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Arithmetization Converts (“reduces”) Computational Integrity problems to 
problems about local relations between a bunch of polynomials

Example: For public 256-bit string z, Bob claims knows a SHA2-preimage of z

Pre-arithmetization 
claim

“I know y such that 
SHA2(y)=z”

Reduction Post-arithmetization 
claim

Theorem

produces 2 
polynomials: 
Q(X,Y,T,W), R(X) and 
degree bound d

I know 4 polynomials 
of degree d - A(x), B(x), 
C(x), D(X) - such that: 

Q(X, A(X), B(X+1), 
C(2*X))=D(X) * R(X)

If A, B, C, D do not 
satisfy THIS, 

then nearly all x 
expose Bob’s lie



Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x
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2) Low degreeness
Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

Post-arithmetization 
claim

Theorem

I know 4 polynomials 
of degree d - A(x), B(x), 
C(x), D(X) - such that: 

Q(X, A(X), B(X+1), 
C(2*X))=D(X) * R(X)

If A, B, C, D do not 
satisfy THIS, 

then nearly all x 
expose Bob’s lie

New Computational 
Integrity problem: Force 
Bob to answer all queries 
according to some 
quadruple of degree-d 
polynomials 
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* Verifier

- samples random a ∊ F, 
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- accepts iff P(a)-ZH(a)*Q(a) = 0

Efficiency: 2 queries, O(|H|) operations (+PCS cost) 
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Clm 2: P, deg(P)<d, is {0,1}-valued on H
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* Verifier

- samples random a ∊ F, 
- queries PCS for P(a), Q(a), 
- accepts iff (P(a)*(1-P(a))-ZH(a)*Q(a) = 0

Efficiency: 2 queries, O(log |H|) operations (+PCS cost) 
Soundness: Prob[error] < 2d/|F|. 
Proof: Assume P not {0,1}-valued
Then P(X)*(1-P(X)) doesn’t vanish on H.
Fact 1: P(X)*(1-P(X))-ZH(a)*Q(a) is non-zero deg 2d
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Arithmetization Toy Problem

Clm 3: I know (a0,...,a|H|-1)∊ {0,1}|H| s.t. (b0,...,b|H|-1) satisfies
- b0= b1= 1 and b|H|-1= 42 mod p 
- bi = bi-2 3+ ai * bi-1

Challenge: Succinct protocol to verify Clm 3

Hint 1: Index sequences using gi, for g generator of H

Hint 2: Use more than 1 constraint polynomial

Ideal PCS functionality 

Alice specifies field F and degree d 

Bob sends P(X)∊ F[X], deg(P)<d to Tom (trusted party)

Alice queries Tom for a ∊ F and Tom answers with P(a)

Algebra Facts

For field F, H ⊆ F, let ZH(X)=∏a ∊ H (X-a)

1. ∀a ∊ H: P(a) =0 ⇔ ∃ Q(X): P(X)=Q(X)*ZH(X), 
deg(Q)=deg(P)-|H|

2. If f, g: S ➙ F, deg(f), deg(g)< d and |S|=100d, 
then Pra[f(a)=g(a)]<1/100

3. For H a multiplicative group: ZH(X)= X|H|-1
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Polynomial Commitment Scheme

Ideal functionality 

Alice specifies field F and degree d 

Bob sends P(X)∊ F[X], deg(P)<d to Tom (trusted party)

Alice queries Tom for a ∊ F and Tom answers with P(a)



Polynomial Commitment Scheme

PCS for F, degree d 

Bob sends comm(P) to Alice

Alice queries Bob for a ∊ F; Bob answers with b

Both interact, then Alice decides accept/reject 

Want
- Completeness
- Soundness: Pr[Alice accepts b ≠ P(a)] < 2-128

- Efficiency: proving time, verification, #rounds, …
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Want
- Completeness
- Soundness: Pr[Alice accepts b ≠ P(a)] < 2-128

- Efficiency: proving time, verification, #rounds, …
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PCS for F, degree d 

Bob sends comm(P) to Alice

Alice queries Bob for a ∊ F; Bob answers with b

Both interact, then Alice decides accept/reject 

Want
- Completeness
- Soundness: Pr[Alice accepts b ≠ P(a)] < 2-128

- Efficiency: proving time, verification, #rounds
- Succinctness: verification time = polylog(d)
- Security: which crypto assumptions? PQ secure?
- Universality: all finite fields (and rings?)

FRI [BBHR 2018]

Proving = O(d), verification, #rounds = O(log d)

PQ-secure under CRH (interactive), or Fiat-Shamir (noninteractive)
Yes! (for fields) [BCLK 22, EC-FFT/EC-FRI/EC-STARK]

FRI - Fast Reed Solomon IOP of Proximity



FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) 
- Model that generalizes PCP and IP; equivalent to MIP
- Bob (Prover) provides oracle access to proof (like PCP)
- Alice (Verifier) sends randomness (like IP)
- Prover sends another oracle (based on prior history)
- Verifier sends more randomness, 
- …
- …
- Verifier queries the oracles, based on answers decides accept/reject



FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) for the following problem:
- Given S0 ⊆ F, f0 : S0 ➙ F, Prover claim: deg(f0)< |S0|/ 16
- Verifier sends x0 ∊ F
- Given S1 ⊆ F, f1 : S1 ➙ F, Prover claim: deg(f1)< |S1|/ 16

where f1(y)=F(f0(y’), f0(y’’), x0); F fixed, y’, y’’ fixed given y
- …
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where f1(y)=F(f0(y’), f0(y’’), x0); F fixed, y’, y’’ fixed given y
- …
- Verifier picks random y ∊ F and “follows” path checking local constraints
- Efficiency: Proof size < 2 |S0|; 
- Succinctness: Verification = O(log |S0|) = O(log d);
- Perfect Completeness
- Knowledge Soundness [BCIKS20]: If f0 is accepted w.p. > ¼+0.001, can Extract P(X), deg(P)<|S0|/16 that agrees with f0
- Open question: is soundness (or knowledge soundness) equal to rate (1/16) or to \sqrt(rate) (¼) ?



FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) for the following problem:
- Given S0 ⊆ F, f0 : S0 ➙ F, Prover claim: deg(f0)< |S0|/ 16
- Verifier sends x0 ∊ F
- Given S1 ⊆ F, f1 : S1 ➙ F, Prover claim: deg(f1)< |S1|/ 16

where f1(y)=F(f0(y’), f0(y’’), x0); F fixed, y’, y’’ fixed given y
- …
- Verifier picks random y ∊ F and “follows” path checking local constraints
- Efficiency: Proof size < 2 |S0|; 
- Succinctness: Verification = O(log |S0|) = O(log d);
- Perfect Completeness
- Knowledge Soundness [BCIKS20]: If f0 is accepted w.p. > ¼+0.001, can Extract P(X), deg(P)<|S0|/16 that agrees with f0
- Open question: is soundness (or knowledge soundness) equal to rate (1/16) or to \sqrt(rate) (¼) ?

- Concrete proof size: ~10-100KB range (for d~210-240 range)



FRI - Fast Reed Solomon IOP of Proximity

Interactive Oracle Proof (IOP) for the following problem:
- Given S0 ⊆ F, f0 : S0 ➙ F, Prover claim: deg(f0)< |S0|/ 16
- Verifier sends x0 ∊ F
- Given S1 ⊆ F, f1 : S1 ➙ F, Prover claim: deg(f1)< |S1|/ 16

where f1(y)=F(f0(y’), f0(y’’), x0); F fixed, y’, y’’ fixed given y
- …
- Verifier picks random y ∊ F and “follows” path checking local constraints

PCS based on FRI?
- Prover commits to f : S ➙ F 
- Verifier queries a, prover answers b
- Both parties run FRI on f0 : S0 ➙ F defined by f0 (x):= (f(x)-b)/(x-a)


