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Hard Subset Membership

NP Language L ⊆ X : (∃R polynomial relation) (x ∈ L ⊆ X ⇐⇒ ∃w , R(x ,w ) = 1)
Distinguisher between distributions:

AdvL,X (D) = Pr[D(x ) = 1 | x $← L]− Pr[D(x ) = 1 | x $← X\L]

Hard Subset Membership for L ⊆ X : ∀D polynomial, AdvL,X (D) negligible

Example (Decisional Diffie Hellman Problem)

G = 〈g〉 = 〈h〉 X = {(G = gr ,H = hs) | r , s $← Zq} = G×G

L = {(G = gr ,H = hr ) | r $← Zq} = 〈(g,h)〉
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Proof of Membership

For an NP-Language L ⊆ X
defined by a polynomial relation R, such that x ∈ L ⇐⇒ ∃w , R(x ,w ) = 1
with Hard Subset Membership

A proof system between a prover P and a verifier V is
Correct: for any x ∈ L, with a witness w such that R(x ,w ) = 1

P(x ,w ) is accepted by V with overwhelming probability
Sound: for any x ∈ X\L (without any witness)

any P∗(x ) is accepted by V with negligible probability

Zero-Knowledge: a simulator S can generate indistinguishable transcripts to V
for any x ∈ L, without witness (for any x ∈ X , under the Hard Subset Membership)
Simulation-Sound: sound for a new x ∈ X\L, after the view of simulated transcripts
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Smooth Projective Hash Functions (SPHFs)
[Cramer-Shoup – Eurocrypt ’02]

HashKG hk Hash

x ∈ L

H

ProjKG

hp ProjHash

w

pH

H = pH if R(x ,w ) = 1
hk $← HashKG()

H ← Hash(hk , x )

hp ← ProjKG(hk)

pH ← ProjHash(hp, x ,w )

correctness
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SPHF on Diffie-Hellman Pairs
[Cramer-Shoup – Crypto ’98]

Let G = 〈g〉 = 〈h〉 of prime order q

X = {(G = gr ,H = hs) | r , s $← Zq} = G×G

L = {(G = gr ,H = hr ) | r $← Zq} = 〈(g,h)〉

SPHF for Diffie-Hellman Pairs

hk ← (α, β)
$← Z2

q hp ← gαhβ = ProjKG(hk)

H← GαHβ = Hash(hk , x = (G,H)) pH← hpr = ProjHash(hp, x ,w = r)

Correctness: H = (gr )α(hr )β = (gα)r (hβ)r = hpr = pH
Smoothness: H = (gr )α(hs)β = (gα)r (hβ)s = hpr (hs−r )β (no information about β)
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Proof of Membership

P
x ,w

V
x

hk $← HashKG()

hp ← ProjKG(hk)
hp

pH← ProjHash(hp, x ,w )
pHH← Hash(hk , x )

accepts if H = pH

Correctness: from the correctness of the SPHF
Soundness: from the smoothness of the SPHF
Honest-Verifier Zero-Knowledge
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Cramer-Shoup SPHFs

Smooth Projective Hash Functions

hk $← HashKG() hp ← ProjKG(hk)

H← Hash(hk , x ) pH← ProjHash(hp, x ,w )

Hash and ProjHash onto the set Π

Correctness: ∀x ∈ L, ∀w such that R(x ,w ) = 1
∀hk ← HashKG(),hp ← ProjKG(hk) : Hash(hk , x ) = ProjHash(hp, x ,w )

Smoothness: ∀x ∈ X\L
with the probability space hk $← HashKG(),hp ← ProjKG(hk)

{(hp,H) |H← Hash(hk , x )} ≈ {(hp,H) |H $← Π}
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Gennaro-Lindell SPHFs
[Gennaro-Lindell – Eurocrypt ’03]

HashKG hk Hash

x ∈ L

H

ProjKG

hp ProjHash

w

pH

H = pH if R(x ,w ) = 1
hk $← HashKG()

H ← Hash(hk , x )

hp ← ProjKG(hk , x )

pH ← ProjHash(hp, x ,w )

correctness
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Gennaro-Lindell SPHFs
[Gennaro-Lindell – Eurocrypt ’03]

Smooth Projective Hash Functions

hk $← HashKG() hp ← ProjKG(hk , x )

H← Hash(hk , x ) pH← ProjHash(hp, x ,w )

Hash and ProjHash onto the set Π

Correctness: ∀x ∈ L, ∀w such that R(x ,w ) = 1
∀hk ← HashKG(),hp ← ProjKG(hk , x ) : Hash(hk , x ) = ProjHash(hp, x ,w )

Smoothness: ∀x ∈ X\L
with the probability space hk $← HashKG(),hp ← ProjKG(hk , x )

{(hp,H) |H← Hash(hk , x )} ≈ {(hp,H) |H $← Π}
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Proof of Membership

If the statement x is known from the beginning by both parties

P
x ,w

V
x

hk $← HashKG()

hp ← ProjKG(hk , x )
hp

pH← ProjHash(hp, x ,w )
pHH← Hash(hk , x )

accepts if H = pH

GL-SPHFs are enough for the Proof of Membership
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Proof of Membership

CS-SPHFs not enough for Adaptive Statements

P
x ,w

V

hk $← HashKG()

hp ← ProjKG(hk)
hp

pH← ProjHash(hp, x ,w )
x ,pHH← Hash(hk , x )

accepts if H = pH

The adversarial prover could choose x according to hp
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Adaptive Smoothness

CS-Smoothness

∀x ∈ X\L, with the probability space hk $← HashKG(),hp ← ProjKG(hk)

{(hp,H) |H← Hash(hk , x )} ≈ {(hp,H) |H $← Π}

When x is fixed, hk is randomly chosen
If perfect indistinguishability for every word: no weak word
If statistical indistinguishability only: weak words exist (can be found)

Let hk ′ = (hk , x), for x $← X\L, hp′ = (hp, (x ,h = Hash(hk , x)),
Hash′(hk ′, x ) = Hash(hk , x ) and ProjHash′(hp′, x ,w ) = ProjHash(hp, x ,w )

The new SPHF can still be CS-Smooth, but the adversarial prover can cheat on x
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Katz-Vaikuntanathan SPHFs
[Katz-Vaikuntanathan – TCC ’11]

KV-Smoothness

∀f onto X\L, with the probability space hk $← HashKG(),hp ← ProjKG(hk)

{(hp,H) |H← Hash(hk , f (hp))} ≈ {(hp,H) |H $← Π}

There is no deterministic way to extract a wrong word from hp
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Matrix Formalism: Correctness
[Benhamouda-Blazy-Chevalier-P.-Vergnaud – Crypto ’13]

L= 〈
(

g
h

)
〉 ⊆ G2 h = ga Γ =

[
1
a

]

x =

(
gr

hr

)
=

(
g
h

)
• r λ=

[
r
]

θ= Γ · λ =

[
r

ar

]

hp = gα × hβ =
(
α β

)
•
(

g
h

)
hk =

[
α β

]
hp = hk · Γ

=
[
α + aβ

]

λ

Γ θ

hk hp H

H = hk • x =
(
α β

)
•
(

gr

hr

)
=
(
α β

)
•
(

g
h

)
• r = gαhβ • r = hp •w = pH

H≡
[
α β

]
·
[

r
ar

]
= r(α + aβ) =

[
α + aβ

]
·
[
r
]
≡pH
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Matrix Formalism: Smoothness

Γ θ

hk hp H

θ ∈ 〈Γ〉: H fully determined by hp

θ = Γ · λ : H = hk · Γ · λ = hp · λ = pH

θ 6∈ 〈Γ〉: H independent of hp
Key hk is randomly chosen
H = hk · θ while hp = hk · Γ
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Application: DDH and DLin Languages

DDH: {x = (gr ,hr )} with h = ga =⇒ Γ =

[
1
a

]
, λ =

[
r
]

hk =
[
α β

]
$← Z2

q ⇒ hp =
[
α + aβ

]
⇒ gαhβ

(u = gx , v = gy )→ θ =

[
x
y

]
⇒ H =

[
αx + βy

]
⇒ uαvβ

(gr ,hr )→ θ =

[
r

ar

]
⇒ pH =

[
αr + βar

]
⇒ hpr

DLin: {x = (gr ,hs, f r+s)}, with h = ga, f = gb =⇒ Γ =




1 0
0 a
b b


 , λ =

[
r
s

]

hk =
[
α β γ

]
$← Z3

q ⇒ hp =
[
α + γb aβ + γb

]
⇒ (gαf γ ,hβ f γ)

(u = gx , v = gy ,w = gz)→ θ =




x
y
z


⇒ H =

[
αx + βy + γz

]
⇒ uαvβwγ

(gr ,hs, f r+s)→ θ =




r
ar

b(r + s)


⇒ pH =

[
αr + βar + γb(r + s)

]
⇒ hpr

1hps
2

θ = Γ · λ
hp = hk · Γ
H = hk · θ

pH = hp · λ

λ

Γ θ

hk hp H
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Public-Key Encryption
[Cramer-Shoup – Crypto ’98]

Let L ⊆ X be a hard subset membership
with an SPHF onto a group (G,+)

with efficient uniform generation of elements in L with witnesses

KeyGen() : sk $← HashKG() and pk ← ProjKG(sk)

Enc(pk ,m ∈ G) : x $← L with witness w
c ← (x ,e = ProjHash(pk , x ,w ) + m)

Dec(sk , c ∈ X ×G) : m← e − Hash(sk , x )

IND-CPA Encryption

Correctness: since ProjHash(pk , x ,w ) = Hash(sk , x )

IND-CPA security: from Hash Subset Membership and Smoothness
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IND-CPA Security

CA
(sk ,pk)

$← KeyGen()
pk

m0,m1 ∈ G m0,m1 b $← {0,1}
c ← Enc(pk ,mb)c

b′ ∈ {0,1} b′ b′ ?
= b

KeyGen() : sk $← HashKG(), pk ← ProjKG(sk)

Enc(pk ,m) : x $← L with witness w
c ← (x , e = ProjHash(pk , x ,w) + m)

Dec(sk , c) : m← e − Hash(sk , x )

CA
sk $← HashKG(),pk ← ProjKG(sk)

pk
m0,m1 ∈ G m0,m1 b $← {0,1}

x $← L,w//////////// x $← X\L
h← ProjHash(pk , x ,w )////////////////////////////// e $← G
e← h + mb; c ← (x ,e)//////c

b′ ∈ {0,1} b′ b′ ?
= b

Correctness + Hard Subset Membership + Smoothness =⇒ Pr[b′ = b] = 1
2
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DH-based Public-Key Encryption

Let G = 〈g〉 = 〈h〉 of prime order q

X = {(G = gr ,H = hs) | r , s $← Zq} = G×G

L = {(G = gr ,H = hr ) | r $← Zq} = 〈(g,h)〉

KeyGen() : sk = (α, β)
$← Z2

q pk ← gαhβ

Enc(pk ,m) : r $← Zq x ← (u1 = gr ,u2 = hr ) e← pk r ×m

Dec(sk , c = (u1,u2,e)) : m← e/(uα1 uβ2 )
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IND-CCA Security

KeyGen() : sk $← HashKG(),pk ← ProjKG(sk)

Enc(pk ,m) : x $← L with witness w , c ← (x ,e = ProjHash(pk , x ,w ) + m)
Dec(sk , c) : m← e − Hash(sk , x )

The decryption procedure does not leak any information about sk if x ∈ L
but it might leak when x ∈ X\L: what about adding a second SPHF?

KeyGen() : hk $← HashKG(),hp ← ProjKG(hk)

hk ′ $← HashKG(),hp′ ← ProjKG(hk ′)
sk ← (hk ,hk ′),pk ← (hp,hp′)

Enc(pk ,m) : x $← L with witness w
c ← (x ,e = ProjHash(hp, x ,w ) + m, v = ProjHash(hp′, x ,w ))

Dec(sk , c) : v ?
= Hash(hk ′, x ),m← e − Hash(hk , x )
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IND-CCA Security: First Attempt

CA
hk ,hk ′ $← HashKG(),hp ← ProjKG(hk),hp′ ← ProjKG(hk ′)

pk = (hp,hp′)
m0,m1 ∈ G m0,m1 b $← {0,1}

x $← L,w//////////// x $← X\L
h← ProjHash(hp, x ,w )////////////////////////////// h← Hash(hk , x )

v ← ProjHash(hp′, x ,w )/////////////////////////////// v ← Hash(hk ′, x )

e = h + mb; c ← (x ,e, v)

c

b′ ∈ {0,1} b′ b′ ?
= b

Dec(sk , (x ′,e′, v ′)) : v ′′ ← Hash(hk ′, x ) (x ′,e′, v ′) 6= (x ,e, v) =⇒ (x ′,e′) 6= (x ,e)
v ′′ 6= v ′ : reject =⇒ x ′ ∈ L : Simulation-Soundness (?)
m′ ← e′ − Hash(hk , x ′)

Correctness + Correctness + Hard Subset Membership
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Soundness: Smoothness

Soundness: if x 6∈ L
H must be independent from hp

Γ θ

hk hp H

Simulation-Soundness: if xn 6∈ L
Hn must be independent from hp, H1, . . . Hn−1
even if x1, . . . , xn−1 6∈ L Γ θ1 · · · θn

hk hp H1 · · · Hn
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One-Time Simulation-Soundness: 2-Smoothness

One-Time Simulation-Soundness: if x ′ 6∈ L
H′ must be independent from hp, H
even if x 6∈ L Γ θ θ′

hk hp H H′

Tag-Based SPHF: for a word x and a tag t

Γ 7→
Γ 0

0 Γ

θ 7→
θ

tθ
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One-Time Simulation-Soundness

SPHF: if x 6∈ L

θ is independent of Γ

Tag-Based SPHF: if x , x ′ 6∈ L and t ′ 6= t
Γ 0 θ θ′

0 Γ tθ t ′θ′

×t−−−−→
tΓ 0 tθ tθ′

0 Γ tθ t ′θ′

−r1−−→
tΓ 0 tθ tθ′

0 t ′Γ 0
t ′θ′
-
tθ′

θ′ independent of Γ =⇒
t ′θ′
-
tθ′

is independent of 0 t ′Γ 0
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2-Smooth Projective Hash Function

SPHF:
hk $← HashKG()
hp ← ProjKG(hk)
H← Hash(hk , x )
pH← ProjHash(hp, x ,w )

2-SPHF:
hk ′ = HashKG′()← (hk1,hk2), hk1,hk2

$← HashKG()
hp′ = ProjKG′(hk ′)← (hp1,hp2), hp1 ← ProjKG(hk1), hp2 ← ProjKG(hk2)
H′ = Hash′(hk ′, x , t)← Hash(hk1, x ) + t × Hash(hk2, x )
pH′ = ProjHash′(hp′, x , t ,w )← ProjHash(hp1, x ,w ) + t × ProjHash(hp2, x ,w )
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IND-CCA Security: Second Attempt

CA
hk $← HashKG(),hp ← ProjKG(hk)

hk ′ $← HashKG′(),hp′ ← ProjKG′(hk ′)
pk = (hp,hp′)

m0,m1 ∈ G m0,m1 b $← {0,1}
x $← L,w//////////// x $← X\L
h← ProjHash(hp, x ,w )//////////////////////////////
e← h + mb/////////////// e $← G
t = H(x ,e); v ← ProjHash′(hp′, x , t ,w )////////////////////////////////// v ← Hash′(hk ′, x , t)
c ← (x ,e, v)

c

b′ ∈ {0,1} b′ b′ ?
= b

Dec(sk , (x ′,e′, v ′)) : v ′′ ← Hash′(hk ′, x ′, t ′) (x ′,e′, v ′) 6= (x ,e, v) =⇒ (x ′,e′) 6= (x ,e)
v ′′ 6= v ′ : reject =⇒ x ′ ∈ L : OT Simulation-Soundness
m′ ← e′ − Hash(hk , x ′)

Correctness + Hard Subset Membership + Smoothness =⇒ Pr[b′ = b] = 1
2
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DH-based Public-Key Encryption
[Cramer-Shoup – Crypto ’98]

X = {(G = gr
1,H = gs

2) | r , s $← Zq} L = {(G = gr
1,H = gr

2) | r $← Zq}
KeyGen() : sk = (hk = (α, β),hk ′1 = (x1, x2),hk ′2 = (y1, y2))

$← Z6
q

pk = (hp ← gα1 gβ2 ,hp′1 ← gx1
1 gx2

2 ,hp′2 ← gy1
1 gy2

2 )

Enc(pk ,m) : r $← Zq; u1 = gr
1,u2 = gr

2; e← hpr ×m
v = (hp′1 × hp′2

t
)r , with t ← H(u1,u2,e)

Dec(sk , (u1,u2,e, v)) : v ?
= ux1

1 uy1
2 × (ux2

2 uy2
2 )t , with t ← H(u1,u2,e) : m = e/uα1 uβ2

Cramer-Shoup CCA Encryption Scheme

KeyGen() : sk = (z, x1, x2, y1, y2)
$← Z5

q
pk = (h← gz

1 , c ← gx1
1 gx2

2 ,d ← gy1
1 gy2

2 )

Enc(pk ,m) : r $← Zq; u1 = gr
1,u2 = gr

2; e← hr ×m
v = (c × d t )r , with t ← H(u1,u2,e)

Dec(sk , (u1,u2,e, v)) : v ?
= ux1+tx2

1 uy1+ty2
2 , with t ← H(u1,u2,e) : m = e/uz

1

CNRS/ENS/PSL/INRIA David Pointcheval 34/51

Outline

Introduction

1 Smooth Projective Hash Functions (SPHFs)
Definitions: CS/GL/KV SPHFs
Matrix Formalism

2 Encryption and Proofs
Public-Key Encryption
Simulation-Soundness

3 More Languages
Basic Languages
Conjunctions and Disjunctions
KV Disjunctions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 35/51

Outline

Introduction

1 Smooth Projective Hash Functions (SPHFs)
Definitions: CS/GL/KV SPHFs
Matrix Formalism

2 Encryption and Proofs
Public-Key Encryption
Simulation-Soundness

3 More Languages
Basic Languages
Conjunctions and Disjunctions
KV Disjunctions

Conclusion

CNRS/ENS/PSL/INRIA David Pointcheval 36/51



DH-based Languages

DH-tuples for (g,h): L = {(gr ,hr )} ⊆ {(gx ,gy )} = X with h = ga

Γ =

[
1
a

]
λ =

[
r
]

θ =

[
x
y

]
=

[
r

ar

]

ElGamal ciphertext of m: c = (u = gr ,e = hr m) =⇒ (u,e/m) ∈ L
Valid Cramer-Shoup ciphertext:

c = (u1 = gr
1,u2 = gr

2,e = hr m, v = (cd t )r ) with t = H(u1,u2,e)

If g2 = gs
1, h = ga

1 , c = gα1 , d = gβ1 and c = (u1 = gr1
1 ,u2 = gr2

1 ,e = gy
1 , v = gz

1 )
c is a valid CS ciphertext iff (u1,u2, v) is an r -th power of (g1,g2, cd t )

Γ =




1
s

α + tβ


 λ =

[
r
]

θ =




r1
r2
z


 =




r
sr

(α + tβ)r


 for t = H(u1,u2,e)
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Cramer-Shoup Ciphertext Languages

c = (u1 = gr
1,u2 = gr

2,e = hr m, v = (cd t )r ) with t = H(u1,u2,e)

If g2 = gs
1, h = ga

1 , c = gα1 , d = gβ1 and c = (u1 = gr1
1 ,u2 = gr2

1 ,e = gy
1 m, v = gz

1 )

c is a valid CS ciphertext iff (u1,u2, v) is an r -th power of (g1,g2, cd t )

Γ =




1
s

α + tβ


 λ =

[
r
]

θ =




r1
r2
z


 =




r
sr

(α + tβ)r


 for t = H(u1,u2,e)

c is a CS ciphertext of m iff (u1,u2,e/m, v) is an r -th power of (g1,g2,h, cd t )

Γ =




1
s
a

α + tβ


 λ =

[
r
]

θ =




r1
r2
y
z


 =




r
sr
ar

(α + tβ)r


 for t = H(u1,u2,e)
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Adaptive Statement

c is a valid CS ciphertext Γ =




1
s

α + tβ




Γ =




1
s
a

α + tβ


 c is a CS ciphertext of m

θ = Γ · λ
hp = hk · Γ
H = hk · θ

pH = hp · λ

Γ depends on t = H(u1,u2,e)
=⇒ Γ depends on c
=⇒ hp depends on c

These are GL-SPHFs only!
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KV-SPHFs for Cramer-Shoup Ciphertext Languages
[Benhamouda-Blazy-Chevalier-P.-Vergnaud – Crypto ’13]

c = (u1 = gr
1,u2 = gr

2,e = hr m, v = (cd t )r ) with t = H(u1,u2,e)

If g2 = gs
1, h = ga

1 , c = gα1 , d = gβ1 and c = (u1 = gr1
1 ,u2 = gr2

1 ,e = gy
1 m, v = gz

1 )

Valid CS ciphertext =⇒ x = (u1,ut
1,u2, v) for t = H(u1,u2,e)

Γ =




1 0
0 1
s 0
α β


 λ =

[
r
tr

]
θ =




r1
tr1
r2
z


 =




r
tr
sr

αr + βtr




CS ciphertext of m =⇒ x = (u1,ut
1,u2,e/m, v) for t = H(u1,u2,e)

Γ =




1 0
0 1
s 0
a 0
α β




λ =

[
r
tr

]
θ =




r1
tr1
r2
y
z




=




r
tr
sr
ar

αr + βtr



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Conjunctions of Languages

L1 ⊆ X1 and L2 ⊆ X2 L1 × L2 ⊆ X1 ×X2

λ1

Γ1 θ1

hk1 hp1 H1

λ2

Γ2 θ2

hk2 hp2 H2

−→

λ1

λ2

Γ1 0 θ1

0 Γ2 θ2

hk1 hk2 hp1 hp2 H
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Disjunctions of Languages
[Abdalla-Benhamouda-P. – Eurocrypt ’15]

L1 ⊆ X1 and L2 ⊆ X2 (L1 ×X2) ∪ (X1 × L2) ⊆ X1 ×X2

λ1

Γ1 θ1

hk1 hp1 H1

λ2

Γ2 θ2

hk2 hp2 H2

−→

0 1 0 1

Γ1 θ1 0 0

0 0 Γ2 θ2

×

λ1

−1

0

0

=

−1

Γ1 · λ1 − θ1

0

=

−1

0

0

×

0

0

λ2

−1

=

−1

0

Γ2 · λ2 − θ2

=

−1

0

0

= θ
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Disjunctions of DH Languages

L1 = {(gr ,hr
1)} and L2 = {(gr ,hr

2)}, for h1 = ga1 and h2 = ga2 : c = (u = gx , v = gy )

Γ =




0 1 0 1
1 x 0 0
a1 y 0 0
0 0 1 x
0 0 a2 y




=




1 g 1 g
g u 1 1
h1 v 1 1
1 1 g u
1 1 h2 v







−1
0
0
0
0




= θ

hk =
[
α β γ δ ε

] (
gβhγ1 gαuβvγ gδhε2 gαuδv ε

)
= hp

c = (u, v) : H = hk · θ =
[
−α

]
=⇒ g−α

If c = (gr ,hr
1) :

λ =




r
−1
0
0


 ,pH = hp · λ

=⇒ g−α(gr/u)β(hr
1/v)γ

If c = (gr ,hr
2) :

λ =




0
0
r
−1


 ,pH = hp · λ

=⇒ g−α(gr/u)δ(hr
1/v)ε
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Limits of Previous Constructions

L1 ⊆ X1 and L2 ⊆ X2: L = (L1 ×X2) ∪ (X1 × L2)

Γ =

0 1 0 1

Γ1 θ1 0 0

0 0 Γ2 θ2

=⇒ Γ depends on θ1, θ2

This is a GL-SPHF!

L 6= (L1 ×X2) + (X1 × L2) = X1 ×X2 where the sets are identified to vectorial spaces
But L = (L1 ⊗X2) + (X1 ⊗ L2)
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KV Disjunctions
[Abdalla-Benhamouda-P. – Eurocrypt ’15]

L = (L1 ⊗X2) + (X1 ⊗ L2)

Γ = Γ1 ⊗ Idn2 Idn1 ⊗ Γ2

θ = θ1 ⊗ θ2

λ =

λ1 ⊗ θ2

0

if x ∈ L1

0

θ1 ⊗ λ2

if x ∈ L2
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Disjunctions of DH Languages

L1 = {(gr ,hr
1)} and L2 = {(gr ,hr

2)}, for h1 = ga1 and h2 = ga2 : c = (u = gx , v = gy )

Γ1 =

[
1
a1

]
λ1 =

[
r
]

θ1 =

[
x
y

]
Γ2 =

[
1
a2

]
λ2 =

[
r
]

θ2 =

[
x
y

]

Γ =

[
1
a1

]
⊗
[

1 0
0 1

]∣∣∣∣
∣∣∣∣
[

1 0
0 1

]
⊗
[

1
a2

]
=




1 0 1 0
0 1 a2 0
a1 0 0 1
0 a1 0 a2


 =




g 1 g 1
1 g h2 1
h1 1 1 g
1 h1 1 h2




θ =




x • x
x • y
y • x
y • y


 =




e(u,u)
e(u, v)
e(v ,u)
e(v , v)




hk =
[
α β γ δ

]

hp =
(

gαhγ1 gβhδ1 gαhβ2 gγhδ2
)
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Disjunctions of DH Languages

L1 = {(gr ,hr
1)} and L2 = {(gr ,hr

2)}, for h1 = ga1 and h2 = ga2 : c = (u = gx , v = gy )

Γ1 =

[
1
a1

]
λ1 =

[
r
]

θ1 =

[
x
y

]
Γ2 =

[
1
a2

]
λ2 =

[
r
]

θ2 =

[
x
y

]

hk =
[
α β γ δ

]
hp =

(
gαhγ1 gβhδ1 gαhβ2 gγhδ2

)

H = hk · θ =
[
α • x • x + (β + γ) • x • y + δ • y • y

]
=⇒ e(u,u)αe(u, v)β+γe(v , v)δ

For c = (gr ,hr
1)

λ =

[
λ1 ⊗ θ2

0

]
=




r • x
r • y

0
0


 ,pH = hp ·λ⇒





e(gx ,gr )αe(gx ,hr
1)γ × e(gy ,gr )βe(gy ,hr

1)δ

e(u,u)αe(u, v)γ × e(v ,u)βe(v , v)δ

e(u,u)α · e(u, v)β+γ · e(v , v)δ
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Conclusion

SPHFs = Smooth Projective Hash Functions allow
Honest-Verifier Zero-Knowledge Arguments
With disjunctions =⇒ Zero-Knowledge Arguments
And even NIZKs with Simulation-Soundness
Trapdoor SPHFs, for ZK Arguments [Benhamouda-Blazy-Chevalier-P.-Vergnaud – Crypto ’13]

Implicit ZK, for malicious 2-Party Computations [Benhamouda-Couteau-P.-Wee – Crypto ’15]

Explainable SPHFs, to remove erasures [Abdalla-Benhamouda-P. – PKC ’17]

See Fabrice Benhamouda’s Thesis: “Diverse modules and zero-knowledge”
for all technical details

Application to Password-Authenticated Key Exchange

CNRS/ENS/PSL/INRIA David Pointcheval 51/51


