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Secure Computation




Secure Computation

o Set of parties Py, ..., P

n

e Each holds some private input x;, ..., x,

 The parties wish to compute a joint function f(x;, ..., x,)) while keeping their inputs private

e Some parties might be corrupted:

* Semi-honest: Follow the protocol specifications’ but try to gain some extra information
by pooling their views

* Malicious: Might act arbitrarily

e Correctness:
» The output of the parties is f(xy, ..., x,,)
e Privacy:
* The corrupted parties do not learn anything about the honest parties’ inputs

 Guaranteed output delivery:
* The adversary should not prevent the honest parties from obtaining output
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Main Theorem

 For every n-ary function f(x;, ..., x,), there exists a
protocol for computing f with perfect security in the

presence of a semi-honest adversary controlling t < n/2
parties

e For every n-ary function f(x,, ..., x,), there exists a
protocol for computing f with perfect security in the

presence of a malicious adversary controlling t < n/3
parties
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4 Approaches to MPC

Garbled Circuits
[Yao 86,...]
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Fully Homomorphic Encryption
[Gentry 09,...]
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Linear Secret Sharing
[Goldreich-Micali-Wigderson 87]

[BenOr-Goldwasser-W88, Chaum-Crépeau-Damgardss, ...]
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The Semi-Honest
Case




Warmup:
Average of Salaries (or Sum..)
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Warmup:
Average of Salaries (or Sum..)
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Warmup:
Average of Salaries (or Sum..)
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Overview of the
BGW Protocol

e |tis enough to assume that fis deterministic

e g(x,...,X,; ) can be computed using the deterministic
function f((x;,7(), ..., (x,, 1)) = g(x{, ..., X, ; D r;)

e We represent f using an arithmetic circuit over a field [ (|F| > )

e A circuit where each wire gets a value in [
 Gates:

e Addition gate: gla,b)y=a+>b
e Multiplication with a constant gate: g.(a) = ¢ - a

e Multiplication gate: g(a,b) =a - b

¢ BiU

Center for Research in Applied
Cryptography and Cyber Security




Circuit Evaluation




Evaluating C Privately

* In the secure protocol, each input wire is known to only one party

 And that party wants to keep it private!

e Moreover, we cannot reveal any intermediate values

e All values on all wires during the evaluation should be hidden

* Only values on the output wires should be revealed
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The Key ldea

e The parties will emulate a computation of the circuit C on

the inputs X, ..., X,

Invariant: The value of each wire is hidden using a random
polynomial of degree 1 (i.e., secret shared among the parties)

Y1
Y2

Center for Research in Applied
Cryptography and Cyber Security



A Reminder:
Shamir’s Secret Sharing Scheme

. Sharinng,n(s):
e Choose a random degree f polynomial with s as its constant term
s p)=s+px+....px
o Party P, receives (a;, p(@t;))

* Properties:
e Every set of  + 1 participants can recover the secret
e Every set of 7 shares does not reveal any information about s

¢ BiU
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Protocol Overview

e Stage I: Input sharing phase

e Stage ll: Circuit emulation phase

e Stage lll: Output reconstruction phase

X1

X2

Applied
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Stage I: Input Sharing Phase

o Each party P, shares its input x;

e It chooses a random polynomial g,(x)
of degree-t for which g.(0) = x;

o It sends to each party Pj the share gi(aj)

e Atthe end of this stage *
each party P; holds shares

81(@); ... g,(a)
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Stage ll: Circuit Emulation Phase

e We will show secure protocols for two specific functions:

g,(x)

g,(x)

- h,.,(x)

f;ldd ( (ga(al)a gb(al)) RERE (ga(an)a gb(an)) > fmult ( (ga(al)a gb(al)) IRERE (ga((ln), gb(an)) )
= (hgyp(a), -.os hypp(@y)) = (hyp(a), ..oy by @)

8p(*¥) ) 8p(x)

 Computing the circuit gate-by-gate:
Computing shares of the output wire of a gate
from the shares of its input wires
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Stage lll: Output
Reconstruction Phase

* The parties hold shares of all
output wires

o Each party P; holds shares
gyl(ai)a e ooy gyn(ai)

e P, is supposed to learn y,

e P, is supposed to learn y,

o All parties send their shares gyj(al), el gyj(an) to P,

o P;canreconstruct y;

¢ BiU
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How to Compute f, ,4?

84(x)
e Each P, knows: ol A
b a-+t+

R ACHFACH s ( (8 g@) - (8,6). 81(@,) )
e Simply output g (a;) + g,(a,) = (happ(@). - hyy(@,)

* No interaction!
e All parties obtain shares of the polynomial

B (%) = 8,(X) + g,(x)
e Polynomial of degree-f
e Constantterm: /1, ,(0) = g,(0) +g,(0) =a+ b

¢ BiU
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How to Compute f .7

e Each party P, holds shares g (a;), g,(a;)
« Can we simply output g (&) - g,(a;)?
 The parties will obtain shares of the polynomial
h(x) := g,(x) - gp(x)
o It’s constant termis 2(0) = g,(0) - g,(0) =a - b
| ooks good
e But... 8alX)

e What is the degree of h? 89
e (e 8(@)). - (8. 84(@))

= (ha-b(al)’ ooy ha-b(an))

ha,b(X)

e |s h random?

¢ BiU
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Reminder:

e For any polynomial A(x) with degree f < n,
there exist constants 4, ...

, A, such that:

Ay-h(o)+ ...+ 4 - h(a,) =h(0)=a-b

¢ BiU

( 2
1l a a

2

1 a o

2

\ 1 a, a;

Center for Research in Applied
Cryptography and Cyber Security

(ab)

1)

(75

)

(h(ary))
h(az)

i),

()

(h(ay)
h(a,)

@),



ga(x)

gp(x) (%)

Computing /.. i

o Let’s take a look again at /(x) := g (x) - g,(x)
e Each party P; can compute /()
» Can we reveal ii(a;) to other parties, or it should be kept secret?

e We know that
ab =, - h(a)) + ... + A, - h(a,)

» The protocol for P;:
e Compute h(a) := g () - g,(;)
e Share /i(a;) using a degree-f polynomial H(x)

o Given all the shares that were received H(a,), ..., H («;),
output A - Hy(a) + ... + 4, - H (o)

¢ BiU
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Why Does It Work?

* The parties compute a share on the polynomial
e Hx) :=A4H|(x)+ ...A,H (x)

e Each P, outputs H(a,)
 This is a polynomial of degree ¢

e Each one of H{(x), ..., H (x) is of degree-t
* |tis random

e Eachone of H{(x), ..., H (x) is random

e Its constant termis ab
= Ah(a) + ...+ A h(a,) =a-b

* Perfect.

¢ BiU
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Semi-Honest: Conclusion

e For every n-ary function f(x, ..., x,), there exists a

protocol for computing f with perfect security in the

presence of a semi-honest adversary controlling t < n/2
parties

Why do we need honest

majority?
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Security

e What is the view of the corrupted parties?

* Input sharing phase:
t shares on polynomials of honest parties

e Circuit emulation phase:
In each multiplication, the adversary receives f shares on each one of the

polynomials H(x), ..., H (x)

e Output reconstruction phase:

Given the 7 shares on the output wires of the corrupted parties
+ the outputs of the corrupted parties to the =«

simulator as input =—
reconstruct the polynomial and send
the remaining shares

¢ BiU

Center for Research in Applied
Cryptography and Cyber Security




The Malicious Case
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Real/ldeal Paradigm

Real protocol |deal protocol

[
[
[
: Trusted party
computing f
I
| i
4 N\
: Honest
[ parties
[ . o /
Adversary | Simulator
RIS e VA B 0 G O
{ Environment Z }:> 0/1 L Environment Z J = 0/1
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Malicious Security

e The parties jointly compute f(x, ..., X,):
e The honest parties provide true inputs
e The corrupted parties might provide any input they like

e |f do not cooperating, the honest parties can choose
some default inputs for them

* Privacy: The adversary does not learn any information on
the honest parties’ inputs

e Guaranteed output delivery: The adversary cannot
prevent the honest parties from obtaining outputs

¢ BiU

Center for Research in Applied
Cryptography and Cyber Security




What Might Go Wrang?

Output Reconstruction Phase:

Input Sharing Phase: - Parties might send wrong shares
A corrupted dealer might send
- shares that do not lie on a
polynomial of degree-f
]
4

Circuit emulation phase:
What about addition gates?
What about multiplication gates?

Center for Research in Applied
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Reminder - VSS

 We saw on Monday:
Let t < n/3. There exists a perfectly secure Verifiable Secret Sharing
protocol in the presence of a malicious adversary

* Privacy:
For an honest dealer, the adversary learns nothing about s

* Consistency:
The outputs of the honest party are consistent with some s* even if
the adversary is corrupted (agreement)

e Correctness:
For an honest dealer, consistency holds with s* = s

e Reconstruction:
Even if corrupted parties send wrong shares, honest parties can still
recover the secret

¢ BiU
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Before We Proceed

* Note that if the function f does not contain any
multiplication gates - we are done!

* Which functions do not contain multiplication gates?
e All linear functions!
 Multiplication with a vector:
For a public vector (ay, ...,a,)
(X(5.eenXy) = a1Xy + ... +a,x,
 Multiplication with a matrix:
For a public matrix A € [

(X[ e X,) > A (X5 ..0sx,) = Vs --05 V)

¢ BiU
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What Might Go Wrang?

Output Reconstruction Phase:

Input Sharing Phase: - Parties might send wrong shares
A corrupted dealer might send
- shares that do not lie on a
polynomial of degree-f
]
4

Circuit emulation phase:
What about addition gates?
What about multiplication gates?
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What Might Go Wrong?

Circuit Emulation Phase

 Multiplication gate.:
The protocol for P,

Input: g (), g,(a)
e Compute A(a) = g (a) - g,(a;)
e Share h(e;) using a degree-f polynomial H (x)

« Given all the shares that were received H(«,), ..., H (a;)
° OUtpUt A’l . Hl(al) + ...+ /In . Hn(al)

Center for Research in Applied
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Simplified Case: t < n/4

o Let’s take a look again at the polynomial /(x) := g, (x) - g,(x)

e This is a polynomial of degree 2¢
 Each party computes a share on this polynomial by just computing

ha) = g,(a;) - g(a;)

EEDE

4r+ 1

a-b degree 2t

e Can we somehow correct the wrong shares?

e Recall: Reed Solomon code is (n, k + 1,n — k)-code, can correct (n — k — 1)/2 errors
e Whenn = 3t+ 1, for k = 2t we have (3t + 1,2t + 1, + 1)-code, can correct ¢/2 errors
e Whenn =4+ 1, fork = 2¢t we have (41 + 1,2t + 1,2t + 1)-code, can correct ¢ errors

Center for Research in Applied
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Facts From
Error Correcting Code

e Let C C 2" bea(n,k,d)-linear code

e Generator matrix: G € X" maps “messages” into codewords

Form € X* we have thatm - G € [" is a codeword
e A parity check matrix: H € "X matrix
e Satisfies G - H! = 0=k
e For every codeword ¢ € C (i.e., there exists some m € XX such thatm - G = ¢):
e c-H'=0
e For every “noise” codeword ¢ =c + e € X" wherec € Cand e € X" is of
distance (d — 1)/2 from 0

¢C-H' =(c+e)-H =e-H'
e Itis possible to find e frome - H

e e - H' does not contain any information about m

¢ BiU
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In Our Simplified Case (n = 4t + 1)

-+ 1 [

Ar+12t+ 1,2t + 1)

e Each party computes i(a,) = g (a;) - g,(a;) and sub-shares it
e Let ¢ =c+ ewherec = (h(ay), ..., h(a,)) and the distance
of e from () is at most ¢

e We run a check. If some P; inputs something wrong, we want
to identify it, and “correct” it

e |.e., the honest parties will change their sub-shares of P, to

h(ai)

Center for Research in Applied
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The Check
T

Ar+12t+ 1,2t + 1)

a-b degree

 Each party P; sub-share its input using some H,(x)
e H/(x) hides h(a;)
e Parties compute the “circuit” ¢ - H'!
e Reconstructe = (ey, ...,¢,)
* The parties can see if there are errors, where, and what
e Foreverye; # 0:
e Reconstruct H,(0)
e “Correct” the sub-share to H(0) — e,

Center for Research in Applied
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Multiply with the parity-check matrix H'

Reconstructe = (¢, ..., ¢,)
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Conclusion - Multiplication
withn =41+ 1

e Input: Each party holds g («;), g,(«;)
« Each party multiplies i(a,)) = g (;) - g,(a,)

 The parties sub-share h(a,) = g (a;) - g,(a,)
 And then they check and “correct” wrong inputs

« Now each party Pj holds a share on each one of the
polynomials H(x), ..., H (x) that hide h(a), ..., h(a,), resp.
o Thatis, P; holds Hl(aj), e Hn(aj)

e Output: 4, °H1(05j) +o 4, Hn(aj)

Center for Research in Applied
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What Aboutnn = 371+ 1?

e Input: Each party holds g («;), g,(«;)

« Each party multiplies i(a,)) = g (;) - g,(a,)

 The parties sub-share h(a,) = g (a;) - g,(a,)
 And then they check and “correct” wrong inputs
« Now each party Pj holds a share on each one of the
polynomials H(x), ..., H (x) that hide h(a), ..., h(a,), resp.
o Thatis, P; holds Hl(aj), e Hn(aj)

e Output: 4, 'Hl(aj) +...+ 4, Hn(aj)
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What Aboutnn = 371+ 1?

e Input: Each party holds g (), g,(;) When n = 3¢+ 1, we can

correct only #/2 errors for a
polynomial of degree 2t

» Each party multiplies h(a;) = g (a;) - §

 The parties sub-share h(a;) = g () - g4
* And then they check and “correct” wrong inputs

e Now each party PJ- holds a share on each one of the
polynomials H,(x), ..., H (x) that hide h(a,), ..., h(a,), resp.
o Thatis, P;holds H(a), ..., H,(a;)

o Output: 4, ’Hl(aj) +oo 4, Hn(aj)

Center for Research in Applied
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What Aboutnn = 371+ 1?

e Input: Each party holds g («;), g,(a;)

e Each party sub-shares g (a;) and g,(a;,)

e Since g,(x), g,(x) are of degree f,
we can guarantee that right values where shared

» Each party sub-shares h(a) = g (o) - g,(@;)
 And “proves” that those sub-shares agree with the sub-shares of
8,(%), g,(X)
« Now each party PJ- holds a share on each one of the polynomials
H,(x), ..., H (x) that hide h(a,), ..., h(a,), resp.
e Thatis, P; holds H(«)), ..., H (@)

o Output: /4, °H1(05j) oA, Hn(aj)
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Main Theorems

e \We saw:

* Perfectly secure protocol in the semi-honest model, for
t < n/2 [BGW88,CCD88]

e Perfectly secure protocol in the malicious model, for t < n/4

e |t holds:

e Perfectly secure protocol in the malicious model, for t < n/3
IBGWSS]

e Statistically secure [CCD88]

e Statistically secure protocol in the malicious model, for
t < n/2 (assuming broadcast) [RB89]
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What About n = 371+ 1?

e Input: Each party holds g («;), g,(a;)

e Each party sub-shares g (a;) and g,(a;,)

e Since g,(x), g,(x) are of degree f,
we can guarantee that right values where shared

» Each party sub-shares g (a,) - g,(o))
 And “proves” that those sub-shares agree with the sub-shares of
8,(%), g,(X)
o« Now each party PJ- holds a share on each one of the polynomials
H,(x), ..., H (x) that hide h(a,), ..., h(a,), resp.
e Thatis, P; holds H(«)), ..., H (@)

o Output: /4, °H1(05j) oA, Hn(aj)
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What About n = 371+ 1?

e Input: Each party holds g («;), g,(a;)

ach party sub-shares g (a;) and g,(a,)

e Since g, (x), g,(x) are Fetegres
aye-can guarantee that right values where sharec

» Each party sub-shares g (a,) - g,(o))
 And “proves” that those sub-shares agree with the sub-shares of
8,(%), g,(X)
o« Now each party PJ- holds a share on each one of the polynomials
H,(x), ..., H (x) that hide h(a,), ..., h(a,), resp.
e Thatis, P; holds H(«)), ..., H (@)

o Output: /4, ’Hl(aj) oA, Hn(aj)
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Changing the Invariant

[A-Lindell-Rabin11]

e |nstead of having:
“Each value on a wire is hidden with a univariate

polynomial of degree-t”

e \We can work with:
“Each value on a wire is hidden with a bivariate

polynomial of degree-t”
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Recall VSS

S(a,, y) = 8,(y)

S(ay) = g(y)

S(a,y) = ()

S(ay,y) = g1(y)

S(0,0)

S0 f(x) fix) f,(x)
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Recall VSS

fi(x) = S(x, o))
f(0) = S0,
q(y) = $(0,y)

degree-t polynomial

q(0) = 5(0,0) = s

$1(0) /(0) Ji(0) J2(0)

Center for Research in Applied
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But... This is Exactly Sub-
Share

S(a,,y) = g,(y)

S(ay) = g(y)

S(a,y) = ()

S(ay,y) = g1(y)

S(0,0)

S0 f(x) fix) f,(x)

Center for Research in Applied
Cryptography and Cyber Security

¢ BiU




Conclusion

e \We saw:

e Perfectly secure protocol in the semi-honest model, fort < n/2
[BGWS88,CCD88]

e Perfectly secure protocol in the malicious model, for f < n/4

e |t holds:

e Perfectly secure protocol in the malicious model, for t < n/3
[BGW88]

e Statistically secure [CCD88]

e Statistically secure protocol in the malicious model, for t < n/2
(assuming broadcast) [RB89]

Thank You!!
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