Formal Methods for
Analyzing Crypto Protocols:
from attacks to proofs

Karthikeyan Bhargavan hu’a/—

IIIIIIIIIIIIIIIIIIIIIIIIII

+ many, many others.
(INRIA, Microsoft Research,
LORIA, IMDEA, Univ of Pennsylvania, Univ of Michigan, JHU)



Analyzing Real-World Protocols

Internet protocols (TLS, SSH, IPsec) seemingly
implement textbook cryptographic protocols

... yet, not exactly the same protocols

* Modeling gaps between paper proofs and real protocol
* Implementation gaps between protocol and deployment

These gaps lead to many attacks, new questions
* Can we prove the deployed protocol correct?
« Can we show that a theoretical attack can be exploited?

* Important to understand where these gaps come from,
so we can close them in new protocol designs



Example: HTTPS for Web Security

@ My security for Internet Banking: HSBC Bank UK - Mozilla Firefox Send Feedback @M
Eile Edit View History Bookmarks=T00IS Heip
@—— c A LA TEES] ht)ps://www.hsbc.co.uk/1/2/lut/p/kexml/04_Sj9SPyks: 77 - | [[Gl+| Google o

2, Most Visited ¥, France-Vidcaps=+\id5.. . # Geiiing Started & Latest Headlines #x http://www.pixmania.c...
The world’s local bank Site map | Contactus | HSBC Group
Nobody other than HSBC <>

the bank can read — P HSBC United Kingdom v  (Search EZED
what | type

. . e Internet Banking
(Confldentla“ty) My security for Internet Banking Personal

HSBC Premier ‘ HSBC Plus ‘ Current accounts ‘ Savings } Investments ‘ Credit Cards ‘ Loans | Mortgages ‘ Insurance ‘ International Services ‘ Green

Register » Security » Information »

You are logging on as IBAXXKd494. If this is not your Internet Banking user ID click here.

Please enter: date of birth (ddmmyy): ||

The SECOND and THIRD and FOURJH digits of your Security Number: (2]

Nobody other than [ <Back
me can access my
account page
(authentication)

Forgotten your Security Number?  For screen reader access click here

Legal information | Accessibiity | About HSBC | Careers | Site Map | Branch Locator | Contactus Issued for UK use only | ® HSBC Bank pic 2002 - 2009

Goal: Prevent unauthorized access to data
even if an unknown attacker controls
Secure Channel? .
compose a standard AKE [ the network and some other bank clients.
with a standard AEAD 3



Many recent attacks on HTTPS

BEAST
CRIME
RC4
Lucky 13
3Shake
POODLE
SMACK
FREAK
LOGJAM
SLOTH
DROWN

CBC predictable 1Vs
Compression before Encryption
Keystream biases
MAC-Encode-Encrypt CBC
Insecure resumption

SSLv3 MAC-Encode-Encrypt
State machine attacks
Export-grade 512-bit RSA
Export-grade 512-bit DH
RSA-MD5 signatures

SSLv2 RSA-PKCS#1v1.5

Sep’11]
Sep’12]
‘Mar’13]
‘May’13]
Apr’l4]
Dec’14]
Jan’15]
‘Mar’15]
‘May’15]
Jan’16]

‘Mar’16]



Many recent attacks on HTTPS

High-profile attacks, with Logos!
What’s going on?
How do we prevent this in the future?




Lecture Plan

Part |: Attacks on Authenticated Key Exchange in TLS
Part 2: Finding Protocol Flaws with Symbolic Analysis
Part 3: Mechanizing Cryptographic Protocol Proofs

Part 4: Towards High-Assurance Crypto Software



Part I:

Attacks on

Authenticated Key Exchange
In TLS



Reading Materials

TLS 1.2. IETF RFC 5246.

Triple Handshakes and Cookie Cutters: Breaking and Fixing
Authentication over TLS. |EEE Security and Privacy 2014.

Messy State of the Union: Taming the Composite State Machines
of TLS. |IEEE Security and Privacy 2015.

Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice.
ACM CCS 2015.

Transcript Collision Attacks: Breaking Authentication in TLS, IKE,
and SSH. ISOC NDSS 2016.



Transport Layer Security (1994—)

The default secure channel protocol?
HTTPS, 802.1x, VPNs, files, mail, VolIP, ...

20 years of attacks and fixes

1994
1996
1999
2006
2008

Netscape’s Secure Sockets Layer
SSLv3

TLS1.0 (RFC2246)

TLS1.1 (RFC4346)

TLS1.2 (RFC5246)

2018? TLS1.3

Many implementations

OpenSSL, SecureTransport, NSS,
SChannel, GnuTLS, JSSE, PolarSSL, ...
many bugs, attacks, patches every year

Many security theorems
mostly for simplified models of TLS

@ https://tools.ietf.org/html/ O ~ @ & &

\

\ — - - (=@ ]
ea]@ https://tools.ietf.org/html/ O ~ @ B € l @ RFC 5246 - The Transport L.. % — AR
[ — — - —

[Docs] [txt|pdf] [draft-ietf-tls-rf...] [Diffl] [Diff2] [IPR] [Errata] A

PROPOSED STANDARD
Errata Exist

Updated by: 5746, 5878, 6176

Network Working Group T. Dierks
Request for Comments: 5246 Independent
Obsoletes: 3268, 4346, 4366 E. Rescorla
Updates: 4492 RTFM, Inc.

Category: Standards Track August 2008

The Transport Layer Security (TLS) Protocol
Version 1.2

status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet

Oofficial Protocol Standards"™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document specifies Version
(TLS) protocol. The TLS protocol provides
over the Internet. The protocol allows client/server
communicate in a way that is designed to prevent eavesdropping,

1.2 of the Transport Layer Security
communications security
applications to

tampering, or message forgery. Vv




TLS protocol overview

Client Server

Hello

AKE

Protocol negotiation
e Version, Ciphersuite
* DH groups, Auth mode

Authenticated Key Exchange
* \Verify peer identity
* Generate session key

Finished

 >
j/

Transcript & key confirmation
 Completes authentication
* Matches transcripts

AppData

Application data streams
e Full duplex channel
e Authenticated encryption



Client

TLS negotiation

Server

ClientHello (m,)

nonceg, TLS 1.2,
[RSA, DHE, ECDHE],
[AES_GCM, AES_CBC, RC4],

—

ServerHello (m,)

nonceg, TLS 1.0,
ECDHE, AES GCM




The many, many modes of TLS

Protocol versions
e TLS 1.2, TLS 1.1, TLS 1.0, SSLv3, SSLv2

Key exchanges
- ECDHE, FFDHE, RSA, PSK, ...

Authentication modes
 ECDSA, RSA signatures, PSK,...

Authenticated Encryption Schemes
« AES-GCM, CBC MAC-Encode-Encrypt, RC4,...

100s of possible protocol combinations!



RSA Key Transport

Client

Session Key

K = PRF( pms,
noncec
nonce,,

Server

ServerCertificate (m;)
cert(pks)

e

“«

ClientKeyExchange (m,)
rsa-encrypt(pms, pks)

—

Session Key
K = PRF( pms,

ClientFinished (m;)
mac(m,-m,, K)

—

— noncec
nonce

ServerFinished (m)
mac(m,-mg, K)

R




RSA Key Transport

« Client chooses secret pms,

adc
pac

dNnae

s maximum protocol version pv,.,,
s according to RSA PKCS#1 v1.5,
encrypts with server’s public key pke

rsa-pkcsl-encrypt(pms,pk;)

[pad | pV,a | PMs]® mod pq

« Server decrypts, checks pad and protocol version,
computes session key from pms

Security: In theory, relies on hardness of factoring pg



RSA Key Transport: Attacks and Proofs

1994
1998
2002
2013
2016

Classic protocol, many proofs

Chosen Ciphertext attack on PKCS#1
Mitigations in TLS and other protocols
Proof of TLS assuming mitigation

DROWN: downgrade to SSLv2 +
Bleichenbacher + software bugs

DROWN: Breaking TLS using SSLv2

Nimrod Aviram!, Sebastian Schinzel?, J uraj Somorovsky3, Nadia Heninger4, Maik Dankel?,
Jens Steube’, Luke Valenta®, David Adrian®, J. Alex Halderman®, Viktor Dukhovni’,
Emilia Kiisper®, Shaanan Cohney*, Susanne Engels?, Christof Paar® and Yuval Shavitt!

IDepartment of Electrical Engineering, Tel Aviv University




(EC)DHE Key Exchange

Client

Session Key

K = PRF( gv,
noncec
nonce,,

Server

ServerKeyExchange (m;)
cert(pks), rsa-sign(G | gY, sks)

“«

e

ClientKeyExchange (m,)
gX

—

Session Key
K = PRF( g,

ClientFinished (m;)
mac(m,-m,, K)

—

— noncec
nonce

ServerFinished (m)
mac(m,-mg, K)

R




(EC)DHE Key Exchange

« Server chooses group (p,g) and a public value gY¥
and signs it with its certificate signing key sk :

rsa-sign([nonce. | nonce |
p | g 18], sk)

(Can use named elliptic curves instead of p | g)

« Classic Diffie-Hellman Key Exchange
pms = g¥ mod p

Security: In theory, relies on (some) D-H assumption
* Provides forward secrecy, preferred over RSA



(EC)DHE Key Exchange Analysis

1994] Classic protocol, many proofs
2011] Proof of mutually-authenticated DHE
2013] Proof of server-authenticated RSA+DHE

2015] Logjam: Downgrade to DHE_EXPORT +
discrete logarithm + configuration bugs

Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

David Adrian® Karthikeyan Bhargavan* Zakir Durumerict Pierrick Gaudry’ Matthew Greens®
J. Alex Halderman® Nadia Heninger: Drew Springall* Emmanuel Thomé' Luke Valenta!
Benjamin VanderSloot' Eric Wustrow® Santiago Zanella-Béguelin' Paul Zimmermann’

*INRIA Paris-Rocquencourt "INRIA Nancy-Grand Est, CNRS, and Université de Lorraine
IMicrosoft Research ~ * University of Pennsylvania  ®Johns Hopkins  “University of Michigan

For additional materials and contact information, visit WeakDH.org.




What goes wrong in TLS?

Cryptographic Weaknesses in Legacy Constructions

* Weak hash functions, weak DH groups,
short block ciphers, leaky PKCS#11v1.5 padding

Logical Flaws in Protocol

* Cross-Protocol Attacks, Downgrade Attacks,
Transcript Synchronization/Collision Attacks

Implementation Bugs in TLS Libraries

* Bugs in crypto library, Buffer overflows in packet parsing,
Composition bugs in state machines, Bad configurations

Sometimes, a mix of all of the above!



Recall: the many modes of TLS

Protocol versions
e TLS 1.2, TLS 1.1, TLS 1.0, SSLv3, SSLv2

Key exchanges
- ECDHE, FFDHE, RSA, PSK, ...

Authentication modes
 ECDSA, RSA signatures, PSK,...

Authenticated Encryption Schemes
« AES-GCM, CBC MAC-Encode-Encrypt, RC4,...

100s of possible protocol combinations!



Exploiting
Crypto Weaknesses:
Weak DH Groups



Anonymous Diffie-Hellman (ADH)

A B
Knows G = (g, p) Knows G = (g, p)
g:’ mod p S
B g¥ mod p
k = kdf(g*¥ mod p) k = kdf(¢™¥ mod p)

* *



Man-in-the-Middle attack on ADH

Knows G = (g,p)

g®” mod p

MitM

g

T

/
"~ mod p

B

Knows G = (g, p)

g'-‘// mod p

g¥ mod p

>

k. = kdf(¢*¥ mod p)

<

Knows k., ks

i

Active Network Attacker

or Malicious Peer




Authenticated DH (

A PKI

SIGMA)

B

Knows [sk A, Pk B]
G =(9,p)

Knows [sk B, Pk A]
G = (9,p)

m1 = g* mod p

— Y
’ meo = g¥ mod p

>

k = kdf (g™ mod p)

k = kdf(g™¥ mod p)

" sign(sk 4, hash(my | ms)), mac(k, A)

<€

sign(sk g, hash(m; | ms)), mac(k, B)

Sign-and-MAC the transcript:

I
prevents most MitM attacks




Weak Diffie-Hellman Groups

Diffie-Hellman shared secret computation

k = kdf(g®¥ mod p)

Theoretical Security:
« Relies on some DH assumption (CDH, Gap, PRF-ODF,...)

« Attacker cannot compute k without knowing x or y

Attacks:
» Best known attacks rely on discrete log:

y = log(g¥ mod p)



Discrete Log Attack on SIGMA

A MitM B

Knows sk 4, pk g Knows sk g, pk 4
G =(9,p) G = (g,p)

mq = ¢g* mod p m; = ¢g* mod p

mo = g¥ mod p ms = g¥ mod p

A

-
-~

k = kdf(¢g™ mod p) k = kdf(¢™ mod p)

sign(sk 4, hash(m; | my)),mac(k, A) | sign(sk 4. hash(m; | my)), mac(k, A)

>

(sign(sI\:B, hash(m, | ms)), mac(k, B) "sign(skg. hash(m, | ms)), mac(k, B)

b = dlog(g¥ mod p)
k = kdf(g™¥ mod p)

—




How likely is a discrete log-based attack?

Discrete Log Computation Records
 [Joux et al. 2005] 431-bit prime
* [Kleinjung et al. 2007] 530-bit prime
« [Bouvier et al. 2014] 596-bit prime
« + other results for special groups

Best known generic technique:
Number Field Sieve (NFS) and variants



Computing Discrete Logs with NFS

(slide from N. Heninger)

polynomial sieving linear
selection algebra v.8

How long does the number field sieve take?

Answer 1:

L(1/3,1.923) = exp(1.923(log N)*/3(log log N)?/3)



Computing Discrete Logs with NFS

(slide from N. Heninger)

polynomial sieving linear descent
selection algebra '

How long does the number field sieve take?

Answer 2:

512-bit DH: &~ 10 core-years.
768-bit DH: ~ 35,000 core-years.
1024-bit DH: ~ 45,000,000 core-years.

2048-bit DH: Minimum recommended key size today.



Exploiting Pre-computation
(slide from N. Heninger)

Poection. e dgebra by e
< )—-' log db ! l <§>—v X
precomputation individual log
Sieving Linear Algebra Descent

I logB core-years rows core-years core-time

RSA-512 14 29 0.5 4.3M 0.33
DH-512 15 27 25 2.1IM 7.7 10 mins

Times for cluster computation:

polysel sieving linalg descent
2000-3000 cores 288 cores 36 cores
DH-512 3 hours 15 hours 120 hours 70 seconds




TLS-DHE in practice

Internet-wide scan of HTTPS servers using Zmap (2015)
 14.3M hosts, 24% support DHE
« 70,000 distinct groups (p,g)

Small-sized prime groups

« 84% (2.9M) servers use 1024-bit primes

¢ 2.6% (90K) servers use 768-bit primes

* 0.0008% (2.6K) servers use 512-bit primes

What percentage of the internet does our
TLS-DHE cryptographic proofs apply to?
 Depends on how powerful your adversary is



Exploiting
Crypto Weaknesses:
Weak Hash Functions



Authenticated DH (

A PKI

SIGMA)

B

Knows [sk A, Pk B]
G =(9,p)

Knows [sk B, Pk A]
G = (9,p)

m1 = g* mod p

— Y
’ meo = g¥ mod p

>

k = kdf (g™ mod p)

k = kdf(g™¥ mod p)

" sign(sk 4, hash(my | ms)), mac(k, A)

<€

sign(sk g, hash(m; | ms)), mac(k, B)

Sign-and-MAC the transcript:

I
prevents most MitM attacks




Authentication via Transcript Signatures

* Sign the full transcript

— sign(skg, hash(m, | m,))

— Example: TLS 1.3, SSH-2, TLS 1.2 client auth
* How weak can the hash function be?

— do we need collision resistance?
— do we only need 2"9 preimage resistance?



Quick Primer on Hash Functions

» Hash function: public function {0,1}* — {0, 1}"
> Maps arbitrary-length message to fixed-length hash

» Mekle-Damgdrd mode: n-bit chain value

> Process message iteratively
> Use the message length in the padding (MD strengthening)

» Hash function should behave like a random function
» Hard to find collisions, preimages
» Hash can be used as a fingerprint



Hash Function Cryptanalysis

Collision attack

» Find Mq # M, such that HM4) = HM,)
» Generic attack with complexity 2”2 (expected security)
> Shortcut attacks

> MD5: complexity 2'° [Wang & al.’05, Stevens & al."09]
> SHA1: complexity 2° [Wang & al.'05, Stevens '13]
Cq
[\/ o P >e P ‘o/—\o 5 >e 5 .
C2

> Arbitrary common prefix/suffix, random collision blocks



Hash Function Cryptanalysis

Chosen-prefix collision attack

» Given Pq, P, find Mq # M, such that H(P¢||M+) = H(P;||M>)

» Generic attack with complexity 2"/% (expected security)
» Shortcut attacks

> MD5: complexity 2°7 [Stevens & al.'09]
> SHA1: complexity 277 [Stevens "13]
P‘| ° C1 o Cfl
s S




Hash Function Cryptanalysis

2"d preimage attack
* Given M,, H(M,), find M,zM,s.t. HIM,) = H(M,)
e Generic attack with complexity 2" (expected)

— MD5: complexity 2128

— SHA1: complexity 2160

— No practical attacks

* Protocols that rely only on 2" preimage
resistance can safely use even MD5

— E.g. public key fingerprints in SSH



Hash Function Attack Complexity

e MD5: known attack complexities

— MD?5 second preimage

— MD?5 generic collision:

— MD5 chosen-prefix collision:
— MD5 common-prefix collision:

2128 hashes

264
239
216

NdsS

NdS

NdsS

 SHA1: estimated attack complexities

— SHA1 second preimage

— SHA1 generic collision:

— SHA1 chosen-prefix collision:
— SHA1 common-prefix collision:

2160 hashes

280
277
261

NdS
NdS

NdsS

NeS

NeS

NeS

NES
NES

NeS

(infeasible)
(months?)

(1 hour)
(seconds)

(infeasible)
(infeasible)

(?)

(months)



Authentication via Transcript Signatures

* Sign the full transcript
— sign(skg, hash(m, | m,))
— Example: TLS 1.3, SSH-2, TLS 1.2 client auth

e How weak can the hash function be?
— do we need collision resistance?
— do we only need 2"9 preimage resistance?

* |s it still safe to use MD5, SHA-1 in TLS, IKE, SSH?

— Disagreement: cryptographers vs. practitioners
(see Schneier vs. Hoffman, RFC4270)



Transcript Collisions on SIGMA

A B
Knows sk a, pk g Knows skp, pk 4
G = (9,p) G = (9,p)
my = ¢g* mod p N
B mo = g¥ mod p
k = kdf (g™ mod p) k = kdf(¢”¥ mod p)
. 1
sign(sk 4,/hash(m; N

)? mac(k, A)
)| mac(k, B)

Uy’
sign(sk ,lhash(m; | mo)

.(
I
Can the attacker find and exploit
collisions in this transcript hash?




Hash Collisions in SIGMA

Knows sk 4, pk g
G = (9,p)

m1 = ¢* mod p | params 4

B

Knows sk, pk 4
G = (9,p)

<

mo = g¥ mod p | params g

>

Key k = kdf(g”¥ mod p)
Transcript t = my | mo

Key k = kdf(g*¥ mod p)
Transcript ¢t = my | mo

)
sign(sk 41 hash(t))Imac(k, A) N
B sign(sk glhash(t))|mac(k, B)
] I

|

collisions in this transcript hash?

Can the attacker find and exploit J




SLOTH: Transcript Collision Attacks

A

Knows sk 4, pk g

Keys k, = kdf(¢® mod p) <
Transcript t, = T'(my,m5)

MitM B
Parameter
Downgrade  OWs sks, Pk,
my = g° | params 4 - my = g° | params’, N
B mh = g¥ | params’y 5 mo = g¥ | paramsp
Knows k,, kb\ ) Keys ky = kdf(g*'¥ mod p)
Collision hash(ta) w Transcript ty = T(m’l, m2)
sign(ska,hash(ta)), mac(k, A) | sign(ska, hash(t)), mac(k, A)
sign(sk g, hash(t,)), mac(k, B) sign(skB/ sh(t;)), mac(k, B)

Server
Impersonation

Client

Impersonation




Computing a Transcript Collision

hash(m, | m’,) = hash(m’, | m,)

* We need to compute a collision, not a pre-image
— Attacker controls parts of both transcripts
— If we know the black bits, can we compute the red bits?
— This can sometimes be set up as a generic collision

* |If we're lucky, we can set up a shortcut collision
— Common-prefix: collision after a shared transcript prefix
— Chosen-prefix: collision after attacker-controlled prefixes



Computing Transcript Collisions

A MitM B
hash Challenge: compute hash
m,” before seeing m, ’
len, _ | len,
gx 1 m]_ —a gxl
params, params’,
/)
len, . - len,
, 2 2
gy gy
params’g params;




Generic Transcript Collisions

A MitM B
hash | hash
| Try random nonces
€n, until collision g |en1;
gX = o ’
ol gX
nonce,
| = | noncey
len,’ N = 2|hash|/2 =2
- - gstatic
gV MD5: 264 \—~
SHA-1: 280 honce,
honce, HMAC/96: 248 y

\_




Chosen-Prefix Transcript Collisions

A MitM B
len,
my
g g
blob,
len,
o m, gy

f Ephemeral DH key, 7
arbitrary blob, f blobg

_ known length len,




A MitM B
hash Compute m,” and J\ hash
Ienl a prefix of m, ’ |en1;

) m, X m, -

g g
blob,

g Find Chosen-Prefix OBA

Collision C;, C,
//\ A len
blobB' N = 2CPC(hash) 2
MD5: 239 T gY
SHA-1: 277
\ , bloby




Weak Hash Functions in TLS

TLS <= 1.1 uses MD5 and SHA-1 for signatures

* RSA signatures over MD5(t) | | SHA-1(t)
e DSA signatures over SHA-1(t)

TLS 1.2 introduces sighatures with SHA-2

but allows negotiation of MD5, SHA-1

e RSA signatures over MD5(t), or SHA-1(t),
or SHA-256(t), or SHA-224(t), or SHA-384(t), or SHA-512(t)

e (EC)DSA signatures only over SHA-1(t)

TLS 1.2 client sighatures using RSA-MD5
are vulnerable to transcript collision attacks



Exploiting
Logical Flaws:

Downgrade Attacks on
Agile Key Exchange



Agility: Negotiating DH Groups

k= kdf(g“’y mod p2043)

sign(sk 4, hash(m;

A B
Group
Knows sk 4, pk g Negotiation Knows sk g, pk 4
Ga048, G512 G2048, G512
(G2048, G'512] J
B G248 Why? backwards
my = g* mod paoas N compatibility,

< ma = g” mod paoss Kexport regulations,...

~

k= kdf(g“"y mod p2048)

ms)), mac(k, A)

sign(sk g, hash(m;

ms)), mac(k, B)




Logjam: DH Group Downgrade Attack

A

Knows sk 4, pkg

| —

MitM

Remove Strong Groups

~

KNows sk‘:/B, Pk 4

G2048, G512 G2048, G512
(G2048, G512] % G512] .
Gs-
< 512
m1 = g* mod p512 N
< mo = g¥ mod ps12

k = kdf(¢g™¥ mod ps12)

sign(sk 4, hash(m,

b = dlog(g¥ mod p512)
k = kdf(g™¥ mod ps12)

k = kdf(¢g*™¥ mod p)

| sign(skp, hash(m,

ms)), mac(k, A) ( )
o) mac(k. 5y | 1€ Logjam Attack [2015]

—




TLS Variant of SIGMA

A B

N
Signature
covers group = Knows skp, pk 4

W G2048, G512
= |G
S'gn(SkB, G 2048 | g¥ mod paoag) >

m3 = A, g* mod pao4s

Knows sk, pk g
G2048, G512

A

k = kdf( Y mod p2048) k = kdf(gmy mod p2048)

ml | mo | mg), mac(k, m1m>

\ mac(k, my | mo | m3) //

] Transcript MAC ]
covers negotiation




MACing the Handshake Transcript

TLS 1.2: mac the full transcript
to prevent tampering

—mac(k, [G,048,Gs15] | Gsip | My | my)



Logjam Still Works

A MitM

Knows sk 4, pkg
G204s; G512

my = [G2048, G512)

777,/1 — [0512]

B

Knows skpg, pk 4
G204s; G512

Y

mo = B,sign(skp, G512 | ¥ mod ps12)

.
>

mz = A, g* mod ps12

=
>

k = kdf(¢™¥ mod ps12) b = dlog(g¥ mod ps12)

k = kdf(¢g*¥ mod ps12)

sign(skA,ml | meo | m3), mac(k,m1 | mso | m3) >
mac(k, my | mo | m3)

-
<




MACing the Handshake Transcript

TLS 1.2: mac the full transcript
to prevent tampering

—mac(k, [G,048,Gs515] | Gsip | My | my)

— but it is too late, because we already used G,
k = kdf(g® mod ps;,)

— 50, the attacker can forge the mac

e The TLS 1.2 downgrade protection mechanism
itself depends on downgradeable parameters.

— hence, the only fix is to find and disable all weak
parameters: groups, curves, mac algorithmes,...



What went wrong?

* Cryptographic weakness
— Problem: Continued support for weak DH groups
— Countermeasure: Ban all weak groups

e Logical protocol flaw

— Problem: Downgrade attack on agile key exchange

— Countermeasure: Protect integrity of key exchange even
if the negotiated DH group is weak



Signing the Handshake Transcript

* |IKEv1: both A and B sign the offered groups
— sign(skg, hash([G,45,G:1,] | My | m,))

* |[KEv2: each signhs its own messages
— sign(sk,, hash([G,q,5,G5,] | my))
— sign(skg, hash(G.,, | m,))

e SSH-2 and TLS 1.3: sign everything
— sign(k, hash([G,45,G:15] | G4, | My | M,))



IKEv2 Variant of SIGMA

Knows sk 4, pkpg
G2048, G512

o

Exercise: show a

variant of Logjam on

this protocol

m1 = [G2048, G512

J

B

Knows sk g, pk 4
G2048, G512

mo = G048, ¥ mod pop4s

>

m3 = g* mod papag

k = kdf(gm‘y mod p2048)

(gp(oham | o) o N,

>

k= kdf(g:cy mod p2048)

\_ sign(skp, ms), mac(k,B) _/

/

Sign your own
messages

J




Signing the Handshake Transcript

* IKEv1: both A and B sign the offered groups
— sign(sk, hash([G,p45,Gs15] | My | my))
— no agreement on chosen group!

* IKEv2: each signs its own messages
— sign(sky, hash([G,043,Gs15] | My))
— sign(skg, hash(Gsy, | m,))
— no agreement on offered groups!

e SSH-2 and TLS 1.3: sign everything
— sign(k, hash([G,445,G515] | Gsi, | My | m,))
— works! (only if hash is collision-resistant)



Hash Function Downgrade (SLOTH)

TLS 1.2 introduces signatures with SHA-2

but allows negotiation of MD5, SHA-1

e Attacker can downgrade TLS 1.2 connection from SHA-256 to MD5,
and then apply transcript collision attacks (SLOTH)

What went wrong?

* Crypto Weakness:
Continued support for RSA-MD5 signatures

* Logical Protocol flaw:
Downgrade attack on signature algorithms extension

* Implementation bug:
OpenSSL, GnuTLS, NSS accept MD5 signatures even if disabled



Exploiting
Logical Flaws:
Triple Handshake Attacks



User u
Client C

User authentication over TLS

TLS Handshake

Server S

-
-~

TLS session:
anon — certg

TLS session:
anon — certg

Authenticate(u)

Application: Application:
u — certg u — certg
Data
I I

Application-level Authentication

o _ Quter: server-authenticated TLS
* [nner: user authentication

Many examples of this pattern

‘ / . SASL, GSSAPI, EAP, ...

TLS Renegotiation with
client certificate

Inner authentication endorses
unauthenticated TLS channel

« Need to strongly bind the two
protocol layers together!



Generic credential forwarding attack

Simplified version of [Asokan, Niemi, Nyberg’02]

Suppose u uses

same authentication

credential at
both M and S

M forwards S’s
authentication
challenge to C

M forwards C’s
response to S

M can log in as
u at S|

User u
Client C

Attacker

Server M

TLS Handshake

Y

A

TLS session:
anon(C) — certy

TLS Handshake

Server S

Y

A

TLS session:
anon(M) — certg

—

Authenticate(u) Authenticate(u)
€ -«
Application: Application:
u — certy u — certg
Data

.
>




TLS renegotiation attack [2009]

Martin Rex’s Version

User u Attacker
Client C Server M Server S

Suppose u uses
same client cert to TLS Handshake
log in to both M and S

M forwards S’s
renegotiation

Y

A

TLS Handshake

Y

A

request to C TLS session: TLS session:
anon(C) — cert anon(M) — certg
M forwards |
renego handshake Renegotiate(certc) Renegotiate(certc)( < .
- - appends
between Cand S ) ) e ) o Dot
/ Dat é
| L]
S concatenates TLS session: | TLS session:
data sent by M certc — certg | certc — certg

to data sent by u!




Binding user auth to TLS channels

Extract TLS-level
channel identifier cid

User u

Attacker

Client C

Server M

TLS Handshake

Y

A

cid

TLS session (cid):
anon(C) — cert

Bind cid to
User authentication

Authenticate(u, cid) _

TLS Handshake

Server S

Y

A

Authenticate(u, cid)

TLS session (cid’):
anon(M) — certg

cid’

-
-

X

A

Computing a channel identifier (cid):

f(master secret)
f(handshake log) (Renegotiation Indication,SASL)

(EAP)

Authentication Failed!
cid # cid’

X

Does not work if M can ensure

that cid = cid’

~




User

| Clicen C I

Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS

Karthikeyan Bhargavan*, Antoine Delignat-Lavaud*, Cédric Fournet!, Alfredo Pironti* and Pierre-Yves Strub?
*INRIA Paris-Rocquencourt "Microsoft Research 'IMDEA Software Institute

Attacker

CliemtHello(cr, [RSA,DH],...)

CliantHello(cr, |RSA])

Targst

SarverHello(sr, sid, RS A ENC_ALG)

ServerCartificate(cerig, pks)

SarverCartificate(ceris, pk,)

ServerflalloDone

ClientKoyExchange(rsa(pk , , pms))

ClieatXeyExchange(rsa( pk o, pms))

CliantCCS

ClieatFinishod(verifydata(ms, log,))

ClientFinished(verifydata(ms, log)))

ServerCCS

ServerFinisbed(verifydata(ms, loag,))

ServerFinished(verifydata(ms, logh))

Cache new session:

sid, ms, anon

cr, sr, RS A ENC_ALG

+ ceri,,

Knows:

Usser

Haa morstion
sid, ms, anon
or, or KEX_ALC, ENCALC

. oord
A

Has connoction:
sid, ms, er' sr', cod, svd

Cache new session:

Applata

Attacker Target
Kuows Han mossion

sid, ms, or, s

sid, ms, anon

|

e '

o v KEXALG, ENCALG

I

Knows:
sd, ms, or s’

Has connoction:
sd ms, o’ o', ovd, sd

AppOata;

ClicotHello{er”, [KEX ALY, [ENCALC], evd)

SarvarEallo(sr”, sd’, XKEX_ALC, ENC_ALL, end, sud)

ServerCertificate{ecerts pk.)

ServerKeyExchange(sign(sk s, kexs))

sid, ms, cr, sr

AppData

sid, s, anon 5

or, s, RS A, ENC_ALG

+ cerig

AppData’

User

Has session:
sid, ms. anon

er, ar, KH_ALGIE_ALG

s coria

Clieatiallo(er’, sid)

Attacker

Knows:
sid, ms, or, sr

TAr et

Certificatefaguast
Sarvarsalloloze
ClianzCartificatel coric, pko)
ClienKayExcasga| kexo)
CerzificazeVerityl(senlskc, log, )eorts)
Clie=tOC3
ClientFinished|verfydata(ms’, log,))
SarvercCs

Sorver?iniabed{verdydata(my’, log,))

Has session:
sid, ms, anon — certs,

er, sr, KEX_ALG, ENC_ALG

Servarilello(ar’, sid)

SarvarCCS

ServerFinished(ced = verifydata(ma, log,))

Clicnt(CS

ClientFinishod(smd

verifpdata( ma, logs))

New connection

sid, ms,or', s’ evd, sod

Klld“),
sid, ms, or' s’

AppData

New counection:

sid. ms,er’, 57’ cvd,| sud

AppData’

Cacko new sossion Konows: Cache now smsion
md', ms', corte — cort cortie md, ma, corte — vty
or” " KEXALS', ENCALS' o™ " KEXALZ' ENCALC

Applata;
Applatay
Accopts data stroam: Acccpts data stronm:
AppDatal + AppDatad AppDatal + AppDatad
* I *

Details, demos at:
http://secure-resumption.com




Triple Handshake attack: step 1

Key Synchronization Attack

A malicious server M can ensure that the master secrets in
two different connections from C-M and M-S are the same

RSA Key Synchronization

M re-encrypts C’s premaster
secret under S’s public key

M forces same ciphersuite and
nonces on the two handshakes

DHE Key Synchronization

M chooses a “bad” (non-prime)
Diffie-Hellman group

User u Attacker
Client C Server M Server S
TLS Handshake TLS Handshake
TLS session (sid): TLS session (sid):
anon(C) — cert y anon(M) — certs
ms, cr, sr ms,cr, sr
* L] i

Does not break single handshake theorems
“If a client completes with an honest server...”

Breaks EAP compound authentication (reenables 2002 attack)
The master secret is not a good channel identifier (it isn’t contributive)
Renegotiation indication channel identifier (handshake log) still works.



Triple Handshake attack: step 2

Transcript Synchronization Attack

After resumption, a malicious server M can ensure that the master
secrets, keys, and handshake logs on two different connections from C-

M and M-S are the same

Abbreviated agreement
Transcript depends

only on master secret,
ciphersuite, session ID
(no certificates)

User u
Client C

Attacker

Server M

Server S

Resume(sid) Resume(sid)

Resumed (sid): Resumed (sid):
anon(C) = cert anon(M) —» certg
ms,cr', sr', cvd, svd ms,cr', sr', cvd, svd
* I i

Does not break session resumption theorem

“If the server in the original handshake was honest...”

Breaks transcript-based channel identifiers
After resumption, handshake log is not a good channel identifier

Breaks tls-unique (SASL), renegotiation indication



Triple Handshake attack: step 3

User Impersonation Attack (reenables 2009 attack)
cid = hash(abbreviated handshake log) same on both connections

So M can forward renegotiation
between C and S unchanged.

Surely this must break Giesen’s
multi-handshake theorem?

Renegotiation with honest peer implies
agreement on abbreviated handshake,
but not on original handshake
Theorem needs honest peer in original
handshake for agreement on all three

Impact

User u Attacker

Resumed (sid):
anon(C) — cert
ms,cr’, sr’, cud, svd

TLS session:
certe = cerlg

| Client C | |Scrvcr MI I Server SI
Resume(sid) Resume(sid)
Resumed (sid):
anon(M) — certg
ms,cr', sr', cvd, svd
Renegotiate(certc) Renegotiate(certc)
Data
TLS session:
certe = certly
Data’
I I

A malicious website can impersonate any user who uses
client certificates on any other website that requires client certificate
auth, and supports resumption and renegotiation




What went wrong?

* Logical protocol flaw
— Problem: Key synchronization attack on RSA/DHE
— Countermeasure: Independent keys per connection

e Logical protocol flaw

— Problem: Transcript synchronization after resumption
— Countermeasure: Independent master secrets per session



Exploiting
Implementation Bugs:
State Machine Attacks



TLS Implementation Bugs

Memory safety
Buffer overruns leak secrets

Missing checks

Forgetting to verify
signature/MAC/certificate
bypasses crypto guarantees

Certificate validation
ASN.1 parsing,
wildcard certificates

State machine attacks
Confusions between modes

7 Heartbleed Bug x

€« (X hitps://heartbleed.com

i Apps LastPass Login! @ Money-Change-Paris

© The Original Cape ¢

©

W Formal Methods In »

The Heartbleed Bug

goto fail; x
& = C [ hups://gotofail.com
i Apps LastPass Login! @ Money-Change-Paris

© The Original Cape ¢

©

W Formal Methods In »

goto fail; // Apple SSL buq test site

The Most Dangerous Code in the World:
Validating SSL Certificates in Non-Browser Software

Martin Georgiev
The University of Texas
at Austin

Rishita Anubhai
Stanford University

ABSTRACT

SSL (Secure Sockets Layer) is the de facto standard for secure In-
ternet communications. Security of SSL connections against an
active network attacker depends on correctly validating public-key
certificates presented when the connection is established.

We demonstrate that SSL certificate validation is completely bro-
ken in many security-critical applications and libraries. Vulnerable
software includes Amazon’s EC2 Java library and all cloud clients
based on it; Amazon’s and PayPal’s merchant SDKs responsible
for transmitting payment details from e-commerce sites to payment
gateways; integrated shopping carts such as osCommerce, ZenCart,
Ubercart, and PrestaShop: AdMob code used by mobile websites;
Chase mobile banking and several other Android apps and libraries;
Java Web-services middleware—including Apache Axis, Axis 2,
Codehaus XFire, and Pusher library for Android—and all applica-
tions employing this middleware. Any SSL connection from any of
these programs is insecure against a man-in-the-middle attack.

The root causes of these vulnerabilities are badlv desiened APIs

Subodh lyengar
Stanford University

Dan Boneh
Stanford University

Suman Jana
The University of Texas
at Austin

Vitaly Shmatikov
The University of Texas
at Austin

cations. The main purpose of SSL is to provide end-to-end secur
against an active, man-in-the-middle attacker. Even if the netw
is completely compromised—DNS is poisoned, access points
routers are controlled by the adversary, etc.—SSL is intended
guarantee confidentiality, authenticity, and integrity for commu
cations between the client and the server.

Authenticating the server is a critical part of SSL connection
tablishment." This authentication takes place during the SSL ha
shake, when the server presents its public-key certificate. In or
for the SSL connection to be secure, the client must carefully ver
that the certificate has been issued by a valid certificate author
has not expired (or been revoked), the name(s) listed in the cert
cate match(es) the name of the domain that the client is connect
to, and perform several other checks [14, 15].

SSL implementations in Web browsers are constantly evolv
through “penetrate-and-patch™ testing, and many SSL-related v
nerabilities in browsers have been repaired over the years. S
however, is also widely used in non-browser software whene



Recall: the many modes of TLS

Protocol versions
e TLS 1.2, TLS 1.1, TLS 1.0, SSLv3, SSLv2

Key exchanges
- ECDHE, FFDHE, RSA, PSK, ...

Authentication modes
 ECDSA, RSA signatures, PSK,...

Authenticated Encryption Schemes
« AES-GCM, CBC MAC-Encode-Encrypt, RC4,...

100s of possible protocol combinations!



Client

Implementing RSA Handshake

Server

ServerCertificate (m;)
cert(pks)

L

ClientKeyExchange (m,)
rsa-encrypt(pms, pks)

—

ClientFinished (m;)
mac(m,-m,, K)

—

ServerFinished (m()

mac(m,-mg, K)

—

ClientHello(v, [kz1, kz, .. )
ServerHello(v, kz = RSA)
ServerCertificate(certs)
ServerHelloDone
ClientKeyExchange(rsaenc(pms, pks))

ClientCCS

ClientFiniShed(mac(log. pms))

ServerCCS

ServerFin iShed(mmr(log', pms))

ApplicationData*




Implementing DHE Handshake

Client Server

ClientHello(v, [kzy, kza,...)

E
ServerKeyExchange (m;) ServerHello(v, k = DHE|ECDHE)
cert(pks), rsa-sign(G | gY, skg) —
e ServerCertificate(certs)
€
. ServerKeyExchange(sign((G, g¥), sks)
ClientKeyExchange (m,) PR Rt
gx ServerHelloDone
—
— ClientKeyExchange(s*)
ClientFinished (m;) ClientCCS

l

mac(m,-m,, K)

— ClientFiniShéd(mac(log,g”‘))
—> |
ServerFinished (m¢) ServerCCS
mac(m,;-ms, K) —_ ServerFinished (mac(iog', )

e

€< AppIication Data-




Composing Handshakes

CIientHeIIO(v, (kzy, kz2,...]) RSA
ServerHello(v, kz = RSA)

ServerCertificate(certs)

ServerHelloDone

ClientKeyExchange(rsaenc(pms, pks)) E

ClientCCS

ClientFinished (mac(log, pms))

ServerCCS

ServerFinished(mac(log’, pms))

ApplicationData*

ClientHello(v, [kzy, kz, .. ])

ServerKeyExchange(sign((G, g¥), sks)

ServerHello(v, kxz = DHE|ECDHE)

ServerCertificate(certs)

ServerHelloDone

ClientKeyExchange(s*)

CIienIcCCS

ClientFiniShéd(mm(log,g’y))

|
ServeerCS

[
ServerFinished(mac(log’, g°¥))

|

Application Data-

(EC)DHE

kxz = RSA

[
[

ClientHello(v, [kz;, kz,, .. )
ServerHello(v, kx)
ServerCertificate(certs)
kz = DHE|ECDHE
ServerKeyExchange.--)
ServerHelloDone

ClientKeyExchange(- )

ClientCCS

ClientFiniShed(mac(log, )

ServerCCS

ServerFinished(mac(log', - - -))

ApplicationData*




TLS State Machine

RSA + DHE + ECDHE

+ Session Resumption

+ Client Authentication

e Covers most features
used on the Web

« Already quite a complex
combination of protocols!

Do implementations conform
to this state machine?

ClientHello

ServerHello(v, kz,r4)

i =0 & Tuck =0 _/-/f‘\\‘ Tid = l“rllck =1
—— —

o
e

(full handshake)

ServerCertificates
kz = DHE|ECDHE
ServerKeyExchange

(authenticate client?)
Cosk = 1

CertificateRequest

ServerHelloDone
Cosk = 1

ClientCertificate(c ., )

ClientKeyExchange
Cask =1 &
Coffer = 1

~——
—

(abbreviated handshake)
Nick = 1
ServerNewSessionTicket |7y =0
kz = RSA ServerCCS

ServerFinished

Cask =0 ClientCCS

ClientFinished

Cask =0 ApplicationData*

ClientCertificateVerify [ ok = 0 || Corer =0

ClientCCS

ServerFinished

ApplicationData*

State machine
for common
Web configurations



Many, Many Bugs

Unexpected state transitions
In OpenSSL, NSS, Java, ...

« Required messages can

be skipped

« Unexpected messages can

be received

ClientHello

|

ServerHello(v,kz, riy)
ra=0& ree =0 —

r-Gated Crypto

(full handshake)

ServerCertificates
kz = DHE|ECDHE

ServerKeyExchange

(authenticate client?)
Cask = 1

CertificateRequest

ServerHelloDone

Cask = 1

ClientCertificate(c,ger)|Ca

Early CCS ClientKeyExchange

ClientCertificateVerif)Cask
DH Certificate
ClientCCSs
ClientFinished
Npick = 1
ServerNewSessionTickeg™

ServerCCs

ServerFinished

ApplicationData®

~~— Tu= 1' Teick = 1

(abbreviated handshake)

Ngick = 1

Expont ﬁg/{verNewSessionTicke Ntick *
kz = RSA

=+ RSA ServerCCs

Static DH
tx = DHE|ECDHE
ServerFinished

0 ClientCCS

ClientFinished

H 0 ApplicationData*

) " Coffer = 0
Early CCS

OpenSSL
State Machine



Many, Many Bugs

Unexpected state transitions
In OpenSSL, NSS, Java, ...

* Required messages can
be skipped

« Unexpected messages can
be received

How come all these bugs?

* |In independent code bases,
sitting in there for years

« CVEs for many libraries
* Are they exploitable?

il

rverFinished

Java
State Machine



Culprit: Underspecified State Machine

TLS specifies a ladder diagram with optional messages
* Relies on the Finished messages to ensure agreement

RFC 5246 TLS August 2008
Client Server
ClientHello = «—cecececea- >

ServerHello
Certificatex*
ServerKeyExchange*
CertificateRequest*
Cmmmmm ServerHelloDone
Certificatex*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished @ «ceccecaea- >
[ChangeCipherSpec]
Cmmmcmnnaa Finished
Application Data Cmmmmmm— > Application Data

Figure 1. Message flow for a full handshake



Composing Key Exchanges

CIientHeIIO(v, (kzy, kz2,...]) RSA
ServerHello(v, kz = RSA)

ServerCertificate(certs)

ServerHelloDone

ClientKeyExchange(rsaenc(pms, pks)) E

ClientCCS

ClientFinished (mac(log, pms))

ServerCCS

ServerFinished(mac(log’, pms))

ApplicationData*

ClientHello(v, [kzy, kz, .. ])

ServerKeyExchange(sign((G, g¥), sks)

ServerHello(v, kxz = DHE|ECDHE)

ServerCertificate(certs)

ServerHelloDone

ClientKeyExchange(s*)

CIienIcCCS

ClientFiniShéd(mm(log,g’y))

|
ServeerCS

[
ServerFinished(mac(log’, g°¥))

|

Application Data-

(EC)DHE

kxz = RSA

[
[

ClientHello(v, [kz;, kz,, .. )
ServerHello(v, kx)
ServerCertificate(certs)
kz = DHE|ECDHE
ServerKeyExchange.--)
ServerHelloDone

ClientKeyExchange(- )

ClientCCS

ClientFiniShed(mac(log, )

ServerCCS

ServerFinished(mac(log', - - -))

ApplicationData*




Composing with Optional Messages

Treat ServerKeyExchange as optional ClientHellot, s kes
« Server decides to send it or not ServerHello(v, kz)
* Client tries to handle both cases

« Consistent with Postel’s principle for the Internet:
“be liberal in what you accept” (not for security!) ServerKeyExchange: )

ServerCertificate(certs)

ServerHelloDone

Unexpected cases at the client ClientKeyExchange(.)
« Server skips ServerKeyExchange in DHE
« Server sends ServerKeyExchange in RSA

ClientCCS

ClientFinished(mac(log, - - ))

Clients should reject these cases dervercCs

- But they don’t, so we are not running ServerFinished (mac(log', )
the TLS handshake any more

ApplicationData*




Client

Recall: DHE Handshake

Server

ServerKeyExchange (m;)
cert(pks), rsa-sign(G | g, sks)

e

ClientKeyExchange (m,)
gX

—

ClientFinished (m;)
mac(m,-m,, K)

—

ServerFinished (m¢)
mac(m,-mg, K)

e

ClientHello(v, [kzy, kza,...)

ServerHello(v, kz = DHE|ECDHE)

ServerCertificate(certs)

ServerKeyExchange(sign((G, g¥), sks)

ServerHelloDone

ClientKeyExchange(s*)

ClientCCS
l

ClientFiniShéd(mac(log,g”‘))

|
ServeIrCCS

SeNerFinishéd (mac(log’, g*¥))

AppIication Data-



Network attacker impersonates
api.paypal.com to a JSSE client

1.
2.

SKIPping Inconvenient Messages

Send PayPal’s cert

SKIP ServerKeyExchange
(bypass server signature)

SKIP ServerHelloDone

SKIP ServerCCS
(bypass encryption)

Send ServerFinished
using uninitialized MAC key
(bypass handshake integrity)

Send ApplicationData
(unencrypted) as S.com

ClientHello(v, [kzy, kz2,...])

ServerHello(v, kz)

ServerCertificate(certs) ]

ServerKe“'mnge(- )




SKIP Impact

A network attacker can impersonate
any server (Paypal, Amazon, Google)
to any Java TLS client (built with JSSE)

Affects all versions of Java until
Jan 2015 CPU (CVE-2014-6593)

Other state machine bugs found in a
dozen popular TLS libraries



Exploiting
Crypto Weaknesses +
Logical Flaws +

Implementation Bugs:
FREAK: Factoring RSA Keys



RSA Key Transport

Client

Session Key

K = PRF( pms,
noncec
nonce,,

Server

ServerCertificate (m;)
cert(pks)

e

“«

ClientKeyExchange (m,)
rsa-encrypt(pms, pks)

—

Session Key
K = PRF( pms,

ClientFinished (m;)
mac(m,-m,, K)

—

— noncec
nonce

ServerFinished (m)
mac(m,-mg, K)

R




RSA Key Transport

« Client chooses secret pms,
adds maximum protocol version pv,.,,
pads according to RSA PKCS#1 v1.5,
and encrypts with server’s public key pk
rsa-pkcsl-encrypt(pms,pks)

= [pad | pvax | PMs]® mod pg

« Server decrypts, checks pad and protocol version,
computes session key from pms

Security: In theory, relies on hardness of factoring pqg



| RSA Number | Decimal digits Binary digits | Cash prize offered |

RSA-100 | 100
'RSA-110 | 110
RSA-120 | 120
RSA-129 "1 | 129
'RSA-130 | 130
RSA-140 | 140

RSA-150(17 | 150
RSA-155 155
RSA-160 160

RSA-170 1 | 170
RSA-576 174
RSA-180[7 | 180
RSA-190 T | 190
'RSA-640 | 193
'RSA-200 17 | 200
RSA-2101 | 210
RSA-704 (1 212
RSA-220 220

RSA Factoring Challenge

330
364
397
426
430
463
496
512
530
563
576
596
629
640
663
696
704
729

US$1,0004!
US$4,42914]
$5,8984l
$100 USD
US$14,52714]
US$17,226

$9,383!4]

$10,000 USD

$20,000 USD

$30,000 USD

Factored on
April 1, 19915
April 14, 19925
July 9, 1993(€]
April 26, 1994/°]
April 10, 1996
February 2, 1999
April 16, 2004
August 22, 1999
April 1, 2003
December 29, 2009
December 3, 2003
May 8, 2010
November 8, 2010
November 2, 2005
May 9, 2005
September 26, 20138
July 2, 2012
May 13, 2016

Factored by
Arjen K. Lenstra
Arjen K. Lenstra and M.S. Manasse
T. Denny et al.
Arjen K. Lenstra et al.
Arjen K. Lenstra et al.
Herman te Riele et al.
Kazumaro Aoki et al.
Herman te Riele et al.
Jens Franke et al., University of Bonn
D. Bonenberger and M. Krone (")
Jens Franke et al., University of Bonn
S. A. Danilov and |. A. Popovyan, Moscow State University(”]
A. Timofeev and |. A. Popovyan
Jens Franke et al., University of Bonn
Jens Franke et al., University of Bonn
Ryan Propper
Shi Bai, Emmanuel Thomé and Paul Zimmermann

S. Bai, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann

Best Generic Technique: Number Field Sieve (NFS)
« Try CADO-NFS: http://cado-nfs.gforge.inria.fr/




How long does factoring take with the number field sieve?

Answer 3

512-bit RSA: 7 months — large academic effort [Cavallar et al., 1999]
768-bit RSA: 2.5 years — large academic effort [Kleinjung et al., 2009]
512-bit RSA: 2.5 months — single machine [Moody, 2009]

512-bit RSA: 72 hours — single Amazon EC2 machine [Harris, 2012]
512-bit RSA: 7 hours — Amazon EC2 cluster [Heninger, 2015]

512-bit RSA: < 4 hours — Amazon EC2 cluster| Factoring as a Service

Financial Crypto 2016
[Valenta et al. ‘16]




Factoring RSA keys in TLS

RSA encryption used in TLS 1.0-1.2
rsa-pkcsl-encrypt(pms,pk;)
=[pad | pv,,., | pms]®¢ mod pg
« |If pgcan be factored into p and g,
an attacker can break TLS encryption, integrity

« 512-bit keys and 768-bit keys can be factored

Browsers now reject < 1024-bit RSA certs

 They will soon require >= 2048 bits
* So nobody still accepts 512-bit RSA keys, right?



Export-Grade Ciphers in TLS

In the 1990s, cryptography exports were controlled
 All software had two versions: domestic and export
» Export RSA keys, Diffie-Hellman groups limited to 512 bits
* Export symmetric crypto limited to 40 bit keys

International Traffic in Arms Regulations [April 1, 1992 version]
Category XIII--Auxiliary Military Equipment ...

(1) Cryptographic (including key management) systems, equipment, assemblies,
modules, integrated circuits, components or software with the capability of

maintaining secrecy or confidentiality of information or information
systems...

Commerce Control List [current]

a.1.b.1. Factorization of integers in excess of 512 bits (e.g., RSA);



Export-Grade Ciphers in TLS

TLS 1.0 included many Export-grade ciphers
« TLS RSA EXPORT WITH RC4 40 MD5
- TLS_RSA_EXPORT WITH_DES40 CBC_SHA
- TLS DHE_RSA EXPORT WITH DES40 CBC_SHA
- TLS DHE_DSS EXPORT WITH DES40 CBC_SHA

To support these, every TLS server had two sets of keys

* A 2048-bit RSA key for TLS RSA +
a 512-bit RSA key for TLS_RSA_EXPORT

* A 1025-bit DH group for TLS_DHE +
a 512-bit DH group for TLS_DHE_EXPORT

* E.g. OpenSSL created a 512-bit RSA_EXPORT on startup



RSA EXPORT support on the Web

In 2000, EXPORT deprecated in TLS 1.1, not used since
« (Dead) code still exists in OpenSSL and other libraries

In Mar 2015, many TLS servers still allow RSA_EXPORT!
« 8.9M (26.3%) HTTPS servers support EXPORT ciphers
* 36.7% of HTTPS servers with browser-trusted certificates
* 9.6% of Alexa top 1M HTTPS servers
» Reason: backwards compatibility with old TLS clients

Modern browsers do not support or offer RSA_EXPORT

« EXPORT ciphers are never negotiated, so problem solved?
« An implementation bug reenables RSA_EXPORT in clients!



RSA Key Transport

Client

Session Key

K = PRF( pms,
noncec
nonce,,

Server

ServerCertificate (m;)
cert(pks)

e

“«

ClientKeyExchange (m,)
rsa-encrypt(pms, pks)

—

Session Key
K = PRF( pms,

ClientFinished (m;)
mac(m,-m,, K)

—

— noncec
nonce

ServerFinished (m)
mac(m,-mg, K)

R




RSA EXPORT Key Transport

Client Server

ServerCertificate (m;)
cert(pks), rsa-sign(pks,,, sks)

—

ClientKeyExchange (m,)

Session Key rsa-encrypt(pms, pkey) Session Key
K = PRF( pms, —— YPUPMS, PKsy, K = PRF( pms,
noncec — - noncec
nonce . . . nonce
* ClientFinished (m;) g
. mac(m,-m,, K)
-

ServerFinished (m)
mac(m,-mg, K)

R




Badly Composing RSA + RSA_EXPORT

ClientHello(v, [kzy, kza,...))

ServerHello(v, kz = RSA)

ServerCertificate(certs)

ServerHelloDone

ClientKeyExchange(rsaenc(pms, pks)) E

ClientCCS

ClientFinished (mac(log, pms))

ServerCCS

ServerFinished(mac(zog’, pms))

ApplicationData*

ClientHello(v, [kzy, kz,

RSA

RSA_EXPORT ClientHello(v, [kzy, ks, .. )

ServerHello(v, kz = RSA EXPORT) ServerHello(v, kx)

ServerCertificate(certs)

ClientKeyExchange(rsaenc

ClientCCS
|

ServerHelloDone

ServerKeyExchange(sign(pksi2, sks)

ServerCertificate(certs)

ServerKeyExchange.--)

oDone

ClientFinishea(xxn;us(l(

=

Client accepts 512-bit

RSA_EXPORT keys
during regular RSA P

ange(.--)

handshake! i )

|
ServerCCS
l

1

l
ServeerCS

SENerFiniShea(mac(log', pms))

Application Data-

I

ServerFinished(mac(log’, - --))

|

ApplicationData-




RSA_EXPORT State Machine Bugs in TLS

HE|ECDHE |
eeeeeeeee ished
ClientCCS
i
Cl Finished

State
Machine

erverXeyExchange

1loD
ya
Cank
\ cis icatel
-
7
N2 c1ientXeyExchas
> ClieatKeyExchange
/ oy
//
| S ——
\, ClientCe
N\,

ApplicationData®

Java

State
Machine

Affected Software

* OpenSSL, used by:
Chrome,
Opera,
BlackBerry

 Schannel:
Microsoft .NET, IE

* SecureTransport:
Safari, iOS

e QOracle Java JSSE
IBM Java JSSE
Mono TLS



FREAK: Downgrade to RSA _EXPORT

A man-in-the-middle attacker can:

* impersonate servers that support RSA_EXPORT,
e at buggy clients that accept RSA_EXPORT keys in RSA handshakes

Client C MitM Server S

ClientHello(cr, [...,RSA,...]) ClientHello(cr, [RSA_EXPORT])
ServerHello(sr, RSA) | ServerHello(sr, RSA_EXPORT)
ServerCertiii;:ate( certg)
ServerKeyExchange(sign(cr | st | ps12, sks)

loge

~

A A A

~ < | ClientKeyExchange(rsaenc(pms, psi12)

-
>

(ms, k1, ko) = kdf(pms, er | sr) s512 = factor(ps12)
(ms, k1, ko) = kdf(pms, cr | sr)

ClientCCS
loge -~ ClientFinished (mac(log, ms))
ServerCCS
ServerFinished(mac(log,, ms))
authenc(k;,Data)
authenc(ks, Data’)




What went wrong?

* Cryptographic weakness
— Problem: Continued support for RSA_EXPORT
— Countermeasure: Disable EXPORT ciphersuites

* Logical protocol flaw

— Problem: Signature ambiguity between RSA/RSA _EXPORT
— Countermeasure: Signatures should cover transcript

* Implementation bug
— Problem: Clients accept EXPORT even if disables
— Countermeasure: Fix state machine composition



Part I: Summary

Real-world attacks exploit a combination of:
* Cryptographic weaknesses
* Logical protocol flaws
* Implementation bugs

Vulnerabilities in less-studied modes can break
strong provably secure modes of the protocol

 Too many modes and corner cases to prove by hand

A need for automated protocol verification
 Tools for finding protocol flaws and implementation bugs
* Machine-checked proofs for real-world protocols



End of Part |



