

Secure Multi-Party Computation

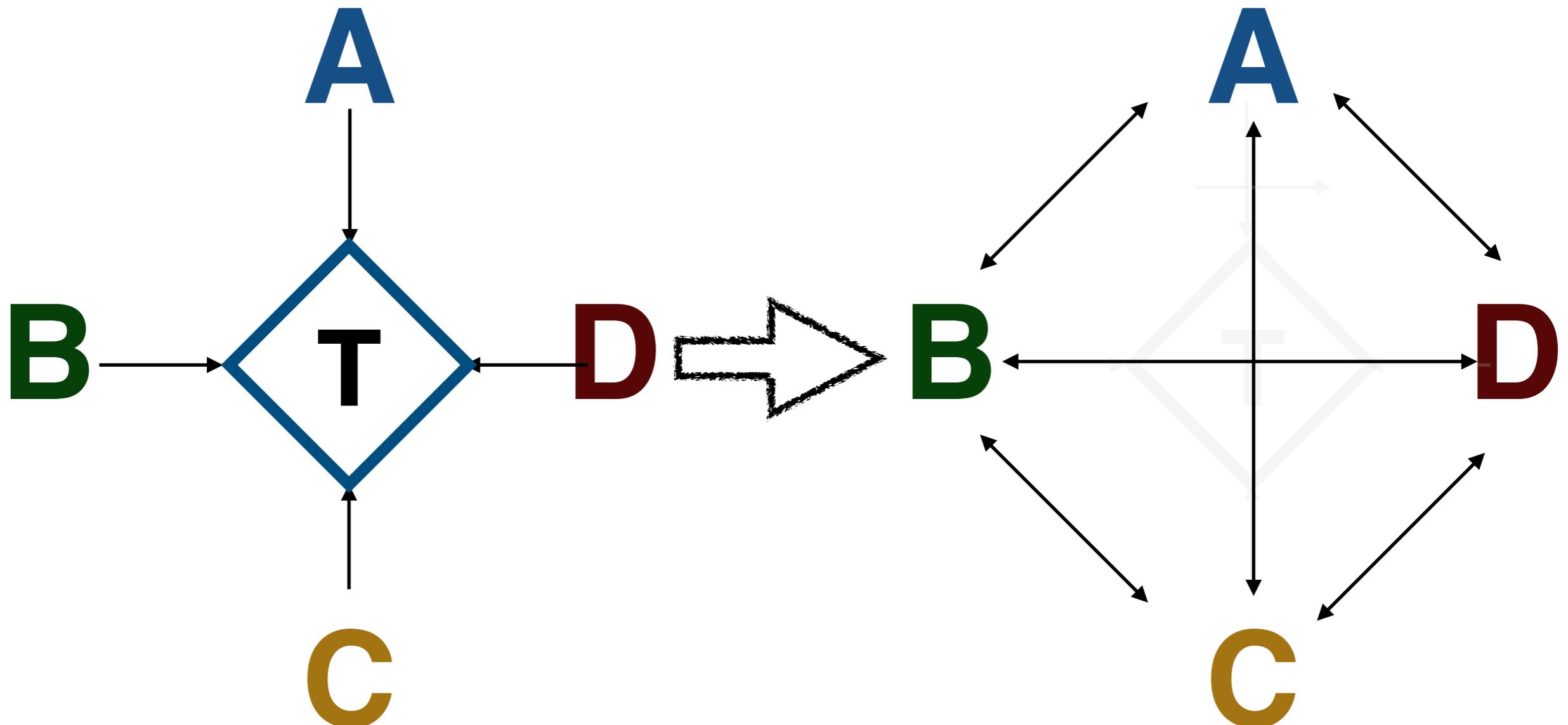
The BGW Protocol

Gilad Asharov

Bar-Ilan University (BIU)

The 10th Bar-Ilan Winter School on Cryptography, Information Theoretic Cryptography

Secure Computation



Secure Computation

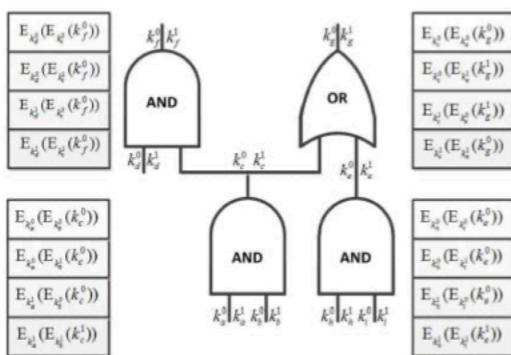
- Set of parties P_1, \dots, P_n
- Each holds some private input x_1, \dots, x_n
- The parties wish to compute a joint function $f(x_1, \dots, x_n)$ while keeping their inputs private
- Some parties might be corrupted:
 - **Semi-honest:** Follow the protocol specifications' but try to gain some extra information by pooling their views
 - **Malicious:** Might act arbitrarily
- **Correctness:**
 - The output of the parties is $f(x_1, \dots, x_n)$
- **Privacy:**
 - The corrupted parties do not learn anything about the honest parties' inputs
- **Guaranteed output delivery:**
 - The adversary should not prevent the honest parties from obtaining output

Main Theorem

- For every n -ary function $f(x_1, \dots, x_n)$, there exists a protocol for computing f with **perfect security** in the presence of a **semi-honest** adversary controlling $t < n/2$ parties
- For every n -ary function $f(x_1, \dots, x_n)$, there exists a protocol for computing f with **perfect security** in the presence of a **malicious** adversary controlling $t < n/3$ parties

4 Approaches to MPC

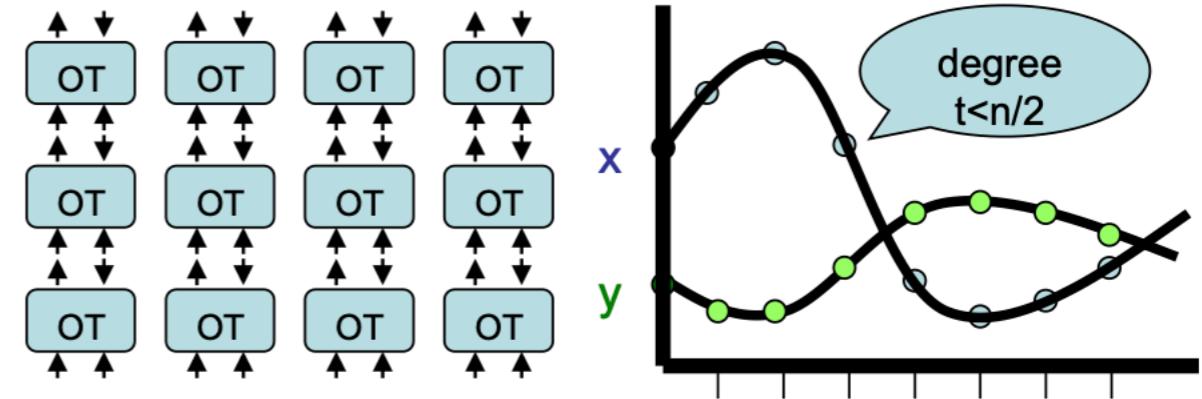
Garbled Circuits [Yao 86,...]



Linear Secret Sharing

[Goldreich-Micali-Wigderson 87]

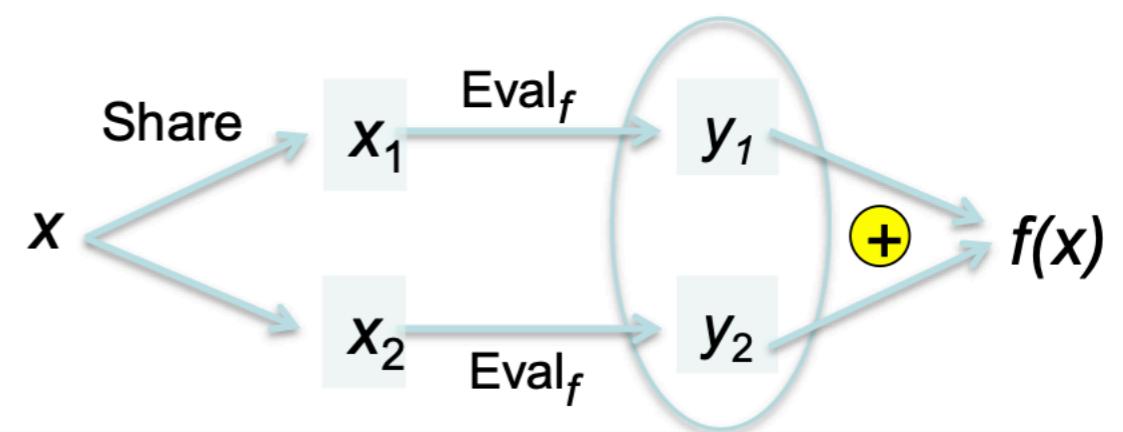
[BenOr-Goldwasser-W88, Chaum-Crépeau-Damgård88, ...]



Fully Homomorphic Encryption [Gentry 09,...]

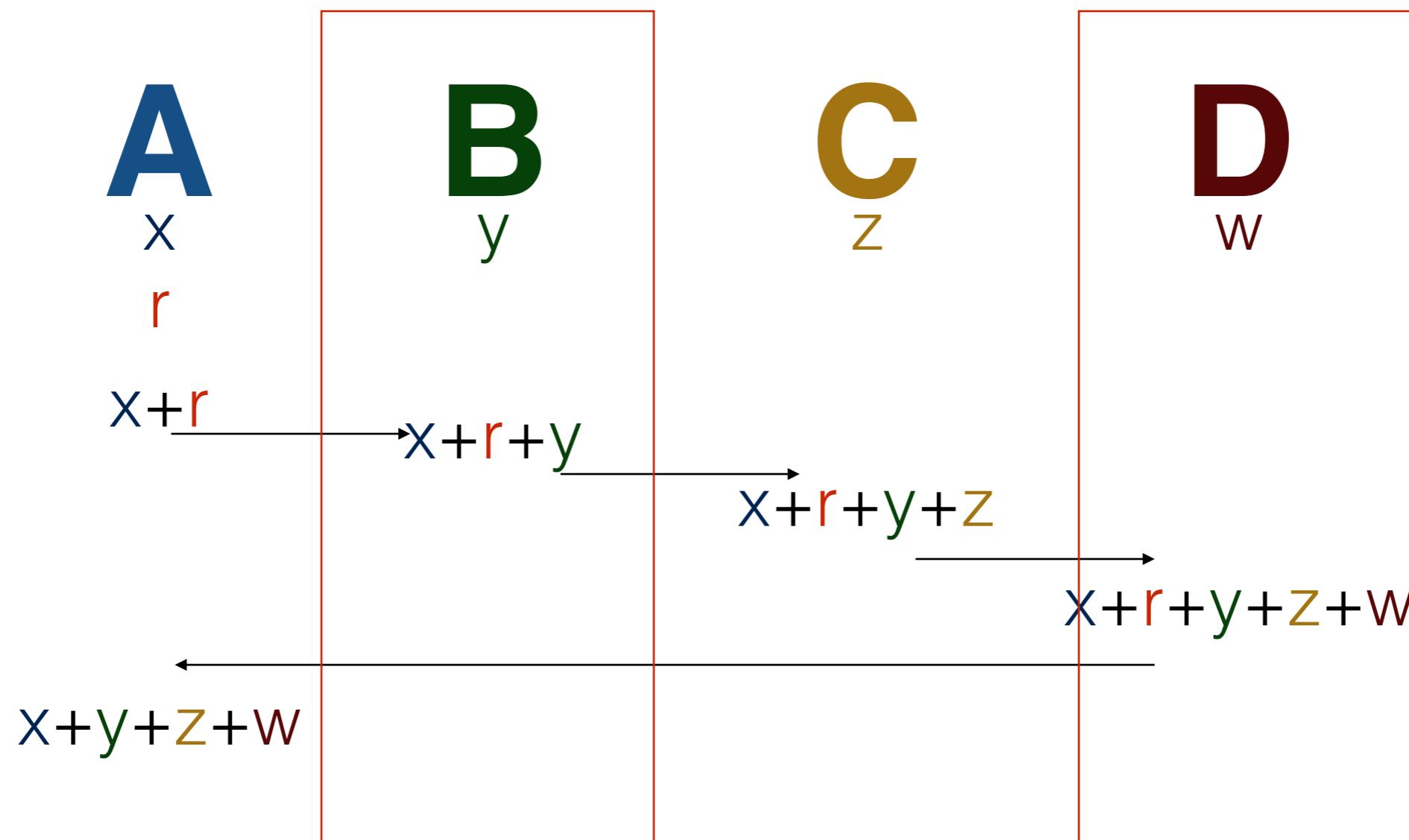
Homomorphic Secret Sharing

[Boyle-Gilboa-I 15,...]



The Semi-Honest Case

Warmup: Average of Salaries (or Sum..)



Warmup: Average of Salaries (or Sum..)

A

x

$$x_1 + x_2 + x_3 + x_4 = x$$

x
 y
 z
 w

$$\frac{x_1 + y_1 + z_1 + w_1}{4}$$

$=s_1$

B

y

$$y_1 + y_2 + y_3 + y_4 = y$$

x_2
 y_2
 z_2
 w_2

$$\frac{x_2 + y_2 + z_2 + w_2}{4}$$

$=s_2$

C

z

$$z_1 + z_2 + z_3 + z_4 = z$$

x_3
 y_3
 z_3
 w_3

$$\frac{x_3 + y_3 + z_3 + w_3}{4}$$

$=s_3$

D

w

$$w_1 + w_2 + w_3 + w_4 = w$$

x_4
 y_4
 z_4
 w_4

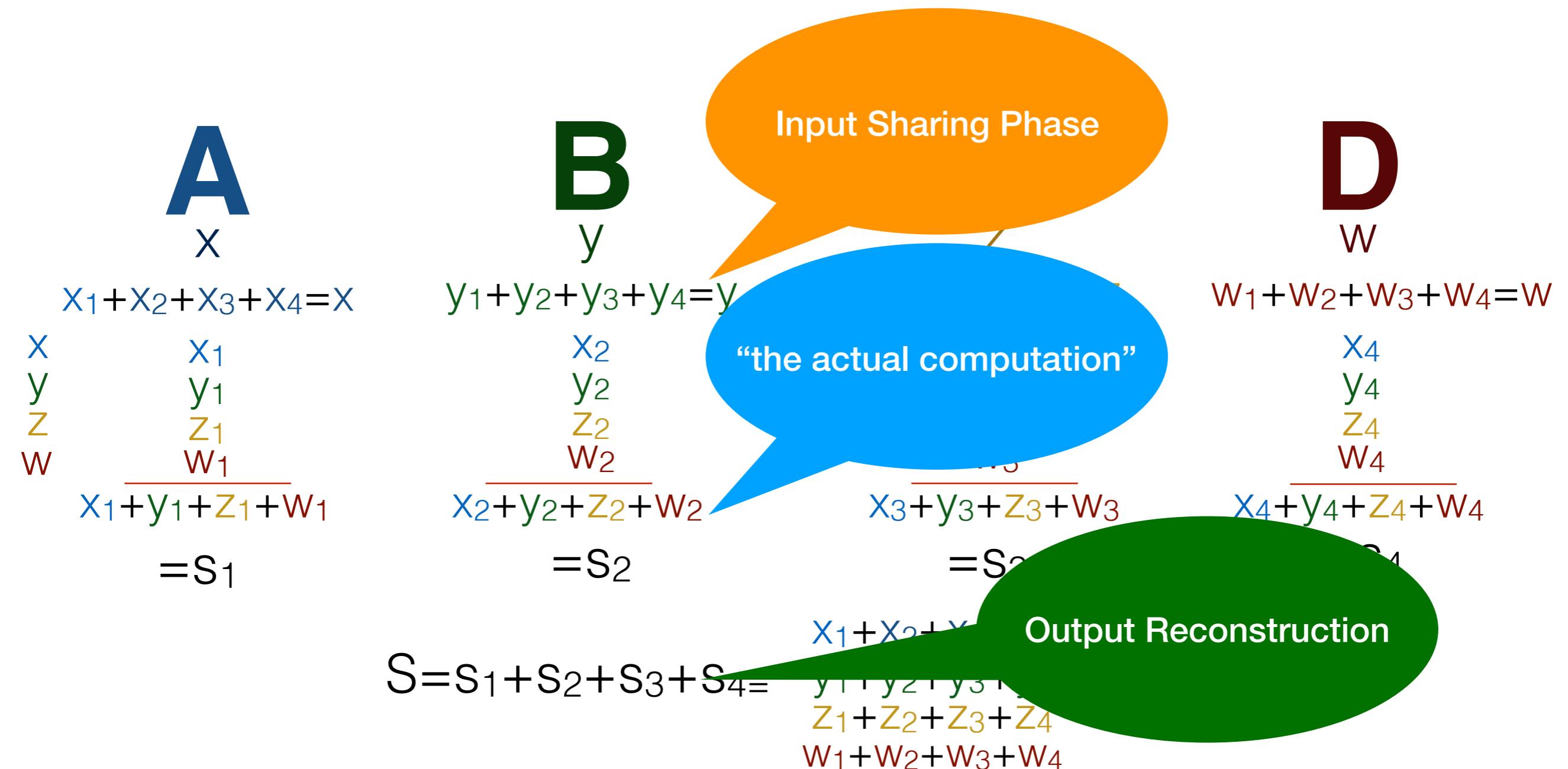
$$\frac{x_4 + y_4 + z_4 + w_4}{4}$$

$=s_4$

$$S = s_1 + s_2 + s_3 + s_4 =$$

$$\begin{aligned} & x_1 + x_2 + x_3 + x_4 \\ & y_1 + y_2 + y_3 + y_4 \\ & z_1 + z_2 + z_3 + z_4 \\ & w_1 + w_2 + w_3 + w_4 \end{aligned}$$

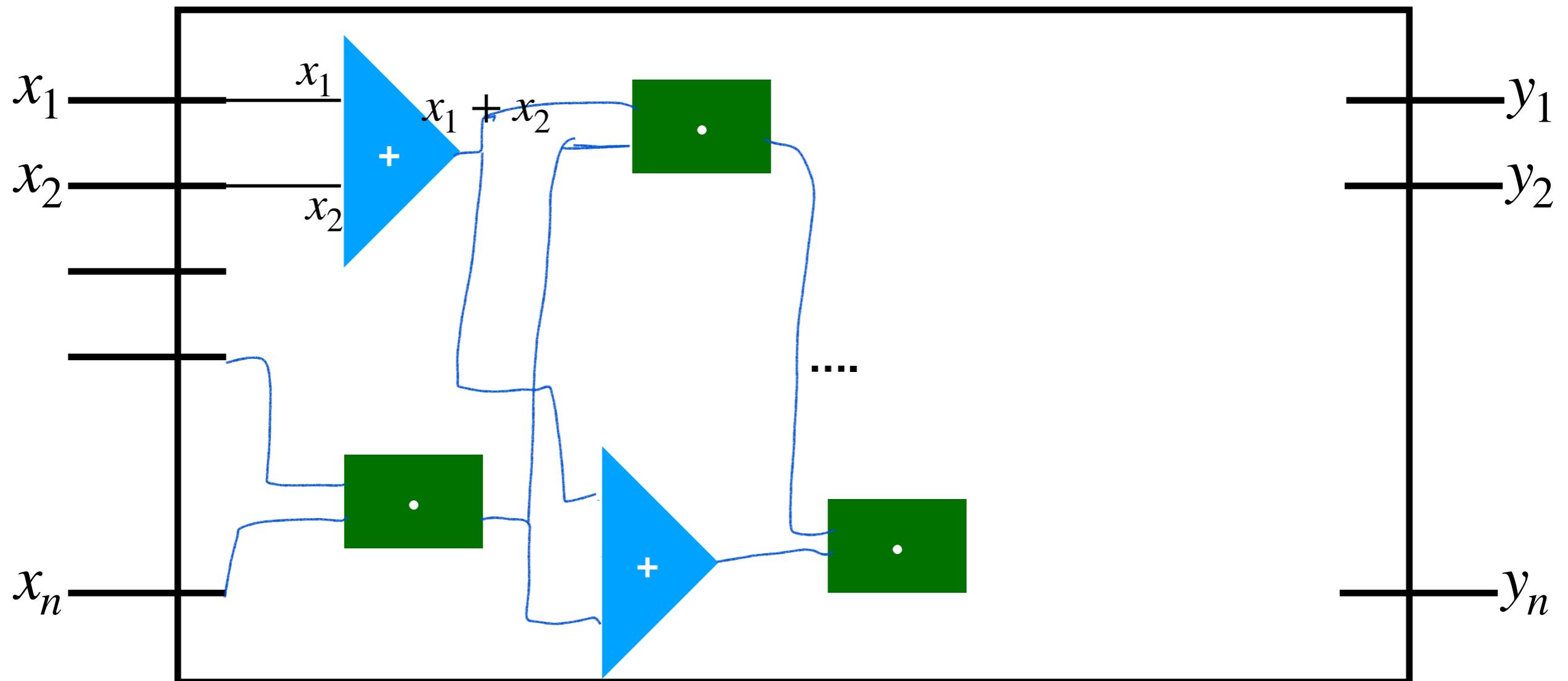
Warmup: Average of Salaries (or Sum..)



Overview of the BGW Protocol

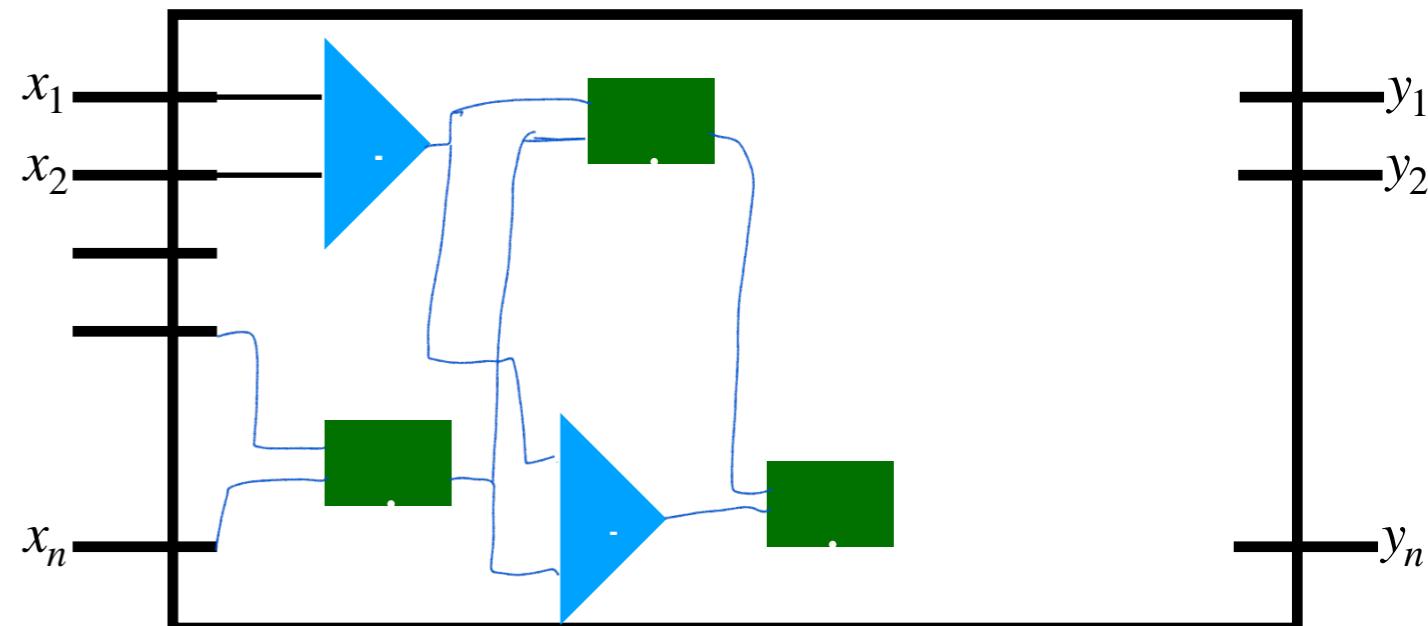
- It is enough to assume that f is deterministic
 - $g(x_1, \dots, x_n; r)$ can be computed using the deterministic function $f((x_1, r_1), \dots, (x_n, r_n)) := g(x_1, \dots, x_n; \oplus r_i)$
- We represent f using an **arithmetic** circuit over a field $\mathbb{F}_{(|\mathbb{F}| > n)}$
 - A circuit where each wire gets a value in \mathbb{F}
 - **Gates:**
 - **Addition gate:** $g(a, b) = a + b$
 - **Multiplication with a constant gate:** $g_c(a) = c \cdot a$
 - **Multiplication gate:** $g(a, b) = a \cdot b$

Circuit Evaluation



Evaluating C Privately

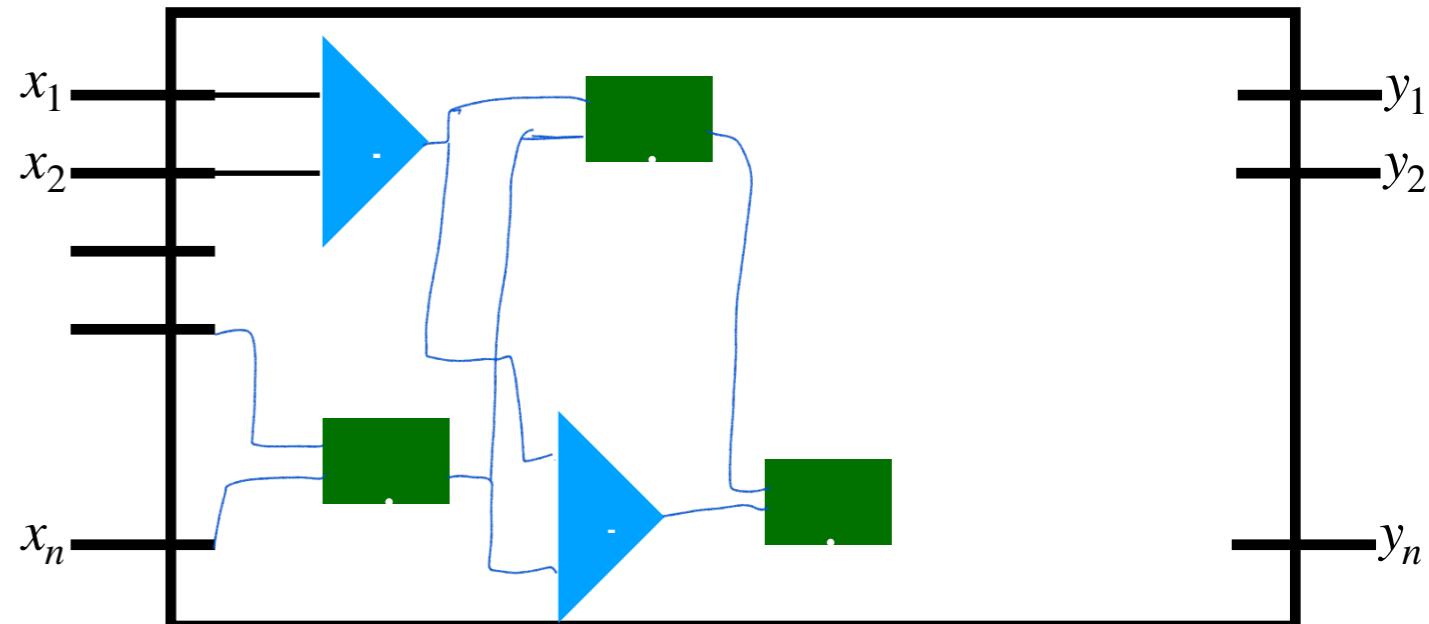
- In the secure protocol, each **input wire** is known to only one party
 - And that party wants to keep it private!
- Moreover, we **cannot** reveal any **intermediate** values
 - All values on all wires during the evaluation should be hidden
- Only values on the output wires should be revealed



The Key Idea

- The parties will emulate a computation of the circuit C on the inputs x_1, \dots, x_n

Invariant: The value of each wire is hidden using a *random polynomial of degree t* (i.e., secret shared among the parties)

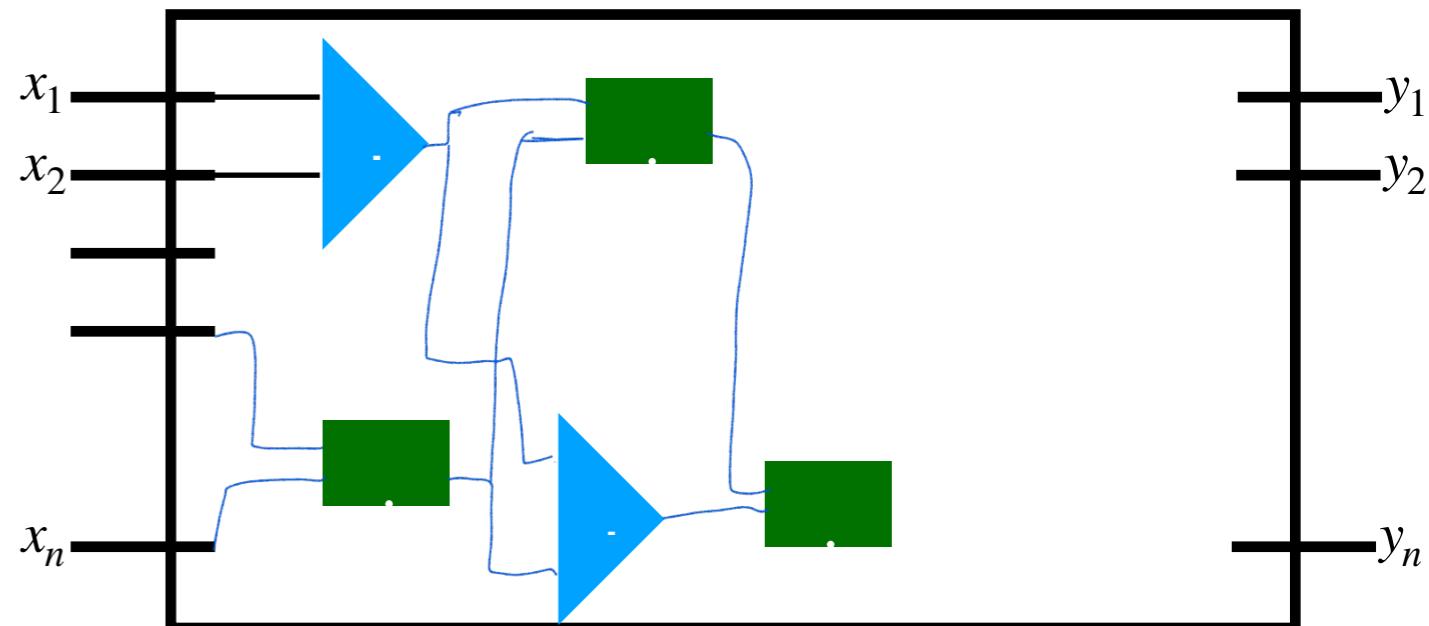


A Reminder: Shamir's Secret Sharing Scheme

- Sharing $_{t+1,n}(s)$:
 - Choose a random degree t polynomial with s as its constant term
 - $p(x) = s + p_1x + \dots, p_tx^t$
 - Party P_i receives $(\alpha_i, p(\alpha_i))$
- **Properties:**
 - Every set of $t + 1$ participants can **recover** the secret
 - Every set of t shares **does not reveal** any information about s

Protocol Overview

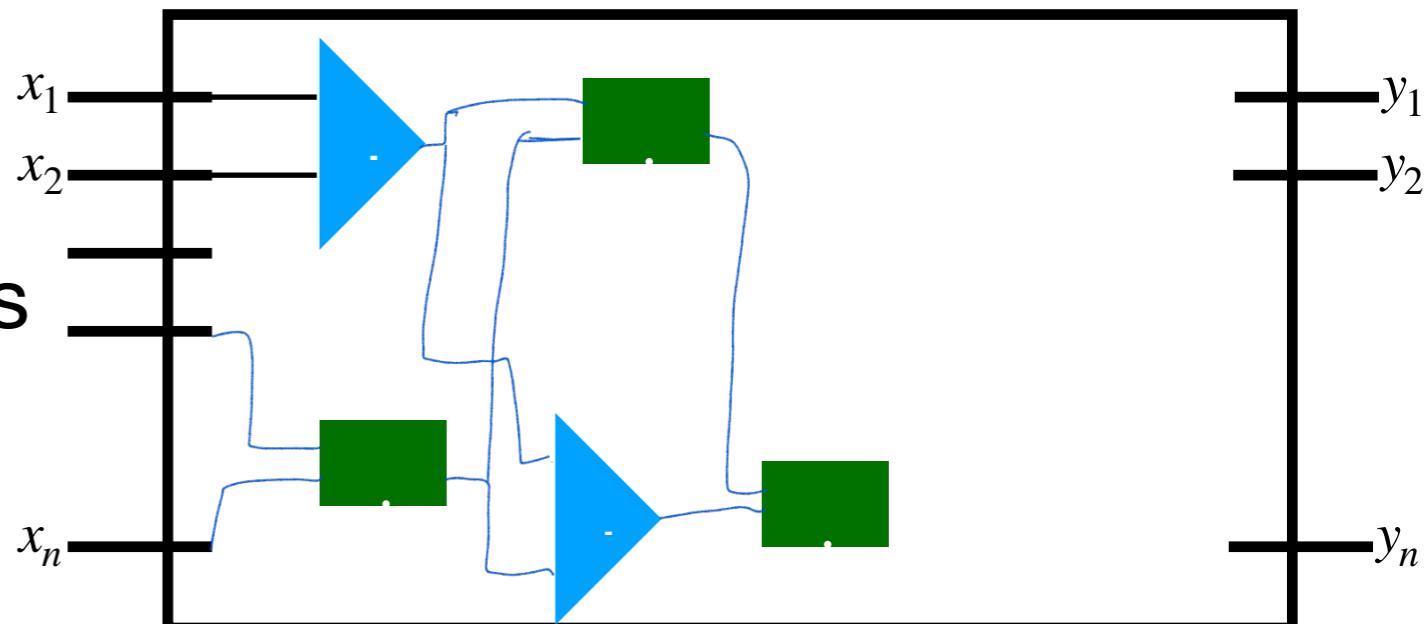
- **Stage I:** Input sharing phase
- **Stage II:** Circuit emulation phase
- **Stage III:** Output reconstruction phase



Stage I: Input Sharing Phase

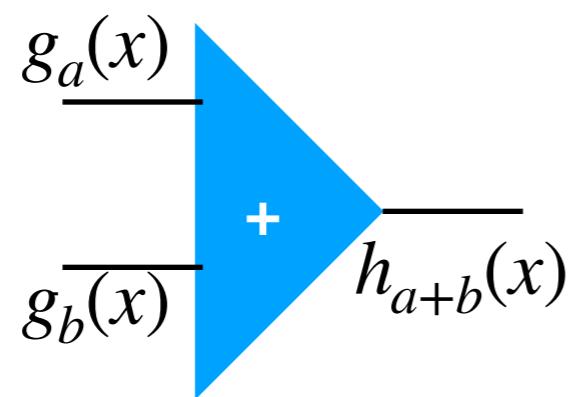
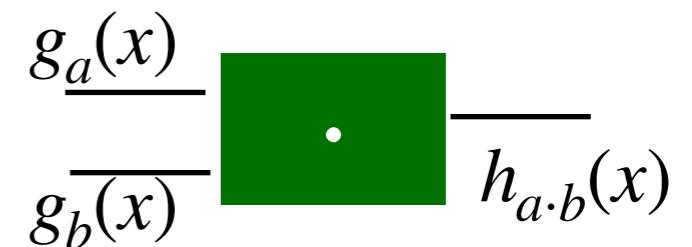
- Each party P_i shares its input x_i
 - It chooses a random polynomial $g_i(x)$ of degree- t for which $g_i(0) = x_i$
 - It sends to each party P_j the share $g_i(\alpha_j)$

- At the end of this stage each party P_i holds shares $g_1(\alpha_i), \dots, g_n(\alpha_i)$



Stage II: Circuit Emulation Phase

- We will show secure protocols for two specific functions:



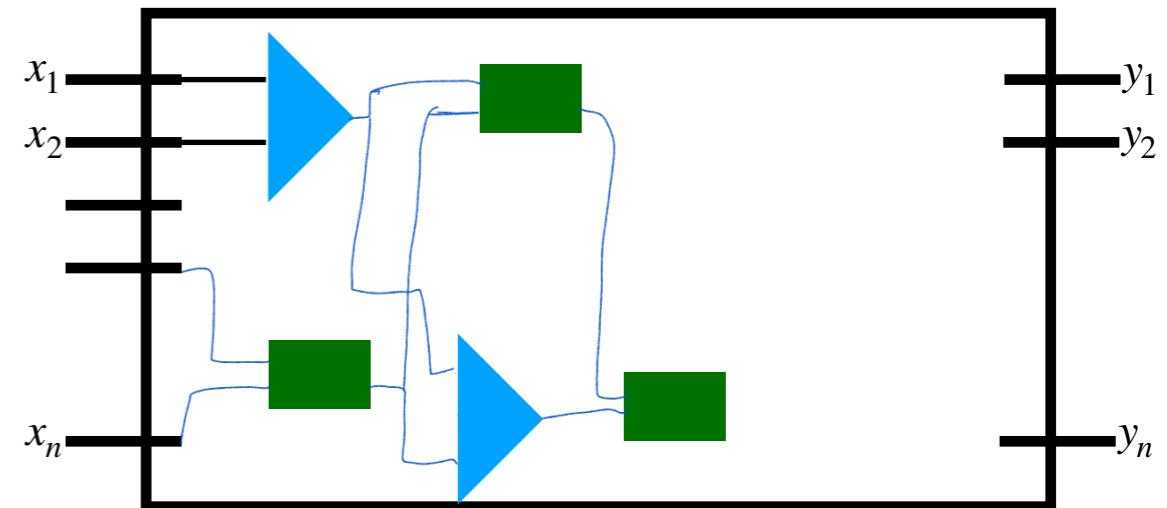
$$f_{\text{add}} \left((g_a(\alpha_1), g_b(\alpha_1)), \dots, (g_a(\alpha_n), g_b(\alpha_n)) \right) \\ = (h_{a+b}(\alpha_1), \dots, h_{a+b}(\alpha_n))$$

$$f_{\text{mult}} \left((g_a(\alpha_1), g_b(\alpha_1)), \dots, (g_a(\alpha_n), g_b(\alpha_n)) \right) \\ = (h_{a.b}(\alpha_1), \dots, h_{a.b}(\alpha_n))$$

- Computing the circuit **gate-by-gate**:
Computing shares of the output wire of a gate
from the shares of its input wires

Stage III: Output Reconstruction Phase

- The parties hold shares of all output wires
- Each party P_i holds shares $g_{y_1}(\alpha_i), \dots, g_{y_n}(\alpha_i)$
 - P_1 is supposed to learn y_1
 - P_2 is supposed to learn y_2
 - ...
- All parties send their shares $g_{y_j}(\alpha_1), \dots, g_{y_j}(\alpha_n)$ to P_j
 - P_j can reconstruct y_j



How to Compute f_{add} ?

- Each P_i knows:

- $g_a(\alpha_i), g_b(\alpha_i)$

- Simply output $g_a(\alpha_i) + g_b(\alpha_i)$

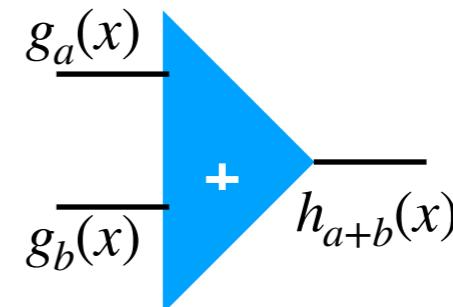
- No interaction!

- All parties obtain shares of the polynomial

$$h_{a+b}(x) := g_a(x) + g_b(x)$$

- Polynomial of degree- t

- Constant term: $h_{a+b}(0) = g_a(0) + g_b(0) = a + b$



$$\begin{aligned} f_{\text{add}} \left((g_a(\alpha_1), g_b(\alpha_1)), \dots, (g_a(\alpha_n), g_b(\alpha_n)) \right) \\ = (h_{a+b}(\alpha_1), \dots, h_{a+b}(\alpha_n)) \end{aligned}$$

How to Compute f_{mult} ?

- Each party P_i holds shares $g_a(\alpha_i), g_b(\alpha_i)$
- Can we simply output $g_a(\alpha_i) \cdot g_b(\alpha_i)$?
 - The parties will obtain shares of the polynomial $h(x) := g_a(x) \cdot g_b(x)$
 - It's constant term is $h(0) = g_a(0) \cdot g_b(0) = a \cdot b$
 - Looks good
- **But...**
 - What is the degree of h ?
 - Is h random?

$$\begin{array}{r} \frac{g_a(x)}{g_b(x)} \cdot \frac{\text{[red box]}}{\text{[green box]}} = h_{a \cdot b}(x) \\ f_{\text{mult}} \left((g_a(\alpha_1), g_b(\alpha_1)), \dots, (g_a(\alpha_n), g_b(\alpha_n)) \right) \\ = (h_{a \cdot b}(\alpha_1), \dots, h_{a \cdot b}(\alpha_n)) \end{array}$$

Reminder:

- For any polynomial $h(x)$ with degree $t < n$,
there exist constants $\lambda_1, \dots, \lambda_n$ such that:

$$\lambda_1 \cdot h(\alpha_1) + \dots + \lambda_n \cdot h(\alpha_n) = h(0) = a \cdot b$$

$$\begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{2t} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{2t} \\ \vdots & & & & \\ 1 & \alpha_n & \alpha_n^2 & \dots & \alpha_n^{2t} \end{pmatrix} \begin{pmatrix} ab \\ h_1 \\ \vdots \\ h_{2t} \end{pmatrix} = \begin{pmatrix} h(\alpha_1) \\ h(\alpha_2) \\ \vdots \\ h(\alpha_n) \end{pmatrix}$$

$$\begin{pmatrix} ab \\ h_1 \\ \vdots \\ h_{2t} \end{pmatrix} = \begin{pmatrix} \lambda_1 & \dots & \lambda_n \\ \vdots & & \\ \dots & & \end{pmatrix} \begin{pmatrix} h(\alpha_1) \\ h(\alpha_2) \\ \vdots \\ h(\alpha_n) \end{pmatrix}$$

$$\frac{g_a(x)}{g_b(x)} \cdot \frac{\text{.}}{\text{.}} \frac{\text{.}}{\text{.}} h_{a \cdot b}(x)$$

Computing f_{mult}

- Let's take a look again at $h(x) := g_a(x) \cdot g_b(x)$
- Each party P_i can compute $h(\alpha_i)$
- Can we reveal $h(\alpha_i)$ to other parties, or it should be kept secret?
- We know that

$$ab = \lambda_1 \cdot h(\alpha_1) + \dots + \lambda_n \cdot h(\alpha_n)$$

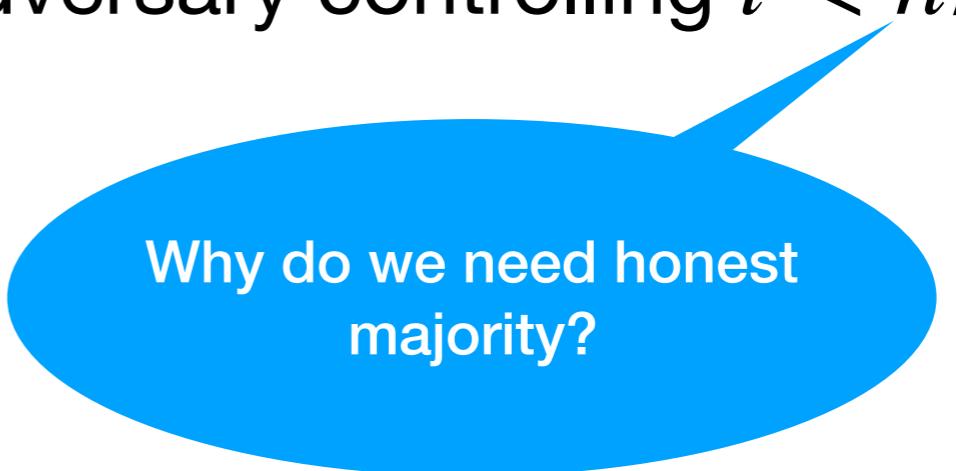
- The protocol for P_i :
 - Compute $h(\alpha_i) := g_a(\alpha_i) \cdot g_b(\alpha_i)$
 - Share $h(\alpha_i)$ using a degree- t polynomial $H_i(x)$
 - Given all the shares that were received $H_1(\alpha_i), \dots, H_n(\alpha_i)$, output $\lambda_1 \cdot H_1(\alpha_i) + \dots + \lambda_n \cdot H_n(\alpha_i)$

Why Does It Work?

- The parties compute a share on the polynomial
- $H(x) := \lambda_1 H_1(x) + \dots \lambda_n H_n(x)$
 - Each P_i outputs $H(\alpha_i)$
- **This is a polynomial of degree t**
 - Each one of $H_1(x), \dots, H_n(x)$ is of degree- t
- **It is random**
 - Each one of $H_1(x), \dots, H_n(x)$ is random
- **Its constant term is ab**
 - $$\begin{aligned} H(0) &= \lambda_1 H_1(0) + \dots + \lambda_n H_n(0) \\ &= \lambda_1 h(\alpha_1) + \dots + \lambda_n h(\alpha_n) = a \cdot b \end{aligned}$$
- Perfect.

Semi-Honest: Conclusion

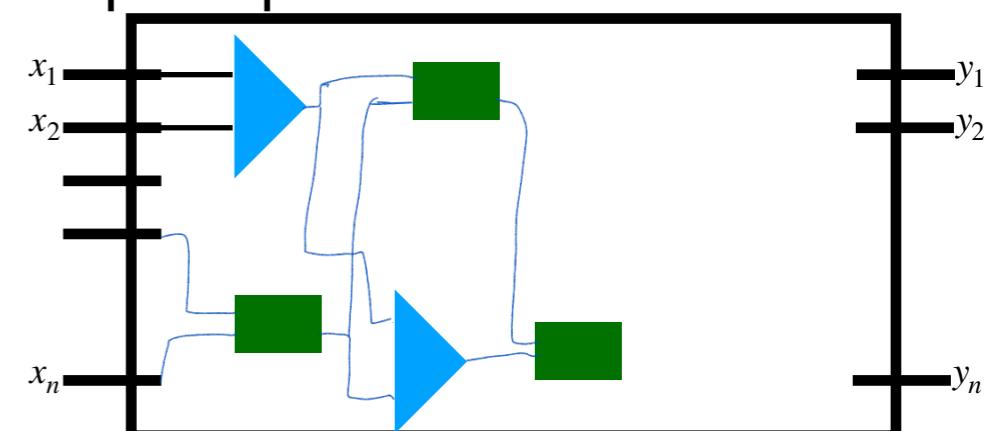
- For every n -ary function $f(x_1, \dots, x_n)$, there exists a protocol for computing f with **perfect security** in the presence of a **semi-honest** adversary controlling $t < n/2$ parties



Why do we need honest majority?

Security

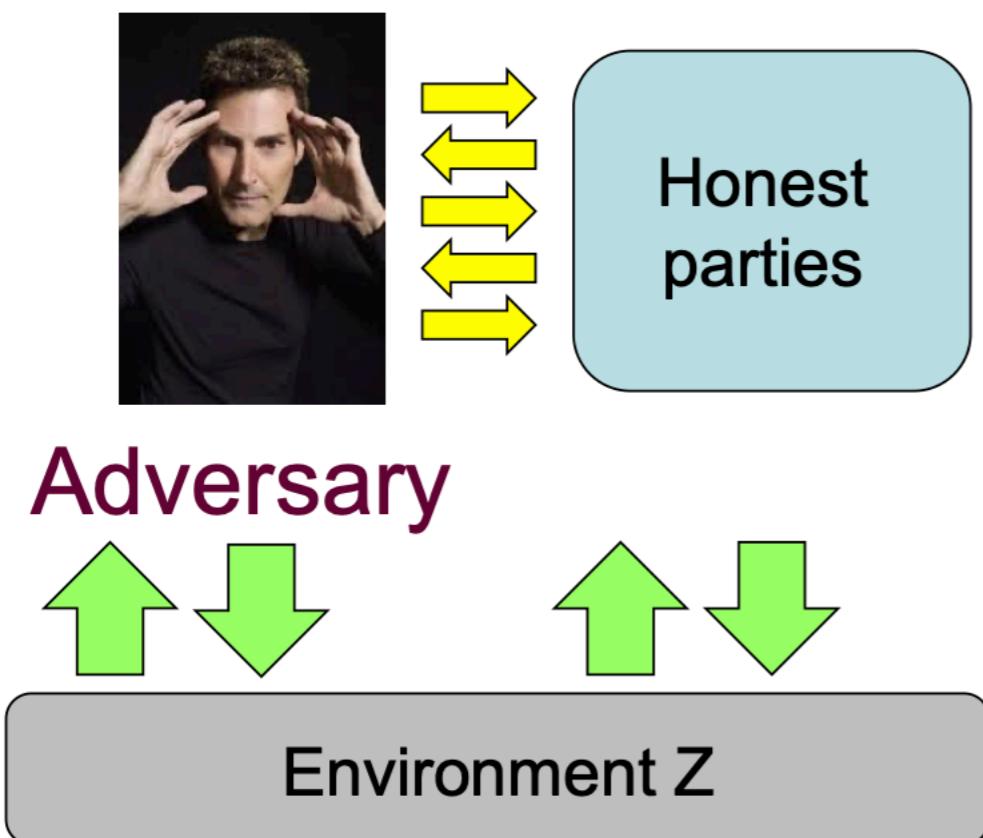
- What is the view of the corrupted parties?
 - **Input sharing phase:**
 t shares on polynomials of honest parties
 - **Circuit emulation phase:**
In each multiplication, the adversary receives t shares on each one of the polynomials $H_1(x), \dots, H_n(x)$
 - **Output reconstruction phase:**
Given the t shares on the output wires of the corrupted parties
+ the outputs of the corrupted parties to the simulator as input \Rightarrow
reconstruct the polynomial and send the remaining shares



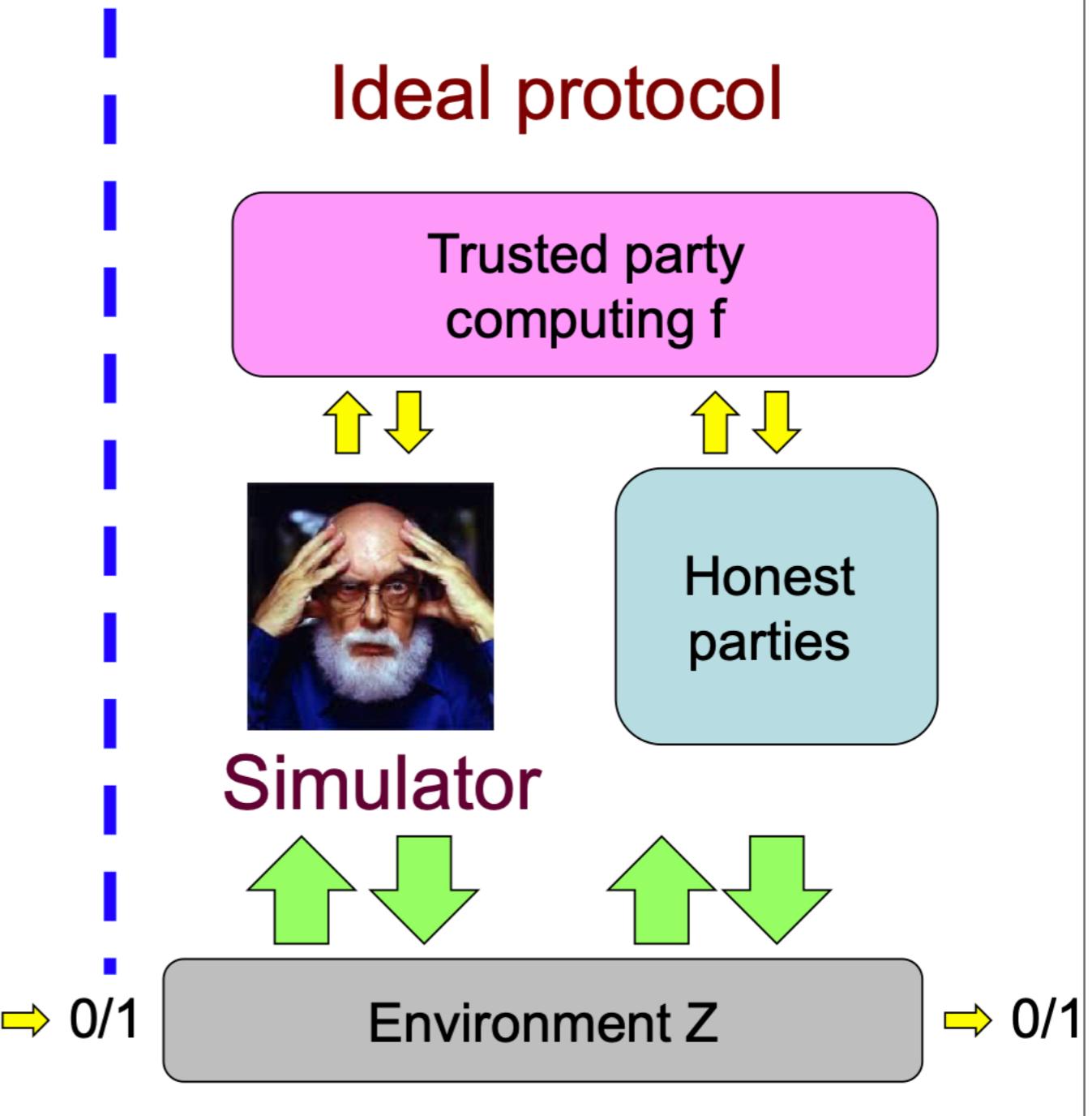
The Malicious Case

Real/Ideal Paradigm

Real protocol



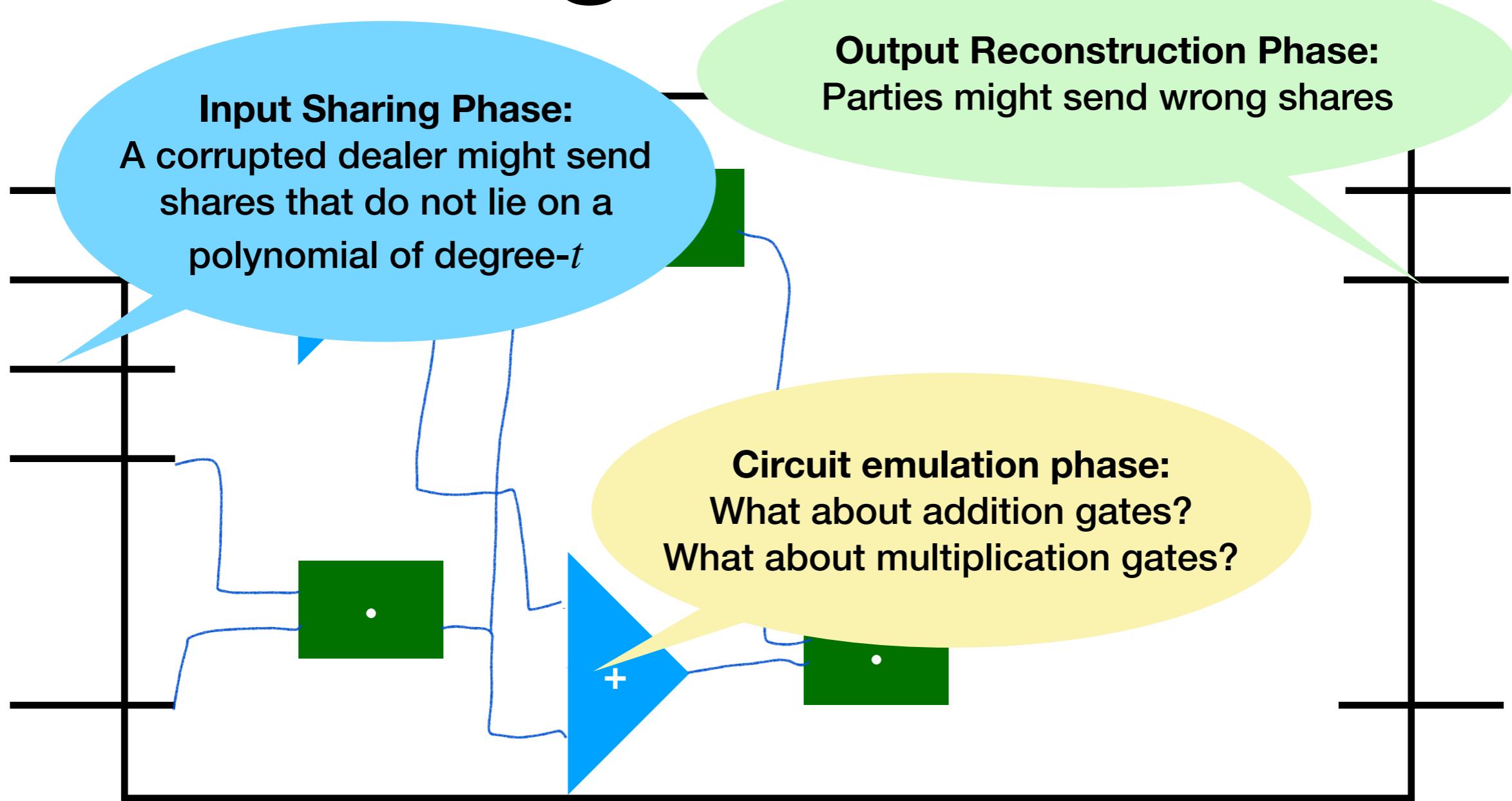
Ideal protocol



Malicious Security

- The parties jointly compute $f(x_1, \dots, x_n)$:
 - The **honest parties** provide **true** inputs
 - The **corrupted parties** might provide **any input** they like
 - If do not cooperating, the honest parties can choose some default inputs for them
- **Privacy**: The adversary does not learn any information on the honest parties' inputs
- **Guaranteed output delivery**: The adversary cannot prevent the honest parties from obtaining outputs

What Might Go Wrong?



Reminder - VSS

- We saw on Monday:

Let $t < n/3$. There exists a perfectly secure Verifiable Secret Sharing protocol in the presence of a malicious adversary

- **Privacy:**

For an honest dealer, the adversary learns nothing about s

- **Consistency:**

The outputs of the honest party are consistent with some s^* even if the adversary is corrupted (agreement)

- **Correctness:**

For an honest dealer, consistency holds with $s^* = s$

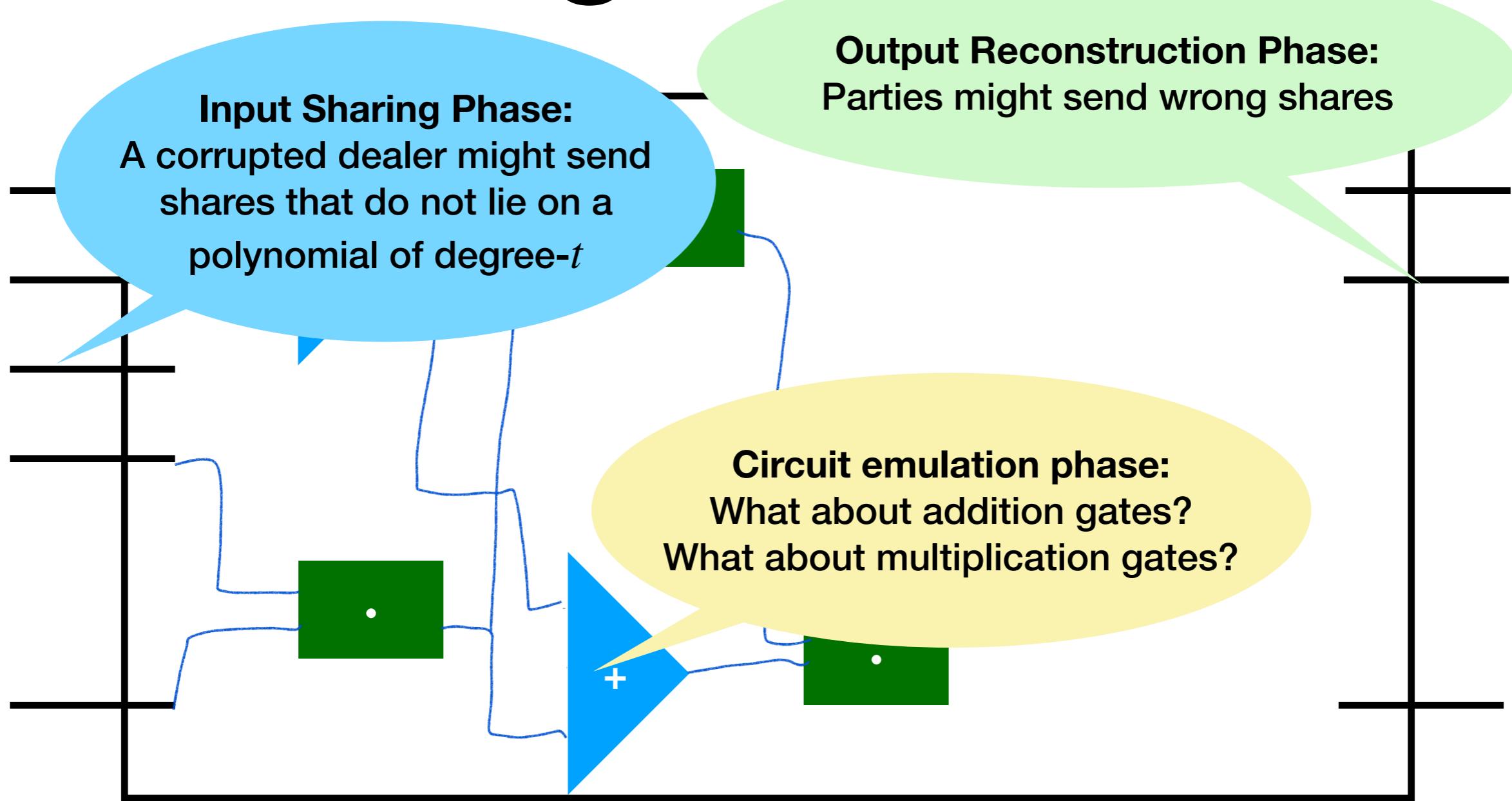
- **Reconstruction:**

Even if corrupted parties send wrong shares, honest parties can still recover the secret

Before We Proceed

- Note that if the function f does not contain any multiplication gates - we are done!
- Which functions do not contain multiplication gates?
 - All linear functions!
 - **Multiplication with a vector:**
For a public vector (a_1, \dots, a_n)
 $(x_1, \dots, x_n) \rightarrow a_1x_1 + \dots + a_nx_n$
 - **Multiplication with a matrix:**
For a public matrix $A \in \mathbb{F}^{n \times t}$:
 $(x_1, \dots, x_n) \rightarrow A \cdot (x_1, \dots, x_n) = (y_1, \dots, y_n)$

What Might Go Wrong?



What Might Go Wrong?

Circuit Emulation Phase

- **Multiplication gate:**

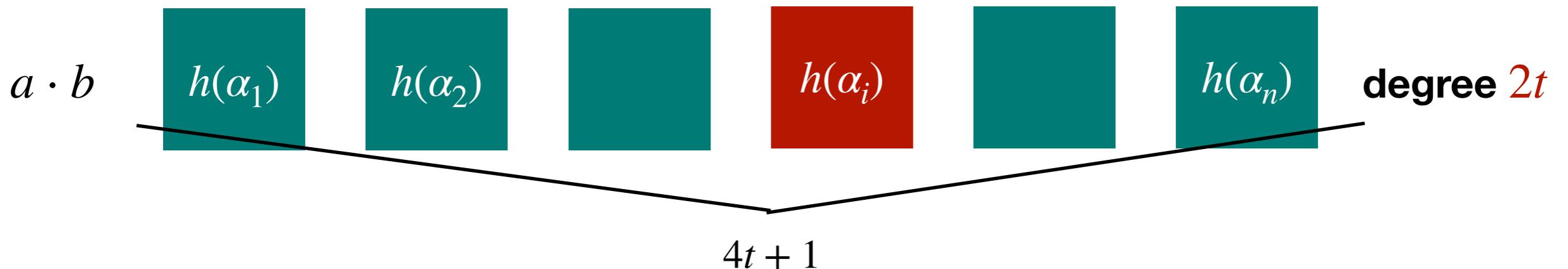
The protocol for P_i

Input: $g_a(\alpha_i), g_b(\alpha_i)$

- Compute $h(\alpha_i) := g_a(\alpha_i) \cdot g_b(\alpha_i)$
- Share $h(\alpha_i)$ using a **degree- t polynomial** $H_i(x)$
- Given all the shares that were received $H_1(\alpha_i), \dots, H_n(\alpha_i)$
- Output $\lambda_1 \cdot H_1(\alpha_i) + \dots + \lambda_n \cdot H_n(\alpha_i)$

Simplified Case: $t < n/4$

- Let's take a look again at the polynomial $h(x) := g_a(x) \cdot g_b(x)$
- This is a polynomial of degree $2t$
- Each party computes a share on this polynomial by just computing $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$

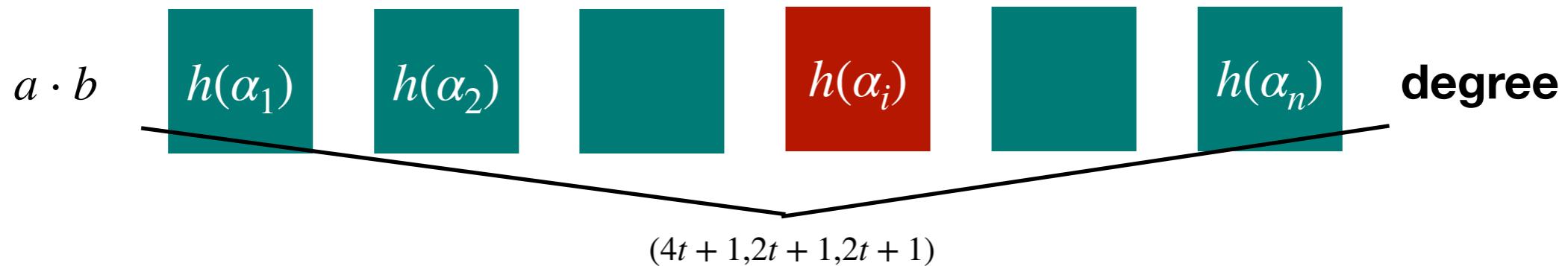


- Can we somehow correct the wrong shares?
- **Recall:** Reed Solomon code is $(n, k + 1, n - k)$ -code, can correct $(n - k - 1)/2$ errors
 - When $n = 3t + 1$, for $k = 2t$ we have $(3t + 1, 2t + 1, t + 1)$ -code, can correct $t/2$ errors
 - When $n = 4t + 1$, for $k = 2t$ we have $(4t + 1, 2t + 1, 2t + 1)$ -code, can correct t errors

Facts From Error Correcting Code

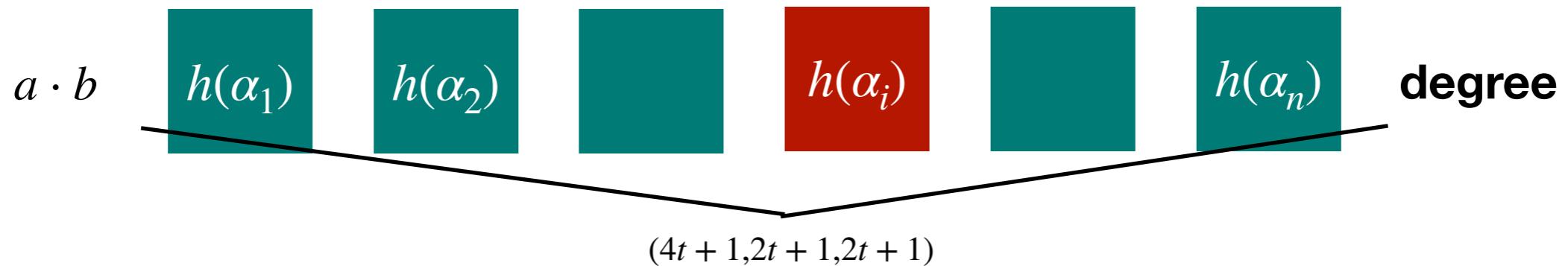
- Let $C \subset \Sigma^n$ be a (n, k, d) -linear code
- **Generator matrix:** $G \in \Sigma^{k \times n}$: maps “messages” into codewords
For $\mathbf{m} \in \Sigma^k$, we have that $\mathbf{m} \cdot G \in \mathbb{F}^n$ is a codeword
- **A parity check matrix:** $H \in \Sigma^{(n-k) \times n}$ matrix
 - Satisfies $G \cdot H^T = 0^{k \times (n-k)}$
- For every codeword $\mathbf{c} \in C$ (i.e., there exists some $\mathbf{m} \in \Sigma^k$ such that $\mathbf{m} \cdot G = \mathbf{c}$):
 - $\mathbf{c} \cdot H^T = 0$
- For every “noise” codeword $\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{e} \in \Sigma^n$ where $\mathbf{c} \in C$ and $\mathbf{e} \in \Sigma^n$ is of distance $(d - 1)/2$ from $\mathbf{0}$
 - $\tilde{\mathbf{c}} \cdot H^T = (\mathbf{c} + \mathbf{e}) \cdot H^T = \mathbf{e} \cdot H^T$
 - It is possible to find \mathbf{e} from $\mathbf{e} \cdot H^T$
 - $\mathbf{e} \cdot H^T$ does not contain any information about \mathbf{m}

In Our Simplified Case ($n = 4t + 1$)



- Each party computes $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$ and sub-shares it
- Let $\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{e}$ where $\mathbf{c} = (h(\alpha_1), \dots, h(\alpha_n))$ and the distance of \mathbf{e} from $\mathbf{0}$ is at most t
- We run a check. If some P_i inputs something wrong, we want to identify it, and “correct” it
 - I.e., the honest parties will change their sub-shares of P_i to $h(\alpha_i)$

The Check



- Each party P_i sub-share its input using some $H_i(x)$
 - $H_i(x)$ hides $h(\alpha_i)$
- Parties compute the “circuit” $\tilde{\mathbf{c}} \cdot H^T$
 - Reconstruct $\mathbf{e} = (e_1, \dots, e_n)$
- The parties can see if there are errors, where, and what
 - For every $e_i \neq 0$:
 - Reconstruct $H_i(0)$
 - “Correct” the sub-share to $H_i(0) - e_i$

$a \cdot b$	$h(\alpha_1)$	$h(\alpha_2)$		$h(\alpha_i)$		$h(\alpha_n)$	degree $2t$
							$(4t + 1, 2t + 1, 2t + 1)$
	P_1	P_2		P_i		P_n	
$h(\alpha_1)$	$H_1(\alpha_1)$	$H_1(\alpha_2)$		$H_1(\alpha_i)$		$H_1(\alpha_n)$	
$h(\alpha_2)$	$H_2(\alpha_1)$	$H_2(\alpha_2)$		$H_2(\alpha_i)$		$H_2(\alpha_n)$	
$h(\alpha_i) + e_i$	$\widetilde{H}_i(\alpha_1)$	$\widetilde{H}_i(\alpha_2)$		$\widetilde{H}_i(\alpha_i)$		$\widetilde{H}_i(\alpha_n)$	
$h(\alpha_n)$	$H_n(\alpha_1)$	$H_n(\alpha_2)$		$H_n(\alpha_i)$		$H_n(\alpha_n)$	

Multiply with the parity-check matrix H^T

Reconstruct $\mathbf{e} = (e_1, \dots, e_n)$

$h(\alpha_1)$	$H_1(\alpha_1)$	$H_1(\alpha_2)$		$H_1(\alpha_i)$		$H_1(\alpha_n)$	0
$h(\alpha_2)$	$H_2(\alpha_1)$	$H_2(\alpha_2)$		$H_2(\alpha_i)$		$H_2(\alpha_n)$	0
$h(\alpha_i) + e_i$	$\widetilde{H}_i(\alpha_1)$	$\widetilde{H}_i(\alpha_2)$		$\widetilde{H}_i(\alpha_i)$		$\widetilde{H}_i(\alpha_n)$	e_i
							0
$h(\alpha_n)$	$H_n(\alpha_1)$	$H_n(\alpha_2)$		$H_n(\alpha_i)$		$H_n(\alpha_n)$	0

Multiply with the parity-check matrix H^T

Reconstruct $\mathbf{e} = (e_1, \dots, e_n)$

$$\begin{array}{c} h(\alpha_1) \\ \hline H_1(\alpha_1) & H_1(\alpha_2) & \vdots & H_1(\alpha_i) & \vdots & H_1(\alpha_n) & 0 \end{array}$$

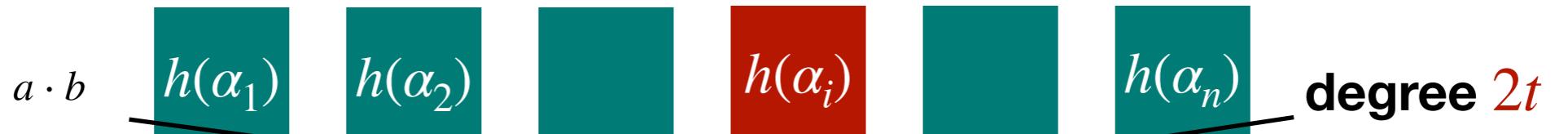
$$\begin{array}{c} h(\alpha_2) \\ \hline H_2(\alpha_1) & H_2(\alpha_2) & \vdots & H_2(\alpha_i) & \vdots & H_2(\alpha_n) & 0 \end{array}$$

$$\begin{array}{c} \vdots \\ \vdots \end{array}$$

$$\begin{array}{c} h(\alpha_i) + e_i \\ \hline \widetilde{H}_i(\alpha_1) & \widetilde{H}_i(\alpha_2) & \vdots & \widetilde{H}_i(\alpha_i) & \vdots & \widetilde{H}_i(\alpha_n) & e_i \end{array}$$

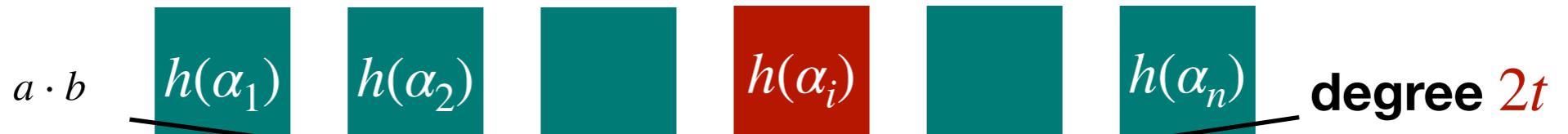
$$\begin{array}{c} \vdots \\ \vdots \end{array}$$

$$\begin{array}{c} h(\alpha_n) \\ \hline H_n(\alpha_1) & H_n(\alpha_2) & \vdots & H_n(\alpha_i) & \vdots & H_n(\alpha_n) & 0 \end{array}$$



$(4t + 1, 2t + 1, 2t + 1)$

$a \cdot b$	$h(\alpha_1)$	$h(\alpha_2)$	\vdots	$h(\alpha_i)$	\vdots	$h(\alpha_n)$	degree $2t$
	$H_1(\alpha_1)$	$H_1(\alpha_2)$		$H_1(\alpha_i)$		$H_1(\alpha_n)$	0
$h(\alpha_2)$	$H_2(\alpha_1)$	$H_2(\alpha_2)$		$H_2(\alpha_i)$		$H_2(\alpha_n)$	0
$h(\alpha_i) + e_i$	$h(\alpha_i) + e_i$						e_i
$h(\alpha_n)$	$H_n(\alpha_1)$	$H_n(\alpha_2)$		$H_n(\alpha_i)$		$H_n(\alpha_n)$	0



$(4t + 1, 2t + 1, 2t + 1)$

$P_1 \quad P_2 \quad P_i \quad P_n$

$h(\alpha_1)$	$H_1(\alpha_1)$	$H_1(\alpha_2)$		$H_1(\alpha_i)$		$H_1(\alpha_n)$
$h(\alpha_2)$	$H_2(\alpha_1)$	$H_2(\alpha_2)$		$H_2(\alpha_i)$		$H_2(\alpha_n)$
$h(\alpha_i)$	$h(\alpha_i)$	$h(\alpha_i)$	$h(\alpha_i)$	$h(\alpha_i)$	$h(\alpha_i)$	$h(\alpha_i)$
$h(\alpha_n)$	$H_n(\alpha_1)$	$H_n(\alpha_2)$		$H_n(\alpha_i)$		$H_n(\alpha_n)$

Conclusion - Multiplication with $n = 4t + 1$

- **Input:** Each party holds $g_a(\alpha_i), g_b(\alpha_i)$
- Each party multiplies $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$
- The parties sub-share $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$
 - And then they check and “correct” wrong inputs
- Now each party P_j holds a share on each one of the polynomials $H_1(x), \dots, H_n(x)$ that hide $h(\alpha_1), \dots, h(\alpha_n)$, resp.
 - That is, P_j holds $H_1(\alpha_j), \dots, H_n(\alpha_j)$
- **Output:** $\lambda_1 \cdot H_1(\alpha_j) + \dots + \lambda_n \cdot H_n(\alpha_j)$

What About $n = 3t + 1$?

- **Input:** Each party holds $g_a(\alpha_i), g_b(\alpha_i)$
- Each party multiplies $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$
- The parties sub-share $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$
 - And then they check and “correct” wrong inputs
- Now each party P_j holds a share on each one of the polynomials $H_1(x), \dots, H_n(x)$ that hide $h(\alpha_1), \dots, h(\alpha_n)$, resp.
 - That is, P_j holds $H_1(\alpha_j), \dots, H_n(\alpha_j)$
- **Output:** $\lambda_1 \cdot H_1(\alpha_j) + \dots + \lambda_n \cdot H_n(\alpha_j)$

What About $n = 3t + 1$?

- **Input:** Each party holds $g_a(\alpha_i), g_b(\alpha_i)$
- Each party multiplies $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$
- The parties sub-share $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$
 - **And then they check and “correct” wrong inputs**
- Now each party P_j holds a share on each one of the polynomials $H_1(x), \dots, H_n(x)$ that hide $h(\alpha_1), \dots, h(\alpha_n)$, resp.
 - That is, P_j holds $H_1(\alpha_j), \dots, H_n(\alpha_j)$
 - **Output:** $\lambda_1 \cdot H_1(\alpha_j) + \dots + \lambda_n \cdot H_n(\alpha_j)$

When $n = 3t + 1$, we can correct only $t/2$ errors for a polynomial of degree $2t$

What About $n = 3t + 1$?

- **Input:** Each party holds $g_a(\alpha_i), g_b(\alpha_i)$
- Each party sub-shares $g_a(\alpha_i)$ and $g_b(\alpha_i)$
 - Since $g_a(x), g_b(x)$ are of degree t , we can guarantee that right values where shared
- Each party sub-shares $h(\alpha_i) = g_a(\alpha_i) \cdot g_b(\alpha_i)$
 - And “proves” that those sub-shares agree with the sub-shares of $g_a(x), g_b(x)$
- Now each party P_j holds a share on each one of the polynomials $H_1(x), \dots, H_n(x)$ that hide $h(\alpha_1), \dots, h(\alpha_n)$, resp.
 - That is, P_j holds $H_1(\alpha_j), \dots, H_n(\alpha_j)$
 - **Output:** $\lambda_1 \cdot H_1(\alpha_j) + \dots + \lambda_n \cdot H_n(\alpha_j)$

Main Theorems

- We saw:
 - **Perfectly secure** protocol in the **semi-honest** model, for $t < n/2$ [BGW88,CCD88]
 - **Perfectly secure** protocol in the **malicious** model, for $t < n/4$
- It holds:
 - **Perfectly secure** protocol in the **malicious** model, for $t < n/3$ [BGW88]
 - Statistically secure [CCD88]
 - **Statistically secure** protocol in the **malicious** model, for $t < n/2$ (assuming broadcast) [RB89]

What About $n = 3t + 1$?

- **Input:** Each party holds $g_a(\alpha_i), g_b(\alpha_i)$
- Each party sub-shares $g_a(\alpha_i)$ and $g_b(\alpha_i)$
 - Since $g_a(x), g_b(x)$ are of degree t , we can guarantee that right values where shared
- Each party sub-shares $g_a(\alpha_i) \cdot g_b(\alpha_i)$
 - And “proves” that those sub-shares agree with the sub-shares of $g_a(x), g_b(x)$
- Now each party P_j holds a share on each one of the polynomials $H_1(x), \dots, H_n(x)$ that hide $h(\alpha_1), \dots, h(\alpha_n)$, resp.
 - That is, P_j holds $H_1(\alpha_j), \dots, H_n(\alpha_j)$
 - **Output:** $\lambda_1 \cdot H_1(\alpha_j) + \dots + \lambda_n \cdot H_n(\alpha_j)$

What About $n = 3t + 1$?

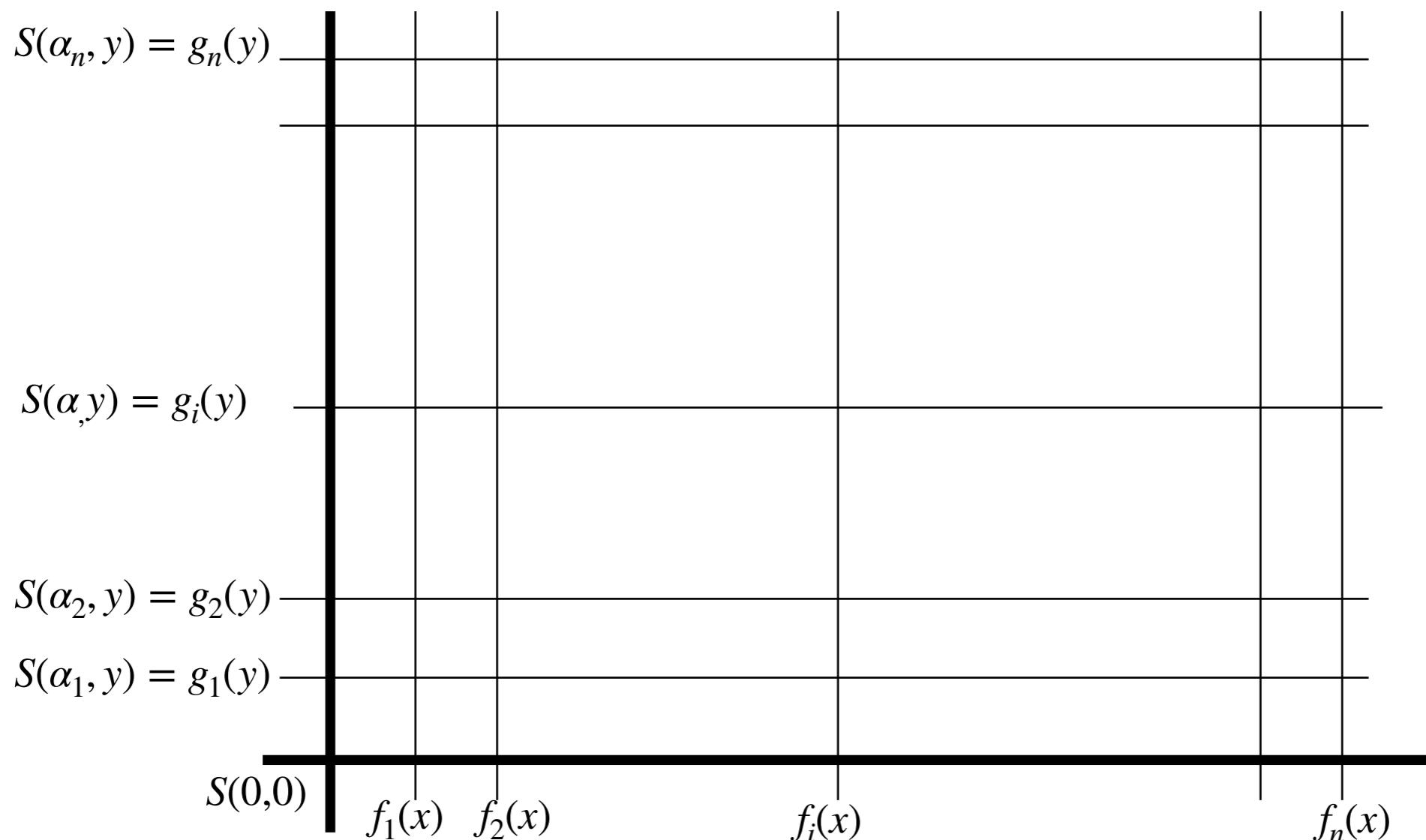
- **Input:** Each party holds $g_a(\alpha_i), g_b(\alpha_i)$
- ~~Each party sub-shares $g_a(\alpha_i)$ and $g_b(\alpha_i)$~~
 - Since $g_a(x), g_b(x)$ are of degree t ,
we can guarantee that right values where shared
- Each party sub-shares $g_a(\alpha_i) \cdot g_b(\alpha_i)$
 - And “proves” that those sub-shares agree with the sub-shares of $g_a(x), g_b(x)$
- Now each party P_j holds a share on each one of the polynomials $H_1(x), \dots, H_n(x)$ that hide $h(\alpha_1), \dots, h(\alpha_n)$, resp.
 - That is, P_j holds $H_1(\alpha_j), \dots, H_n(\alpha_j)$
 - **Output:** $\lambda_1 \cdot H_1(\alpha_j) + \dots + \lambda_n \cdot H_n(\alpha_j)$

Changing the Invariant

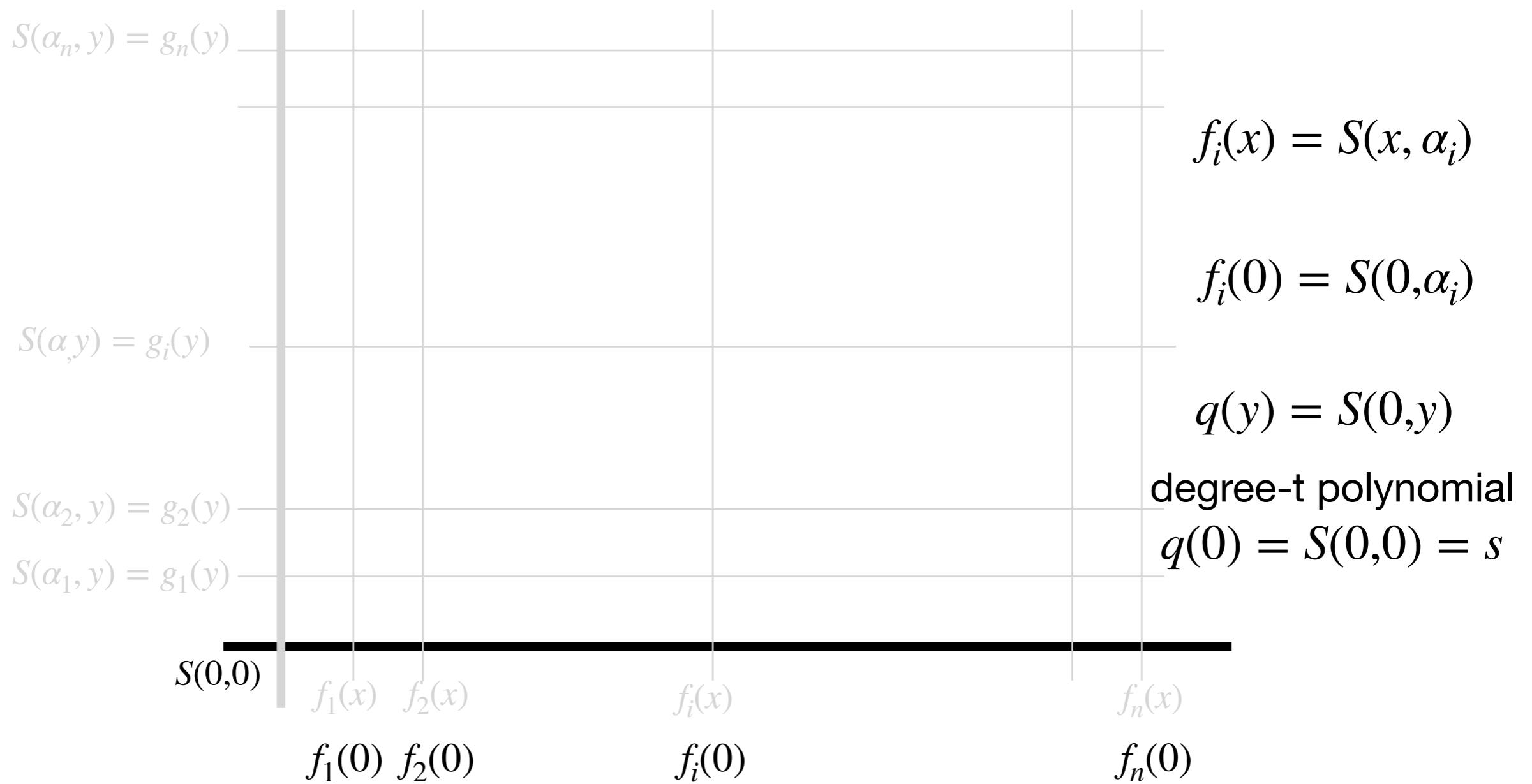
[A-Lindell-Rabin11]

- Instead of having:
“Each value on a wire is hidden with a univariate polynomial of degree- t ”
- We can work with:
*“Each value on a wire is hidden with a **bivariate** polynomial of degree- t ”*

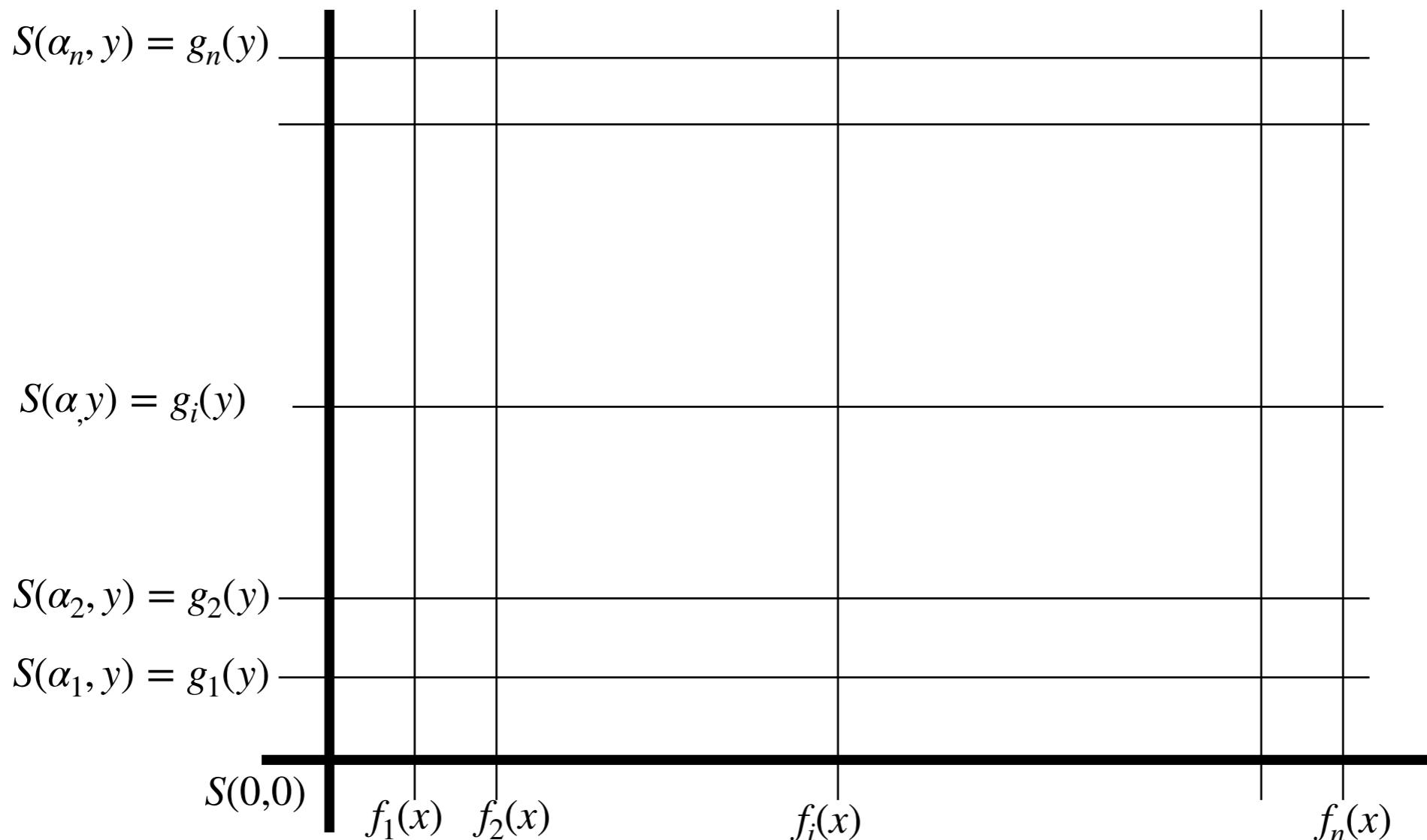
Recall VSS



Recall VSS



But... This is Exactly Sub-Share



Conclusion

- We saw:
 - **Perfectly secure** protocol in the **semi-honest** model, for $t < n/2$ [BGW88,CCD88]
 - **Perfectly secure** protocol in the **malicious** model, for $t < n/4$
- It holds:
 - **Perfectly secure** protocol in the **malicious** model, for $t < n/3$ [BGW88]
 - Statistically secure [CCD88]
 - **Statistically secure** protocol in the **malicious** model, for $t < n/2$ (assuming broadcast) [RB89]

Thank You!!

References

- Michael Ben-Or, Shafi Goldwasser, Avi Wigderson:
Completeness theorems for non-cryptographic fault-tolerant distributed computation
- David Chaum, Claude Crépeau, Ivan Damgård:
Multiparty Unconditionally Secure Protocols
- Tal Rabin, Michael Ben-Or:
Verifiable Secret Sharing and Multiparty Protocols with Honest Majority
- Gilad Asharov, Yehuda Lindell:
A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation.
- Gilad Asharov, Yehuda Lindell, Tal Rabin:
Perfectly-Secure Multiplication for Any $t < n/3$.
- Ronald Cramer, Ivan Damgård, Jesper Buus Nielsen:
Secure Multiparty Computation and Secret Sharing. Cambridge University Press 2015, ISBN 9781107043053