
Secure Multi-Party
Computation
The BGW Protocol

Gilad Asharov
Bar-Ilan University (BIU)

The 10th Bar-Ilan Winter School on Cryptography, Information Theoretic Cryptography

Secure Computation
A

B

C

DT

A

B

C

DT

Secure Computation
• Set of parties

• Each holds some private input

• The parties wish to compute a joint function while keeping their inputs private

• Some parties might be corrupted:

• Semi-honest: Follow the protocol specifications’ but try to gain some extra information

by pooling their views

• Malicious: Might act arbitrarily

• Correctness:

• The output of the parties is

• Privacy:
• The corrupted parties do not learn anything about the honest parties’ inputs

• Guaranteed output delivery:
• The adversary should not prevent the honest parties from obtaining output

P1, …, Pn

x1, …, xn

f(x1, …, xn)

f(x1, …, xn)

Main Theorem

• For every -ary function , there exists a
protocol for computing with perfect security in the
presence of a semi-honest adversary controlling
parties

• For every -ary function , there exists a
protocol for computing with perfect security in the
presence of a malicious adversary controlling
parties

n f(x1, …, xn)
f

t < n/2

n f(x1, …, xn)
f

t < n/3

The Semi-Honest
Case

Warmup:
Average of Salaries (or Sum..)

A B C D
x y z w
r

x+r x+r+y
x+r+y+z

x+r+y+z+w
x+y+z+w

x1+x2+x3+x4=x y1+y2+y3+y4=y z1+z2+z3+z4=z w1+w2+w3+w4=w

A B C D
x y z w

x1+y1+z1+w1 x2+y2+z2+w2

x1 x2 x3 x4x
y1 y2 y3 y4y
z1 z2 z3 z4z
w1 w2 w3 w4w

x3+y3+z3+w3 x4+y4+z4+w4

=s1 =s2 =s3 =s4

S=s1+s2+s3+s4=

Warmup:
Average of Salaries (or Sum..)

x1+x2+x3+x4
y1+y2+y3+y4
z1+z2+z3+z4
w1+w2+w3+w4

x1+x2+x3+x4=x y1+y2+y3+y4=y z1+z2+z3+z4=z w1+w2+w3+w4=w

A B C D
x y z w

x1+y1+z1+w1 x2+y2+z2+w2

x1 x2 x3 x4x
y1 y2 y3 y4y
z1 z2 z3 z4z
w1 w2 w3 w4w

x3+y3+z3+w3 x4+y4+z4+w4

=s1 =s2 =s3 =s4

S=s1+s2+s3+s4=

Warmup:
Average of Salaries (or Sum..)

Input Sharing Phase

“the actual computation”

x1+x2+x3+x4
y1+y2+y3+y4
z1+z2+z3+z4
w1+w2+w3+w4

Output Reconstruction

Overview of the
BGW Protocol

• It is enough to assume that is deterministic

• can be computed using the deterministic
function

• We represent using an arithmetic circuit over a field ()

• A circuit where each wire gets a value in

• Gates:

• Addition gate:

• Multiplication with a constant gate:

• Multiplication gate:

f
g(x1, …, xn; r)

f((x1, r1), …, (xn, rn)) := g(x1, …, xn; ⊕ ri)

f 𝔽 |𝔽 | > n

𝔽

g(a, b) = a + b
gc(a) = c ⋅ a

g(a, b) = a ⋅ b

Circuit Evaluation
x1
x2

xn

+

+

….

y1
y2

yn

⋅

⋅

⋅

x1

x2

x1 + x2

Evaluating C Privately
• In the secure protocol, each input wire is known to only one party

• And that party wants to keep it private!

• Moreover, we cannot reveal any intermediate values

• All values on all wires during the evaluation should be hidden

• Only values on the output wires should be revealed 

x1

x2

xn

+

+

…

y1
y2

yn
⋅

⋅

⋅

The Key Idea
• The parties will emulate a computation of the circuit on

the inputs

Invariant: The value of each wire is hidden using a random
polynomial of degree (i.e., secret shared among the parties)

C
x1, …, xn

t

x1

x2

xn

+

+

…

y1
y2

yn
⋅

⋅

⋅

A Reminder:
Shamir’s Secret Sharing Scheme
• :

• Choose a random degree polynomial with as its constant term

•

• Party receives

• Properties:

• Every set of participants can recover the secret

• Every set of shares does not reveal any information about

𝖲𝗁𝖺𝗋𝗂𝗇𝗀t+1,n(s)

t s
p(x) = s + p1x + …, ptxt

Pi (αi, p(αi))

t + 1
t s

Protocol Overview
• Stage I: Input sharing phase 

• Stage II: Circuit emulation phase

• Stage III: Output reconstruction phase

x1

x2

xn

+

+

…

y1
y2

yn
⋅

⋅

⋅

Stage I: Input Sharing Phase

• At the end of this stage  
each party holds shares Pi
g1(αi), …, gn(αi)

• Each party shares its input

• It chooses a random polynomial  
of degree- for which

• It sends to each party the share

Pi xi

gi(x)
t gi(0) = xi

Pj gi(αj)

x1

x2

xn

+

+

…

y1
y2

yn
⋅

⋅

⋅

Stage II: Circuit Emulation Phase

• We will show secure protocols for two specific functions:

+

ga(x)

gb(x) ha+b(x)

f𝖺𝖽𝖽 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))
= (ha+b(α1), …, ha+b(αn))

⋅
ga(x)

gb(x) ha⋅b(x)

= (ha⋅b(α1), …, ha⋅b(αn))
f𝗆𝗎𝗅𝗍 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))

• Computing the circuit gate-by-gate: 
Computing shares of the output wire of a gate  
from the shares of its input wires

Stage III: Output
Reconstruction Phase

• The parties hold shares of all
output wires

• Each party holds shares

• is supposed to learn

• is supposed to learn

• …

Pi
gy1

(αi), …, gyn
(αi)

P1 y1

P2 y2

x1

x2

xn

+

+

…

y1
y2

yn⋅

⋅

⋅

• All parties send their shares to

• can reconstruct

gyj
(α1), …, gyj

(αn) Pj

Pj yj

How to Compute ? f𝖺𝖽𝖽
• Each knows:

•

• Simply output

• No interaction!

• All parties obtain shares of the polynomial

• Polynomial of degree-

• Constant term:

Pi

ga(αi), gb(αi)
ga(αi) + gb(αi)

ha+b(x) := ga(x) + gb(x)
t

ha+b(0) = ga(0) + gb(0) = a + b

+

ga(x)

gb(x) ha+b(x)

f𝖺𝖽𝖽 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))
= (ha+b(α1), …, ha+b(αn))

How to Compute ?f𝗆𝗎𝗅𝗍

• Each party holds shares

• Can we simply output ?

• The parties will obtain shares of the polynomial

• It’s constant term is

• Looks good

• But…

• What is the degree of ?

• Is random?

Pi ga(αi), gb(αi)
ga(αi) ⋅ gb(αi)

h(x) := ga(x) ⋅ gb(x)
h(0) = ga(0) ⋅ gb(0) = a ⋅ b

h
h

⋅
ga(x)

gb(x) ha⋅b(x)

= (ha⋅b(α1), …, ha⋅b(αn))
f𝗆𝗎𝗅𝗍 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))

Reminder:

• For any polynomial with degree ,  
there exist constants such that:

h(x) t < n
λ1, …, λn

λ1 ⋅ h(α1) + … + λn ⋅ h(αn) = h(0) = a ⋅ b

1 α1 α2
1 … α2t

1

1 α2 α2
2 … α2t

2
⋮
1 αn α2

n … α2t
n

ab
h1
⋮

h2t

=

h(α1)
h(α2)

⋮
h(αn)

ab
h1
⋮

h2t

= (
λ1 … λn
⋮
…)

h(α1)
h(α2)

⋮
h(αn)

Computing f𝗆𝗎𝗅𝗍
• Let’s take a look again at

• Each party can compute

• Can we reveal to other parties, or it should be kept secret?

• We know that  

• The protocol for :

• Compute

• Share using a degree- polynomial

• Given all the shares that were received ,  
output

h(x) := ga(x) ⋅ gb(x)
Pi h(αi)

h(αi)

ab = λ1 ⋅ h(α1) + … + λn ⋅ h(αn)
Pi

h(αi) := ga(αi) ⋅ gb(αi)
h(αi) t Hi(x)

H1(αi), …, Hn(αi)
λ1 ⋅ H1(αi) + … + λn ⋅ Hn(αi)

⋅
ga(x)

gb(x) ha⋅b(x)

Simplification of BGW by [GenaroRabinRabin96]

Why Does It Work?
• The parties compute a share on the polynomial

•

• Each outputs

• This is a polynomial of degree

• Each one of is of degree-

• It is random

• Each one of is random

• Its constant term is

•  

• Perfect.

H(x) := λ1H1(x) + …λnHn(x)
Pi H(αi)

t
H1(x), …, Hn(x) t

H1(x), …, Hn(x)
ab

H(0) = λ1H1(0) + … + λnHn(0)
= λ1h(α1) + … + λnh(αn) = a ⋅ b

Semi-Honest: Conclusion

• For every -ary function , there exists a
protocol for computing with perfect security in the
presence of a semi-honest adversary controlling
parties

n f(x1, …, xn)
f

t < n/2

Why do we need honest
majority?

Security
• What is the view of the corrupted parties?

• Input sharing phase: 

 shares on polynomials of honest parties

• Circuit emulation phase: 
In each multiplication, the adversary receives shares on each one of the
polynomials

• Output reconstruction phase:  
Given the shares on the output wires of the corrupted parties 
+ the outputs of the corrupted parties to the  
simulator as input  
reconstruct the polynomial and send  
the remaining shares

t

t
H1(x), …, Hn(x)

t

⟹
x1

x2

xn

+

+

…

y1
y2

yn⋅

⋅

⋅

The Malicious Case

Malicious Security
• The parties jointly compute :

• The honest parties provide true inputs

• The corrupted parties might provide any input they like

• If do not cooperating, the honest parties can choose

some default inputs for them

• Privacy: The adversary does not learn any information on

the honest parties’ inputs

• Guaranteed output delivery: The adversary cannot

prevent the honest parties from obtaining outputs

f(x1, …, xn)

What Might Go Wrong?

+

+

….

⋅

⋅

⋅

Input Sharing Phase:
A corrupted dealer might send

shares that do not lie on a
polynomial of degree-t

Circuit emulation phase:
What about addition gates?

What about multiplication gates?

Output Reconstruction Phase:
Parties might send wrong shares

Reminder - VSS
• We saw on Monday:  

Let . There exists a perfectly secure Verifiable Secret Sharing
protocol in the presence of a malicious adversary

• Privacy:  
For an honest dealer, the adversary learns nothing about

• Consistency: 
The outputs of the honest party are consistent with some even if
the adversary is corrupted (agreement)

• Correctness: 
For an honest dealer, consistency holds with

• Reconstruction:  
Even if corrupted parties send wrong shares, honest parties can still
recover the secret

t < n/3

s

s*

s* = s

Before We Proceed
• Note that if the function does not contain any

multiplication gates - we are done!

• Which functions do not contain multiplication gates?

• All linear functions!

• Multiplication with a vector:  

For a public vector

• Multiplication with a matrix: 
For a public matrix : 

f

(a1, …, an)
(x1, …, xn) → a1x1 + … + anxn

A ∈ 𝔽n×t

(x1, …, xn) → A ⋅ (x1, …, xn) = (y1, …, yn)

What Might Go Wrong?

+

+

….

⋅

⋅

⋅

Input Sharing Phase:
A corrupted dealer might send

shares that do not lie on a
polynomial of degree-t

Circuit emulation phase:
What about addition gates?

What about multiplication gates?

Output Reconstruction Phase:
Parties might send wrong shares

• Multiplication gate: 
The protocol for  
Input:

• Compute

• Share using a degree- polynomial

• Given all the shares that were received

• Output

Pi
ga(αi), gb(αi)

h(αi) := ga(αi) ⋅ gb(αi)
h(αi) t Hi(x)

H1(αi), …, Hn(αi)
λ1 ⋅ H1(αi) + … + λn ⋅ Hn(αi)

What Might Go Wrong?
Circuit Emulation Phase

Simplified Case: t < n/4
• Let’s take a look again at the polynomial

• This is a polynomial of degree

• Each party computes a share on this polynomial by just computing

h(x) := ga(x) ⋅ gb(x)
2t

h(αi) = ga(αi) ⋅ gb(αi)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

4t + 1

• Can we somehow correct the wrong shares?

• Recall: Reed Solomon code is -code, can correct errors

• When , for we have -code, can correct errors

• When , for we have -code, can correct errors

(n, k + 1,n − k) (n − k − 1)/2
n = 3t + 1 k = 2t (3t + 1,2t + 1,t + 1) t/2
n = 4t + 1 k = 2t (4t + 1,2t + 1,2t + 1) t

Facts From
Error Correcting Code

• Let be a -linear code

• Generator matrix: : maps “messages” into codewords 
For , we have that is a codeword

• A parity check matrix: matrix

• Satisfies

• For every codeword (i.e., there exists some such that):

•

• For every “noise” codeword where and is of
distance from

•

• It is possible to find from

• does not contain any information about

C ⊂ Σn (n, k, d)
G ∈ Σk×n

m ∈ Σk m ⋅ G ∈ 𝔽n

H ∈ Σ(n−k)×n

G ⋅ HT = 0k×(n−k)

c ∈ C m ∈ Σk m ⋅ G = c
c ⋅ HT = 0

c̃ = c + e ∈ Σn c ∈ C e ∈ Σn

(d − 1)/2 0
c̃ ⋅ HT = (c + e) ⋅ HT = e ⋅ HT

e e ⋅ HT

e ⋅ HT m

In Our Simplified Case ()n = 4t + 1

• Each party computes and sub-shares it

• Let where and the distance
of from is at most

• We run a check. If some inputs something wrong, we want
to identify it, and “correct” it

• I.e., the honest parties will change their sub-shares of to

h(αi) = ga(αi) ⋅ gb(αi)
c̃ = c + e c = (h(α1), …, h(αn))

e 0 t
Pi

Pi
h(αi)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree

(4t + 1,2t + 1,2t + 1)

The Check

• Each party sub-share its input using some

• hides

• Parties compute the “circuit”

• Reconstruct

• The parties can see if there are errors, where, and what

• For every :

• Reconstruct

• “Correct” the sub-share to

Pi Hi(x)
Hi(x) h(αi)

c̃ ⋅ HT

e = (e1, …, en)

ei ≠ 0
Hi(0)

Hi(0) − ei

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree

(4t + 1,2t + 1,2t + 1)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

H̃i(α1) H̃i(α2) H̃i(αn)H̃i(αi)h(αi) + ei

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

P1 P2 Pi Pn

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

P1 P2 Pi Pn

Multiply with the parity-check matrix

Reconstruct

HT

e = (e1, …, en)

0

0

ei

0

0

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

H̃i(α1) H̃i(α2) H̃i(αn)H̃i(αi)h(αi) + ei

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

h(αi) + ei

P1 P2 Pi Pn

0

0

ei

0

0

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

H̃i(α1) H̃i(α2) H̃i(αn)H̃i(αi)h(αi) + ei

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

Multiply with

Reconstruct

HT

e = (e1, …, en)

Multiply with the parity-check matrix

Reconstruct

HT

e = (e1, …, en)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

h(αi) + eih(αi) + ei

P1 P2 Pi Pn

0

0

ei

0

0

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

P1 P2 Pi Pn

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

h(αi) h(αi) h(αi) h(αi) h(αi) h(αi)

• Input: Each party holds

• Each party multiplies

• The parties sub-share

• And then they check and “correct” wrong inputs

• Now each party holds a share on each one of the
polynomials that hide , resp.

• That is, holds

• Output:

ga(αi), gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)

Pj
H1(x), …, Hn(x) h(α1), …, h(αn)

Pj H1(αj), …, Hn(αj)
λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

Conclusion - Multiplication
with n = 4t + 1

What About ?n = 3t + 1
• Input: Each party holds

• Each party multiplies

• The parties sub-share

• And then they check and “correct” wrong inputs

• Now each party holds a share on each one of the
polynomials that hide , resp.

• That is, holds

• Output:

ga(αi), gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)

Pj
H1(x), …, Hn(x) h(α1), …, h(αn)

Pj H1(αj), …, Hn(αj)
λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

What About ?n = 3t + 1
• Input: Each party holds

• Each party multiplies

• The parties sub-share

• And then they check and “correct” wrong inputs

• Now each party holds a share on each one of the
polynomials that hide , resp.

• That is, holds

• Output:

ga(αi), gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)

Pj
H1(x), …, Hn(x) h(α1), …, h(αn)

Pj H1(αj), …, Hn(αj)
λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

When , we can
correct only errors for a

polynomial of degree

n = 3t + 1
t/2

2t

What About ?n = 3t + 1
• Input: Each party holds

• Each party sub-shares and

• Since are of degree ,  
we can guarantee that right values where shared

• Each party sub-shares

• And “proves” that those sub-shares agree with the sub-shares of

• Now each party holds a share on each one of the polynomials
 that hide , resp.

• That is, holds

• Output:

ga(αi), gb(αi)
ga(αi) gb(αi)

ga(x), gb(x) t

h(αi) = ga(αi) ⋅ gb(αi)

ga(x), gb(x)
Pj

H1(x), …, Hn(x) h(α1), …, h(αn)
Pj H1(αj), …, Hn(αj)

λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

Main Theorems
• We saw:

• Perfectly secure protocol in the semi-honest model, for

 [BGW88,CCD88]

• Perfectly secure protocol in the malicious model, for

• It holds:

• Perfectly secure protocol in the malicious model, for
[BGW88]

• Statistically secure [CCD88]

• Statistically secure protocol in the malicious model, for
 (assuming broadcast) [RB89]

t < n/2
t < n/4

t < n/3

t < n/2

What About ?n = 3t + 1
• Input: Each party holds

• Each party sub-shares and

• Since are of degree ,  
we can guarantee that right values where shared

• Each party sub-shares

• And “proves” that those sub-shares agree with the sub-shares of

• Now each party holds a share on each one of the polynomials
 that hide , resp.

• That is, holds

• Output:

ga(αi), gb(αi)
ga(αi) gb(αi)

ga(x), gb(x) t

ga(αi) ⋅ gb(αi)

ga(x), gb(x)
Pj

H1(x), …, Hn(x) h(α1), …, h(αn)
Pj H1(αj), …, Hn(αj)

λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

What About ?n = 3t + 1
• Input: Each party holds

• Each party sub-shares and

• Since are of degree ,  
we can guarantee that right values where shared

• Each party sub-shares

• And “proves” that those sub-shares agree with the sub-shares of

• Now each party holds a share on each one of the polynomials
 that hide , resp.

• That is, holds

• Output:

ga(αi), gb(αi)
ga(αi) gb(αi)

ga(x), gb(x) t

ga(αi) ⋅ gb(αi)

ga(x), gb(x)
Pj

H1(x), …, Hn(x) h(α1), …, h(αn)
Pj H1(αj), …, Hn(αj)

λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

Changing the Invariant
[A-Lindell-Rabin11]

• Instead of having:  
“Each value on a wire is hidden with a univariate
polynomial of degree- ”

• We can work with: 
“Each value on a wire is hidden with a bivariate  
polynomial of degree- ”

t

t

Recall VSS

S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)

S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)

f1(0) f2(0) fi(0) fn(0)

fi(x) = S(x, αi)

fi(0) = S(0,αi)

q(y) = S(0,y)
degree-t polynomial

q(0) = S(0,0) = s

Recall VSS

But… This is Exactly Sub-
Share

S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)

Conclusion
• We saw:

• Perfectly secure protocol in the semi-honest model, for
[BGW88,CCD88]

• Perfectly secure protocol in the malicious model, for

• It holds:

• Perfectly secure protocol in the malicious model, for
[BGW88]

• Statistically secure [CCD88]

• Statistically secure protocol in the malicious model, for
(assuming broadcast) [RB89]

t < n/2

t < n/4

t < n/3

t < n/2

Thank You!!

References
• Michael Ben-Or, Shafi Goldwasser, Avi Widgerson: 

Completeness theorems for non-cryptographic fault-tolerant distributed
computation

• David Chaum, Claude Crépeau, Ivan Damgård: 
Multiparty Unconditionally Secure Protocols

• Tal Rabin, Michael Ben-Or: 
Verifiable Secret Sharing and Multiparty Protocols with Honest Majority

• Gilad Asharov, Yehuda Lindell: 
A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty
Computation.

• Gilad Asharov, Yehuda Lindell, Tal Rabin: 
Perfectly-Secure Multiplication for Any t < n/3.

• Ronald Cramer, Ivan Damgård, Jesper Buus Nielsen: 
Secure Multiparty Computation and Secret Sharing. Cambridge University
Press 2015, ISBN 9781107043053

https://dblp.uni-trier.de/pers/hd/c/Chaum:David
https://dblp.uni-trier.de/pers/hd/c/Cr=eacute=peau:Claude
https://dblp.uni-trier.de/pers/hd/d/Damg=aring=rd:Ivan
https://dblp.uni-trier.de/pers/hd/l/Lindell:Yehuda
https://dblp.uni-trier.de/pers/hd/c/Cramer:Ronald
https://dblp.uni-trier.de/pers/hd/n/Nielsen:Jesper_Buus

