

NON-BLACK-BOX ZK (Barak's Protocol)

ALON ROSEN

IDC HERZLIYA

fact FOUNDATIONS & APPLICATIONS
of CRYPTOGRAPHIC THEORY

The Goal

Goal: construct CZK argument $\forall L \in \text{NP}$

- with negligible soundness
- a constant number of rounds
- and public-coin

Need to address:

- How to use V^* 's code (BB impossibility)
- V^* 's running time is not a-priori bounded

Non-BB ZK Arguments for NP

- No $L \notin \text{BPP}$ has a black-box ZK protocol that is:
 - constant-round
 - negligible-soundness
 - public-coin
- So for $L \notin \text{BPP}$ must use a non-black box simulator
- On the one hand, $\forall V^* \exists S$ should be easier than $\exists S \forall V^*$
- On the other hand, where do we even begin?
 - Reverse engineering V^* is difficult!
 - Key insight: there is no need to reverse engineer
 - Enough for S to prove that he possesses V^* 's code

Non-BB ZK Arguments for NP

Theorem [B'01]: If CRH exist, every $L \in \text{NP}$ has a constant-round, public-coin, negligible-soundness, ZK argument

- Idea: enable usage of verifier's code as a “fake” witness
- In the real proof, the code is V 's random tape
- In simulation, the code is V^* 's “next-message function”
- Since P does not have access to V 's random tape in real interactions, this will not harm soundness
- The simulator S , on the other hand, will be always able to make verifier accept since it obtains V^* 's code as input

Collision-Resistant Hash Functions

Definition: $H_k: \{0,1\}^* \rightarrow \{0,1\}^k$ is (t, ε) -**CRH** if \forall time- t A

$$\Pr[A \text{ finds a collision in } h \in_R H_k] \leq \varepsilon$$

Collision: $x \neq x'$ such that $h(x) = h(x')$

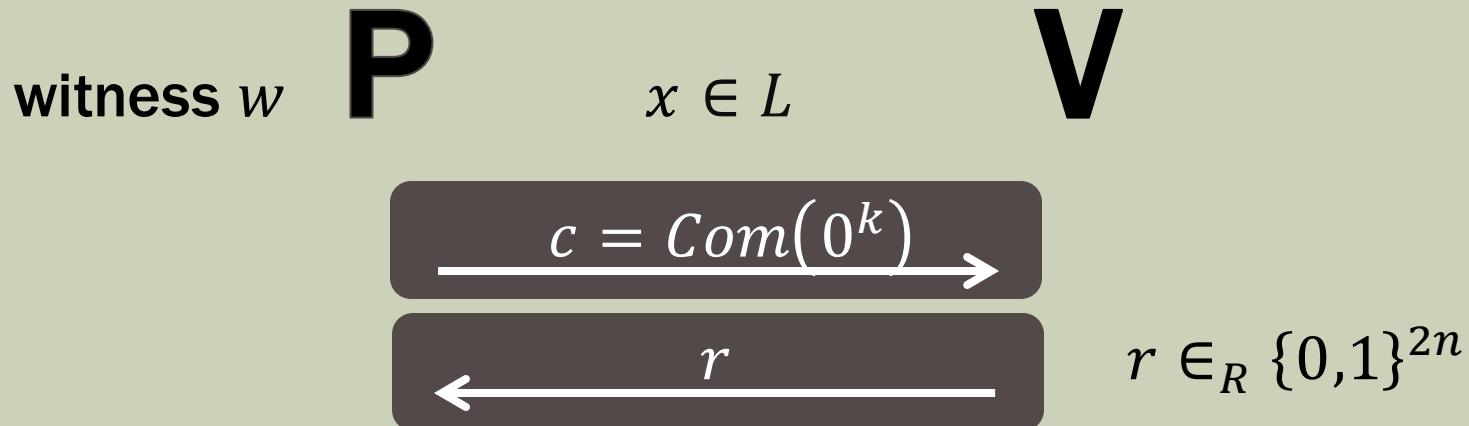
Candidate CRHs:

- Discrete-log-based: $g^{x_L} h^{x_R} \text{ mod } P$
- SIS: $Ax \text{ mod } q$
- SHA: $h(x_L, x_R)$

Later: $H_k: \{0,1\}^* \rightarrow \{0,1\}^k$ from $h: \{0,1\}^{2k} \rightarrow \{0,1\}^k$

Constant-Round ZK Arguments for NP

The Basic Idea



NTIME($t(n)$)
statement

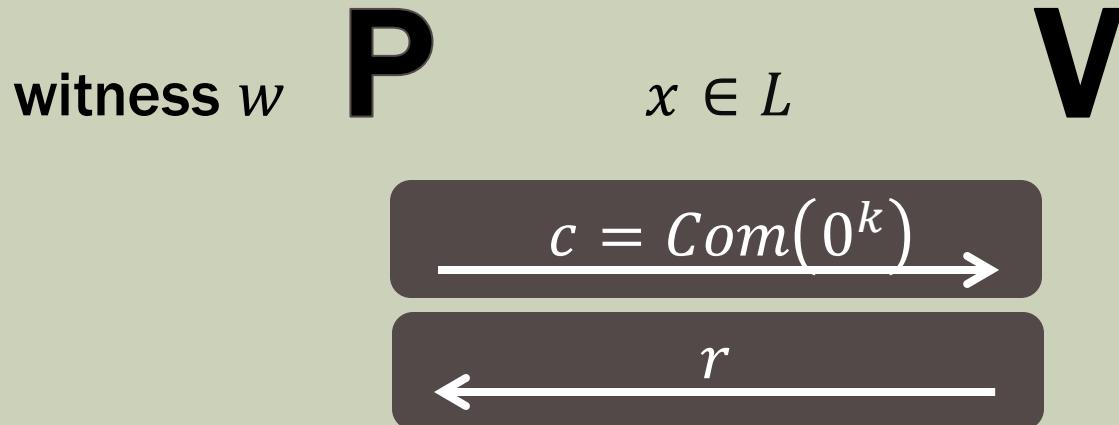
WIAOK statement: $\exists w, \pi, z$ s.t.

1. $(x, w) \in R_L$ or
2. “ c is a commitment to a program π s.t. $\pi(z) = r$ within $t(n)$ steps”

Intuition:

- In the real interaction P cannot predict the random string r
- In simulation, $r = V^*(c)$ so S can set $\pi = V^*$ and $z = c$

Completeness



Use w
to prove {

WIAOK statement: $\exists w, \pi, z$ s.t.

1. $(x, w) \in R_L$ **or**
2. “ c is a commitment to a program π s.t. $\pi(z) = r$ within $t(n)$ steps”

ACCEPT

Soundness

P*

$x \notin L$

V

$c = Com(0^k)$

r

$r \in_R \{0,1\}^{2n}$

WIAOK statement: $\exists w, \pi, z$ s.t.

1. ~~$(x, w) \in R_L$ or~~
2. “ c is a commitment to a program π s.t. $\pi(z) = r$ within $t(n)$ steps”

$$\begin{aligned} \forall \pi, \Pr_r [\exists z \in \{0,1\}^n, \pi(z) = r] &\leq 2^n \cdot 2^{-2n} \\ &= 2^{-n} \end{aligned}$$

Zero-Knowledge

Simulator S

$x \notin L$

V^*

$c = Com(V^*)$

r

$r = V^*(c)$

Use
 $\pi = V^*$
 $z = c$
to prove

WIAOK statement: $\exists w, \pi, z$ s.t.

1. $(x, w) \in R_L$ **or**
2. “ c is a commitment to a program π s.t. $\pi(z) = r$ within $t(n)$ steps”

}

Cannot
distinguish
if 1 or 2

By definition, $\pi(z) = V^*(c) = r$

Observations and Technical Issues

- Simulator runs in strict polynomial time
- Possession of V^* is sufficient. No reverse engineering!

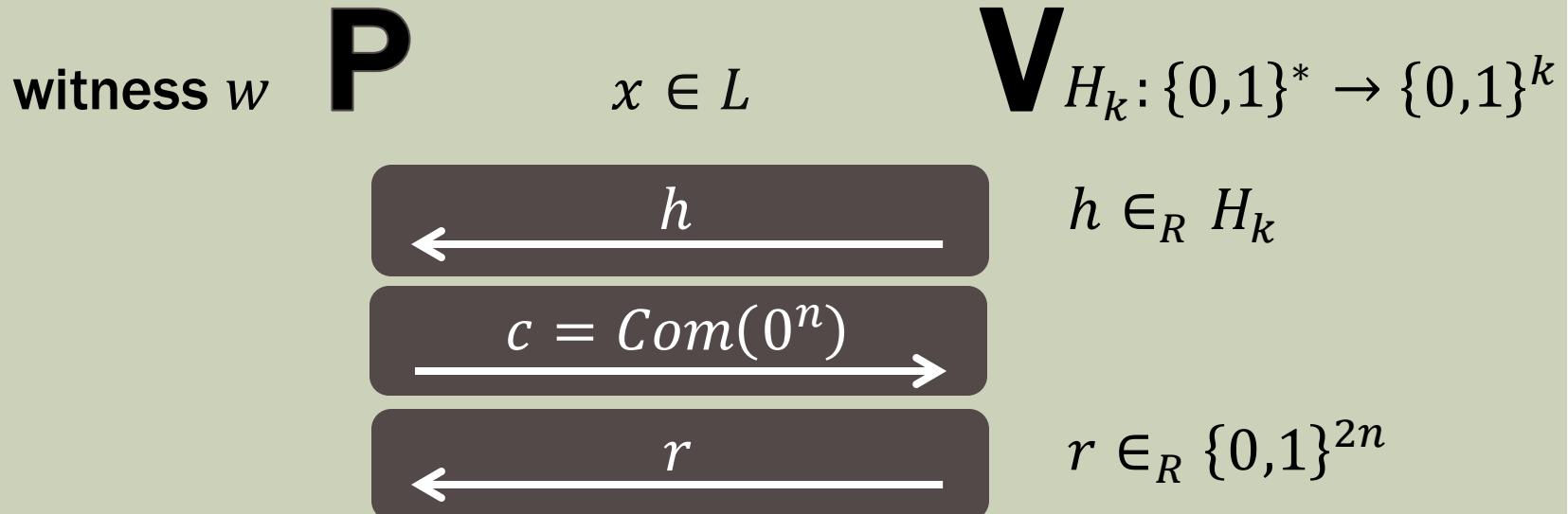
First technical issue:

- V^* 's size is $\text{poly}(n)$, but not a-priori bounded
- In particular, how can $c = \text{Com}(V^*)$ accommodate V^* ?
- Solution: use $h: \{0,1\}^* \rightarrow \{0,1\}^k$ to compute $\text{Com}(h(V^*))$

Second technical issue:

- Running time $t(n)$ of V^* not bounded by any fixed $\text{poly}(n)$
- So $\text{NTIME}(t(n))$ relation in WIAOK is not an NP-relation
- Solution: WIAOK that handles $\text{NTIME}(n^{\omega(1)})$ relations

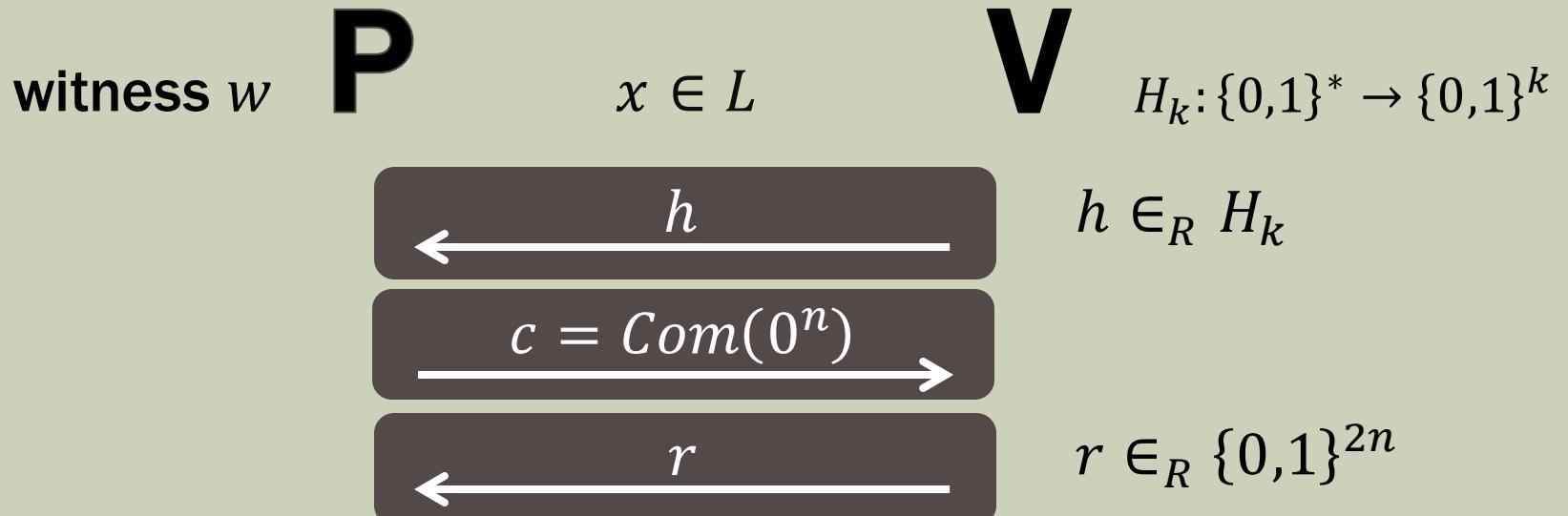
A constant-round ZK Argument



WIAOK statement: $\exists w, \pi, z$ s.t.

1. $(x, w) \in R_L$ **or**
2. “ c is a commitment to $h(\pi)$
where π is a program s.t.
 $\pi(z) = r$ within $t(n)$ steps”

The Relation R_{SIM}



NTIME($t(n)$)
statement

WIAOK statement: $\exists w, \langle \pi, s, z \rangle$ s.t.

1. $(x, w) \in R_L$ or
2. $(\langle h, c, r \rangle, \langle \pi, s, z \rangle) \in R_{SIM}$

$(\langle h, c, r \rangle, \langle \pi, s, z \rangle) \in R_{SIM}$:

1. $|z| \leq |r| - n$
2. $c = Com(h(\pi), s)$ and
3. $\pi(z) = r$ within $t(n)$ steps

The Universal Language L_U

Goal: handling $\text{NTIME}(t(n))$ statements for $t(n) = n^{\omega(1)}$

Consider the universal language L_U :

$$y = (M, x, t) \in L_U$$

\Updownarrow

$\exists w, M(x, w) = \text{ACCEPT within } t \text{ steps}$

- Every $L \in \text{NP}$ is linear-time reducible to L_U
- A proof system for L_U enables to handle all NP -statements
- More importantly, a proof system for L_U enables to handle $\text{NTIME}(n^{\omega(1)})$ statements and even beyond (NEXP)

Universal Arguments

Universal Argument Systems

$$y = (M, x, t) \in L_U \iff \exists w, M(x, w) = \text{ACCEPT in } t \text{ steps}$$

Definition [K'91, M'91, BG'02]: A universal argument system for L_U is a pair (P, V) such that $\forall y = (M, x, t)$:

Efficient verification: V runs in $\text{poly}(|y|)$ time

Completeness: If $y \in L_U$, then $\Pr[(P, V) \text{ accepts } y] = 1$

Moreover, P runs in time $\text{poly}(t)$

Computational soundness: If $y \notin L_U$, then $\forall \text{PPT } P^*$

$\Pr[(P^*, V) \text{ accepts } x] \leq \text{neg}(n)$

Theorem: If CRH exist, L_U has a universal argument

Building block: PCP Proof System

Makes use of a $\text{PCP}[O(\log), \text{poly}]$ system for L_U

What is a $\text{PCP}[O(\log), \text{poly}]$ proof system?

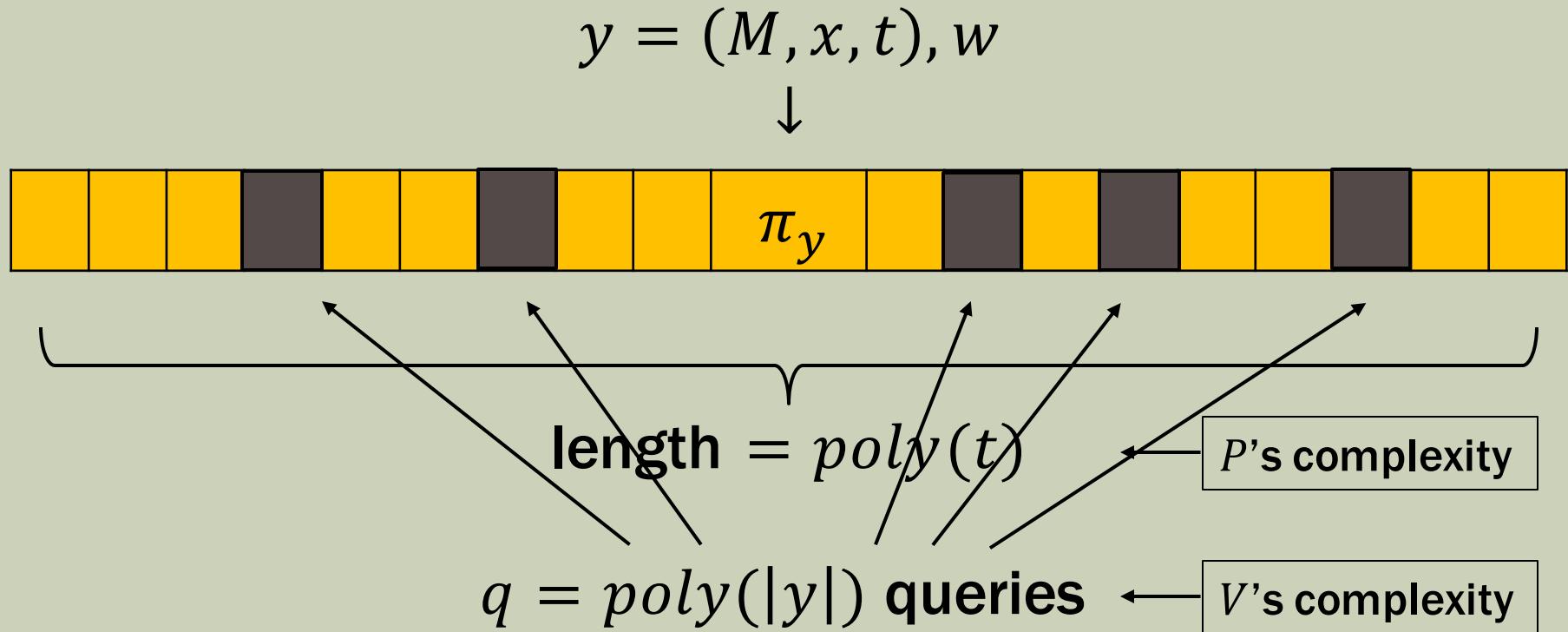
- It is a PPT V_{PCP} with access to an oracle π_y that represents a proof for $y \in L_U$ in redundant form
- V_{PCP} (non-adaptively) queries q oracle bits of π_y where

$$q = \text{poly}(|y|) \quad \longleftarrow \boxed{V \text{'s complexity}}$$

- the bit positions are determined by V_{PCP} ’s coin tosses
- the number of coins tossed by V_{PCP} is $O(\log t)$
- and the length of π_y is

$$\exp(O(\log t)) = \text{poly}(t) \quad \longleftarrow \boxed{P \text{'s complexity}}$$

PCP Reduction

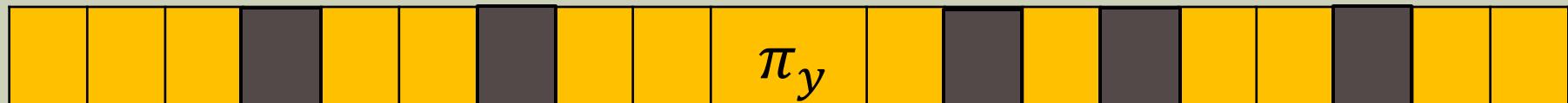
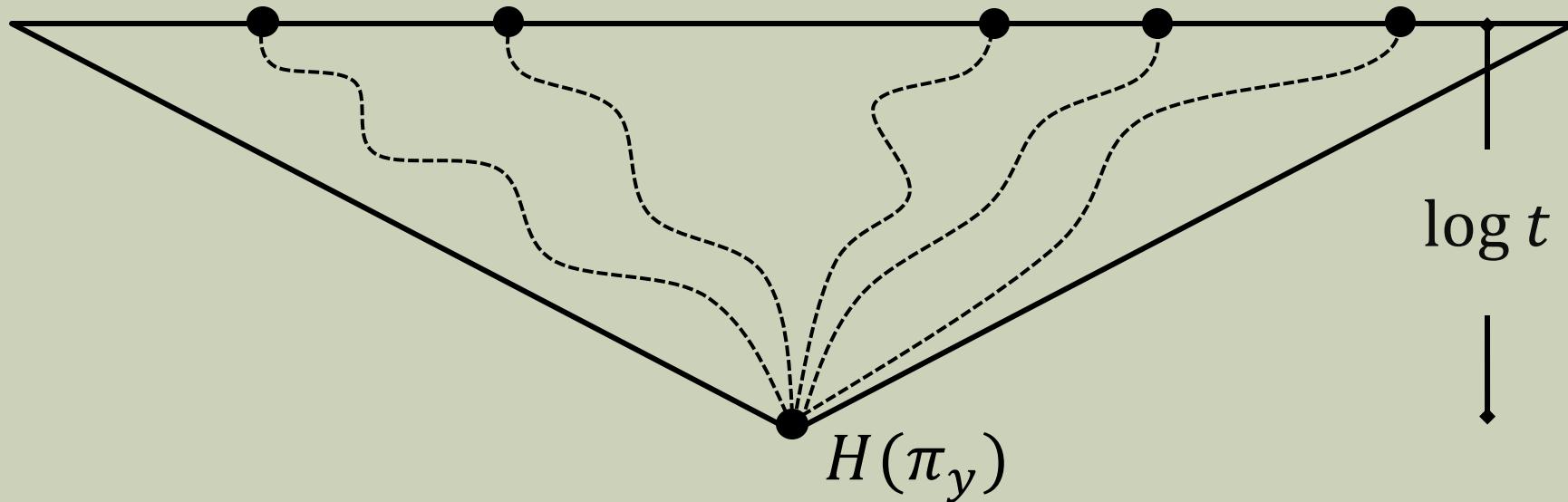


the q queries are determined by
 $V_{\text{PCP}}(r)$ where $r \in \{0,1\}^{O(\log t)}$

Commitment with Local Decommitment

Problem: the PCP is too long to be sent to V in its entirety

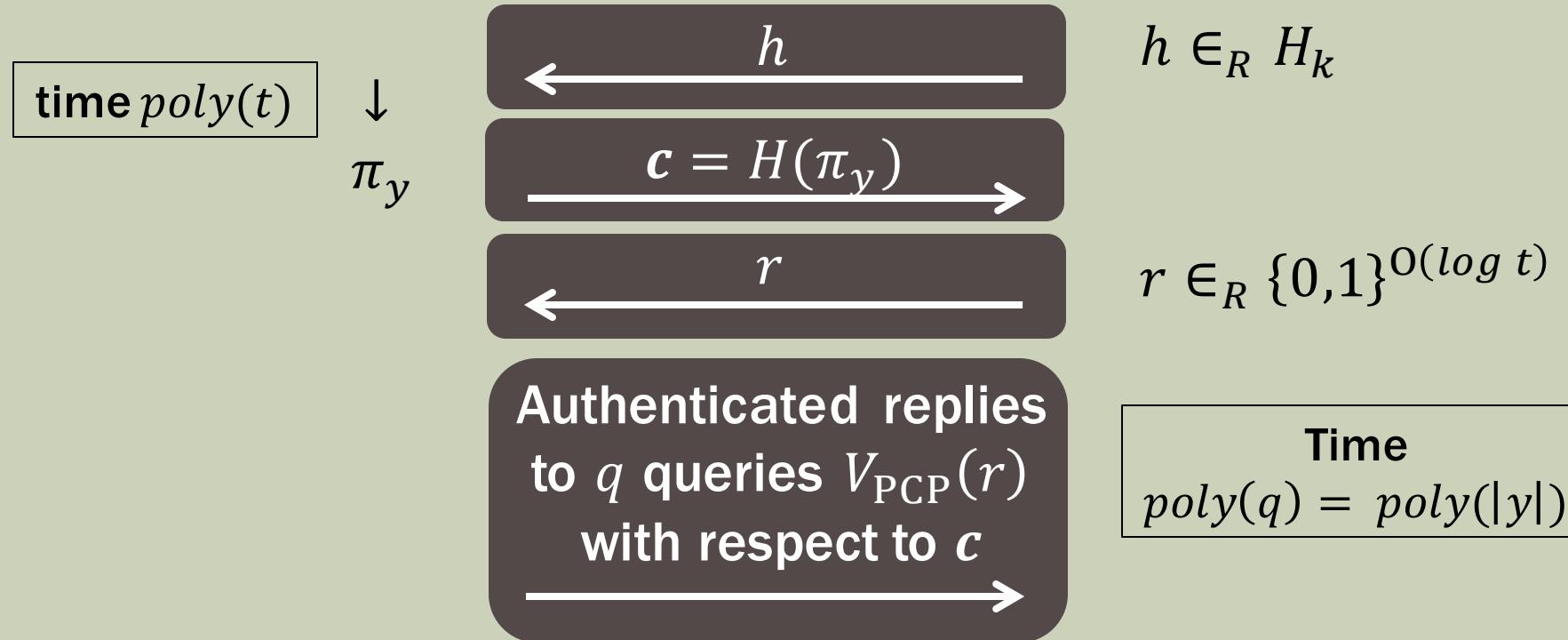
Solution: commit to π_y and allow “local decommitment”



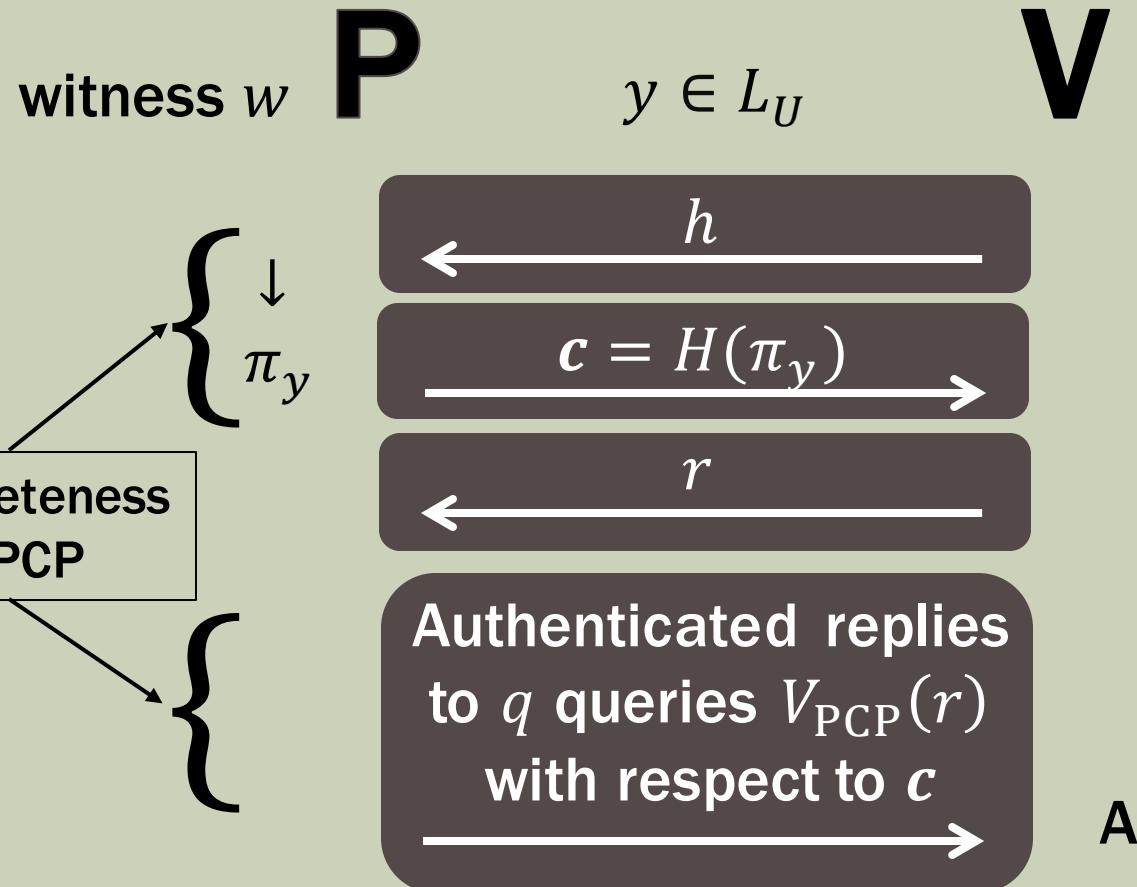
H is computationally binding - built using CRH h

The Protocol

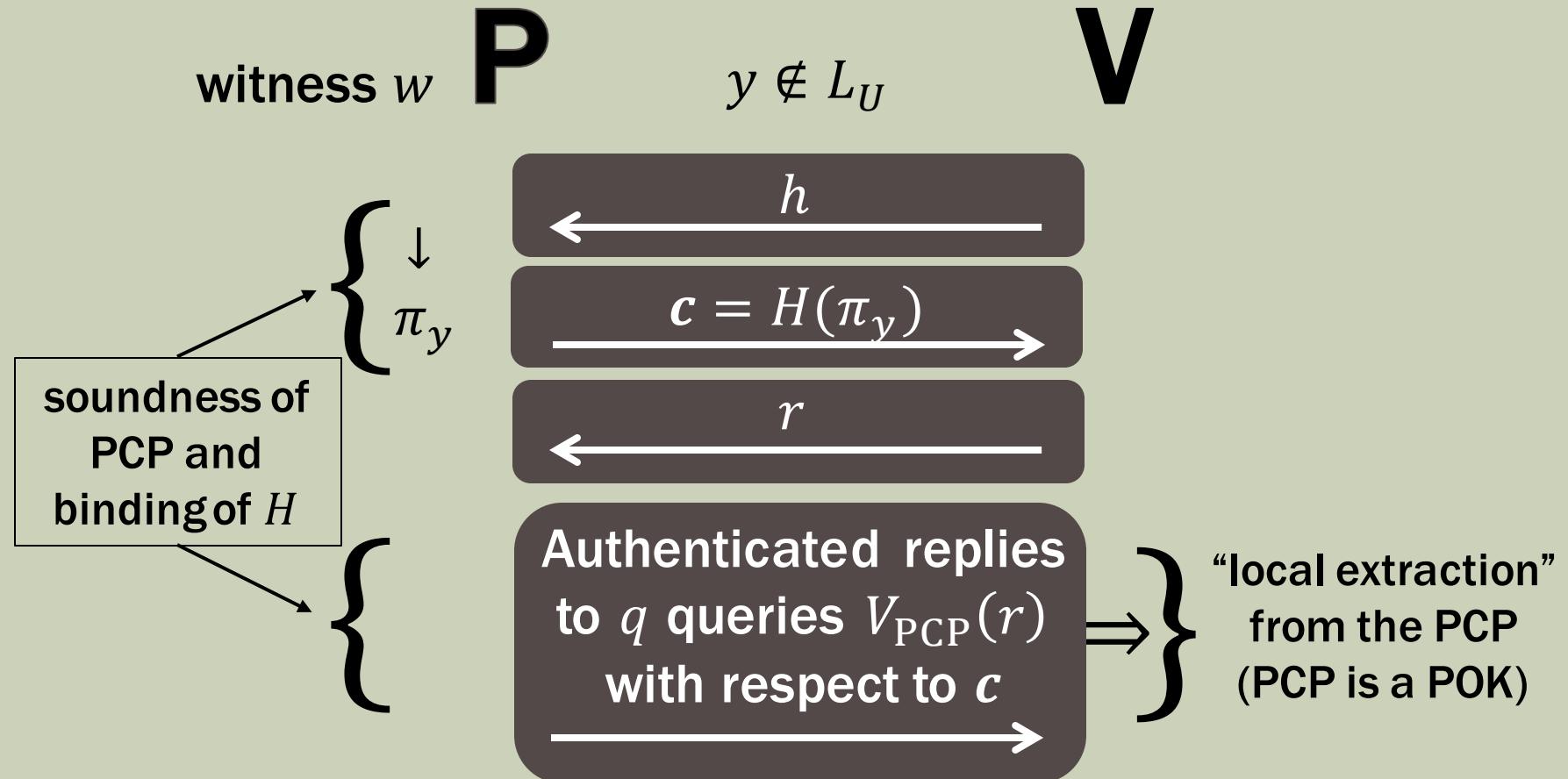
witness w \mathbf{P} $y = (M, x, t) \in L_U$ $\mathbf{V}_{H_k: \{0,1\}^* \rightarrow \{0,1\}^k}$



Completeness



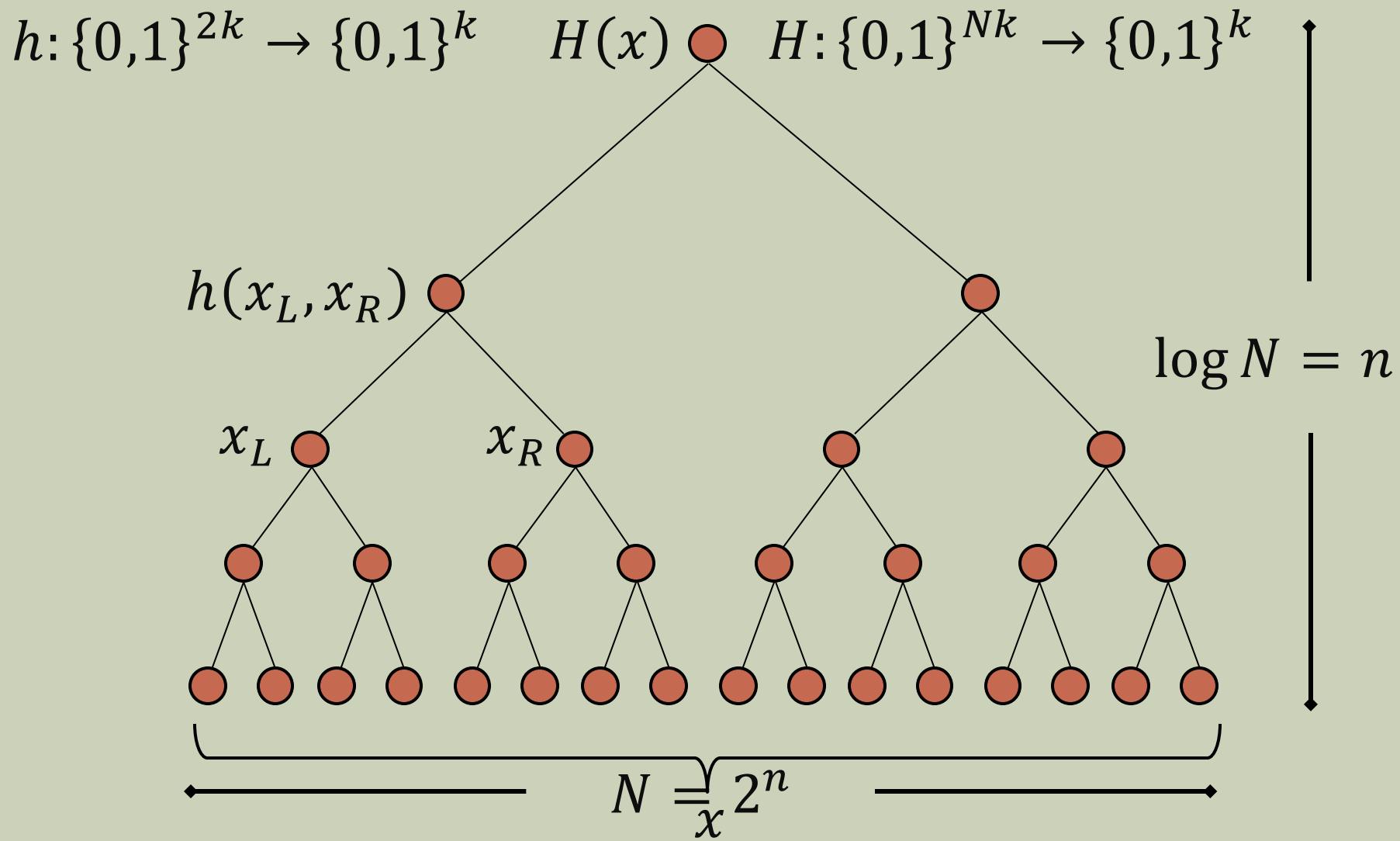
Computational Soundness



Recall: binding of H is computational - built using CRH h

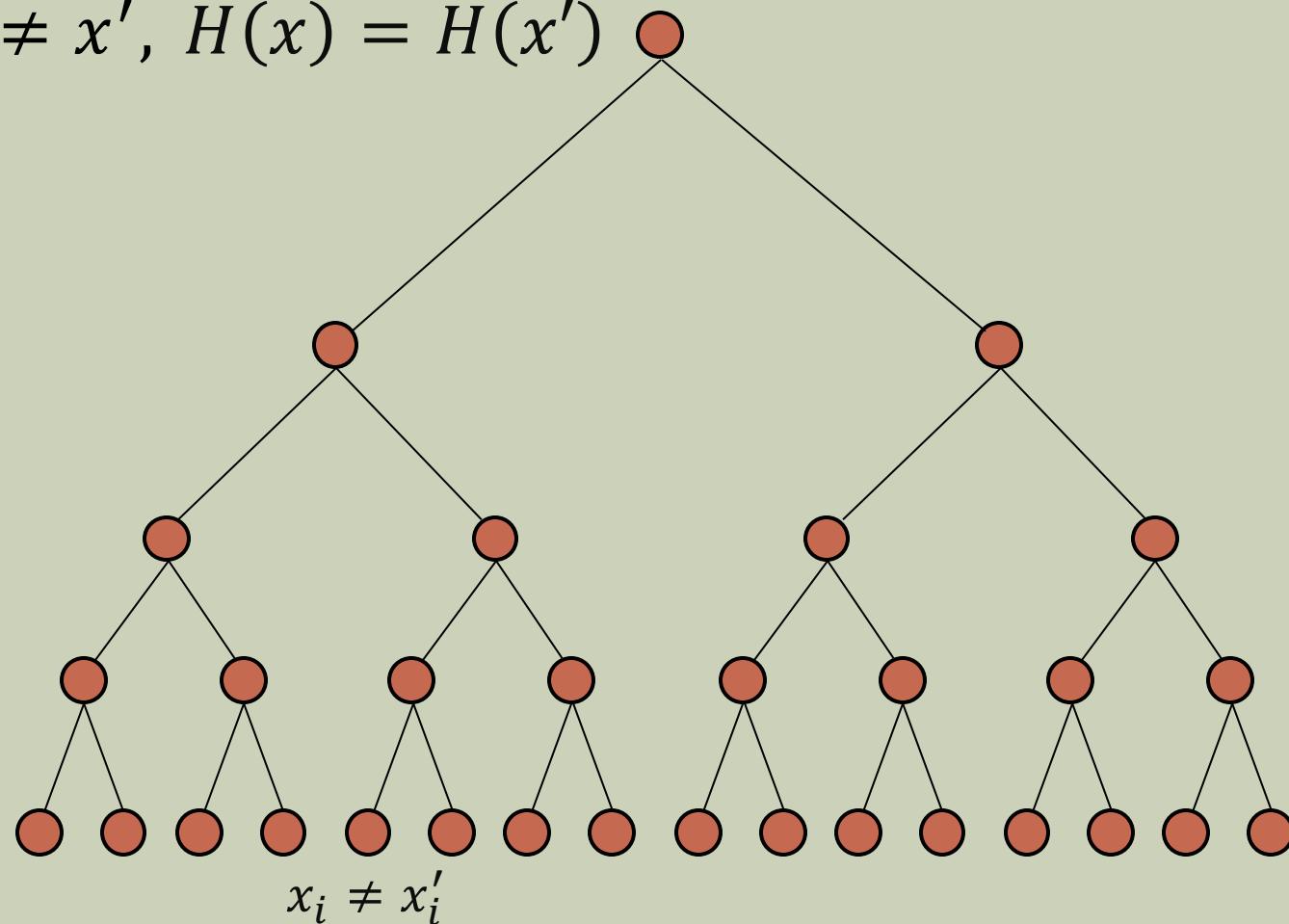
Interlude: Merkle Trees

Merkle Tree



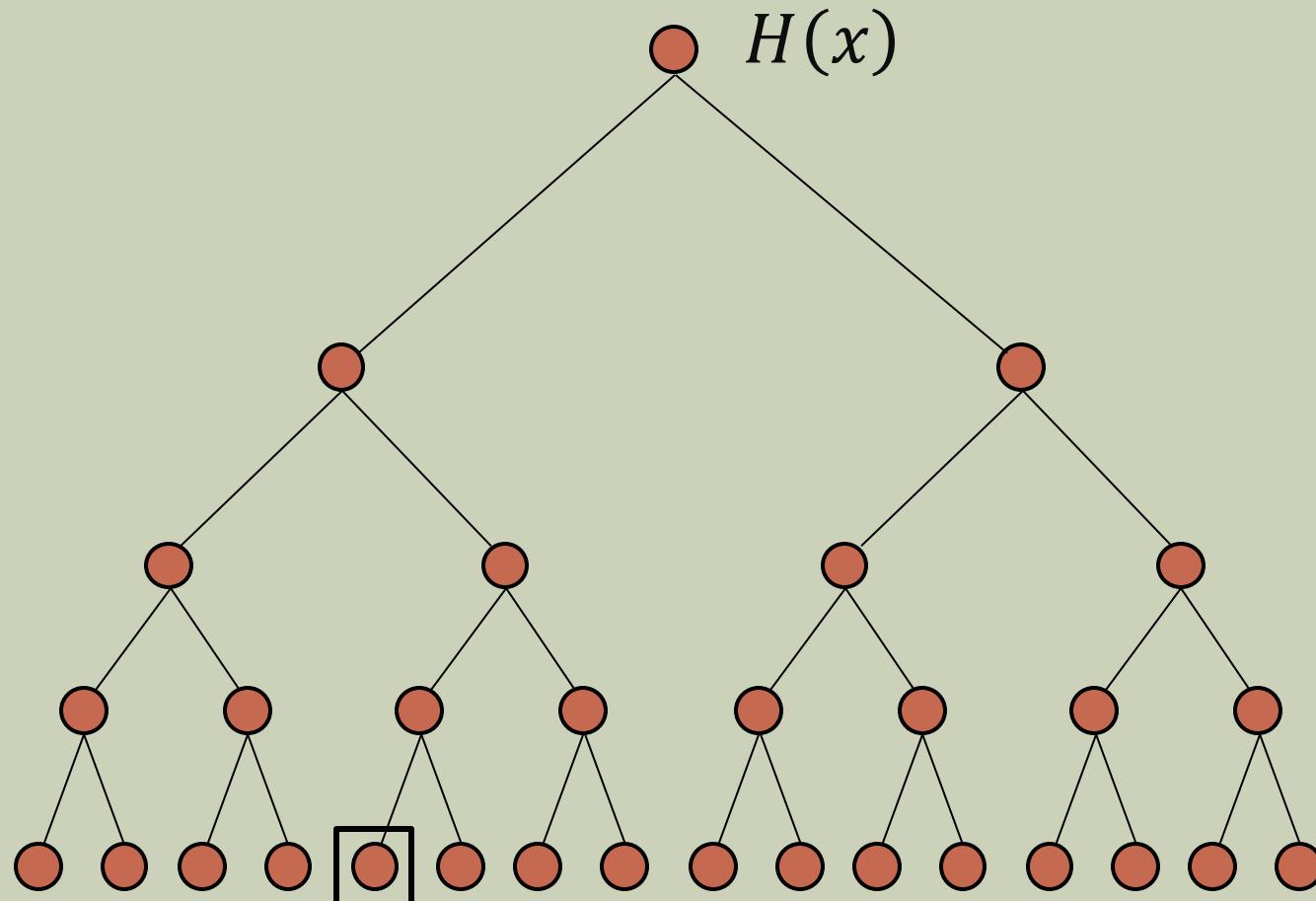
Merkle Tree: Collision Resistance

$x \neq x', H(x) = H(x')$



Computationally (globally) binding

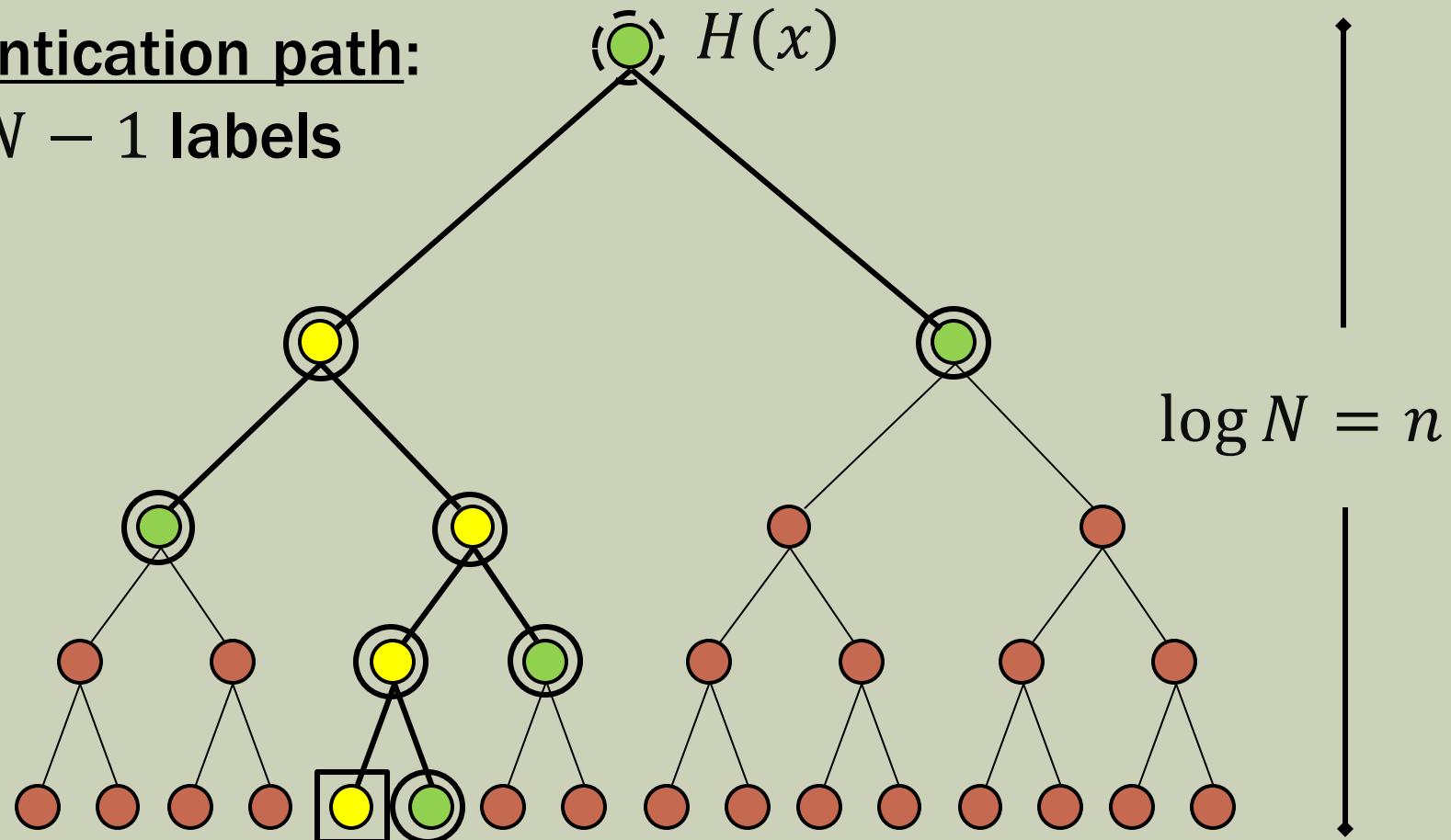
Merkle Tree: Local Decommitment



Merkle Tree: Local Decommitment

Authentication path:

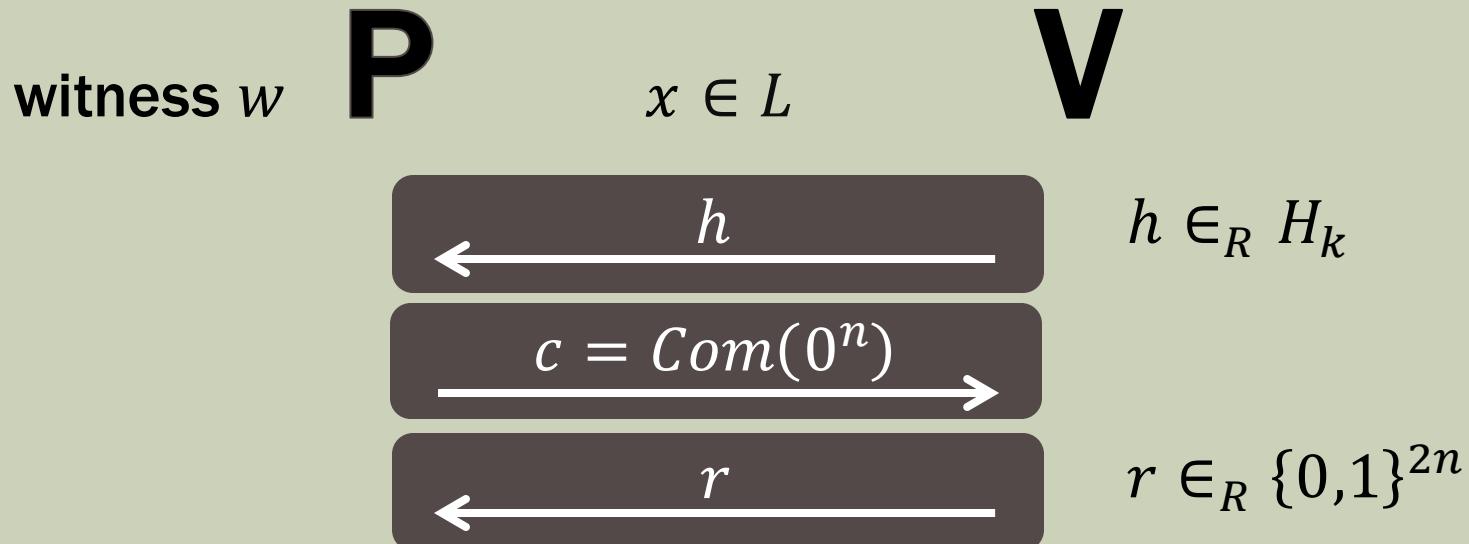
$2 \log N - 1$ labels



Computationally (locally) binding

Back to ZK
Arguments for NP

Recall: Barak's Protocol

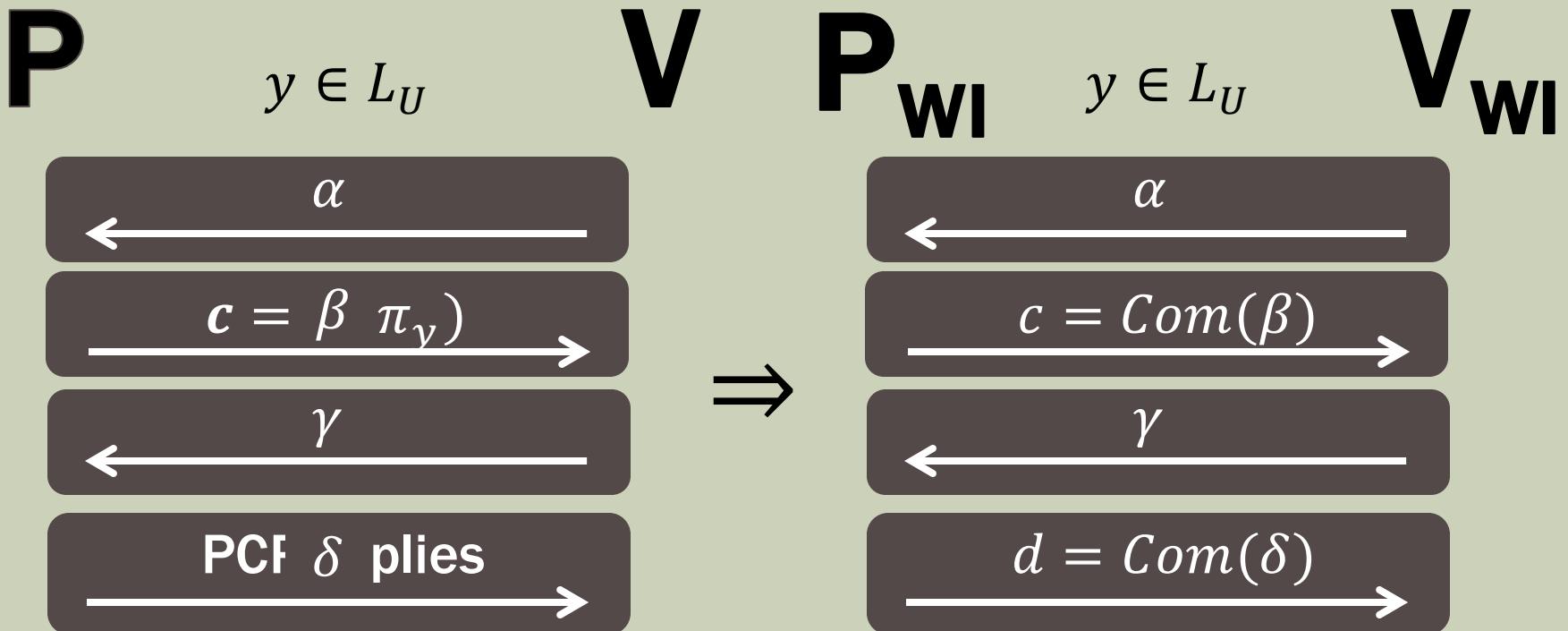


WIUAOK statement: $\exists w, \pi, z$ s.t.

1. $(x, w) \in R_L$ or
2. “ c is a commitment to $h(\pi)$
where π is a program s.t.
 $\pi(z) = r$ within $t(n)$ steps”

So far: we only saw how to build UAOK. What about WI?

WI Universal Arguments



Subtle point: actually run k parallel copies of ZKPOK with constant soundness error

WIAOK statement: $\exists \beta, \delta$ s.t.

1. $c = Com(\beta)$
2. $d = Com(\delta)$
3. $V(\alpha, \beta, \gamma, \delta) = \text{ACCEPT}$

Summary

Saw:

- CZK argument $\forall L \in \text{NP}$
- with negligible soundness
- a constant number of rounds
- and public-coin

Tools:

- Non-black-box simulation
- WI universal arguments

Follow-up Work (2001-2012)

- Resetably-sound ZK [BGGL'01,CPS'13,COPVV'13]
- Constant-round bounded-conc. ZK and MPC [B'01,PR'03]
- Constant-round ZK with strict poly-time sim. [BL'02]
- Simultaneously resettable ZK and MPC [DGS'09,GM'11]
- Constant-round covert MPC [GJ'10]
- Constant-round public-coin parallel ZK [PRT'11]
- Simultaneously resettable WI-POK [COSV'12]
- Constant-round conc. ZK from iO [CLP'13, PPS'13, CLP'15]
- Concurrent secure computation [GGS'15]

New non-BB Techniques

[BP'12]:

- Impossibility for obfuscation → non BB simulation
- In particular, no use of PCP

[BKP'15]:

- Homomorphic trapdoors
- Enables to break all Black-Box barriers for e.g. WH

Food for Thought

Efficiency Optimizations

Efficiency of universal arguments depends on:

- Number q of oracle queries made by V_{PCP} to π_y
$$q = \text{poly}(|y|)$$
- Length of π_y - depends on number of coins tossed by V_{PCP}
$$\exp(O(\log t)) = \text{poly}(t)$$
- Optimizing params:
 - Larger alphabet size
 - Trading off prover/verifier time
- Less modular design and/or other models:
 - Interactive PCPs/oracle IPs
 - Using homomorphism of commitments

Merkle Trees: Other Considerations

- Can turn Merkle-tree into statistically hiding:
 - Generically
 - Assuming h is a random oracle

Open questions:

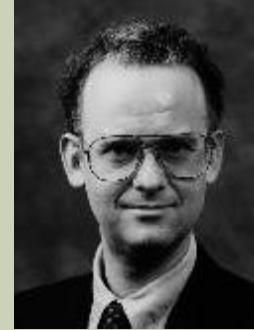
- Is $O(qk \log N)$ optimal?
- In practice N can be quite large
- Bulletproofs is $O(q + k \log N)$ but verifier space is N
- Lattices/amortization gets $O(q + k\sqrt{N})$
- Ideally $O(q + k \log N)$ size and verification time

- Define what it means to be secure
- Build a protocol/scheme
- Prove that protocol/scheme satisfies definition
- First *feasibility* then *efficiency*
- Relax definitions

History

Boaz Barak

Joe Kilian



Ralph Merkle

History

Rafael Pass

Nir Bitansky

Dakshita Khurana

Omer Paneth

Rachel Lin

Kai-Min Chung

Dustin Tseng

Muthuramakrishnan
Venkatasubramaniam

Vipul Goyal

Abhishek Jain

Ivan Visconti

The End

Questions?