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Completeness Theorems [1988]
[Ben-Or, Goldwasser, Wigderson, Chaum, Crépeau, Damgård]

Every function f can be perfectly computed

• Passive adversary T<N/2 (honest majority) 

• Active adversary T<N/3 (strong majority)

Tight: Bounds on T are optimal

Complexity: poly(circuit-size(f))

Rounds: Multiplicative depth of f

~ log degree+1



Interaction is Expensive

Can we get constant-round protocol?

What is the best achievable round complexity RMPC?

• RMPC>1 even for weakest security notion

Non-Interactive IT MPC in some model ? 

Questions valid even with LARGE communication



Non-Interactive MPC



Private Simultaneous Message Protocols
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f(xA,xB)

gA(xA,r) gB(xB,r)

“minimal model for secure computation”  [Fei-Kil-Nao94, Ish-Kus98]

Should learn only
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Private Simultaneous Message Protocols
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PSM vs CDS

r

xA
xB

Alice Bob

Carol

f(xA,xB)

gA(xA,r) gB(xB,r)

r

xA
xB

Alice Bob

Carol

iff f(xA,xB)=1

gA(xA,r) gB(xB,r)

s

xA xB

s

CDS(f) PSM (g) 

where g(x,(y,s))= s iff f(x,y)=1
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Example: XOR

• f(xA,xB) = xAxB (xA,xB {0,1})

xA
xB

Alice Bob

Carol

rR{0,1}

mAmB

xAr xB  r



AND?

xA
xB

Alice Bob

Carol

• f(xA,xB) = xA·xB



AND: Intermediate protocol

• f(xA,xB) = xA·xB

xA
xB

Alice Bob

Carol

A·B

A=xA+a B=xB+b

xAxB+xAb+xBa+ab

-C

C=xAb+xBa+ab



AND: Second Step

• f(xA,xB) = xA·xB

w=xAb z=xBa+ab

Alice Bob

Carol

w+r z-r

w+zC=xAb+xBa+ab



AND!

• f(xA,xB) = xA·xB

xA
xB

Alice Bob

Carol

A·B

A=xA+a B=xB+b

C=xAb+r D=xBa+ab-r

-(C+D)



Introspection

• Gradually constructed the protocol

• Intermediate construction didn’t satisfy syntax

but preserved information

• Used Simple Maneuvers



Test your intuition:

• Q:Combine PSM(f), PSM(g) to PSM(f AND g)?

• Ex: PSM(f) based on truth-table randomization 

Truth table

1 1 1 1 0 0 0 0 1 1 1 1 0 1



Multiparty Version [IK98]

r
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Carol

f(x1,…,xn)

g1(x1,r) gn(xn,r)
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…



Example: iterated group product

r

x1
xn

Alice1 Alice-n

Carol

x2

Alice2

…

Abelian Group:   f(x1,…,xn)=x1+x2+…+xn

x1+r1 x2+r2 …   xn-1+rn-1 xn-r1-…-rn-1



Example: iterated group product

r

x1
xn

Alice1 Alice-n

Carol

x2

Alice2

…

Non-abelian Group:   f(x1,…,xn)=x1x2…xn

[Kilian 88]

x1r1 r1
-1x2r2 r2

-1x2r3 …   rn-2
-1xn-1rn-1 rn-1

-1xn



Handling General Functions

Theorem [Barrington 86]

Every boolean  fNC1 can be written as iterated group product

Corollary

Every fNC1 has multiparty PSM with poly-communication



From Multiparty PSM to OT-based MPC

r

x1
xn

Alice1 Alice-n

Carol

f(x1,…,xn)

g1(x1,r) gn(xn,r)

x2

Alice2

…

Application: Basing SFE on OT [Yao,Kilian 88, ...]



Application: Basing SFE on OT [Yao,Kilian 88, ...]
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gA(xA,r) OT OT OT OT OT
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xn gn(xn,r)

From Multiparty PSM to OT-based MPC



Can we leverage these ideas in 

more general settings?
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f(x)

g(x,r)

correctness privacy

Randomized Encoding of Functions 
[Ish-Kus00, A-Ish-Kus04]

• g is a “randomized encoding” of f
– Nontrivial relaxation of computing f

Dec(g(x,r)) = f(x) Sim(f(x))  g(x,r)



x1+…+xn

x1+r1,  …, xn-1+rn-1, xn- ri

correctness privacy

Randomized Encoding of Functions 
[Ish-Kus00, A-Ish-Kus04]

• g is a “randomized encoding” of f
– Nontrivial relaxation of computing f

Dec(g(x,r)) = f(x) Sim(f(x))  g(x,r)



f(x)

g(x,r)

correctness privacy

Randomized Encoding of Functions 
[Ish-Kus00, A-Ish-Kus04]

• Securely computing g => securely computing f

• If g is realizable in MPC-model so is f 

Dec(g(x,r)) = f(x) Sim(f(x))  g(x,r)



f(x)

g(x,r)

correctness privacy

Randomized Encoding of Functions 
[Ish-Kus00, A-Ish-Kus04]

General paradigm: 

• g should be “simpler” than f
(meaning of “simpler” determined by application)

• g can be used as a substitute for f

http://images.google.com/imgres?imgurl=http://www.groton.k12.ct.us/WWW/cc/COMPUTER.GIF&imgrefurl=http://www.groton.k12.ct.us/WWW/cc/&h=426&w=469&sz=13&tbnid=JAwVjI6ZFTsJ:&tbnh=113&tbnw=124&hl=en&start=2&prev=/images%3Fq%3Dcomputer%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.ihecu.com/assets/images/calculator.gif&imgrefurl=http://www.ihecu.com/financial_calcs.html&h=196&w=267&sz=21&tbnid=Wpjq1tjqPAMJ:&tbnh=79&tbnw=108&hl=en&start=5&prev=/images%3Fq%3Dcalculator%26hl%3Den%26lr%3D%26sa%3DN


Applications at a Glance

Randomized encodings

Secure computation

[Yao, Kilian, FKN94, IK00,…]

Parallel crypto

Delegation

KDM-security

Coding Theory

Hardness of 

Approximation

Circuit LB’s

[Chen-Ren20]

See surveys: 

Ishai: Randomization Techniques for Secure Computation

Applebaum: Garbled Circuits as Randomized Encodings of Functions: a Primer



Obfustopia

Secure Computation 

Public-Key

Symmetric

Information  Theoretic

Randomized Encoding in Cryptography

PSM

Garbled Circuits

Functional Encryption

Compact Functional Encryption/
Obfuscation

Reusable Garbled Circuit



Useful Properties

Composition: Enc(Enc(f)) is an encoding of f.

Concatenation: (Enc(f1), Enc(f2)) is an encoding of f=(f1,f2).

Substitution: Enc(f) encodes fh h

Enc(f)

f

h

h

Composition: Enc(Enc(f)) is an encoding of f.

Concatenation: (Enc(f1), Enc(f2)) is an encoding of f=(f1,f2).Concatenation: (Enc(f1), Enc(f2)) is an encoding of f=(f1,f2).
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ZX
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Useful Properties

Composition: Enc(Enc(f)) is an encoding of f.

Concatenation: (Enc(f1), Enc(f2)) is an encoding of f=(f1,f2).
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Composition: Enc(Enc(f)) is an encoding of f.

Concatenation: (Enc(f1), Enc(f2)) is an encoding of f=(f1,f2).Concatenation: (Enc(f1), Enc(f2)) is an encoding of f=(f1,f2).
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Glue REs of simple Functions to General Formulas 

(or even to Circuits assuming PRG)

[AIK11] framework



Back to Constant-Round MPC



f

Randomizing Polynomials [IK00]



f

y

x

Randomizing Polynomials [IK00]
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degree-d g
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Decoder

Simulator

MPC for g  MPC for f

Randomizing Polynomials [IK00]

distribution Y



f

y

degree-d g

x

Decoder

Simulator

MPC for g  MPC for f

Randomizing Polynomials [IK00]

distribution Y

g has d-round protocol  f has d-round protocol !



f

y

degree-3 g

distribution Y

xx

Decoder

Simulator

Thm [IK02] Every f has perfect RP of degree 3 

Randomizing Polynomials [IK00]



Perfect-MPC with Constant Round 

Constant-round perfect protocol for all functions

• Passive T<N/2: 3 rounds

• Active T<N/3: large const.

Q: What’s the optimal round complexity?

?>1

?> 2

Thm [IK02] Every f has perfect RP of degree 3

• Efficient for NC1, log-space 



Problem: 

For most functions, 

NO degree-2 perfect RE’s

Sol: Compromise!

Aim for a weaker notion



f“simple” g

Multiparty Randomized Encoding (MPRE)

Relaxed correctness: Each party has a decoder

[A-Bra-Tsa18]



f“simple” g

Decoder

Multiparty Randomized Encoding (MPRE)

X

Relaxed correctness: Each party has a decoder

[A-Bra-Tsa18]



f“simple” g

Multiparty Randomized Encoding (MPRE)

Relaxed privacy: Every minority has a simulator



f“simple” g

Simulator

Multiparty Randomized Encoding (MPRE)

Relaxed privacy: Every minority has a simulator

XXXX



f“simple” g

MPRE relaxes Randomized Encoding

• Encodes functionality

• RE is a special case of MPRE

• Protocol for g  Protocol for f

MPRE=

Distributed-GC?



fDegree-2 ?



f
Degree-2

Thm [A-Bra-Tsa18]: every f has MPRE of “effective” deg-2
• Efficient for log-space

• Efficient computational-MPRE for general circuits 

 2-round passively-secure honest-majority protocol 

Local 

computation

Also  [Gar-Ish-Sri-18] 

inspired by [GS-16-17]



Back to [IK00]:

Degree-3 Randomizing Polynomials 

from Information-Theoretic 

Garbled Circuits
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g

0 1 0 0

0 1

0
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x1
x2 x3 x4



g

x1
x2 x3 x4

Correctness

0 1 0 0

0 1

0

0
Privacy?



g

x1
x2 x3 x4

Overall degree 3
• deg(gate)+1

0 1 0 0

0 1

0



a b

c

b

a

b

a

a

a

b

b

c

c

c

c

per gate:

• 4 ciphertexts

• deg-3=deg(gate)+1
 


G(,)*

+[1-G(,)]*

c

c

Degree of Garbled Gate



g

x1
x2 x3 x4

Overall degree 3
• deg(gate)+1

Can we reduce the degree to 2?

0 1 0 0

0 1

0



g

x1
x2 x3 x4

What if…?



g

x1
x2 x3 x4

What if…?
After local preprocessing,

MPRE with degree = 2 !

Can we enforce such 

structure?



MPRE with degree = 2

f

nice MPRE



Protocol Induced MPRE

f

Inputs

Outputs



Protocol Induced MPRE

protocol 

Inputs

Outputs



Protocol Induced MPRE

…

Inputs

Outputs



MPRE with degree = 2

f

nice MPRE

Protocol 



Putting It All Together



Round Complexity of MPC

Assume a protocol with T-security for f

Then f reduces to degree-2 computation with T-security

Assuming honest majority and passive adversary:

Every function has perfect 2-round protocol

– Efficient for NC1, log-space

– Computational variant for poly-size circuits using OWFs



Two-Round Protocol

• Practical relevance?

– 2-round protocols easily transfer to client-server model 

[Ishai-Damgard ‘05]

Clients

Server 1 Server 2 Server k



Two-Round Protocol

• Practical relevance?

– 2-round protocols easily transfer to client-server model 

[Ishai-Damgard ‘05]

Clients

Server 1 Server 2 Server kPrivate as long as 

majority of the servers 

& clients are honest



Active Adversary
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Extensions:

• Active adversaries [ABT19]
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Then f reduces to degree-2 computation with T-security

Extensions:

• Active adversaries [ABT19]

• Larger fields [AKP19]

Perfect protocols for all functions

• Passive T<N/2: 2 rounds [ABT18,GIS18]

• Active T<N/4: 3 rounds [ABT19]

• Active T<N/3: 4 rounds [AKP19]



Active Adversary

Assume a protocol with T-security for f

Then f reduces to degree-2 computation with T-security

Extensions:

• Active adversaries [ABT19]

• Larger fields [AKP19]

Perfect protocols for all functions

• Passive T<N/2: 2 rounds [ABT18,GIS18]

• Active T<N/4: 3 rounds [ABT19]

• Active T<N/3: 4 rounds [AKP20]

Optimal!

[AKP20]



Conclusion

protocol 

for 

f

Randomized

Encoding

f

f

?
Multiparty

Randomized 

Encoding



Take Home Message

Abstraction is powerful

but tight results 

may require refined tools 

Thank You


