HASH (K BLICK) Kg < $

If pwy = pwp, Ka + Kg, OK [«—— Pe:>B_| CH KL BACI(pWHIIE) Cp + Enc'($.9)

If pw, # pwg, NOK

J

Alice

m Correctness + IND-CCA

CNRS/ENS/PSL/INRIA David Pointcheval 28/53

GK-PAKE: Security Proof

Send-query to Bob: Non Oracle-Generated Cpy

-

Bob
Ca

— YA hkg & HashKG(); hpg < ProjKG(hkg)
Dec(Ca) = pwg : STOP&WIN
P— HHIKE kT HASHB(HK IO Kg & $
~Pe:B | oy Brel(pwy/rs) Cs « Enc'($,$)
(.

m The adversary must encrypt the correct password: password-guessing probability
m Smoothness + IND-CCA

CNRS/ENS/PSL/INRIA David Pointcheval 29/53

GK-PAKE: Security Proof

Oracle-Generated Cg Oracle-Generated Cp

-

Alice Bob
Cat Enc($,5)—» —94 . hky & HashKG(); hpg « ProjKG(hkg)
hom. C Kg & $
If compatible oracles If pw/{ /= /b4, Ka < Kg, OK P8 T8 <~— Cg + Enc'($,9)
If incompatible oracles If/joM/4/#/pW s, NOK
. J |\ J
Non Oracle-Generated Cpg Non Oracle-Generated Cy
f Alice (Bob)
Ca < Enc($,9$) — G hkg & HashKG(); hpg « ProjkKG(hkp)
DEG(CL) L by STOREWIN - Dec(Cp) in P
hoe. C Kg & $
Dec'(Cg) in P DECNCBY A pw)/STOPEGWIN [+ PE-2B_ <1 Cg+ Enc/($,$)
NOK
. J |\ J

m No abort anymore: difference if the guesses are correct

CNRS/ENS/PSL/INRIA David Pointcheval 30/53

GK-PAKE: Security Proof

To be more precise, in the final game
m The Execute-queries just work as Send-queries with oracle-generated flows
m The actual passwords are not set at the beginning, but randomly chosen at the end
m WIN = a random password (with Player ID) is in P: the probability is qs/N
Encryption schemes:

m (Enc, Dec): SPHF-friendly IND-CPA encryption scheme
— ElGamal Encryption

m (Enc’, Dec’): L-IND-CCA encryption scheme: ¢' = (A, B, Ca, hpg)
= this makes Cpg specific to this execution because of Cy
—> an oracle-generated Cg implies the same oracle-generated hpg
— Labeled Cramer-Shoup Encryption

CNRS/ENS/PSL/INRIA David Pointcheval 31/53

GK-PAKE

[Groce-Katz — CCS °10]

m Alice generates and sends C = (U < g2, e « hagP"s) € G2
m Bob
m generates hkg = (o,) and hpg = g*h®
m computes rg||Kg = KDF(u® - (e/gP"s)?)
m generates Cp = (U = g%, Uz = g2, e = h'8gP"¥s v = (cd')"s),
with t = H(A, B, Ca, hpg, U1, Us, €)
m sends (hpg, Cg) € G
m Alice
m computes rg||Ka = KDF (hp
m generates Cp = (U} = 9, Uy = g,°, e = hegP¥a v/ = (cd')'e,
with ¢ = (A, B, Ca, hpg, U, , U, €')
m aborts if Cg # Cp

A key confirmation can be added to the second flow: Explicit Authentication of Bob

CNRS/ENS/PSL/INRIA David Pointcheval 32/53

Bl Game-based Security

m Improvements

CNRS/ENS/PSL/INRIA David Pointcheval 33/53

Better Efficiency

IND-PCA

Security proofs: WIN = a random password (with Player ID) is in P

m One either decrypts every C into pw and checks whether pw € P or not
— need of decryption oracle

m Or one checks for every pw € P whether C encrypts pw for some ciphertext C
— need of plaintext-checking oracle

The previous proofs work for IND-PCA encryption schemes, instead of IND-CCA

KV-SPHF

Number of flows in GL-PAKE: 3 flows because hp depends on/after x
With hp possibly sent before x: 1-round protocol with KV-SPHF

CNRS/ENS/PSL/INRIA David Pointcheval 34/53

IND-PCA Encryption from KEM

KeyGen() : (sk,pk) ¢ EncapskKG()

hk &- HashKG(), hp < ProjKG(hk)
sk’ = (sk, hk), pk’ = (pk, hp)

Enc(pk’ = (pk, hp),m) : (K, c) & Encaps(pk,r),e < m+ K
x=(K,c),w=r
t =*H(c,e),v = ProjHash(hp, x, t, w)
C=(ceVv)

Dec(sk’ = (sk, hk),C = (c,e,v)): K « Decaps(sk,c),m+ e— K

x=(K,c),t < H(c,e), V' + Hash(hk, x,t)
If (v # v) = Reject
Else Return m

CNRS/ENS/PSL/INRIA David Pointcheval 35/53

IND-PCA Security Proof

’ e N

o pk_= (pk, hp) (sk, pk) + EncapskG(), hk &~ HashKG(), hp < ProjKG(hk)

mo,m €G mo, M b (0.1}

KILIKLIG) B Ereaps(pk/ts) x = ($.¢). (K. c) & Encaps(pk,[5)

BHIKINIMY e G

c t = H(c, e); VIK/PHOJHASK(RBI AL /) v « Hash(hk, x. 1)
C«+ (c,e,v)

b/€{0,1} b b/;b

~— - J
PCA(sk',m’, C') : KI/H DeGaps(8K./¢l), int] 41 18] 1H K
SKIE(SK IR sk’ = (n) &' <= (6 —m',¢), ' « H(c,€) C'#C=(xl)#(x,1)
c = (c, e,V v « Hash(hk, x/, t)
v £ Vot [# /M —> Reject
Smoothness (soundness): v/ = v/ — € — n" valid key = n7 valid plaintext
+ 2-Universal Smoothness (simulation-soundness)
Correctness + Indistinguishability/Hard Subset Membership = Pr[b’ = b] = %

CNRS/ENS/PSL/INRIA David Pointcheval 36/53

SCS: Short Cramer-Shoup

[Abdalla-Benhamouda-P. — PKC ’15]

KeyGen() : sk = (s, hky = (x1,X2), hko = (y1,)2)) < 73
pk = (h < g, hps < gy g3°, hp, < 97" 93°)
Enc(pk,m): r& Zgu=gj,e« h xm
v = (hp; x hp,')", with t — H(u, e)
Dec(sk, (u,e,v)): m=e/us,v= v+t x (e/mye*2, with t + H(u, €)

Theorem (IND-PCA Security)

This SCS encryption scheme is IND-PCA under the DDH assumption

CNRS/ENS/PSL/INRIA David Pointcheval 37/53

GK-SPOKE (Simple Password-Only Key Exchange)

[Abdalla-Benhamouda-P. — PKC ’15]

m Alice generates and sends C = (U < g2, e « hagP"s) € G2
m Bob
m generates hkg = (o,) and hpg = g*h®
m computes rg||Kg = KDF(u® - (e/gP"s)?)
m generates Cg = (U= g{?, e = g gP"s, v = (cd')"®),
with { = H(A, B, Ca, hpg, u, €)
m sends (hpg, Cg) € G*
m Alice
m computes rg||Ka = KDF (hp
m generates Cy = (U = g, € = g2gP"s, v/ = (cd")'s,
with t' = H(A, B, Ca, hpg, U', €')
m aborts if Cg # Cp

Instead of 7 group elements, only 6 group elements with a 2-flow protocol

CNRS/ENS/PSL/INRIA David Pointcheval 38/53

GL-PAKE: Reminder of the Idea

[Gennaro-Lindell — Eurocrypt '03]

m Alice sends C4, a commitment of pw,, to Bob
m Bob can ask to verify that C4 € Lg (language of commitments of pwp):

m Bob sends hpg to Alice, and computes H4 <— Hashg(hkg, Ca)
m Alice can compute pH, < ProjHash,(hpg, Ca, wa)

Bob

m Bob sends Cg, a commitment of pwg, to Alice
m Alice can ask to verify that Cg € L4 (language of commitments of pw 4):

m Alice sends hp, to Bob, and computes Hg < Hasha(hka, Cg)
m Bob can compute pHg < ProjHashg(hp,, Cs, ws)

Kg=Ha @ pHg =pHy ®Hp = Ky <= pw, = pwpg

CNRS/ENS/PSL/INRIA David Pointcheval 39/53

KV-PAKE: Katz-Vaikuntanathan’s Idea

[Katz-Vaikuntanathan — TCC ’11]

Both are sent in parallel:
m Alice sends Cga, hp, to Bob
m Bob sends Cg, hpg to Alice
Upon reception of the partner’s flow:
m Alice computes pH, < ProjHash(hpg, Ca, wa) and Hg < Hasha(hka, Cp)
m Bob computes pHg « ProjHashg(hp,4, Cg, wg) and Ha < Hashg(hkg, Ca)

Then
Ke=Ha®pHg=pHy & Hp = Ka

CNRS/ENS/PSL/INRIA David Pointcheval 40/53

KV Smoothness

[Katz-Vaikuntanathan — TCC ’11]

KV-Smoothness

Vf — X\L, with the probability space hk ¢ HashKG(), hp « ProjKG(hk)
{(hp,H) |H « Hash(hk, f(hp))} ~ {(hp,H) [H & M}

Given hp, no adversary can find x € \ L for which it can distinguish Hash(hk, x)

KV-SPHF for SCS Ciphertexts of m [Abdalla-Benhamouda-P. — PKC *15]

c=(u=g",e=hmyv=(cd)) with t = H(u, e)

hk = (o, 8,7, 9) hp = (hpy < g*h"c’, hp, + g°d°)
Hash(hk, c) = u**%(e/m)7v® = (hp,hpb)" = ProjHash(hp, c, r)

CNRS/ENS/PSL/INRIA David Pointcheval 41/53

KV-SPOKE (Simple Password-Only Key Exchange)

[Abdalla-Benhamouda-P. — PKC *15]

m Alice generates
m hks = (o, ,7,6) and hp, = (hp; < g*h"c®, hp, + g°d°)
B Cyp= (U< 9" e+ hagPa v « (cd™)) for tg = H(A, B, u, e, hp,)
m Alice sends C4 € G3 and hp, € G2
m Alice receives Cg = (U/, €, V') € G® and hpg = (hp}, hp,) € G? from Bob
m Alice computes
m tg=H(B,A U, €, hpg)
m Hpg = v (e Jpw,) v'°
m pH, = (hp} hp,")™
|] KA = pHA X HB

Only 5 group elements sent by each player in a 2-simultaneously flow protocol

CNRS/ENS/PSL/INRIA David Pointcheval 42/53

Bl Universal Composability
m UC-Secure PAKE: Static Corruptions
m UC-Secure PAKE: Adaptive Corruptions

CNRS/ENS/PSL/INRIA David Pointcheval 43/53

Bl Universal Composability
m UC-Secure PAKE: Static Corruptions

CNRS/ENS/PSL/INRIA David Pointcheval 44/53

SPHF-Based PAKE: Protocol

(Alice) (Bob)
hk 4 &~ HashKG(); hp, «+ ProjKG(hk
lh=(A § hpa), ra & 1(;)0:) <A— Enc“j(pW(A rﬁ Mpa, Ca | hkp &~ HashKG(); hpg + ProjKG(hkpg)
o 7 7 7 hps, Ca (g = (B, A, hpg) r’B &85- Cs + Enc’ (pwg, rg)
HB — HashA(hkA, CB) HA — HashB(th, CA)
pH, < ProjHash 4(hpg, Ca, ra) pHp « ProjHashg(hp,, Cg,)
KA(—HBXpHA KB<—HA><pHB
(. J (& J

UC-secure against static corruptions

CNRS/ENS/PSL/INRIA David Pointcheval 45/53

SPHF-Based PAKE: Simulation

. . H !

— N - . NewSession: for U with U
hka & HashKG(); hp, < ProjKG(hk) |—2A: g hkg & HashKG(); hpg < ProjKG(hks)

£a= (A, B.hps). 14 & $. Cp — Enc'a(pwy, ra) e R8E '

wlaman e mions| W hKk < HashKG(); hp + ProjKG(hk)
Hg « Hasha(hka, Ca) Hya « Hashg(hks, Ca)
pH4 « ProjHash,(hpg. Ca. ra) pHp « ProjHashg(hp,. Cp. 1)

Kp — Hg x pH, L Kg — Ha x pHg

Flow hp/, C'
m Oracle-Generated from U': hk’, hp' « ProjKG(hk'), C' + Enc’ (pw’, r')
m H < Hash(hk, C')
m P 4 RrojHASH(bl [0)r) pH «+ Hash(hk', C)
m K« HxpH

m /= (U U, hp),r&$,C« Encl(pw,r)

Passwords known for corrupted players

m Non Oracle-Generated: pw’ + Dec‘f’(C’) and TestPwd(pw’)

m M/ Mash(kk/Gl) H & $if incorrect guess
m pH « ProjHash(hp’, C, r)
m KIHMHIYPH K & $if incorrect guess

CNRS/ENS/PSL/INRIA David Pointcheval 46/53

SPHF-Based PAKE: Simulation

Alice A (

hk a ¢ HashKG(); hps + ProjKG(hk 4) Ah"ﬁ"g hkg & HashKG(); hpg < ProjKG(hks)
la=(AB.Ipa),ra & $,Ca + ENCA(pw,, ra) |[€LB=E (5 — (B, A hpg). 18 & $: Cg « Enc’ (pwp, rg) Passwords known for Corrupted players
Hg « Hasha(hka, Cg) Ha + Hashg(hkg. Ca)
pH,4 + ProjHash4(hpg. Ca, ra) pHp + ProjHashg(hp,. Cs. 1)

Ka < Hg x pHa

Bob

Kg < Ha x pHg
\

B NewSession: for U with U/
m hk & HashKG(); hp < ProjKG(hk)

m (= (U, U, hp), HELBLIO kL BAG (BWLlI) C < Enc'($,9)
m Flow hp', C’

m Oracle-Generated from U’: hk’, hp' + ProjKG(hk'), C' + Enc’ (pw', 1)
B M/ MBSR(HK/GI) H <« $

W pW L HESH(HK Q) pH « H', if pw’ = pw; pH & 8, if pw’ # pw

B K/HIH/4PH Same $ as compatible partner, independent $ if incompatible partner
m Non Oracle-Generated: pw’ « Decel(C’) and TestPwd(pw’)

m K & §if incorrect guess / possibly chosen by the adversary otherwise

CNRS/ENS/PSL/INRIA David Pointcheval 47/53

SPHF-Based PAKE: Simulation

Alice A (
hky & HashKG i 1Ds: Cry,
A ¢ Hasl (); hpa + ProjKG(hk)
La=(A.B.hpa). 1a & 5, Ca < ENC'A(pwp, 1) | P2-CE
Hg « Hasha(hks, Cg)
pH,4 « ProjHash,(hpg, Ca. ra)
K Ho xpHy |

Bob

hkg ¢ HashKG(); hpg « ProjKG(hkg)

(g = (B, A, hpg), 1 & $; Cg « Enc’ (pwg, 1)
Hy ¢ Hashp(hkg. Ca)
pHg « ProjHashg(hp,. Cg. rs)

| Ko HaxPHs

m NewSession: for U with U’
m hk & HashKG(); hp « ProjKG(hk)
m (= (U,U, hp),C + Enc‘($,9)
m Flow hp', C’
m Oracle-Generated from U': hk’, hp' + ProjKG(hk'), C' + Enc’ (ow’, r’)
B Sattie/ § /48 ompatible/partner/ independent ¥ if incompativle pamner NewKey
m Non Oracle-Generated: pw’ « Deczl(C’) and TestPwd(pw’)

WK/ BL$/i InGOMeOY Guess 1 possibly (hasen by/ihe /adversary/ otieiiise Newkey

CNRS/ENS/PSL/INRIA David Pointcheval 48/53

Bl Universal Composability

m UC-Secure PAKE: Adaptive Corruptions

CNRS/ENS/PSL/INRIA David Pointcheval 49/53

SPHF-Based PAKE: Protocol

(Alice) (Bob)

hk 4 & HashKG(); hp, < ProjKG(hk
lh=(A BAhpA) ra & $()CAp: Com“](pW(A rﬁ Moa.Ca , hkp £~ HashKG(); hpg + ProjKG(hkp)
. 7 7 hpe. Cs (g = (B, A, hpg) r’B &%, Cg + Com” (pwp, rB)
Hp + HashA(hkA, CB) Ha + HashB(th, CA)
PH4 < ProjHasha(hpg, Ca, ra) pHp « ProjHashg(hp,, Cs,)
KA(—HBXpHA KB<—HA><pHB
| J \\ J

With Com = Enc, if r required for ProjHash(hp, C, r):
= no security against adaptive corruptions

Extractable and equivocable commitment (i.e. UC-secure) and SPHF-friendly:
— security against adaptive corruptions

CNRS/ENS/PSL/INRIA David Pointcheval 50/53

SPHF-Friendly Commitments

m Based on Cramer-Shoup (extractability) and Pedersen (equivocability)

Inspired from the Canetti-Fischlin commitment [Canetti-Fischlin — Crypto '01]

— Commitment size linear in mk?2 [Abdalla-Chevalier-P. — Crypto '09]

m Improvement with Haralambiev (equivocability) [Haralambiev — PhD Thesis *11]

— Commitment size linear in mk [Abdalla-Benhamouda-Blazy-Chevalier-P. — Asiacrypt 13]

m SPHF-Friendly variant of FLM commitment [Fischlin-Libert-Manulis — Asiacrypt '11]

= Commitment size linear in k [Blazy-Chevalier — Asiacrypt '16]
m = length of the password k = security parameter

CNRS/ENS/PSL/INRIA David Pointcheval 51/53

B Introduction

Bl Game-based Security
m Gennaro-Lindell PAKE
m Groce-Katz PAKE
m Improvements

Bl Universal Composability
m UC-Secure PAKE: Static Corruptions
m UC-Secure PAKE: Adaptive Corruptions

I Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 52/53

Conclusion
In the line of the KOY protocol [Katz-Ostrovsky-Yung — Crypto '01]
the GL methodology widely used for PAKE [Gennaro-Lindell — Eurocrypt ‘03]

m BPR-secure protocols

m UC-secure protocols for static corruptions [Canetti-Halevi-Katz-Lindell-MacKenzie — Eurocrypt '05]
m UC-secure protocols for adaptive corruptions [Abdalla-Chevalier-P. — Crypto 09]
m One-Round protocols (BPR and UC) [Katz-Vaikuntanathan — TCC "11]

m UC-secure protocols for adaptive corruptions without erasures
[Abdalla-Benhamouda-P. — PKC '17]

Equivalently, SPHF can be used for Oblivious Transfer

CNRS/ENS/PSL/INRIA David Pointcheval 53/53

