

Arithmetization FRI and PCS

Eli Ben-Sasson

◆ February 2023



1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to problems about local relations between a bunch of polynomials

Example: For public 256-bit string z , Bob claims knows a SHA2-preimage of z

1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to problems about local relations between a bunch of polynomials

Example: For public 256-bit string z , Bob claims knows a SHA2-preimage of z

Pre-arithmetization
claim

“*I know y such that
SHA2(y)= z* ”

1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to problems about local relations between a bunch of polynomials

Example: For public 256-bit string z , Bob claims knows a SHA2-preimage of z

Pre-arithmetization claim

“I know y such that
 $SHA2(y)=z$ ”

Reduction

produces 2
polynomials:
 $Q(X, Y, T, W)$, $R(X)$ and
degree bound d

1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to problems about local relations between a bunch of polynomials

Example: For public 256-bit string z , Bob claims knows a SHA2-preimage of z

Pre-arithmetization claim

“I know y such that
 $SHA2(y)=z$ ”

Reduction

produces 2
polynomials:
 $Q(X, Y, T, W)$, $R(X)$ and
degree bound d

Post-arithmetization claim

I know 4 polynomials
of degree d - $A(x)$, $B(x)$,
 $C(x)$, $D(X)$ - such that:

$Q(X, A(X), B(X+1),$
 $C(2^*X))=D(X) * R(X)$

1) Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to problems about local relations between a bunch of polynomials

Example: For public 256-bit string z , Bob claims knows a SHA2-preimage of z

Pre-arithmetization claim

“I know y such that $SHA2(y)=z$ ”

Reduction

produces 2 polynomials:
 $Q(X, Y, T, W)$, $R(X)$ and degree bound d

Post-arithmetization claim

I know 4 polynomials of degree d - $A(x)$, $B(x)$, $C(x)$, $D(X)$ - such that:

$$Q(X, A(X), B(X+1), C(2^*X)) = D(X) * R(X)$$

Theorem

If A , B , C , D do not satisfy **THIS**,

then nearly all x expose Bob's lie

1) Arithmetization

Assuming Theorem, we get a scalable proof system for Bob's original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob's claim iff equality holds for this x

Pre-arithmetization claim

*"I know y such that
SHA2(y)=z"*

Reduction

*produces 2
polynomials:
 $Q(X, Y, T, W)$, $R(X)$ and
degree bound d*

Post-arithmetization claim

*I know 4 polynomials
of degree d - $A(x)$, $B(x)$,
 $C(x)$, $D(X)$ - such that:*

$$Q(X, A(X), B(X+1),
C(2^*X)) = D(X) * R(X)$$

Theorem

*If A, B, C, D do not
satisfy THIS,*

*then nearly all x
expose Bob's lie*

2) Low degreeness

Assuming Theorem, we get a scalable proof system for Bob's original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob's claim iff equality holds for this x

New Computational Integrity problem: Force Bob to answer all queries according to some quadruple of degree-d polynomials

Post-arithmetization claim

I know 4 polynomials of degree d - $A(x)$, $B(x)$, $C(x)$, $D(X)$ - such that:

$$Q(X, A(X), B(X+1), C(2^*X)) = D(X) * R(X)$$

Theorem

If A , B , C , D do not satisfy THIS,

then nearly all x expose Bob's lie

Arithmetization Boot Camp

Goal: See how Polynomials lead to Succinct Verification

**Goal: See how Polynomials lead to
Succinct Verification**

Non-Goal: Understand Why

Arithmetization Toy Problem

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X-a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$,
 $\deg(Q) = \deg(P) - |H|$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X-a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$,
 $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$,
then $\Pr_a [f(a) = g(a)] < 1/100$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 1: P , committed by PCS, vanishes on H

Challenge: Succinct protocol to verify Clm 1

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X-a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 1: P , committed by PCS, vanishes on H

Challenge: Succinct protocol to verify Clm 1

Protocol:

- * Prover Commits to P, Q using PCS, $\deg(Q) < d - |H|$
- * Verifier
 - samples random $a \in \mathbb{F}$,
 - queries PCS for $P(a), Q(a)$,
 - accepts iff $P(a) - Z_H(a) * Q(a) = 0$

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X - a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 1: P , committed by PCS, vanishes on H

Challenge: Succinct protocol to verify Clm 1

Protocol:

- * Prover Commits to P, Q using PCS, $\deg(Q) < d - |H|$
- * Verifier
 - samples random $a \in \mathbb{F}$,
 - queries PCS for $P(a), Q(a)$,
 - accepts iff $P(a) - Z_H(a) * Q(a) = 0$

Efficiency: 2 queries, $O(|H|)$ operations (+PCS cost)

Soundness: $\text{Prob}[\text{error}] < d/|\mathbb{F}|$.

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X - a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 1: P , committed by PCS, vanishes on H

Challenge: Succinct protocol to verify Clm 1

Protocol:

* Prover Commits to P, Q using PCS, $\deg(Q) < d - |H|$

* Verifier

- samples random $a \in \mathbb{F}$,
- queries PCS for $P(a), Q(a)$,
- accepts iff $P(a) - Z_H(a) * Q(a) = 0$

$\log |H|$

Efficiency: 2 queries, $O(|H|)$ operations (+PCS cost)

Soundness: $\text{Prob}[\text{error}] < d/|\mathbb{F}|$.

Proof: Assume P doesn't vanish on H .

Fact 1: $P(X) - Z_H(a) * Q(a)$ is non-zero deg d polynomial

Fact 0: at most d “erroneous” values of a exist in \mathbb{F} \square

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X - a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$
3. For H a multiplicative group: $Z_H(X) = X^{|H|} - 1$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 2: P , $\deg(P) < d$, is $\{0,1\}$ -valued on H

Challenge: Succinct protocol to verify Clm 2

Hint: $C(Y) = Y * (1-Y)$ has roots $\{0,1\}$

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X-a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$
3. For H a multiplicative group: $Z_H(X) = X^{|H|} - 1$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 2: P , $\deg(P) < d$, is $\{0,1\}$ -valued on H

Challenge: Succinct protocol to verify Clm 2

Protocol:

- * Prover Commits to P, Q using PCS, $\deg(Q) < 2d - |H|$
- * Verifier
 - samples random $a \in \mathbb{F}$,
 - queries PCS for $P(a), Q(a)$,
 - accepts iff $(P(a)^*(1-P(a))) \cdot Z_H(a)^*Q(a) = 0$

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X-a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) \cdot Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$
3. For H a multiplicative group: $Z_H(X) = X^{|H|} - 1$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 2: P , $\deg(P) < d$, is $\{0,1\}$ -valued on H

Challenge: Succinct protocol to verify Clm 2

Protocol:

- * Prover Commits to P, Q using PCS, $\deg(Q) < 2d - |H|$
- * Verifier
 - samples random $a \in \mathbb{F}$,
 - queries PCS for $P(a), Q(a)$,
 - accepts iff $(P(a)^*(1-P(a)) - Z_H(a)^*Q(a)) = 0$

Efficiency: 2 queries, $O(\log |H|)$ operations (+PCS cost)

Soundness: $\text{Prob}[\text{error}] < 2d/|\mathbb{F}|$.

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X-a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X)^*Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$
3. For H a multiplicative group: $Z_H(X) = X^{|H|} - 1$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 2: P , $\deg(P) < d$, is $\{0,1\}$ -valued on H

Challenge: Succinct protocol to verify Clm 2

Protocol:

- * Prover Commits to P, Q using PCS, $\deg(Q) < 2d - |H|$
- * Verifier
 - samples random $a \in \mathbb{F}$,
 - queries PCS for $P(a), Q(a)$,
 - accepts iff $(P(a) * (1 - P(a))) - Z_H(a) * Q(a) = 0$

Efficiency: 2 queries, $O(\log |H|)$ operations (+PCS cost)

Soundness: $\text{Prob}[\text{error}] < 2d/|\mathbb{F}|$.

Proof: Assume P not $\{0,1\}$ -valued

Then $P(X) * (1 - P(X))$ doesn't vanish on H .

Fact 1: $P(X) * (1 - P(X)) - Z_H(a) * Q(a)$ is non-zero deg $2d$

Fact 0: at most $2d$ "erroneous" values of a exist in \mathbb{F} \square

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X - a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$
3. For H a multiplicative group: $Z_H(X) = X^{|H|} - 1$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Arithmetization Toy Problem

Clm 3: I know $(a_0, \dots, a_{|H|-1}) \in \{0,1\}^{|H|}$ s.t. $(b_0, \dots, b_{|H|-1})$ satisfies

- $b_0 = b_1 = 1$ and $b_{|H|-1} = 42 \pmod{p}$
- $b_i = b_{i-2}^3 + a_i * b_{i-1}$

Challenge: Succinct protocol to verify Clm 3

Hint 1: Index sequences using g^i , for g generator of H

Hint 2: Use more than 1 constraint polynomial

Algebra Facts

For field \mathbb{F} , $H \subseteq \mathbb{F}$, let $Z_H(X) = \prod_{a \in H} (X-a)$

1. $\forall a \in H: P(a) = 0 \Leftrightarrow \exists Q(X): P(X) = Q(X) * Z_H(X)$, $\deg(Q) = \deg(P) - |H|$
2. If $f, g: S \rightarrow \mathbb{F}$, $\deg(f), \deg(g) < d$ and $|S| = 100d$, then $\Pr_a [f(a) = g(a)] < 1/100$
3. For H a multiplicative group: $Z_H(X) = X^{|H|} - 1$

Ideal PCS functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

From FRI to Polynomial Commitment Schemes

Eli Ben-Sasson

◆ February 2023

Polynomial Commitment Scheme

Ideal functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X], \deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Polynomial Commitment Scheme

PCS for \mathbb{F} , degree d

Bob sends $\text{comm}(P)$ to **Alice**

Alice queries **Bob** for $a \in \mathbb{F}$; **Bob** answers with b

Both interact, then **Alice** decides accept/reject

Want

- **Completeness**
- **Soundness:** $\Pr[\text{Alice accepts } b \neq P(a)] < 2^{-128}$
- **Efficiency:** proving time, verification, #rounds, ...

Ideal functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

Polynomial Commitment Scheme

PCS for \mathbb{F} , degree d

Bob sends $\text{comm}(P)$ to **Alice**

Alice queries **Bob** for $a \in \mathbb{F}$; **Bob** answers with b

Both interact, then **Alice** decides accept/reject

Want

- **Completeness**
- **Soundness:** $\Pr[\text{Alice accepts } b \neq P(a)] < 2^{-128}$
- **Efficiency:** proving time, verification, #rounds, ...
- **Succinctness:** verification time = $\text{polylog}(d)$
- **Security:** which crypto assumptions? PQ secure?
- **Universality:** all finite fields (and rings?)

Ideal functionality

Alice specifies field \mathbb{F} and degree d

Bob sends $P(X) \in \mathbb{F}[X]$, $\deg(P) < d$ to **Tom** (trusted party)

Alice queries **Tom** for $a \in \mathbb{F}$ and **Tom** answers with $P(a)$

FRI - Fast Reed Solomon IOP of Proximity

PCS for \mathbb{F} , degree d

Bob sends $\text{comm}(P)$ to **Alice**

Alice queries **Bob** for $a \in \mathbb{F}$; **Bob** answers with b

Both interact, then **Alice** decides accept/reject

Want

- **Completeness**
- **Soundness:** $\Pr[\text{Alice accepts } b \neq P(a)] < 2^{-128}$
- **Efficiency:** proving time, verification, #rounds
- **Succinctness:** verification time = $\text{polylog}(d)$
- **Security:** which crypto assumptions? PQ secure?
- **Universality:** all finite fields (and rings?)

FRI [BBHR 2018]

Proving = $O(d)$, verification, #rounds = $O(\log d)$

PQ-secure under CRH (interactive), or Fiat-Shamir (noninteractive)

Yes! (for fields) [BCLK 22, EC-FFT/EC-FRI/EC-STARK]

FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP)

- Model that generalizes PCP and IP; equivalent to MIP
- **Bob (Prover)** provides oracle access to proof (like PCP)
- **Alice (Verifier)** sends randomness (like IP)
- **Prover** sends another oracle (based on prior history)
- **Verifier** sends more randomness,
- ...
- ...
- **Verifier** queries the oracles, based on answers decides accept/reject

FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) for the following problem:

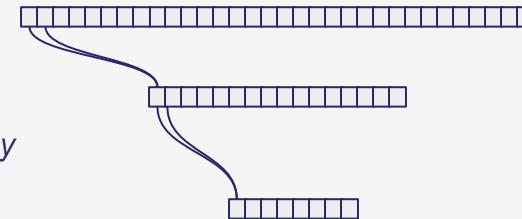
- Given $S_0 \subseteq \mathbb{F}$, $f_0: S_0 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_0) < |S_0| // 16$
- Verifier sends $x_0 \in \mathbb{F}$
- Given $S_1 \subseteq \mathbb{F}$, $f_1: S_1 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_1) < |S_1| // 16$
where $f_1(y) = F(f_0(y'), f_0(y''), x_0)$; F fixed, y', y'' fixed given y
- ...



FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) for the following problem:

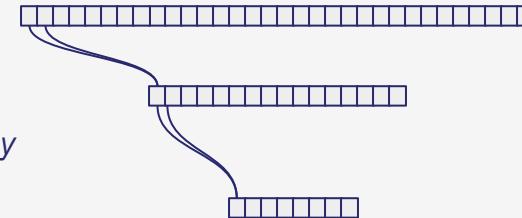
- Given $S_0 \subseteq \mathbb{F}$, $f_0: S_0 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_0) < |S_0|/16$
- Verifier sends $x_0 \in \mathbb{F}$
- Given $S_1 \subseteq \mathbb{F}$, $f_1: S_1 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_1) < |S_1|/16$
where $f_1(y) = F(f_0(y'), f_0(y''), x_0)$; F fixed, y', y'' fixed given y
- ...
- Verifier picks random $y \in \mathbb{F}$ and “follows” path checking local constraints
- **Efficiency:** Proof size $< 2 |S_0|$;
- **Succinctness:** Verification = $O(\log |S_0|) = O(\log d)$;
- **Perfect Completeness**
- **Knowledge Soundness [BCIKS20]:** If f_0 is accepted w.p. $> \frac{1}{4} + 0.001$, can Extract $P(X)$, $\deg(P) < |S_0|/16$ that agrees with f_0
- **Open question:** is soundness (or knowledge soundness) equal to rate ($1/16$) or to $\sqrt{\text{rate}}$ ($\frac{1}{4}$) ?



FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) for the following problem:

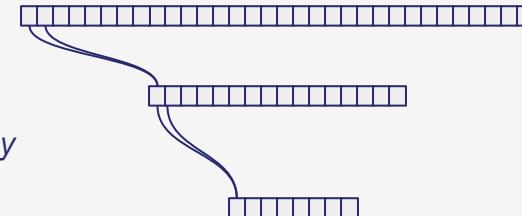
- Given $S_0 \subseteq \mathbb{F}$, $f_0: S_0 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_0) < |S_0|/\textcolor{red}{16}$
- Verifier sends $x_0 \in \mathbb{F}$
- Given $S_1 \subseteq \mathbb{F}$, $f_1: S_1 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_1) < |S_1|/\textcolor{red}{16}$
where $f_1(y) = F(f_0(y'), f_0(y''), x_0)$; F fixed, y', y'' fixed given y
- ...
- Verifier picks random $y \in \mathbb{F}$ and “follows” path checking local constraints
- **Efficiency:** Proof size $< 2 |S_0|$;
- **Succinctness:** Verification = $O(\log |S_0|) = O(\log d)$;
- **Perfect Completeness**
- **Knowledge Soundness [BCIKS20]:** If f_0 is accepted w.p. $> \frac{1}{4} + 0.001$, can Extract $P(X)$, $\deg(P) < |S_0|/\textcolor{red}{16}$ that agrees with f_0
- **Open question:** is soundness (or knowledge soundness) equal to rate ($1/16$) or to $\sqrt{\text{rate}}$ ($\frac{1}{4}$) ?
- **Concrete proof size:** ~10-100KB range (for $d \sim 2^{10} - 2^{40}$ range)



FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) for the following problem:

- Given $S_0 \subseteq \mathbb{F}$, $f_0: S_0 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_0) < |S_0| // 16$
- Verifier sends $x_0 \in \mathbb{F}$
- Given $S_1 \subseteq \mathbb{F}$, $f_1: S_1 \rightarrow \mathbb{F}$, Prover claim: $\deg(f_1) < |S_1| // 16$
where $f_1(y) = F(f_0(y'), f_0(y''), x_0)$; F fixed, y', y'' fixed given y
- ...
- Verifier picks random $y \in \mathbb{F}$ and “follows” path checking local constraints



PCS based on FRI?

- Prover commits to $f: S \rightarrow \mathbb{F}$
- Verifier queries a , prover answers b
- Both parties run FRI on $f_0: S_0 \rightarrow \mathbb{F}$ defined by $f_0(x) := (f(x) - b) / (x - a)$