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Formal Methods for 
Analyzing Crypto Protocols:
from attacks to proofs



Internet protocols (TLS, SSH, IPsec) seemingly 
implement textbook cryptographic protocols  
… yet, not exactly the same protocols
• Modeling gaps between paper proofs and real protocol
• Implementation gaps between protocol and deployment

These gaps lead to many attacks, new questions 



Example: HTTPS for Web Security

xxxxxxx

Secure connection
to bank’s website
Nobody other than
the bank can read
what I type
(confidentiality)

My secret login 
Information
Nobody other than
me can access my
account page
(authentication)

Goal: Prevent unauthorized access to data
even if an unknown attacker controls 
the network and some other bank clients.

3

Secure Channel? 
compose a standard AKE 

with a standard AEAD



• 3Shake Insecure resumption [Apr’14]
• POODLE  SSLv3 MAC-Encode-Encrypt  [Dec’14]
• SMACK State machine attacks [Jan’15]
• FREAK Export-grade 512-bit RSA [Mar’15]
• LOGJAM  Export-grade 512-bit DH [May’15]
• SLOTH RSA-MD5 signatures [Jan’16]
• DROWN SSLv2 RSA-PKCS#1v1.5 [Mar’16]



• 3Shake Insecure resumption [Apr’14]

• SMACK State machine attacks [Jan’15]
• FREAK Export-grade 512-bit RSA [Mar’15]
• LOGJAM  Export-grade 512-bit DH [May’15]
• SLOTH RSA-MD5 signatures [Jan’16]

High-profile attacks, with Logos!
What’s going on?

How do we prevent this in the future?



Part I: Attacks on Authenticated Key Exchange in TLS

Part 2: Finding Protocol Flaws with Symbolic Analysis

Part 3: Mechanizing Cryptographic Protocol Proofs

Part 4: Towards High-Assurance Crypto Software



Part I:

Attacks on 
Authenticated Key Exchange

in TLS



• TLS 1.2. IETF RFC 5246.

• Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice.
ACM CCS  2015.

• Transcript Collision Attacks: Breaking Authentication in TLS, IKE, 
and SSH. ISOC NDSS 2016.



2018?   TLS1.3

OpenSSL, SecureTransport, NSS, 
SChannel, GnuTLS, JSSE, PolarSSL, …
many bugs, attacks, patches every year

mostly for simplified models of TLS



Client Server



Client Server



Protocol versions

Key exchanges

Authentication modes

Authenticated Encryption Schemes

100s of possible protocol combinations!



Client Server



pms
pvmax ,

pads according to RSA PKCS#1 v1.5,
pkS

rsa-pkcs1-encrypt(pms,pkS) 
= [pad | pvmax | pms]e mod pq

checks pad and protocol version, 
computes session key from pms

Security pq



Chosen Ciphertext attack

DROWN



Client Server



(p,g) gy

skS :
rsa-sign([nonceC | nonceS | 

p | g | gy], skS)
( p | g)

pms = gxy mod p

Security
• Provides forward secrecy, preferred over RSA



Logjam:



Cryptographic Weaknesses in Legacy Constructions
• Weak hash functions, weak DH groups, 

short block ciphers, leaky PKCS#11v1.5 padding

Logical Flaws in Protocol
• Cross-Protocol Attacks, Downgrade Attacks,

Transcript Synchronization/Collision Attacks

Implementation Bugs in TLS Libraries
• Bugs in crypto library, Buffer overflows in packet parsing, 

Composition bugs in state machines, Bad configurations

Sometimes, a mix of all of the above!



Protocol versions

Key exchanges

Authentication modes

Authenticated Encryption Schemes

100s of possible protocol combinations!



Exploiting
Crypto Weaknesses:

Weak DH Groups



Anonymous Diffie-Hellman (ADH)



Man-in-the-Middle attack on ADH

Active Network Attacker
or Malicious Peer



Authenticated DH (SIGMA)

PKI

Sign-and-MAC the transcript:
prevents most MitM attacks



Diffie-Hellman shared secret computation

k = kdf(gxy mod p)

Theoretical Security

• Attacker cannot compute k without knowing x or y
Attacks
• Best known attacks rely on discrete log: 

y = log(gy mod p)



Discrete Log Attack on SIGMA



Discrete Log Computation Records
• [Joux et al. 2005] 431-bit prime 
• [Kleinjung et al. 2007] 530-bit prime 
• [Bouvier et al. 2014] 596-bit prime 
• + other results for special groups

Best known generic technique: 
Number Field Sieve (NFS) and variants



Computing Discrete Logs with NFS
(slide from  N. Heninger)



Computing Discrete Logs with NFS
(slide from  N. Heninger)



Exploiting Pre-computation
(slide from  N. Heninger)



Internet-wide scan of HTTPS servers using Zmap (2015)
• 14.3M hosts, 24% support DHE
• 70,000 distinct groups (p,g)

Small-sized prime groups
• 84% (2.9M) servers use 1024-bit primes
• 2.6% (90K) servers use 768-bit primes
• 0.0008% (2.6K) servers use 512-bit primes

What percentage of the internet does our 
TLS-DHE cryptographic proofs apply to?
• Depends on how powerful your adversary is



Exploiting
Crypto Weaknesses:

Weak Hash Functions



Authenticated DH (SIGMA)

PKI

Sign-and-MAC the transcript:
prevents most MitM attacks



Authentication via Transcript Signatures

• Sign the full transcript
– sign(skB, hash(m1 | m2))

– Example: TLS 1.3, SSH-2, TLS 1.2 client auth

• How weak can the hash function be?
– do we need collision resistance?

– do we only need 2nd preimage resistance?



Quick Primer on Hash Functions



Hash Function Cryptanalysis



Hash Function Cryptanalysis



Hash Function Cryptanalysis

2nd preimage attack
• Given M1, H(M1), find M2 ≠ M1 s.t. H(M1) = H(M2)
• Generic attack with complexity 2n (expected)
– MD5: complexity 2128

– SHA1: complexity 2160

– No practical attacks

• Protocols that rely only on 2nd preimage 
resistance can safely use even MD5
– E.g. public key fingerprints in SSH



Hash Function Attack Complexity

• MD5: known attack complexities

– MD5 second preimage 2128 hashes (infeasible)

– MD5 generic collision: 264 hashes (months?)

– MD5 chosen-prefix collision: 239 hashes (1 hour)

– MD5 common-prefix collision: 216 hashes (seconds)

• SHA1: estimated attack complexities

– SHA1 second preimage 2160 hashes (infeasible)

– SHA1 generic collision: 280 hashes (infeasible)

– SHA1 chosen-prefix collision: 277 hashes (?)

– SHA1 common-prefix collision: 261 hashes (months)



Authentication via Transcript Signatures

• Sign the full transcript
– sign(skB, hash(m1 | m2))

– Example: TLS 1.3, SSH-2, TLS 1.2 client auth

• How weak can the hash function be?
– do we need collision resistance?

– do we only need 2nd preimage resistance?

• Is it still safe to use MD5, SHA-1 in TLS, IKE, SSH?
– Disagreement: cryptographers vs. practitioners 

(see Schneier vs. Hoffman, RFC4270)



Transcript Collisions on SIGMA

Can the attacker find and exploit 
collisions in this transcript hash?



Hash Collisions in SIGMA

Can the attacker find and exploit 
collisions in this transcript hash?



SLOTH: Transcript Collision Attacks

Server 
Impersonation

Client 
Impersonation

Parameter 
Downgrade



Computing a Transcript Collision

hash(m1 | m’2) = hash(m’1 | m2) 

• We need to compute a collision, not a pre-image
– Attacker controls parts of both transcripts
– If we know the black bits, can we compute the red bits?
– This can sometimes be set up as a generic collision

• If we’re lucky, we can set up a shortcut collision
– Common-prefix: collision after a shared transcript prefix
– Chosen-prefix: collision after attacker-controlled prefixes



hashhash

Computing Transcript Collisions

len1

gx

paramsA

len1’
gx’

params’A

len2

gy

paramsB

len2’
gy’

params’B

A BMitM

m1 m1
’

m2m2
’

Challenge: compute 
m1’ before seeing m2



Generic Transcript Collisions

len1

gx

nonceA

len1’
gx’

nonce1

len2

gstatic

nonceA

len2’
gy’

nonce1

A BMitM
hash hash

len2’
gy’

nonce2

len1’
gx’

nonce2

len1’
gx’

nonceN

len2’
gy’

nonceN

Predictable:
Static DH key, 

no fresh nonce

Try random nonces
until collision

N = 2|hash|/2

MD5: 264

SHA-1: 280

HMAC/96: 248



Chosen-Prefix Transcript Collisions

len1

gx

blobA

len2

gy

blobB

A BMitM

Ephemeral DH key, 
arbitrary blob, 

known length len2

m1

m2



Stuff m2 into m2’

len1

gx

blobA

len2

gy

blobB

len2’

gy’

C1

A BMitM

len1’

gx’

00000000

00000000

00000000

C2

len2

gy

blobB

hash hash

blobA
’

blobB
’

Find Chosen-Prefix 
Collision C1, C2

m1 m1
’

m2m2
’

Merkle-Damgard
hash extension

N = 2CPC(hash)

MD5: 239

SHA-1: 277

Compute m1’ and 
a prefix of m2’



Weak Hash Functions in TLS
TLS <= 1.1 uses MD5 and SHA-1 for signatures
• RSA signatures over MD5(t) || SHA-1(t)
• DSA signatures over SHA-1(t)

TLS 1.2 introduces signatures with SHA-2
but allows negotiation of MD5, SHA-1
• RSA signatures over MD5(t), or SHA-1(t), 

or SHA-256(t), or SHA-224(t), or SHA-384(t), or SHA-512(t)
• (EC)DSA signatures only over SHA-1(t)

TLS 1.2 client signatures using RSA-MD5 
are vulnerable to transcript collision attacks



Exploiting
Logical Flaws:

Downgrade Attacks on 
Agile Key Exchange



Agility: Negotiating DH Groups

Why? backwards 
compatibility,

export regulations,…

Group 
Negotiation 



Logjam: DH Group Downgrade Attack 

The Logjam Attack [2015]

Remove Strong Groups



TLS Variant of SIGMA

Transcript MAC
covers negotiation

Signature 
covers group



MACing the Handshake Transcript

TLS 1.2: mac the full transcript 
to prevent tampering 

–mac(k, [G2048,G512] | G512 | m1 | m2)



Logjam Still Works



MACing the Handshake Transcript

TLS 1.2: mac the full transcript 

to prevent tampering 

–mac(k, [G2048,G512] | G512 | m1 | m2)

– but it is too late, because we already used G512

k = kdf(gxy mod p512)

– so, the attacker can forge the mac 

• The TLS 1.2 downgrade protection mechanism 
itself depends on downgradeable parameters.
– hence, the only fix is to find and disable all weak 

parameters: groups, curves, mac algorithms,…



What went wrong?
• Cryptographic weakness
– Problem: Continued support for weak DH groups
– Countermeasure: Ban all weak groups

• Logical protocol flaw
– Problem: Downgrade attack on agile key exchange
– Countermeasure: Protect integrity of key exchange even 

if the negotiated DH group is weak



Signing the Handshake Transcript

• IKEv1: both A and B sign the offered groups
– sign(skB, hash([G2048,G512] | m1 | m2))

• IKEv2: each signs its own messages
– sign(skA, hash([G2048,G512] | m1))

– sign(skB, hash(G512 | m2))

• SSH-2 and TLS 1.3: sign everything
– sign(k, hash([G2048,G512] | G512 | m1 | m2))



IKEv2 Variant of SIGMA

Sign your own 
messages

Exercise: show a 
variant of Logjam on 

this protocol



Signing the Handshake Transcript

• IKEv1: both A and B sign the offered groups
– sign(skB, hash([G2048,G512] | m1 | m2))
– no agreement on chosen group!

• IKEv2: each signs its own messages
– sign(skA, hash([G2048,G512] | m1))
– sign(skB, hash(G512 | m2))
– no agreement on offered groups!

• SSH-2 and TLS 1.3: sign everything
– sign(k, hash([G2048,G512] | G512 | m1 | m2))
– works! (only if hash is collision-resistant)



Hash Function Downgrade (SLOTH)

TLS 1.2 introduces signatures with SHA-2

but allows negotiation of MD5, SHA-1
• Attacker can downgrade TLS 1.2 connection from SHA-256 to MD5,

and then apply transcript collision attacks (SLOTH)

What went wrong?
• Crypto Weakness: 

Continued support for RSA-MD5 signatures

• Logical Protocol flaw: 

Downgrade attack on signature algorithms extension

• Implementation bug: 

OpenSSL, GnuTLS, NSS accept MD5 signatures even if disabled



Exploiting
Logical Flaws:

Triple Handshake Attacks



Application-level Authentication

Many examples of this pattern

Inner authentication endorses
unauthenticated TLS channel 



• M can log in as 
u at S!



S appends 
Data,Data’

• S concatenates
data sent by M
to data sent by u!



cid

Extract TLS-level
channel identifier cid

cid’

Does not work if M can ensure 
that cid = cid’

Computing a channel identifier (cid):
• f(master secret)    (EAP)
• f(handshake log)  (Renegotiation Indication,SASL)

Bind cid to 
User authentication



Details, demos at:
http://secure-resumption.com



Key Synchronization Attack

RSA Key Synchronization

DHE Key Synchronization

Does not break single handshake theorems
“ honest server

Breaks EAP compound authentication (reenables 2002 attack)



Transcript Synchronization Attack

Abbreviated agreement

Does not break session resumption theorem
“ honest

Breaks transcript-based channel identifiers
After resumption, handshake log is not a good channel identifier
Breaks tls-unique (SASL), renegotiation indication 



User Impersonation Attack 

Surely this must break Giesen’s
multi-handshake theorem?
Renegotiation with honest peer implies
agreement on abbreviated handshake,
but not on original handshake
Theorem needs honest peer in original 
handshake for agreement on all three

Impact
A malicious website can impersonate any user who uses 
client certificates on any other website that requires client certificate 
auth, and supports resumption and renegotiation



What went wrong?

• Logical protocol flaw
– Problem: Key synchronization attack on RSA/DHE
– Countermeasure: Independent keys per connection

• Logical protocol flaw
– Problem: Transcript synchronization after resumption
– Countermeasure: Independent master secrets per session



Exploiting
Implementation Bugs:
State Machine Attacks



Memory safety 
Buffer overruns leak secrets
Missing checks 
Forgetting to verify 
signature/MAC/certificate
bypasses crypto guarantees
Certificate validation
ASN.1 parsing, 
wildcard certificates
State machine attacks
Confusions between modes



Protocol versions

Key exchanges

Authentication modes

Authenticated Encryption Schemes

100s of possible protocol combinations!



Client Server



Client Server



RSA
(EC)DHE



RSA + DHE + ECDHE
+ Session Resumption
+ Client Authentication

Do implementations conform
to this state machine?

State machine 
for common
Web configurations



Unexpected state transitions 
in OpenSSL, NSS, Java, …
• Required messages can 

be skipped
• Unexpected messages can 

be received



Unexpected state transitions 
in OpenSSL, NSS, Java, …
• Required messages can 

be skipped
• Unexpected messages can 

be received

How come all these bugs?
• In independent code bases,

sitting in there for years
• CVEs for many libraries
• Are they exploitable?



Culprit: 

TLS specifies a ladder diagram with optional messages
• Relies on the Finished messages to ensure agreement



RSA
(EC)DHE



Treat ServerKeyExchange as optional

• Server decides to send it or not

• Client tries to handle both cases

• Consistent with Postel’s principle for the Internet: 

“be liberal in what you accept” (not for security!)

Unexpected cases at the client

Clients should reject these cases

• But they don’t, so we are not running 

the TLS handshake any more



Client Server



SKIPping
Network attacker impersonates 
api.paypal.com to a JSSE client
1. Send PayPal’s cert
2. SKIP ServerKeyExchange

(bypass server signature)
3. SKIP ServerHelloDone
4. SKIP ServerCCS

(bypass encryption)
5. Send ServerFinished

using uninitialized MAC key
(bypass handshake integrity)

6. Send ApplicationData
(unencrypted) as S.com



SKIP
• A network attacker can impersonate

any server (Paypal, Amazon, Google)
to any Java TLS client (built with JSSE)

• Affects all versions of Java until 
Jan 2015 CPU (CVE-2014-6593)

• Other state machine bugs found in a
dozen popular TLS libraries 



Exploiting
Crypto Weaknesses +

Logical Flaws +
Implementation Bugs:

FREAK: Factoring RSA Keys



Client Server



pms
pvmax ,

pads according to RSA PKCS#1 v1.5,
pkS

rsa-pkcs1-encrypt(pms,pkS) 
= [pad | pvmax | pms]e mod pq

checks pad and protocol version, 
computes session key from pms

Security pq



Best Generic Technique
http://cado-nfs.gforge.inria.fr/



Factoring as a Service
Financial Crypto 2016

[Valenta et al. ‘16]



RSA encryption used in TLS 1.0-1.2
rsa-pkcs1-encrypt(pms,pkS) 
= [pad | pvmax | pms]e mod pq

• If pq can be factored into p and q,
an attacker can break TLS encryption, integrity

• 512-bit keys and 768-bit keys can be factored

Browsers now reject < 1024-bit RSA certs
• They will soon require >= 2048 bits
• So nobody still accepts 512-bit RSA keys, right?



In the 1990s, cryptography exports were controlled



TLS 1.0 included many Export-grade ciphers

To support these, every TLS server had two sets of keys



In 2000, EXPORT deprecated in TLS 1.1, not used since

In Mar 2015, many TLS servers still allow RSA_EXPORT!

Modern browsers do not support or offer RSA_EXPORT

• An implementation bug reenables RSA_EXPORT in clients!



Client Server



Client Server

rsa-encrypt(pms, pk512)

rsa-sign(pk512, skS)



RSA
RSA_EXPORT

Client accepts 512-bit 
RSA_EXPORT keys
during regular RSA 

handshake!





FREAK

A man-in-the-middle attacker can:
• impersonate servers that support RSA_EXPORT, 
• at buggy clients that accept RSA_EXPORT keys in RSA handshakes  



What went wrong?

• Cryptographic weakness
– Problem: Continued support for RSA_EXPORT
– Countermeasure: Disable EXPORT ciphersuites

• Logical protocol flaw
– Problem: Signature ambiguity between RSA/RSA_EXPORT
– Countermeasure: Signatures should cover transcript

• Implementation bug
– Problem: Clients accept EXPORT even if disables
– Countermeasure: Fix state machine composition



Real-world attacks exploit a combination of:
• Cryptographic weaknesses
• Logical protocol flaws 
• Implementation bugs

Vulnerabilities in less-studied modes can break 
strong provably secure modes of the protocol
• Too many modes and corner cases to prove by hand

A need for automated protocol verification
• Tools for finding protocol flaws and implementation bugs
• Machine-checked proofs for real-world protocols




