

II – Password-Authenticated Key Exchange

David Pointcheval

CNRS, Ecole normale supérieure/PSL & INRIA

8th BIU Winter School – Key Exchange
February 2018

CNRS/ENS/PSL/INRIA

David Pointcheval

1/41

Diffie-Hellman Key Exchange

Diffie-Hellman protocol: allows two parties to agree on a common session key:
In a finite cyclic group \mathcal{G} , of prime order p , with a generator g

$$\begin{array}{ccc} x \xleftarrow{\$} \mathbb{Z}_p, X \leftarrow g^x & \xrightarrow{X} & y \xleftarrow{\$} \mathbb{Z}_p, Y \leftarrow g^y \\ K \leftarrow Y^x = g^{xy} & \xleftarrow{Y} & K \leftarrow X^y = g^{xy} \end{array}$$

No authentication provided

Authenticated Key Exchange

Semantic security / Implicit Authentication:

the session key should be indistinguishable from a random string
to all except the expected players

CNRS/ENS/PSL/INRIA

David Pointcheval

2/41

Authentication Techniques

Asymmetric technique

- Assume the existence of a public-key infrastructure
- Each party holds a pair of secret and public keys

Symmetric technique

- Users share a random secret key

Password-based technique

- Users share a random *low-entropy* secret: **password**

Electronic Passport

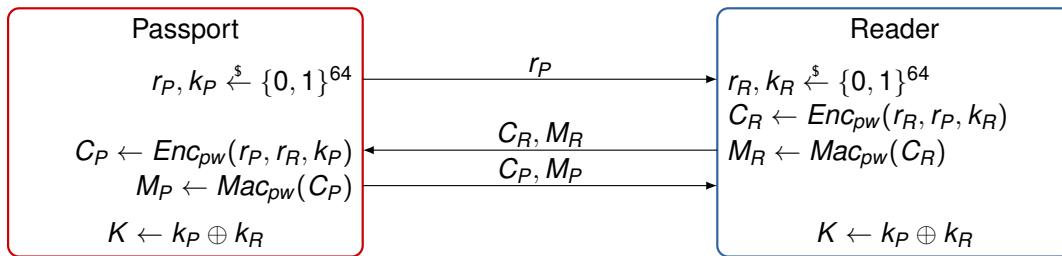
Since 1998, some passports contain digital information on a chip
Standards specified by ICAO (International Civil Aviation Organization)

In 2004, security introduced:

- encrypted communication between the chip and the reader
- access control: BAC (Basic Access Control)

The **shared secret** is on the MRZ
(Machine Readable Zone)

It has low entropy:


at most 72 bits,
but actually approx. 40

⇒ low-entropy shared secret: a **password** *pw*

BAC: Basic Access Control

The symmetric encryption and MAC keys are deterministically derived from *pw*

From a pair (C_R, M_R) , one can make an exhaustive search
on the password *pw* to check the validity of the Mac M_R
After a few eavesdroppings only : **password recovery**

What can we expect from a low-entropy secret?

Off-line Dictionary Attacks

As in the previous scenario, after having

- eavesdropped some (possibly many) transcripts
- interacted (quite a few times) with players

the adversary accumulates enough information
to take the real password apart from the dictionary

⇒ Efficient password-recovery after **off-line exhaustive search**

For the BAC: quite a few **passive eavesdroppings** are enough to recover the password!

How many **active interactions** could one enforce?

On-line Dictionary Attacks

On-line Dictionary Attacks

- The adversary interacts with a player, trying a password
- In case of success: it has guessed the password
- In case of failure: it tries again with another password

In Practice

- This attack is unavoidable
- If the failures for a target user can be detected the impact can be limited by various techniques
- If the failures cannot be detected (anonymity, no check, . . .) the impact can be dramatic

Outline

■ Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

■ Conclusion

Outline

■ Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

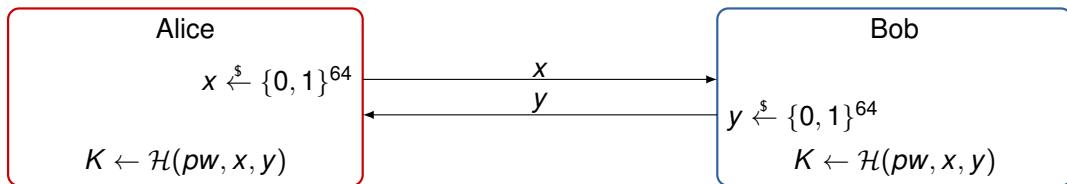
- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

■ Conclusion

Outline

Introduction

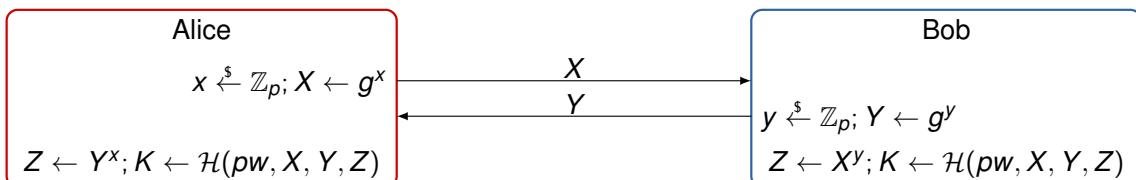
1 Security Notions


- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

Conclusion


First Attempt

Seems better than BAC: no information leaks about K , so no leakage about pw either!
But K will be later used: $c = E_K(m)$

any information about m leaks about K , and leaks on pw ...
⇒ The security model has to deal with information leakage about K

Second Attempt

Passive eavesdropping, even with leakage of K : secure under **CDH**!
But the adversary can try to impersonate Bob, and know Z ...
⇒ The security model has to deal with active attacks

Security Models

- Game-based Security
 - Find-then-Guess
 - Real-or-Random
- Simulation-based Security
- Universal Composability

[Bellare-P-Rogaway – Eurocrypt '00]

[Abdalla-Fouque-P. – PKC '05]

[Boyko-MacKenzie-Patel – Eurocrypt '00]

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

Where

- The adversary controls the network: it can create, alter, delete, duplicate messages
- Users can participate in concurrent executions of the protocol

On-line dictionary attack should be the best attack

⇒ No adversary should win with probability greater than q_S/N
where $q_S = \#$ Active Sessions and $N = \#$ Dictionary

Outline

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

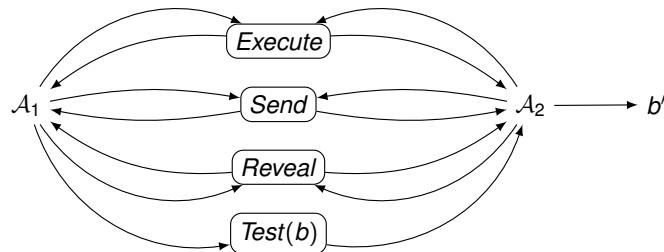
Conclusion

Game-based Security

[Bellare-P-Rogaway – Eurocrypt '00]

The adversary \mathcal{A} interacts with oracles:

- $\text{Execute}(A^i, B^j)$
 \mathcal{A} gets the transcript of an execution between A and B
⇒ Passive attacks (eavesdropping)
- $\text{Send}(U^i, m)$
 \mathcal{A} sends the message m to the instance U^i
⇒ Active attacks against U^i (active sessions)
- $\text{Reveal}(U^i)$
 \mathcal{A} gets the session key established by U^i and its partner
⇒ Leakage of the session key, due to a misuse
- $\text{Test}(U^i)$ a random bit b is chosen
 - If $b = 0$, \mathcal{A} gets the session key (i.e., $\text{Reveal}(U^i)$)
 - If $b = 1$, \mathcal{A} gets a random key


Security Game: Find-then-Guess

Secrecy of the key: output b' , the guess of the bit b involved in the Test-query

Is the obtained key real or random?

Constraint: no *Test*-query on a trivially known key

i.e., key already revealed through the instance or its partner

$$Adv^{FtG}(\mathcal{A}) = 2 \times \Pr[b' = b] - 1 \leq \frac{q_S}{N} + negl()$$

Freshness and Partnering

■ Partners

Two players are **partners** if they share the same **Session ID**

Where SID should model ideal executions:

- two players with same SID's and same *pw*'s conclude with the same session key
- two players with different SID's or different *pw*'s conclude with independent keys

■ Freshness

A key or a player is **fresh** if none of the key/player or the partner's key/player has been revealed/tested

Only **fresh** keys/players can be revealed/tested

Security Notions: Forward Secrecy

■ Semantic Security

The **Find-then-Guess** game models the **secrecy** of the key

⇒ the session key is unknown to the other players

- What about this secrecy after the corruption of a player?
- What about the knowledge of the two players?

■ Forward Secrecy

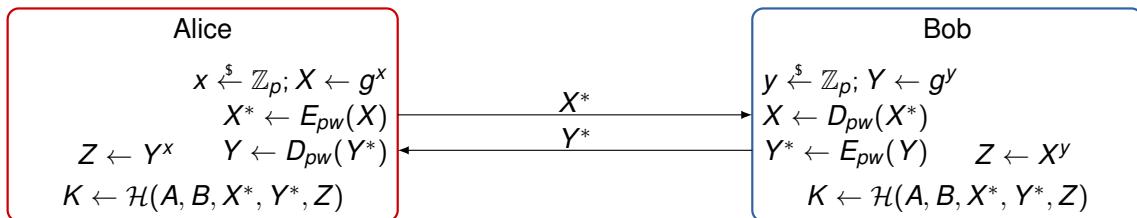
- An additional oracle: $Corrupt(U)$ provides the password *pw* of the player U to the adversary
- A new constraint: For any $Test(U^i)$, player U was not corrupted when U^i was involved in its session

Outline

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

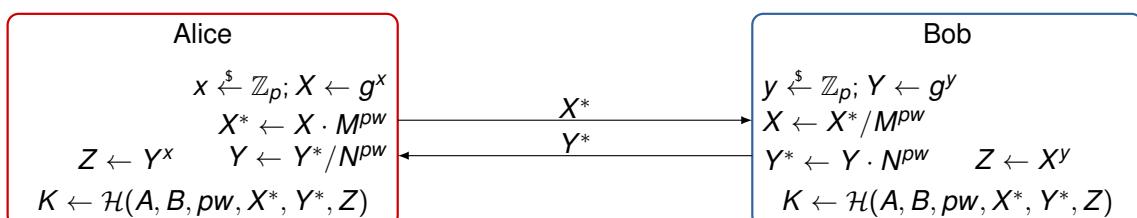

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

Conclusion

Encrypted Key Exchange

[Bellvin-Merritt – S&P '92]


Semantically Secure with Forward Secrecy if

- (E, D) is an Ideal Cipher onto $\mathbb{G} = \langle g \rangle$
- \mathcal{H} is a Random Oracle

[Bellare-P.-Rogaway – Eurocrypt '00]

Simple PAKE

[Abdalla-P. – CT-RSA '05]

Semantically Secure if

- $\mathbf{CDH}(M, N)$ hard to break
- \mathcal{H} is a Random Oracle

Outline

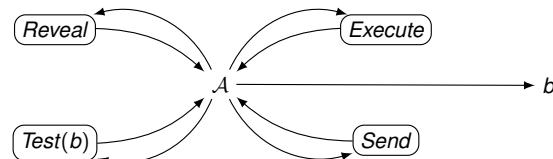
Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples


Conclusion

Security Game: Real-or-Random

[Abdalla-Fouque-P. – PKC '05]

Secrecy/independence of all the keys: many *Test*-queries with the same bit b

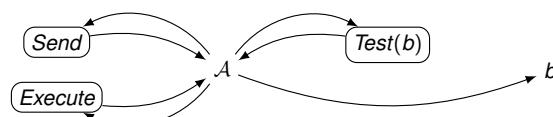
- If no key defined by the protocol yet: output \perp
- If dishonest/corrupted partner: output the real key
- If player/partner already tested (not fresh): output the same key
- If $b = 0$: output the real key
- If $b = 1$: output a random key

$$Adv^{RoR}(\mathcal{A}) = 2 \times \Pr[b' = b] - 1$$

Security Game: Real-or-Random

Semantic Security (Encryption)

[Bellare-Desai-Jokipii-Rogaway – FOCS '97]


Find-then-Guess and Real-or-Random are polynomially equivalent

$$Adv^{RoR}(t, q_T) \leq q_T \times Adv^{FtG}(t)$$

where q_T is the number of Test-queries

- For Password-based Authenticated Key Exchange:
 $Adv^{FtG}(t) \leq \frac{q_S}{N} \not\Rightarrow Adv^{RoR}(t, q_T) \leq \frac{q_S}{N} \Rightarrow$ Stronger notion
- No need of Reveal-queries \Rightarrow Simpler security notion

[Abdalla-Fouque-P – PKC '05]

Game-based Security: Limitations

- Proven bounds: $O(q_S)/N$, but almost never q_S/N
 \implies hard to get optimal bound!
- This means: a few passwords can be excluded by each active attack
- But q_S is sometimes the **number of Send-queries**
 which is more than the **number of Active Sessions**
- Passwords chosen from pre-determined, known distributions
- Different passwords are assumed to be independent
- No security guarantees under arbitrary compositions

\implies **Universal Composability** more appropriate

[Canetti – FOCS '01]

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

Outline

■ Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

■ Conclusion

Outline

■ Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

■ Conclusion

Definition

Real Protocol

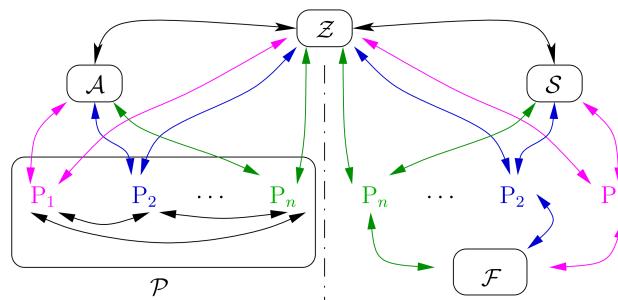
The real protocol \mathcal{P} is run by players P_1, \dots, P_n ,

with their own private inputs x_1, \dots, x_n .

After interactions, they get outputs y_1, \dots, y_n

Ideal Functionality

An ideal function \mathcal{F} is defined:


- it takes as input x_1, \dots, x_n ,
the private information of each player,
- and outputs y_1, \dots, y_n , given privately to each player

The players get their results, without interacting:
this is a “by definition” secure primitive

Simulator

\mathcal{P} emulates \mathcal{F} if, for any environment \mathcal{Z} , for any adversary \mathcal{A} ,
there exists a simulator \mathcal{S} so that, the view of \mathcal{Z} is the same for

- \mathcal{A} attacking the real protocol \mathcal{P}
- \mathcal{S} attacking the ideal functionality \mathcal{F}

Outline

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

Conclusion

PAKE Ideal Functionality

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

Queries

- `NewSession` = a player joins the system with a password
- `TestPwd` = \mathcal{A} attempts to guess a password (**one** per session)
The adversary learns whether the guess was correct or not
- `NewKey` = \mathcal{A} asks for the session key to be computed and delivered to the player

Corruption-Query

- \mathcal{A} gets the long-term secrets (pw) and the internal state
- \mathcal{A} takes the entire control on the player and plays on its behalf

Corruptions can occur **before the execution**: Static Corruptions

Corruptions can occur **at any moment**: Adaptive Corruptions

PAKE Ideal Functionality

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

Session Key

- No corrupted players, same passwords
 \Rightarrow same key, randomly chosen
- No corrupted players, different passwords
 \Rightarrow independent keys, randomly chosen
- A corrupted player
 \Rightarrow key chosen by the adversary
- Correct password guess (`TestPwd`-query)
 \Rightarrow key chosen by the adversary
- Incorrect password guess (`TestPwd`-query)
 \Rightarrow independent keys, randomly chosen

PAKE Ideal Functionality

Properties

- The `TestPwd`-query models the on-line dictionary attacks
- The `Corruption`-query includes forward-secrecy

Advantages wrt Game-based Security

- No assumption on the distribution of passwords (chosen by the environment)
- Passwords can be related (it models mistyping)
- Security under arbitrary compositions \Rightarrow **secure channels**

Game-based Security vs. Universal Composability

Game-based Security

In the reduction, the simulator has to emulate the protocol execution
only up to an evidence the adversary has won ($pw \Rightarrow$ not negl.)

In the global system, the simulation fails when the adversary breaks one sub-protocol
whereas other parts could provide protection ($pw \Rightarrow$ weak proof!)

UC Security

Simulation handles compositions, but proofs are more complex:
the simulator must have an indistinguishable behavior, even when the adversary wins!

In the case of password-based cryptography:
the adversary can win with non-negligible probability!

Outline

Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

Conclusion

Properties of the NewKey-Query

Session Key: NewKey-Query

...

- A corrupted player \Rightarrow key chosen by the adversary
- Correct password guess \Rightarrow key chosen by the adversary

...

The NewKey-query models possible Key Distribution:

\Rightarrow the session key can be controlled by one of the players

The contributiveness property models Key Agreement [Adalla-Catalano-Chevalier-P. – CT-RSA '09]
 \Rightarrow no player can decide on the key

Dictionary Attack: TestPwd-Query

- Correct password guess \implies key chosen by the adversary
- Incorrect password guess \implies random key

And adversary **informed** of correct/incorrect guess

The TestPwd-query models **Explicit Authentication**:

\implies the players are informed of success/failure

Implicit-Only PAKE models **Implicit Authentication** [Dupont-Hesse-P.-Reyzin-Yakoubov – Eurocrypt '18]

\implies they keys have to be used to test success/failure

Outline

■ Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

■ Conclusion

UC-Secure PAKE

With a random oracle and an ideal cipher: EKE

[Abdalla-Catalano-Chevalier-P. – CT-RSA '08]

\implies First efficient scheme secure against **Adaptive Corruptions**

In the standard model, based on GL (abstraction of KOY)

\implies BPR-security using SPHFs

[Gennaro-Lindell – Eurocrypt '03]

- with **SS-ZK** \implies **Static corruptions**

[Canetti-Halevi-Katz-Lindell-MacKenzie – Eurocrypt '05]

- with an *equivocable/extractable commitment*

\implies **Adaptive corruptions**

[Abdalla-Chevalier-P. – Crypto '09]

- with *KV-SPHF and SS-NIZK* \implies **One-round** only

[Katz-Vaikuntanathan – TCC '11]

- with *Explainable SPHFs*

\implies Adaptive corruptions **without erasures**

[Abdalla-Benhamouda-P. – PKC '17]

assuming a CRS (proven impossible in the plain model)

Outline

■ Introduction

1 Security Notions

- Intuition
- Find-then-Guess Security
- Examples
- Real-or-Random Security

2 Universal Composability

- Definition
- Password-based Authenticated Key Exchange
- Advanced Security Notions
- Examples

■ Conclusion

Conclusion

EKE is a secure PAKE in the ROM+ICM:

- BPR secure
- UC secure
- Withstands **adaptive corruptions**
- Provides **forward-secrecy**
- Can guarantee **Explicit** or **Implicit-Only** authentication

All the constructions in the standard model exploit SPHFs:

- based on the **KOY protocol** [Katz-Ostrovsky-Yung – Crypto '01]
- extend the **GL protocol** [Gennaro-Lindell – Eurocrypt '03]

Let us see SPHF-based PAKE Protocols