Hash Proof Systems and Password Protocols

| - Hash Proof Systems

David Pointcheval

CNRS, Ecole normale supérieure/PSL & INRIA

G
P E I (*l infnrmati(s,mathemati(s
EI] S RESEARCH UNIVERSITY PARIS ! W
ECOLE NORMALE
SUPERIEURE

8th BIU Winter School — Key Exchange
February 2018

CNRS/ENS/PSL/INRIA David Pointcheval 1/51

Hard Subset Membership

NP Language £ C X: (IR polynomial relation) (x € £L C X <= Jw, R(x,w) =1)
Distinguisher between distributions:
AdvSY (D) =PrD(x) =1|x & L] - PrD(x) =1|x & X\L]

Hard Subset Membership for £ C X': ¥VD polynomial, Adv** (D) negligible

Example (Decisional Diffie Hellman Problem)

G = {(g) = (h) X={(G=9g H=h)|r,s& Z}=GxG
L={(G=g ,H=Hh)|r&Zq}=((g,h)

CNRS/ENS/PSL/INRIA David Pointcheval 2/51

Proof of Membership

For an NP-Language £ C X
m defined by a polynomial relation R, such that x € £ «<— Jw, R(x, w) = 1
m with Hard Subset Membership

A proof system between a prover P and a verifier V is

m Correct: for any x € £, with a witness w such that R(x, w) = 1
P(x,w) is accepted by V with overwhelming probability

m Sound: for any x € X\ L (without any witness)
any P*(x) is accepted by V with negligible probability

m Zero-Knowledge: a simulator S can generate indistinguishable transcripts to V
for any x € £, without witness (for any x € X, under the Hard Subset Membership)

m Simulation-Sound: sound for a new x € X\ L, after the view of simulated transcripts

CNRS/ENS/PSL/INRIA David Pointcheval 3/51

Smooth Projective Hash Functions (SPHFs)

[Cramer-Shoup — Eurocrypt ’02]

HashKG

.
H=pHif R(x, w) =1

o«

hk & HashKG()

H « Hash(hk, x)

hp « ProjKG(hk)

pH <« ProjHash(hp, x, w)

correctness

CNRS/ENS/PSL/INRIA David Pointcheval 4/51

SPHF on Diffie-Hellman Pairs

[Cramer-Shoup — Crypto "98]
Let G = (g) = (h) of prime order q

X={(G=g" H=h)|r,s& Z}=GxG
L={(G=g ,H=H)|r&2Zq}=((9,h)

SPHF for Diffie-Hellman Pairs

hk « (o, B) & 75 hp « g*h® = ProjKG(hk)
H « G*H? = Hash(hk, x = (G, H)) pH « hp" = ProjHash(hp, x, w = r)

m Correctness: H = (g")*(h")? = (g*)"(h®)" = hp" = pH
m Smoothness: H = (g")®(h%)? = (g*)"(h®)® = hp"(hS~")? (no information about j3)

CNRS/ENS/PSL/INRIA David Pointcheval 5/51

Proof of Membership

V P
X X, w
hk & HashKG() b
hp + ProjKG(hk) P

oH pH « ProjHash(hp, x, w)

H < Hash(hk, x)
accepts if H = pH

m Correctness: from the correctness of the SPHF
m Soundness: from the smoothness of the SPHF
m Honest-Verifier Zero-Knowledge

CNRS/ENS/PSL/INRIA David Pointcheval 6/51

Il Introduction

Bl Smooth Projective Hash Functions (SPHFs)
m Definitions: CS/GL/KV SPHFs
m Matrix Formalism

E1 Encryption and Proofs
m Public-Key Encryption
m Simulation-Soundness

El More Languages
m Basic Languages
m Conjunctions and Disjunctions
m KV Disjunctions

I Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 7/51

El Smooth Projective Hash Functions (SPHFs)
m Definitions: CS/GL/KV SPHFs
m Matrix Formalism

CNRS/ENS/PSL/INRIA David Pointcheval 8/51

Bl Smooth Projective Hash Functions (SPHFs)
m Definitions: CS/GL/KV SPHFs

CNRS/ENS/PSL/INRIA David Pointcheval 9/51

Cramer-Shoup SPHFs

Smooth Projective Hash Functions

hk & HashKG() hp <+ ProjKG(hk)
H < Hash(hk, x) pH <« ProjHash(hp, x, w)

Hash and ProjHash onto the set I

m Correctness: Vx € £,Vw such that R(x, w) = 1
Vhk < HashKG(), hp < ProjKG(hk) : Hash(hk, x) = ProjHash(hp, x, w)

m Smoothness: Vx € X\L
with the probability space hk & HashKG(), hp < ProjKG(hk)

{(hp,H)|H « Hash(hk, x)} ~ {(hp,H)|H < M}

CNRS/ENS/PSL/INRIA David Pointcheval 10/51

Gennaro-Lindell SPHFs

[Gennaro-Lindell — Eurocrypt '03]

HashKG

hk & HashKG()
H <« Hash(hk, x)
hp « ProjKG(hk, x)

«

pH « ProjHash(hp, x, w)

correctness

CNRS/ENS/PSL/INRIA David Pointcheval 11/51

Gennaro-Lindell SPHFs

[Gennaro-Lindell — Eurocrypt '03]

Smooth Projective Hash Functions

hk & HashKG() hp < ProjKG(hk, x)
H « Hash(hk, x) pH « ProjHash(hp, x, w)

Hash and ProjHash onto the set IN

m Correctness: Vx € £,Vw such that R(x, w) =1
Vhk < HashKG(), hp < ProjKG(hk, x) : Hash(hk, x) = ProjHash(hp, x, w)

m Smoothness: Vx € X\L
with the probability space hk & HashKG(), hp < ProjKG(hk, x)

{(hp,H) |H < Hash(hk, x)} ~ {(hp,H) |[H & n}

CNRS/ENS/PSL/INRIA David Pointcheval 12/51

Proof of Membership

If the statement x is known from the beginning by both parties

'd V 1\ 'd P \
X X, W
hk <~ HashKG() A
hp « ProjKG(hk, x) P N

H pH « ProjHash(hp, x, w)
H « Hash(hk, x) P
accepts if H = pH

. J (& J

GL-SPHFs are enough for the Proof of Membership

CNRS/ENS/PSL/INRIA David Pointcheval 13/51

Proof of Membership

CS-SPHFs not enough for Adaptive Statements

() 4 N\

v P
X, w
hk & HashKG()
hp + ProjKG(hk) hp .
pH « ProjHash(hp, x, w)
H « Hash(hk, 1) %, pH

accepts if H = pH

(. J (. J

The adversarial prover could choose x according to hp

CNRS/ENS/PSL/INRIA David Pointcheval 14/51

Adaptive Smoothness

CS-Smoothness

Vx € X\L, with the probability space hk <- HashKG(), hp + ProjKG(hk)
{(hp,H) |H « Hash(hk, x)} ~ {(hp,H) |H & M}

m When x is fixed, hk is randomly chosen

m [f perfect indistinguishability for every word: no weak word

m [f statistical indistinguishability only: weak words exist (can be found)
Let hk' = (hk, x), for x & X\L, hp' = (hp, (x, h = Hash(hk, x)),

Hash'(hk', x) = Hash(hk, x) and ProjHash’(hp’, x, w) = ProjHash(hp, x, w)
The new SPHF can still be CS-Smooth, but the adversarial prover can cheat on x

CNRS/ENS/PSL/INRIA David Pointcheval 15/51

Katz-Vaikuntanathan SPHFs

[Katz-Vaikuntanathan — TCC ’11]

KV-Smoothness

vf onto X'\ £, with the probability space hk ¢ HashKG(), hp «+ ProjKG(hk)
{(hp.H)|H « Hash(hk, f(hp))} ~ {(hp,H)|H ¢ N}

There is no deterministic way to extract a wrong word from hp

CNRS/ENS/PSL/INRIA David Pointcheval 16/51

El Smooth Projective Hash Functions (SPHFs)

m Matrix Formalism

CNRS/ENS/PSL/INRIA David Pointcheval 17/51

Matrix Formalism: Correctness

[Benhamouda-Blazy-Chevalier-P.-Vergnaud — Crypto ’13]

H:hkox:(aﬁ)o(g:):(aﬂ)o(%)or: g°hPer = -
Hz[aﬂ}-[r} — rla+aB) =[a+aB]-[r]=pH

CNRS/ENS/PSL/INRIA David Pointcheval 18/51

Matrix Formalism: Smoothness

m 0 € (I): Hfully determined by hp
r 0 =T -A:H=hk-T-AX=hp-\=pH
m 0 ¢ (I'): Hindependent of hp

m Key hk is randomly chosen
m H — hk- 6 while hp — hk - T

CNRS/ENS/PSL/INRIA David Pointcheval 19/51

Application: DDH and DLin Languages

m DDH: {x = (¢", W)} withh=g2 =T = m A= [r]

W hk=[ap] & Z5=hp=[a+aB]=g*h’

m(u=g-v=g')—0= [ﬂ =H=[ax+8y] = uv’
m (g h)—=0= [arr] = pH = [ar + Bar] = hp'

10
m DLin: {x = (9", h%, f 9}, withh=g3 f=g°—=T=[0a|,\= ;]
bb
mhk=[a B 7| Zi=hp=[a+qbaB+qb] = (g°f, h)

r 4

=H=[ax+ By +z] = v vPw?

X

m(u=g,v=¢g',w=9%)— 0= {y
r z

m (g h° ftS) = 0= ar
b(r+s)
CNRS/ENS/PSL/INRIA David Pointcheval 20/51

= pH = [ar + Bar +~b(r + s) | = hp{hp3

E1 Encryption and Proofs
m Public-Key Encryption
m Simulation-Soundness

CNRS/ENS/PSL/INRIA David Pointcheval 21/51

E1 Encryption and Proofs
m Public-Key Encryption

CNRS/ENS/PSL/INRIA David Pointcheval 22/51

Public-Key Encryption

[Cramer-Shoup — Crypto "98]

Let £ C X be a hard subset membership
m with an SPHF onto a group (G, +)
m with efficient uniform generation of elements in £ with witnesses

KeyGen() : sk & HashKG() and pk «+ ProjKG(sk)
Enc(pk,m € G) : x & £ with witness w
¢ + (x, e = ProjHash(pk, x, w) + m)
Dec(sk,c € & x G) : m <+ e — Hash(sk, x)

IND-CPA Encryption

m Correctness: since ProjHash(pk, x, w) = Hash(sk, x)
m IND-CPA security: from Hash Subset Membership and Smoothness

CNRS/ENS/PSL/INRIA David Pointcheval 23/51

IND-CPA Security
A ok ¢ KeyGen() : sk & HashKG(), pk < ProjKG(sk)
mo,my € G mo, my | 232;2}5); KeyGen() Enc(pk, m) : X (i L with witness w
pe1 [< o5 i”c(pkmb) ¢ < (x, e = ProjHash(pk, x, w) + m)

Dec(sk,c): m <« e— Hash(sk, x)

(T s C N
pk $.
sk <~ HashKG(), pk < ProjKG(sk
mg,my € G Mo, My 1 2o 0,p JKG(sk)
KIBILI x & X\L
H i PYOIHASH(OK 2/ W) e & G
B c)
b e (0.1) z e Z g ¢+ (x.)
| - J

Correctness + Hard Subset Membership + Smoothness = Pr[b’ = b] = %

CNRS/ENS/PSL/INRIA David Pointcheval 24/51

DH-based Public-Key Encryption

Let G = (g) = (h) of prime order g

X={(G=g" H=h)|r,s&Z}=GxG
L={(G=g H=H)|ré&2Zq}=((9,h)

KeyGen(): sk = (a,8) & Z5 pk < g*h”
Enc(pk,m): r& Zg x— (=g u=h) ecpk"xm
Dec(sk,c = (uy, Uz, €)): m« e/(u?ug)

CNRS/ENS/PSL/INRIA David Pointcheval 25/51

IND-CCA Security

KeyGen(): sk & HashKG(), pk « ProjKG(sk)
Enc(pk,m): x & £ with witness w, ¢ « (x, e = ProjHash(pk, x, w) + m)
Dec(sk,c): m <« e— Hash(sk, x)

The decryption procedure does not leak any information about sk if x € £
but it might leak when x € X'\ £: what about adding a second SPHF?

KeyGen(): hk & HashKG(), hp < ProjKG(hk)

hk' & HashKG(), hp' + ProjKG(hk’)

sk < (hk, hK'), pk « (hp, hp')
Enc(pk,m): x & £ with witness w

¢ < (x, e = ProjHash(hp, x, w) + m, v = ProjHash(hp', x, w))
Dec(sk,c): v Z Hash(hk', x), m + e — Hash(hk, x)

CNRS/ENS/PSL/INRIA David Pointcheval 26/51

IND-CCA Security: First Attempt

A , (C
pk = (hp. hp') hk, k' & HashKG(), hp « ProjKG(hk), ho' « ProjKG(hK')
mo,m € G Mo, My b<‘;{0 1}

KIBHILI & X\L
H K/ PYOHESH(MBLA//%) h « Hash(hk, x)

” c I PYOHASH(HD L) v « Hash(hK', x)
b e {0,1} b ZZ’LJF Mp; € <+ (X, €,V)
——— . J

Dec(sk, (x',€,v')) : v < Hash(hk', x) (x/,€,V)# (x,e,v) = (x/,€) # (x, €)
v £ v reject — x’ € L : Simulation-Soundness (?)
m' + € —Hash(hk, x/)

Correctness + Correctness + Hard Subset Membership

CNRS/ENS/PSL/INRIA David Pointcheval 27/51

E1 Encryption and Proofs

m Simulation-Soundness

CNRS/ENS/PSL/INRIA David Pointcheval 28/51

Soundness: Smoothness

m Soundness: if x € L
H must be independent from hp
.

m Simulation-Soundness: if xp, € £
H, must be independent from hp, Hy, ... H,_1
evenifxy,...,xp-1 €L r 01 On

CNRS/ENS/PSL/INRIA David Pointcheval 29/51

One-Time Simulation-Soundness: 2-Smoothness

m One-Time Simulation-Soundness: if x’ € £
H’ must be independent from hp, H
evenif x & L r o'

m Tag-Based SPHF: for a word x and atag t
A

I
r — 0
I

CNRS/ENS/PSL/INRIA David Pointcheval 30/51

One-Time Simulation-Soundness

m SPHF:ifx ¢ £

is independent of

m Tag-Based SPHF:if x,x’' ¢ Land ' # t

to’
independent of => is independent of
to’

CNRS/ENS/PSL/INRIA David Pointcheval 31/51

2-Smooth Projective Hash Function

m SPHF:

m hk & HashKG()
m hp < ProjKG(hk)
m H « Hash(hk, x)
m pH « ProjHash(hp, x, w)
m 2-SPHF:
m hk' = HashKG'() « (hky, hk), hki, hkz & HashKG()
m hp' = ProjKG'(hk") « (hpy, hp,), hp; « ProjKG(hk+), hp, < ProjKG(hkz)
m H' = Hash'(hk', x, t) < Hash(hkq, x) + t x Hash(hkz, x)
m pH’ = ProjHash’(hp', x, t, w) < ProjHash(hp;, x, w) + t x ProjHash(hp,, x, w)

CNRS/ENS/PSL/INRIA David Pointcheval 32/51

IND-CCA Security: Second Attempt

A (C \
— (ho. hof hk &~ HashKG(), hp < ProjKG(hk)
e = (hp, hp') hk' & HashKG'(), hp' « ProjKG'(hk’)
0, M1 € Mo. M4 b & 10,1}
It x & X\L
H K RYSJHASH(b2 40)
BIIHHE e & G
¢ t = H(x, e); vt ProJHEsHIhg!/ K b)Y v « Hash'(hK', x, t)
/ € (x,e,v)
b e{0,1} o4 b 2b
~— & J
Dec(sk, (x',€,v")) : v < Hash'(hk', x', t') (x/,€,V') # (x,e,v) = (x/,€) # (x, e)
v # V' reject — x’ € £ : OT Simulation-Soundness

m < €& — Hash(hk, x')
Correctness + Hard Subset Membership + Smoothness = Pr[b’ = b] = }

CNRS/ENS/PSL/INRIA David Pointcheval 33/51

DH-based Public-Key Encryption

[Cramer-Shoup — Crypto "98]
X={(G=g{,H=g5)|r s< Zq} L={(G=g{ H=gb)|r ¢ Zq}
KeyGen() : sk = (hk = (a, B), hky = (X1, X2), hky = (y1,2)) < Z§
pk = (hp « 9795, ho g g%, hp + g' 9%°)
Enc(pk,m): r & Zgiuy =gf,ux=gh e+ hp" xm
v = (hp), x hpb")", with t < H(uy, Up, €)
Dec(sk, (th, Uz, ,v)) : v = UMl x (uRul2)!, with t « H(w, Up, €) : m = e/usul

Cramer-Shoup CCA Encryption Scheme

KeyGen() . sk = (27 X17X27}’17J’2) <i Zg
pk = (h+ 9f,c + g{' g%, d « g{'9%)
Enc(pk,m): ré& Zgiuy =gi,Up =ghie < h xm
v=(cxd), with t < H(uy, Up, €)
Dec(sk, (U1, Up, €,v)) : v = U2y 2 with t« H(w, tp, €) : m = e/u?

CNRS/ENS/PSL/INRIA David Pointcheval 34/51

El More Languages
m Basic Languages
m Conjunctions and Disjunctions
m KV Disjunctions

CNRS/ENS/PSL/INRIA David Pointcheval 35/51

El More Languages
m Basic Languages

CNRS/ENS/PSL/INRIA David Pointcheval 36/51

DH-based Languages

m DH-tuples for (g, h): L={(g",h")} C {(g¥X.¢")} =X with h= g2

=[] -0 -

m ElGamal ciphertextof m: c=(u=9",e=h"m)= (u,e/m) e L
m Valid Cramer-Shoup ciphertext:
c=(uy=9g{,uo=ghe=hmv=(cd")) with t = H(uy, Uz, €)

fge=gf, h=g2 c=9gf,d=g/andc=(u =g}, o = gF,e =g/, v =g
cis a valid CS ciphertext iff (uy, Uz, v) is an r-th power of (g4, go, cd')

1 r r
r[s] A=r] 0[@][sr] for t = H(uy, Uo, €)
a+ 8 z (a+tB)r

CNRS/ENS/PSL/INRIA David Pointcheval 37/51

Cramer-Shoup Ciphertext Languages

c=(u =9}, u=ghe=hmyv=(cd)) with t = H(us, U, €)
Ifgo=g5, h=97, c=97,d=g{ and c = (us = g{', Uz = g*, e = g/m, v = g)

m cis a valid CS ciphertext iff (uy, U, v) is an r-th power of (g4, go, cd?)

1 r r
r[s] A=[r] 0[@}[sr] for t = H(uy, Uo, €)
a+tg z (a+tB)r

m cis a CS ciphertext of miff (uy, uo, /m, v) is an r-th power of (g4, g, h, cd")

1 ry r
o S o |l Sr o
M= a A=[r] 6= | = o for t = H(uy, Up, €)
a+tg z (a+tB)r
CNRS/ENS/PSL/INRIA David Pointcheval 38/51

1
c is a valid CS ciphertext M= [S]

”
S a+tp
M= 2 cis a CS ciphertext of m
a+tp
0 = T-A
hp = hk-T [depends on t = H(uy, U, €)
H — hk.0 = [depends on ¢
pH = hp-) = hp depends on ¢

These are GL-SPHFs only!

CNRS/ENS/PSL/INRIA David Pointcheval 39/51

KV-SPHFs for Cramer-Shoup Ciphertext Languages

[Benhamouda-Blazy-Chevalier-P.-Vergnaud — Crypto ’13]

c=(u =g u=ghe=hmyv=(cd")") with t = H(u1, Uo, €)
fgo=95, h=g%c=gr,d=glandc= (1 =g", o = gF,e=g/m,v =g3)

m Valid CS ciphertext = x = (uy, U}, Up, v) for t = H(uy, Uz, €)

107 r r
r— 01 \— r 0 — try _ tr
s0 tr r sr
| a] | Z] | ar + Bir |
m CS ciphertext of m = x = (uy, U}, up, e/m, v) for t = H(uy, U, €)
107 [y Cr i
01 ’ try tr
Fr=1s0 A= {] 0= 1|rn| = sr
tr
ao y ar
o] | Z] | ar + Bir |
CNRS/ENS/PSL/INRIA David Pointcheval 40/51

El More Languages

m Conjunctions and Disjunctions

CNRS/ENS/PSL/INRIA David Pointcheval 41/51

Conjunctions of Languages

L4 C Xyand Lo C Ao L4 X Lo C Xy X Xp

CNRS/ENS/PSL/INRIA David Pointcheval 42/51

H

p,

Disjunctions of Languages

[Abdalla-Benhamouda-P. — Eurocrypt *15]

L1 CAXyand Lo C Xo (L1 x X)) U(Xy x L3) C Xy X

o
=

-
o

BEESOEN OENBES
HEEHREEER

|
EDEEERE

CNRS/ENS/PSL/INRIA David Pointcheval 43/51

0 1 0 1 1. g 1 g —1
1 x 0 O g u 1 1 0
r = a y 0 0 = hy v 1 1 0 = 0
00 1 x 11 g u 0
0 0 a y 11 h v 0
hk = [a B v & €] (g°h] gouPvr g°hy g*uve) = hp
c=(uv):H=hk-0=|-a] =9
fo= (g, M) [, fe=(g' M) o
A= _01 ,pH = hp- \ A= 2 ,pH=hp- A
0 | = g (g /u)’(h;/v) —1] =g (g /u)’(h;/v)
CNRS/ENS/PSL/INRIA David Pointcheval 44/51

El More Languages

m KV Disjunctions

CNRS/ENS/PSL/INRIA David Pointcheval 45/51

Limits of Previous Constructions

L4 CXyand Lo C Xp: L= (L1 x X)) U (X x L)

KN EEEE

I 01
M= .III = [depends on 64, 6>
II This is a GL-SPHF!

L # (L1 x X))+ (X1 x L2) = Xy x Xo where the sets are identified to vectorial spaces
But £ = (£1 &® Xg) + (X1 &® Eg)

CNRS/ENS/PSL/INRIA David Pointcheval 46/51

KV Disjunctions

[Abdalla-Benhamouda-P. — Eurocrypt ’15]

L = (£1 ®X2)—|—(X1 ®,C2)

r — MN® |dn2 Idm ®I

0 = 610

if x € L4 if x € Lo

CNRS/ENS/PSL/INRIA David Pointcheval 47/51

Disjunctions of DH Languages

L1={(g",h})} and Lo = {(g", h})},for hy =g* and h, = g*:c= (u=g",v=9")

r1:[a11] A= [r] 91:[;} rzz[aﬂ Y2 =[r] 92:{;

1 0 1 O g 1 g 1
1 10 10 1 0 1 a O 1 g h 1
r = _a1]®{01”'[01]®{a2] = la, 0 0 1| |m 1 1 g
0 a4 0 a 1 h1 1 hg
[x o x e(u, u)
o = |XeY| _ e(u,v) hk = [a B v 4]
~ |lyex| | e(v,u) hp = (g”‘h? g’n goh) thg>
Ly ey e(v,v)

CNRS/ENS/PSL/INRIA David Pointcheval 48/51

Disjunctions of DH Languages

L1=A{(g",h)} and L, = {(g", hy)}, for hy = g% and h = g%: ¢ = (u=g*,v=g)

n=la] ne=l =[] =g] sl e= |

hk=[a 8 v 6] ho=(g°W g°h g°h gvh})
H=hk 0=[acexex+(B+7)exey+deyey| = e(u u)e(uv) e, v)

Forc= (g, h})
rex e(g, g")*e(g", h) x e(g”,g") e(g”, ,)°

M @02 |rey B o f 5
A= = ;PH=hp-A= ¢ e(u,u)*e(u,v) x e(v,u)’e(v,v)

0 8 e(u, u)® - e(u, v)** - e(v, v)°

CNRS/ENS/PSL/INRIA David Pointcheval 49/51

Il Introduction

El Smooth Projective Hash Functions (SPHFs)
m Definitions: CS/GL/KV SPHFs
m Matrix Formalism

E Encryption and Proofs
m Public-Key Encryption
m Simulation-Soundness

El More Languages
m Basic Languages
m Conjunctions and Disjunctions
m KV Disjunctions

I Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 50/51

Conclusion

SPHFs = Smooth Projective Hash Functions allow

m Honest-Verifier Zero-Knowledge Arguments
With disjunctions = Zero-Knowledge Arguments

m And even NIZKs with Simulation-Soundness

m Trapdoor SPHFs, for ZK Arguments [Benhamouda-Blazy-Chevalier-P.-Vergnaud — Crypto '13]
m Implicit ZK, for malicious 2-Party Computations [Benhamouda-Couteau-P-Wee — Crypto '15]
m Explainable SPHFs, to remove erasures [Abdalla-Benhamouda-P. — PKC *17]

See Fabrice Benhamouda’s Thesis: “Diverse modules and zero-knowledge
for all technical details

Application to Password-Authenticated Key Exchange

CNRS/ENS/PSL/INRIA David Pointcheval 51/51

