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Secure Computation
• Set of parties 


• Each holds some private input 


• The parties wish to compute a joint function  while keeping their inputs private


• Some parties might be corrupted:

• Semi-honest: Follow the protocol specifications’ but try to gain some extra information 

by pooling their views

• Malicious: Might act arbitrarily 


• Correctness:


• The output of the parties is 


• Privacy: 
• The corrupted parties do not learn anything about the honest parties’ inputs


• Guaranteed output delivery: 
• The adversary should not prevent the honest parties from obtaining output

P1, …, Pn

x1, …, xn

f(x1, …, xn)

f(x1, …, xn)



Main Theorem

• For every -ary function , there exists a 
protocol for computing  with perfect security in the 
presence of a semi-honest adversary controlling  
parties


• For every -ary function , there exists a 
protocol for computing  with perfect security in the 
presence of a malicious adversary controlling  
parties

n f(x1, …, xn)
f

t < n/2

n f(x1, …, xn)
f

t < n/3





The Semi-Honest 
Case
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Overview of the  
BGW Protocol

• It is enough to assume that  is deterministic 


•  can be computed using the deterministic 
function 


• We represent  using an arithmetic circuit over a field  ( )


• A circuit where each wire gets a value in 

• Gates:


• Addition gate:          


• Multiplication with a constant gate: 


• Multiplication gate:  

f
g(x1, …, xn; r)

f((x1, r1), …, (xn, rn)) := g(x1, …, xn; ⊕ ri)

f 𝔽 |𝔽 | > n

𝔽

g(a, b) = a + b
gc(a) = c ⋅ a

g(a, b) = a ⋅ b



Circuit Evaluation
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Evaluating C Privately
• In the secure protocol, each input wire is known to only one party

• And that party wants to keep it private!


• Moreover, we cannot reveal any intermediate values

• All values on all wires during the evaluation should be hidden


• Only values on the output wires should be revealed 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The Key Idea
• The parties will emulate a computation of the circuit  on 

the inputs 

Invariant: The value of each wire is hidden using a random 
polynomial of degree  (i.e., secret shared among the parties)

C
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A Reminder:  
Shamir’s Secret Sharing Scheme
• :


• Choose a random degree  polynomial with  as its constant term


•  

• Party  receives 


• Properties:


• Every set of  participants can recover the secret


• Every set of  shares does not reveal any information about 

𝖲𝗁𝖺𝗋𝗂𝗇𝗀t+1,n(s)

t s
p(x) = s + p1x + …, ptxt

Pi (αi, p(αi))

t + 1
t s



Protocol Overview
• Stage I: Input sharing phase 

• Stage II: Circuit emulation phase


• Stage III: Output reconstruction phase
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Stage I: Input Sharing Phase

• At the end of this stage  
each party  holds shares Pi
g1(αi), …, gn(αi)

• Each party  shares its input  


• It chooses a random polynomial   
of degree-  for which 


• It sends to each party  the share 


Pi xi

gi(x)
t gi(0) = xi

Pj gi(αj)
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Stage II: Circuit Emulation Phase

• We will show secure protocols for two specific functions:

+

ga(x)

gb(x) ha+b(x)

f𝖺𝖽𝖽 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))
= (ha+b(α1), …, ha+b(αn))

⋅
ga(x)

gb(x) ha⋅b(x)

= (ha⋅b(α1), …, ha⋅b(αn))
f𝗆𝗎𝗅𝗍 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))

• Computing the circuit gate-by-gate: 
Computing shares of the output wire of a gate  
from the shares of its input wires



Stage III: Output 
Reconstruction Phase

• The parties hold shares of all 
output wires


• Each party  holds shares 



•  is supposed to learn 


•  is supposed to learn 

• …

Pi
gy1

(αi), …, gyn
(αi)

P1 y1

P2 y2

x1

x2

xn

+

+

…

y1
y2

yn⋅

⋅

⋅

• All parties send their shares  to 


•  can reconstruct 

gyj
(α1), …, gyj

(αn) Pj

Pj yj



How to Compute ? f𝖺𝖽𝖽
• Each  knows:


• 


• Simply output 

• No interaction!


• All parties obtain shares of the polynomial 



• Polynomial of degree- 


• Constant term: 

Pi

ga(αi), gb(αi)
ga(αi) + gb(αi)

ha+b(x) := ga(x) + gb(x)
t

ha+b(0) = ga(0) + gb(0) = a + b

+

ga(x)

gb(x) ha+b(x)

f𝖺𝖽𝖽 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))
= (ha+b(α1), …, ha+b(αn))



How to Compute ?f𝗆𝗎𝗅𝗍

• Each party  holds shares 


• Can we simply output ?

• The parties will obtain shares of the polynomial 




• It’s constant term is 


• Looks good 

• But… 

• What is the degree of ?


• Is  random?

Pi ga(αi), gb(αi)
ga(αi) ⋅ gb(αi)

h(x) := ga(x) ⋅ gb(x)
h(0) = ga(0) ⋅ gb(0) = a ⋅ b

h
h

⋅
ga(x)

gb(x) ha⋅b(x)

= (ha⋅b(α1), …, ha⋅b(αn))
f𝗆𝗎𝗅𝗍 ((ga(α1), gb(α1)), …, (ga(αn), gb(αn)))



Reminder:


• For any polynomial  with degree ,  
there exist constants  such that:


h(x) t < n
λ1, …, λn

λ1 ⋅ h(α1) + … + λn ⋅ h(αn) = h(0) = a ⋅ b

1 α1 α2
1 … α2t

1

1 α2 α2
2 … α2t

2
⋮
1 αn α2

n … α2t
n

ab
h1
⋮

h2t

=

h(α1)
h(α2)

⋮
h(αn)

ab
h1
⋮

h2t

= (
λ1 … λn
⋮
… )

h(α1)
h(α2)

⋮
h(αn)



Computing f𝗆𝗎𝗅𝗍
• Let’s take a look again at 


• Each party  can compute 


• Can we reveal  to other parties, or it should be kept secret?

• We know that  




• The protocol for :


• Compute 


• Share  using a degree-  polynomial 


• Given all the shares that were received ,  
output 

h(x) := ga(x) ⋅ gb(x)
Pi h(αi)

h(αi)

ab = λ1 ⋅ h(α1) + … + λn ⋅ h(αn)
Pi

h(αi) := ga(αi) ⋅ gb(αi)
h(αi) t Hi(x)

H1(αi), …, Hn(αi)
λ1 ⋅ H1(αi) + … + λn ⋅ Hn(αi)

⋅
ga(x)

gb(x) ha⋅b(x)

Simplification of BGW by [GenaroRabinRabin96]



Why Does It Work?
• The parties compute a share on the polynomial


• 


• Each  outputs 


• This is a polynomial of degree  

• Each one of  is of degree- 


• It is random 

• Each one of  is random


• Its constant term is  

•  
        


• Perfect. 

H(x) := λ1H1(x) + …λnHn(x)
Pi H(αi)

t
H1(x), …, Hn(x) t

H1(x), …, Hn(x)
ab

H(0) = λ1H1(0) + … + λnHn(0)
= λ1h(α1) + … + λnh(αn) = a ⋅ b



Semi-Honest: Conclusion

• For every -ary function , there exists a 
protocol for computing  with perfect security in the 
presence of a semi-honest adversary controlling  
parties

n f(x1, …, xn)
f

t < n/2

Why do we need honest 
majority?



Security
• What is the view of the corrupted parties?

• Input sharing  phase: 

 shares on polynomials of honest parties


• Circuit emulation phase: 
In each multiplication, the adversary receives  shares on each one of the 
polynomials 


• Output reconstruction phase:  
Given the  shares on the output wires of the corrupted parties 
+ the outputs of the corrupted parties to the  
simulator as input   
reconstruct the polynomial and send  
the remaining shares

t

t
H1(x), …, Hn(x)

t

⟹
x1

x2

xn

+

+

…

y1
y2

yn⋅

⋅

⋅



The Malicious Case





Malicious Security
• The parties jointly compute :


• The honest parties provide true inputs

• The corrupted parties might provide any input they like

• If do not cooperating, the honest parties can choose 

some default inputs for them

• Privacy: The adversary does not learn any information on 

the honest parties’ inputs

• Guaranteed output delivery: The adversary cannot 

prevent the honest parties from obtaining outputs

f(x1, …, xn)



What Might Go Wrong?

+

+

….

⋅

⋅

⋅

Input Sharing Phase: 
A corrupted dealer might send 

shares that do not lie on a 
polynomial of degree-t

Circuit emulation phase: 
What about addition gates? 

What about multiplication gates?

Output Reconstruction Phase: 
Parties might send wrong shares



Reminder - VSS
• We saw on Monday:  

Let . There exists a perfectly secure Verifiable Secret Sharing 
protocol in the presence of a malicious adversary


• Privacy:  
For an honest dealer, the adversary learns nothing about 


• Consistency: 
The outputs of the honest party are consistent with some  even if 
the adversary is corrupted (agreement)


• Correctness: 
For an honest dealer, consistency holds with 


• Reconstruction:  
Even if corrupted parties send wrong shares, honest parties can still 
recover the secret

t < n/3

s

s*

s* = s



Before We Proceed
• Note that if the function  does not contain any 

multiplication gates - we are done!

• Which functions do not contain multiplication gates?

• All linear functions!

• Multiplication with a vector:  

For a public vector 



• Multiplication with a matrix: 
For a public matrix : 

f

(a1, …, an)
(x1, …, xn) → a1x1 + … + anxn

A ∈ 𝔽n×t

(x1, …, xn) → A ⋅ (x1, …, xn) = (y1, …, yn)



What Might Go Wrong?

+

+

….

⋅

⋅

⋅

Input Sharing Phase: 
A corrupted dealer might send 

shares that do not lie on a 
polynomial of degree-t

Circuit emulation phase: 
What about addition gates? 

What about multiplication gates?

Output Reconstruction Phase: 
Parties might send wrong shares



• Multiplication gate: 
The protocol for   
Input: 


• Compute 


• Share  using a degree-  polynomial 


• Given all the shares that were received 


• Output 

Pi
ga(αi), gb(αi)

h(αi) := ga(αi) ⋅ gb(αi)
h(αi) t Hi(x)

H1(αi), …, Hn(αi)
λ1 ⋅ H1(αi) + … + λn ⋅ Hn(αi)

What Might Go Wrong? 
Circuit Emulation Phase



Simplified Case: t < n/4
• Let’s take a look again at the polynomial 


• This is a polynomial of degree 

• Each party computes a share on this polynomial by just computing 

h(x) := ga(x) ⋅ gb(x)
2t

h(αi) = ga(αi) ⋅ gb(αi)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

4t + 1

• Can we somehow correct the wrong shares?


• Recall: Reed Solomon code is -code, can correct  errors


• When , for  we have -code, can correct  errors


• When , for  we have -code, can correct  errors

(n, k + 1,n − k) (n − k − 1)/2
n = 3t + 1 k = 2t (3t + 1,2t + 1,t + 1) t/2
n = 4t + 1 k = 2t (4t + 1,2t + 1,2t + 1) t



Facts From  
Error Correcting Code

• Let   be a -linear code


• Generator matrix: : maps “messages” into codewords 
For , we have that  is a codeword


• A parity check matrix:  matrix 


• Satisfies   


• For every codeword  (i.e., there exists some  such that ):


• 


• For every “noise” codeword  where  and  is of 
distance  from 


• 


• It is possible to find  from 


•  does not contain any information about 

C ⊂ Σn (n, k, d)
G ∈ Σk×n

m ∈ Σk m ⋅ G ∈ 𝔽n

H ∈ Σ(n−k)×n

G ⋅ HT = 0k×(n−k)

c ∈ C m ∈ Σk m ⋅ G = c
c ⋅ HT = 0

c̃ = c + e ∈ Σn c ∈ C e ∈ Σn

(d − 1)/2 0
c̃ ⋅ HT = (c + e) ⋅ HT = e ⋅ HT

e e ⋅ HT

e ⋅ HT m



In Our Simplified Case ( )n = 4t + 1

• Each party computes  and sub-shares it


• Let  where  and the distance 
of  from  is at most 


• We run a check. If some   inputs something wrong, we want 
to identify it, and “correct” it


• I.e., the honest parties will change their sub-shares of  to 

h(αi) = ga(αi) ⋅ gb(αi)
c̃ = c + e c = (h(α1), …, h(αn))

e 0 t
Pi

Pi
h(αi)

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 

(4t + 1,2t + 1,2t + 1)



The Check

• Each party  sub-share its input using some  


•  hides 


• Parties compute the “circuit” 


• Reconstruct 


• The parties can see if there are errors, where, and what


• For every :


• Reconstruct 


• “Correct” the sub-share to 

Pi Hi(x)
Hi(x) h(αi)

c̃ ⋅ HT

e = (e1, …, en)

ei ≠ 0
Hi(0)

Hi(0) − ei

h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 

(4t + 1,2t + 1,2t + 1)



h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

H̃i(α1) H̃i(α2) H̃i(αn)H̃i(αi)h(αi) + ei

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

P1 P2 Pi Pn



h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

P1 P2 Pi Pn

Multiply with the parity-check matrix  

Reconstruct 

HT

e = (e1, …, en)

0

0

ei

0

0

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

H̃i(α1) H̃i(α2) H̃i(αn)H̃i(αi)h(αi) + ei

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)



h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

h(αi) + ei

P1 P2 Pi Pn

0

0

ei

0

0

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

H̃i(α1) H̃i(α2) H̃i(αn)H̃i(αi)h(αi) + ei

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

Multiply with  

Reconstruct 

HT

e = (e1, …, en)

Multiply with the parity-check matrix  

Reconstruct 

HT

e = (e1, …, en)



h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

h(αi) + eih(αi) + ei

P1 P2 Pi Pn

0

0

ei

0

0

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)



h(α1) h(α2)a ⋅ b h(αn)h(αi) degree 2t

(4t + 1,2t + 1,2t + 1)

P1 P2 Pi Pn

H1(α1) H1(α2) H1(αn)H1(αi)h(α1)

H2(α1) H2(α2) H2(αn)H2(αi)h(α2)

Hn(α1) Hn(α2) Hn(αn)Hn(αi)h(αn)

h(αi) h(αi) h(αi) h(αi) h(αi) h(αi)



• Input: Each party holds 


• Each party multiplies 


• The parties sub-share 


• And then they check and “correct” wrong inputs


• Now each party  holds a share on each one of the 
polynomials  that hide , resp.


• That is,  holds 


• Output: 

ga(αi), gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)

Pj
H1(x), …, Hn(x) h(α1), …, h(αn)

Pj H1(αj), …, Hn(αj)
λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

Conclusion - Multiplication 
with n = 4t + 1



What About ?n = 3t + 1
• Input: Each party holds 


• Each party multiplies 


• The parties sub-share 


• And then they check and “correct” wrong inputs


• Now each party  holds a share on each one of the 
polynomials  that hide , resp.


• That is,  holds 


• Output: 

ga(αi), gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)

Pj
H1(x), …, Hn(x) h(α1), …, h(αn)

Pj H1(αj), …, Hn(αj)
λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)



What About ?n = 3t + 1
• Input: Each party holds 


• Each party multiplies 


• The parties sub-share 


• And then they check and “correct” wrong inputs 

• Now each party  holds a share on each one of the 
polynomials  that hide , resp.


• That is,  holds 


• Output: 

ga(αi), gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)
h(αi) = ga(αi) ⋅ gb(αi)

Pj
H1(x), …, Hn(x) h(α1), …, h(αn)

Pj H1(αj), …, Hn(αj)
λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)

When , we can 
correct only  errors for a 

polynomial of degree 

n = 3t + 1
t/2

2t



What About ?n = 3t + 1
• Input: Each party holds 


• Each party sub-shares  and 


• Since  are of degree ,  
we can guarantee that right values where shared


• Each party sub-shares 


• And “proves” that those sub-shares agree with the sub-shares of 



• Now each party  holds a share on each one of the polynomials 
 that hide , resp.


• That is,  holds 


• Output: 

ga(αi), gb(αi)
ga(αi) gb(αi)

ga(x), gb(x) t

h(αi) = ga(αi) ⋅ gb(αi)

ga(x), gb(x)
Pj

H1(x), …, Hn(x) h(α1), …, h(αn)
Pj H1(αj), …, Hn(αj)

λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)



Main Theorems
• We saw:

• Perfectly secure protocol in the semi-honest model,  for 

 [BGW88,CCD88]


• Perfectly secure protocol in the malicious model, for 


• It holds:


• Perfectly secure protocol in the malicious model, for  
[BGW88]

• Statistically secure [CCD88]


• Statistically secure protocol in the malicious model, for 
 (assuming broadcast) [RB89]

t < n/2
t < n/4

t < n/3

t < n/2



What About ?n = 3t + 1
• Input: Each party holds 


• Each party sub-shares  and 


• Since  are of degree ,  
we can guarantee that right values where shared


• Each party sub-shares 


• And “proves” that those sub-shares agree with the sub-shares of 



• Now each party  holds a share on each one of the polynomials 
 that hide , resp.


• That is,  holds 


• Output: 

ga(αi), gb(αi)
ga(αi) gb(αi)

ga(x), gb(x) t

ga(αi) ⋅ gb(αi)

ga(x), gb(x)
Pj

H1(x), …, Hn(x) h(α1), …, h(αn)
Pj H1(αj), …, Hn(αj)

λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)



What About ?n = 3t + 1
• Input: Each party holds 


• Each party sub-shares  and 


• Since  are of degree ,  
we can guarantee that right values where shared


• Each party sub-shares 


• And “proves” that those sub-shares agree with the sub-shares of 



• Now each party  holds a share on each one of the polynomials 
 that hide , resp.


• That is,  holds 


• Output: 

ga(αi), gb(αi)
ga(αi) gb(αi)

ga(x), gb(x) t

ga(αi) ⋅ gb(αi)

ga(x), gb(x)
Pj

H1(x), …, Hn(x) h(α1), …, h(αn)
Pj H1(αj), …, Hn(αj)

λ1 ⋅ H1(αj) + … + λn ⋅ Hn(αj)



Changing the Invariant  
[A-Lindell-Rabin11]

• Instead of having:  
“Each value on a wire is hidden with a univariate 
polynomial of degree- ” 

• We can work with: 
“Each value on a wire is hidden with a bivariate  
polynomial of degree- ”

t

t



Recall VSS

S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)



S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)

f1(0) f2(0) fi(0) fn(0)

fi(x) = S(x, αi)

fi(0) = S(0,αi)

q(y) = S(0,y)
degree-t polynomial

q(0) = S(0,0) = s

Recall VSS



But… This is Exactly Sub-
Share 

S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)



Conclusion
• We saw:


• Perfectly secure protocol in the semi-honest model,  for  
[BGW88,CCD88]


• Perfectly secure protocol in the malicious model, for 


• It holds:


• Perfectly secure protocol in the malicious model, for  
[BGW88]

• Statistically secure [CCD88]


• Statistically secure protocol in the malicious model, for  
(assuming broadcast) [RB89]

t < n/2

t < n/4

t < n/3

t < n/2

Thank You!!



References
• Michael Ben-Or, Shafi Goldwasser, Avi Widgerson: 

Completeness theorems for non-cryptographic fault-tolerant distributed 
computation

• David Chaum, Claude Crépeau, Ivan Damgård: 
Multiparty Unconditionally Secure Protocols

• Tal Rabin, Michael Ben-Or: 
Verifiable Secret Sharing and Multiparty Protocols with Honest Majority

• Gilad Asharov, Yehuda Lindell: 
A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty 
Computation.

• Gilad Asharov, Yehuda Lindell, Tal Rabin: 
Perfectly-Secure Multiplication for Any t < n/3.

• Ronald Cramer, Ivan Damgård, Jesper Buus Nielsen: 
Secure Multiparty Computation and Secret Sharing. Cambridge University 
Press 2015, ISBN 9781107043053

https://dblp.uni-trier.de/pers/hd/c/Chaum:David
https://dblp.uni-trier.de/pers/hd/c/Cr=eacute=peau:Claude
https://dblp.uni-trier.de/pers/hd/d/Damg=aring=rd:Ivan
https://dblp.uni-trier.de/pers/hd/l/Lindell:Yehuda
https://dblp.uni-trier.de/pers/hd/c/Cramer:Ronald
https://dblp.uni-trier.de/pers/hd/n/Nielsen:Jesper_Buus

