
BIU WINTER SCHOOL | February 2019

NON-BLACK-BOX ZK

(Barak’s Protocol)

ALON ROSEN IDC HERZLIYA

The Goal

Goal: construct CZK argument ∀𝐿 ∈ NP

• with negligible soundness

• a constant number of rounds

• and public-coin

Need to address:

• How to use 𝑉∗’s code (BB impossibility)

• 𝑉∗’s running time is not a-priori bounded

• No 𝐿 ∉ BPP has a black-box ZK protocol that is:

• constant-round

• negligible-soundness

• public-coin

• So for 𝐿 ∉ BPP must use a non-black box simulator

• On the one hand, ∀𝑉∗ ∃𝑆 should be easier than ∃𝑆 ∀𝑉∗

• On the other hand, where do we even begin?

• Reverse engineering 𝑉∗ is difficult!

• Key insight: there is no need to reverse engineer

• Enough for 𝑆 to prove that he possesses 𝑉∗’s code

Non-BB ZK Arguments for NP

Theorem [B’01]: If CRH exist, every 𝐿 ∈ NP has a constant-

round, public-coin, negligible-soundness, ZK argument

• Idea: enable usage of verifier’s code as a “fake” witness

• In the real proof, the code is 𝑉’s random tape

• In simulation, the code is 𝑉∗’s “next-message function”

• Since 𝑃 does not have access to 𝑉’s random tape in real

interactions, this will not harm soundness

• The simulator 𝑆, on the other hand, will be always able to

make verifier accept since it obtains 𝑉∗’s code as input

Non-BB ZK Arguments for NP

Definition: 𝐻𝑘 : 0,1
∗ → 0,1 𝑘 is 𝑡, 𝜀 -CRH if ∀time-𝑡 𝐴

𝑃𝑟 𝐴 finds a collision in ℎ ∈𝑅 𝐻𝑘 ≤ 𝜀

Collision: 𝑥 ≠ 𝑥′ such that ℎ 𝑥 = ℎ(𝑥′)

Candidate CRHs:

• Discrete-log-based: 𝑔𝑥𝐿ℎ𝑥𝑅 𝑚𝑜𝑑 𝑃

• SIS: 𝐴𝑥 𝑚𝑜𝑑 𝑞

• SHA: ℎ 𝑥𝐿 , 𝑥𝑅

Later: 𝐻𝑘 : 0,1
∗ → 0,1 𝑘 from ℎ: 0,1 2𝑘 → 0,1 𝑘

Coll ision-Resistant Hash Functions

Constant-Round ZK
Arguments for NP

The Basic Idea

𝑥 ∈ 𝐿

WIAOK⟹

WIAOK statement: ∃𝑤, 𝜋, 𝑧 s.t.

1. 𝑥, 𝑤 ∈ 𝑅𝐿 or

2. “𝑐 is a commitment to a

program 𝜋 s.t. 𝜋 𝑧 = 𝑟
within 𝑡 𝑛 steps”

𝑐 = 𝐶𝑜𝑚 0𝑘

𝑟 𝑟 ∈𝑅 0,1 2𝑛

witness 𝑤

Intuition:

• In the real interaction 𝑃 cannot predict the random string 𝑟

• In simulation, 𝑟 = 𝑉∗(𝑐) so 𝑆 can set 𝜋 = 𝑉∗and 𝑧 = 𝑐

NTIME(𝑡 𝑛)
statement

WIAOK statement: ∃𝑤, 𝜋, 𝑧 s.t.

1. 𝑥, 𝑤 ∈ 𝑅𝐿 or

2. “𝑐 is a commitment to a

program 𝜋 s.t. 𝜋 𝑧 = 𝑟
within 𝑡 𝑛 steps”

Completeness

𝑥 ∈ 𝐿

{Use 𝑤
to prove

ACCEPT

𝑐 = 𝐶𝑜𝑚 0𝑘

𝑟

witness 𝑤

WIAOK statement: ∃𝑤, 𝜋, 𝑧 s.t.

1. 𝑥, 𝑤 ∈ 𝑅𝐿 or

2. “𝑐 is a commitment to a

program 𝜋 s.t. 𝜋 𝑧 = 𝑟
within 𝑡 𝑛 steps”

Soundness

𝑐 = 𝐶𝑜𝑚 0𝑘

𝑟

𝑥 ∉ 𝐿P*

𝑟 ∈𝑅 0,1 2𝑛

∀𝜋, 𝑃𝑟𝑟 ∃𝑧 ∈ 0,1 𝑛 , 𝜋 𝑧 = 𝑟 ≤ 2𝑛 ∙ 2−2𝑛

= 2−𝑛

WIAOK statement: ∃𝑤, 𝜋, 𝑧 s.t.

1. 𝑥, 𝑤 ∈ 𝑅𝐿 or

2. “𝑐 is a commitment to a

program 𝜋 s.t. 𝜋 𝑧 = 𝑟
within 𝑡 𝑛 steps”

Zero-Knowledge

V*

𝑐 = 𝐶𝑜𝑚 𝑉∗

𝑟

𝑥 ∉ 𝐿S

𝑟 = 𝑉∗ 𝑐

Simulator

{
Use

𝜋 = 𝑉∗

𝑧 = 𝑐
to prove

}Cannot

distinguish

if 1 or 2

By definition, 𝜋 𝑧 = 𝑉∗ 𝑐 = 𝑟

• Simulator runs in strict polynomial time

• Possession of 𝑉∗ is sufficient. No reverse engineering!

First technical issue:

• 𝑉∗’s size is 𝑝𝑜𝑙𝑦 𝑛 , but not a-priori bounded

• In particular, how can 𝑐 = 𝐶𝑜𝑚 𝑉∗ accommodate 𝑉∗?

• Solution: use ℎ: 0,1 ∗ → 0,1 𝑘 to compute 𝐶𝑜𝑚 ℎ(𝑉∗)

Second technical issue:

• Running time 𝑡 𝑛 of 𝑉∗ not bounded by any fixed 𝑝𝑜𝑙𝑦 𝑛

• So NTIME(𝑡 𝑛) relation in WIAOK is not an NP-relation

• Solution: WIAOK that handles NTIME(𝑛𝜔(1)) relations

Observations and Technical I ssues

A constant-round ZK Argument

𝑥 ∈ 𝐿

ℎ

WIAOK⟹

𝑐 = 𝐶𝑜𝑚 0𝑛

ℎ ∈𝑅 𝐻𝑘

𝐻𝑘 : 0,1
∗ → 0,1 𝑘

𝑟 ∈𝑅 0,1 2𝑛𝑟

WIAOK statement: ∃𝑤, 𝜋, 𝑧 s.t.

1. 𝑥, 𝑤 ∈ 𝑅𝐿 or

2. “𝑐 is a commitment to ℎ(𝜋)
where 𝜋 is a program s.t.

𝜋 𝑧 = 𝑟 within 𝑡 𝑛 steps”

witness 𝑤

WIUAOK⟹

The Relation 𝑅𝑆𝐼𝑀

𝑥 ∈ 𝐿 𝐻𝑘: 0,1
∗ → 0,1 𝑘

WIAOK statement: ∃𝑤, 𝜋, 𝑠, 𝑧 s.t.

1. 𝑥, 𝑤 ∈ 𝑅𝐿 or

2. ℎ, 𝑐, 𝑟 , 𝜋, 𝑠, 𝑧 ∈ 𝑅𝑆𝐼𝑀

ℎ, 𝑐, 𝑟 , 𝜋, 𝑠, 𝑧 ∈ 𝑅𝑆𝐼𝑀 :

1. 𝑧 ≤ 𝑟 − 𝑛
2. 𝑐 = 𝐶𝑜𝑚 ℎ 𝜋 , 𝑠 and

3. 𝜋 𝑧 = 𝑟 within 𝑡 𝑛 steps

NTIME(𝑡 𝑛)
statement

ℎ

𝑐 = 𝐶𝑜𝑚 0𝑛

ℎ ∈𝑅 𝐻𝑘

𝑟 ∈𝑅 0,1 2𝑛𝑟

witness 𝑤

The Universal Language 𝐿𝑈

Goal: handling NTIME(𝑡(𝑛)) statements for 𝑡 𝑛 = 𝑛𝜔 1

Consider the universal language 𝐿𝑈 :

𝑦 = 𝑀, 𝑥, 𝑡 ∈ 𝐿𝑈
⇕

∃𝑤,𝑀 𝑥, 𝑤 = ACCEPT within 𝑡 steps

• Every 𝐿 ∈ NP is linear-time reducible to 𝐿𝑈

• A proof system for 𝐿𝑈 enables to handle all NP -statements

• More importantly, a proof system for 𝐿𝑈 enables to handle

NTIME(𝑛𝜔(1)) statements and even beyond (NEXP)

Universal Arguments

Universal Argument Systems

𝑦 = 𝑀, 𝑥, 𝑡 ∈ 𝐿𝑈 ⟺ ∃𝑤,𝑀 𝑥,𝑤 = ACCEPT in 𝑡 steps

Definition [K’91, M’91, BG’02]: A universal argument

system for 𝐿𝑈 is a pair 𝑃,𝑉 such that ∀𝑦 = 𝑀,𝑥, 𝑡 :

Efficient verification: 𝑉 runs in 𝑝𝑜𝑙𝑦 𝑦 time

Completeness: If 𝑦 ∈ 𝐿𝑈, then 𝑃𝑟 𝑃,𝑉 accepts 𝑦 = 1
Moreover, 𝑃 runs in time 𝑝𝑜𝑙𝑦 𝑡

Computational soundness: If 𝑦 ∉ 𝐿𝑈, then ∀𝑃𝑃𝑇 𝑃∗

𝑃𝑟 𝑃∗, 𝑉 accepts 𝑥 ≤ 𝑛𝑒𝑔 𝑛

Theorem: If CRH exist, 𝐿𝑈 has a universal argument

Makes use of a PCP 𝑂 𝑙𝑜𝑔 , 𝑝𝑜𝑙𝑦 system for 𝐿𝑈

What is a PCP 𝑂(𝑙𝑜𝑔), 𝑝𝑜𝑙𝑦 proof system?

• It is a 𝑃𝑃𝑇 𝑉PCP with access to an oracle 𝜋𝑦 that represents a

proof for 𝑦 ∈ 𝐿𝑈 in redundant form

• 𝑉PCP (non-adaptively) queries 𝑞 oracle bits of 𝜋𝑦 where

𝑞 = 𝑝𝑜𝑙𝑦(𝑦)

• the bit positions are determined by 𝑉PCP‘s coin tosses

• the number of coins tossed by 𝑉PCP is O 𝑙𝑜𝑔 𝑡

• and the length of 𝜋𝑦 is

𝑒𝑥𝑝 O 𝑙𝑜𝑔 𝑡 = 𝑝𝑜𝑙𝑦(𝑡)

Bui lding block: PCP Proof System

𝑉’s complexity

𝑃’s complexity

𝜋𝑦

PCP Reduction

𝑦 = 𝑀, 𝑥, 𝑡 , 𝑤
↓

length = 𝑝𝑜𝑙𝑦(𝑡)

𝑞 = 𝑝𝑜𝑙𝑦(𝑦) queries 𝑉’s complexity

𝑃’s complexity

the 𝑞 queries are determined by

𝑉PCP(𝑟) where 𝑟 ∈ 0,1 O 𝑙𝑜𝑔 𝑡

𝜋𝑦

Commitment with Local Decommitment

Problem: the PCP is too long to be sent to 𝑉 in its entirety

Solution: commit to 𝜋𝑦 and allow “local decommitment”

𝐻 is computationally binding - built using CRH ℎ

𝐻(𝜋𝑦)

log 𝑡

The Protocol

𝑦 = 𝑀, 𝑥, 𝑡 ∈ 𝐿𝑈

ℎ

𝒄 = 𝐻(𝜋𝑦)

ℎ ∈𝑅 𝐻𝑘

𝐻𝑘 : 0,1
∗ → 0,1 𝑘

𝑟 ∈𝑅 0,1 O 𝑙𝑜𝑔 𝑡𝑟

witness 𝑤

↓
𝜋𝑦

time 𝑝𝑜𝑙𝑦(𝑡)

Authenticated replies

to 𝑞 queries 𝑉PCP 𝑟
with respect to 𝒄

Time

𝑝𝑜𝑙𝑦 𝑞 = 𝑝𝑜𝑙𝑦(𝑦)

Completeness

𝑦 ∈ 𝐿𝑈

ℎ

𝒄 = 𝐻(𝜋𝑦)

𝑟

witness 𝑤

↓
𝜋𝑦

Authenticated replies

to 𝑞 queries 𝑉PCP 𝑟
with respect to 𝒄

ACCEPT

{

{
completeness

of PCP

⇒

Computational Soundness

𝑦 ∉ 𝐿𝑈

ℎ

𝒄 = 𝐻(𝜋𝑦)

𝑟

witness 𝑤

↓
𝜋𝑦

Authenticated replies

to 𝑞 queries 𝑉PCP 𝑟
with respect to 𝒄

{

{

soundness of

PCP and

binding of 𝐻

}
“local extraction”

from the PCP

(PCP is a POK)

Recall: binding of 𝐻 is computational - built using CRH ℎ

Interlude:

Merkle Trees

Merkle Tree

ℎ: 0,1 2𝑘 → 0,1 𝑘

ℎ 𝑥𝐿 , 𝑥𝑅

𝑥𝐿 𝑥𝑅

log 𝑁 = 𝑛

𝑁 = 2𝑛

𝐻 𝑥 𝐻: 0,1 𝑁𝑘 → 0,1 𝑘

𝑥

Merkle Tree: Col l ision Resistance

𝑥 ≠ 𝑥′ , 𝐻 𝑥 = 𝐻 𝑥′

𝑥𝑖 ≠ 𝑥𝑖
′

Computationally (globally) binding

Merkle Tree: Local Decommitment

𝐻 𝑥

Merkle Tree: Local Decommitment

log 𝑁 = 𝑛

𝐻 𝑥Authentication path:

2 log 𝑁 − 1 labels

Computationally (locally) binding

Back to ZK
Arguments for NP

WIUAOK⟹

Recal l : Barak’s Protocol

𝑥 ∈ 𝐿

ℎ

𝑐 = 𝐶𝑜𝑚 0𝑛

ℎ ∈𝑅 𝐻𝑘

𝑟 ∈𝑅 0,1 2𝑛𝑟

witness 𝑤

WIUAOK statement: ∃𝑤, 𝜋, 𝑧 s.t.

1. 𝑥, 𝑤 ∈ 𝑅𝐿 or

2. “𝑐 is a commitment to ℎ(𝜋)
where 𝜋 is a program s.t.

𝜋 𝑧 = 𝑟 within 𝑡 𝑛 steps”

So far: we only saw how to build UAOK. What about WI?

WI Universal Arguments

𝑦 ∈ 𝐿𝑈

ℎ

𝒄 = 𝐻(𝜋𝑦)

𝑟

PCP replies

𝛼

𝛽

𝛾

𝛿

𝑦 ∈ 𝐿𝑈

ℎ

𝑐 = 𝐶𝑜𝑚(𝛽)

𝑟

𝑑 = 𝐶𝑜𝑚(𝛿)

𝛼

𝛾⇒

WIAOK⟹

WIAOK statement: ∃𝛽, 𝛿 s.t.

1. 𝑐 = 𝐶𝑜𝑚(𝛽)
2. 𝑑 = 𝐶𝑜𝑚(𝛿)
3. 𝑉 𝛼, 𝛽, 𝛾, 𝛿 = ACCEPT

Subtle point: actually run 𝑘
parallel copies of ZKPOK with

constant soundness error

Summary

Saw:

• CZK argument ∀𝐿 ∈ NP
• with negligible soundness

• a constant number of rounds

• and public-coin

Tools:

• Non-black-box simulation

• WI universal arguments

• Resettably-sound ZK [BGGL’01,CPS’13,COPVV’13]

• Constant-round bounded-conc. ZK and MPC [B’01,PR’03]

• Constant-round ZK with strict poly-time sim. [BL’02]

• Simultaneously resettable ZK and MPC [DGS’09,GM’11]

• Constant-round covert MPC [GJ’10]

• Constant-round public-coin parallel ZK [PRT’11]

• Simultaneously resettable WI-POK [COSV’12]

• Constant-round conc. ZK from iO [CLP’13, PPS’13, CLP’15]

• Concurrent secure computation [GGS’15]

Fol low-up Work (2001-2012)

[BP’12]:

• Impossibility for obfuscation → non BB simulation

• In particular, no use of PCP

[BKP’15]:

• Homomorphic trapdoors

• Enables to break all Black-Box barriers for e.g. WH

New non-BB Techniques

Food for Thought

Efficiency of universal arguments depends on:

• Number 𝑞 of oracle queries made by 𝑉PCP to 𝜋𝑦
𝑞 = 𝑝𝑜𝑙𝑦(𝑦)

• Length of 𝜋𝑦 - depends on number of coins tossed by 𝑉PCP
𝑒𝑥𝑝 O 𝑙𝑜𝑔 𝑡 = 𝑝𝑜𝑙𝑦(𝑡)

• Optimizing params:

• Larger alphabet size

• Trading off prover/verifier time

• Less modular design and/or other models:

• Interactive PCPs/oracle IPs

• Using homomorphism of commitments

Eff iciency Optimizations

• Can turn Merkle-tree into statistically hiding:

• Generically

• Assuming ℎ is a random oracle

Open questions:

• Is 𝑂(𝑞𝑘 log𝑁) optimal?

• In practice 𝑁 can be quite large

• Bulletproofs is 𝑂 𝑞 + 𝑘 log𝑁 but verifier space is 𝑁

• Lattices/amortization gets 𝑂 𝑞 + 𝑘 𝑁

• Ideally 𝑂 𝑞 + 𝑘 log𝑁 size and verification time

Merkle Trees: Other Considerations

• Define what it means to be secure

• Build a protocol/scheme

• Prove that protocol/scheme satisfies definition

• First feasibility then efficiency

• Relax definitions

Modern Crypto

History

Boaz Barak Ralph MerkleJoe Kilian

History

Nir Bitansky Dakshita Khurana Omer Paneth

Rachel Lin Kai-Min Chung

Ivan ViscontiAbhishek JainVipul Goyal

Dustin Tseng

Rafael Pass

Muthuramakrishnan

Venkitasubramaniam

The End

Questions?

