
Zero-knowledge and multi-party (quantum) computation

in the quantum world

Alex Bredariol Grilo

Primitives

One-way functions

Secret-key encryption

Pseudo-random number generators

Public-key encryption

Oblivious transfer

Two-party computation

Multi-party computation

indistinguishable Obfuscation

Witness encryption

Functional encryption

Zero-knowledge proof systems

How to propose implementations and prove their security?

2 / 58

Reductions

+ =⇒

~w
+

3 / 58

Reductions

+ =⇒

~w
+

3 / 58

Reductions

+ =⇒

~w
+

3 / 58

Primitives

One-way functions

Secret-key encryption

Pseudo-random number generators

Public-key encryption

Oblivious transfer

Two-party computation

Multi-party computation

indistinguishable Obfuscation

Witness encryption

Functional encryption

Zero-knowledge proof systems

×

4 / 58

Primitives

One-way functions

Secret-key encryption

Pseudo-random number generators

Public-key encryption

Oblivious transfer

Two-party computation

Multi-party computation

indistinguishable Obfuscation

Witness encryption

Functional encryption

Zero-knowledge proof systems

×

4 / 58

Minicrypt: OWFs exist

Cryptomania: PKE schemes exist

Obfutopia: iO exists

5 / 58

... if crypto is possible

Algorithmica(+Heuristica): We can solve NP (in practice)

Pessiland: We cannot solve NP and OWFs do not exist

6 / 58

How do quantum resources affect these reductions/worlds?

Quantum helps honest parties

Quantum helps malicious parties

What are the minimal assumptions for quantum functionalities?

7 / 58

How do quantum resources affect these reductions/worlds?

Quantum helps honest parties

Quantum helps malicious parties

What are the minimal assumptions for quantum functionalities?

7 / 58

How do quantum resources affect these reductions/worlds?

Quantum helps honest parties Quantum helps malicious parties

What are the minimal assumptions for quantum functionalities?

7 / 58

How do quantum resources affect these reductions/worlds?

Quantum helps honest parties Quantum helps malicious parties

What are the minimal assumptions for quantum functionalities?

7 / 58

ZK and MPC in the quantum world

Zero-knowledge proofs
Central tool in crypto toolbox

1 ZK for NP in MiniCrypt

2 ZK against quantum adversaries

3 ZK for QMA (“quantum NP”)

Multi-party computation
Most-general functionality (modulo #rounds)

1 MPC from Oblivious transfer

2 OT is in MiniQCrypt

3 Multi-party quantum computation

8 / 58

ZK and MPC in the quantum world

Zero-knowledge proofs
Central tool in crypto toolbox

1 ZK for NP in MiniCrypt

2 ZK against quantum adversaries

3 ZK for QMA (“quantum NP”)

Multi-party computation
Most-general functionality (modulo #rounds)

1 MPC from Oblivious transfer

2 OT is in MiniQCrypt

3 Multi-party quantum computation

8 / 58

ZK and MPC in the quantum world

Zero-knowledge proofs
Central tool in crypto toolbox

1 ZK for NP in MiniCrypt

2 ZK against quantum adversaries

3 ZK for QMA (“quantum NP”)

Multi-party computation
Most-general functionality (modulo #rounds)

1 MPC from Oblivious transfer

2 OT is in MiniQCrypt

3 Multi-party quantum computation

8 / 58

ZK and MPC in the quantum world

Zero-knowledge proofs
Central tool in crypto toolbox

1 ZK for NP in MiniCrypt

2 ZK against quantum adversaries

3 ZK for QMA (“quantum NP”)

Multi-party computation
Most-general functionality (modulo #rounds)

1 MPC from Oblivious transfer

2 OT is in MiniQCrypt

3 Multi-party quantum computation

8 / 58

ZK and MPC in the quantum world

Zero-knowledge proofs
Central tool in crypto toolbox

1 ZK for NP in MiniCrypt

2 ZK against quantum adversaries

3 ZK for QMA (“quantum NP”)

Multi-party computation
Most-general functionality (modulo #rounds)

1 MPC from Oblivious transfer

2 OT is in MiniQCrypt

3 Multi-party quantum computation

8 / 58

Zero-knowledge in the quantum world

9 / 58

Quantum comp.

Crypto TCS

QZK

10 / 58

Interactive proofs

L ∈ NP L ∈ IP

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

11 / 58

Interactive proofs

L ∈ NP

L ∈ IP

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

11 / 58

Interactive proofs

L ∈ NP L ∈ IP

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

11 / 58

Interactive proofs

L ∈ NP L ∈ IP = PSPACE

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

11 / 58

Zero-knowledge

V

0/1

P
..

.

L ∈ IP

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Zero-knowledge: “learns nothing” when x ∈ L

12 / 58

Zero-knowledge

V

0/1

P
..

.

L ∈ ZK

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Zero-knowledge: V “learns nothing” when x ∈ L

12 / 58

Zero-knowledge

Ṽ

0/1

P
..

.

L ∈ ZK

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Zero-knowledge: Ṽ “learns nothing” when x ∈ L

12 / 58

Zero-knowledge

V 0/1

X

P

..
.

SṼ Yz z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

Zero-knowledge

Ṽ

0/1X

P

..
.

SṼ Yz z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

Zero-knowledge

Ṽ

0/1

X

P

..
.

SṼ Yz z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

Zero-knowledge

Ṽ

0/1

X

P

..
.

SṼ

Yz z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

Zero-knowledge

Ṽ

0/1

X

P

..
.

SṼ Y

z z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

Zero-knowledge

Ṽ

0/1

X

P

..
.

SṼ Y

z z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

Zero-knowledge

Ṽ

0/1

X

P

..
.

SṼ Yz z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: ∀z , No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

Zero-knowledge

Ṽ

0/1

X

P

..
.

SṼ Yz z

Zero-knowledge property: X is indistinguishable from Y

(Computational) ZK: ∀z , No efficient distinguishers for the distributions

∀ poly-time A : |Prx∼X [A(x) = 1]− Pry∼Y [A(y) = 1]| ≤ negl(n)

Statistical ZK: ∀z , Distribution X is statistically close to distribution Y
Perfect ZK: ∀z , Distribution X = distribution Y

13 / 58

ZK: bread-and-butter of cryptography

Applications: authentication schemes, building block of several cryptographic compilers,
blockchains,...

Example:

A Bx

y = f (x)

ZK proof that ∃x s.t. y = f (x)

Zero-knowledge protocols for problems in NP

I ZK proof of 3-coloring

14 / 58

ZK: bread-and-butter of cryptography

Applications: authentication schemes, building block of several cryptographic compilers,
blockchains,...

Example:

A Bx

y = f (x)

ZK proof that ∃x s.t. y = f (x)

Zero-knowledge protocols for problems in NP

I ZK proof of 3-coloring

14 / 58

ZK: bread-and-butter of cryptography

Applications: authentication schemes, building block of several cryptographic compilers,
blockchains,...

Example:

A Bx

y = f (x)

ZK proof that ∃x s.t. y = f (x)

Zero-knowledge protocols for problems in NP

I ZK proof of 3-coloring

14 / 58

ZK: bread-and-butter of cryptography

Applications: authentication schemes, building block of several cryptographic compilers,
blockchains,...

Example:

A Bx

y = f (x)

ZK proof that ∃x s.t. y = f (x)

Zero-knowledge protocols for problems in NP

I ZK proof of 3-coloring

14 / 58

ZK: bread-and-butter of cryptography

Applications: authentication schemes, building block of several cryptographic compilers,
blockchains,...

Example:

A Bx

y = f (x)

ZK proof that ∃x s.t. y = f (x)

Zero-knowledge protocols for problems in NP
I ZK proof of 3-coloring

14 / 58

ZK proof for 3-coloring: attempt 1

P

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 ZK 7

15 / 58

ZK proof for 3-coloring: attempt 1

P V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 ZK 7

15 / 58

ZK proof for 3-coloring: attempt 1

P

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 ZK 7

15 / 58

ZK proof for 3-coloring: attempt 1

P

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 ZK 7

15 / 58

Bit-commitment

“Cryptographic safe”

C R

m998012
998012

m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C Rm

998012
998012

m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C R

m998012
998012

m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C R

m

998012

998012
m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C R

m

998012

998012
m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C R

m

998012
998012

m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C R

m

998012
998012

m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C R

m

998012
998012

m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

Bit-commitment

“Cryptographic safe”

C R

m

998012
998012

m

More concretely...

Cm R

commitment

opening

comm(m)

m

Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m′ 6= m

16 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

ZK proof for 3-coloring: GMW’91

P

A→ 564651

B → 867132

C → 984565

D → 894102

E → 069732

F → 873210

G → 897966

{A,C}

564651, 984565

V

A

F

E

G B

D C

V

Completeness 3 Soundness 3 CZK

17 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Simulator

Sim(z):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

What happens if Ṽ is quantum?

18 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ

σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ σ

ψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Classical zero-knowledge against quantum adversaries

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

19 / 58

Quantum simulator for classical protocol: warm-up

Sim(ψ = |z〉〈z |):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Does not work with quantum side information!

We cannot sequentially repeat this protocol!

20 / 58

Quantum simulator for classical protocol: warm-up

Sim(ψ = |z〉〈z |):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

State of Ṽ right before sending challenge:
|φ〉 =

∑
e′ αe′ |e′〉M |γe′ 〉V

Sim measures register M and gets e′ w.p.
|αe′ |2 and post-meas. state is |e′〉|γ′e 〉:

e′ = e: all is good
e′ 6= e: rewinding does not work

V †|e′〉|γ′e 〉 vs. V †|φ〉

Does not work with quantum side information!

We cannot sequentially repeat this protocol!

20 / 58

Quantum simulator for classical protocol: warm-up

Sim(ψ = |z〉〈z |):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

State of Ṽ right before sending challenge:
|φ〉 =

∑
e′ αe′ |e′〉M |γe′ 〉V

Sim measures register M and gets e′ w.p.
|αe′ |2 and post-meas. state is |e′〉|γ′e 〉:

e′ = e: all is good
e′ 6= e: rewinding does not work

V †|e′〉|γ′e 〉 vs. V †|φ〉

Does not work with quantum side information!

We cannot sequentially repeat this protocol!

20 / 58

Quantum simulator for classical protocol: warm-up

Sim(ψ = |z〉〈z |):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2 reset Ṽ and go to step 1

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Does not work with quantum side information!

We cannot sequentially repeat this protocol!

20 / 58

Quantum simulator for classical protocol: warm-up

Sim(ψ = |z〉〈z |):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2 reset Ṽ and go to step 1

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

Does not work with quantum side information!

We cannot sequentially repeat this protocol!

20 / 58

Quantum simulator for classical protocol: warm-up

Sim(ψ = |z〉〈z |):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2 reset Ṽ and go to step 1

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

Does not work with quantum side information!

We cannot sequentially repeat this protocol!

20 / 58

Quantum simulator for classical protocol: warm-up

Sim(ψ = |z〉〈z |):

1 Give z to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′ rewind to step 2 reset Ṽ and go to step 1

6 Otherwise, open the commitment of nodes in e′

7 Forward output from Ṽ

Sketch of the proof

e = e′ ⇒ output of Sim(z) is computationally
indistinguishable of (Ṽ ↔ P) by the hiding
property of the commitment scheme.

Ṽ is computationally bounded ⇒ distribution
of e′ does not depend on the commited values.

Pr [e = e′] ≥ 1
m − negl(n).

Does not work with quantum side information!

We cannot sequentially repeat this protocol!

20 / 58

Watrous’s rewinding

Theorem

Let Q be a quantum circuit such that ∃p∀|ψ〉

Q|ψ〉|0〉 =
√
p|0〉|φ0(ψ)〉+

√
1− p|1〉|φ1(ψ)〉

Then ∀ε > 0, we can construct a circuit R of size poly(|Q|, log 1/ε, 1/p) that receives an
input |ψ〉 and outputs |φ0(ψ)〉 w.p. 1− ε

Similar statement holds for the non-exact case

21 / 58

Watrous’s rewinding

Theorem

Let Q be a quantum circuit such that ∃p∀|ψ〉

Q|ψ〉|0〉 =
√
p|0〉|φ0(ψ)〉+

√
1− p|1〉|φ1(ψ)〉

Then ∀ε > 0, we can construct a circuit R of size poly(|Q|, log 1/ε, 1/p) that receives an
input |ψ〉 and outputs |φ0(ψ)〉 w.p. 1− ε

Similar statement holds for the non-exact case

21 / 58

Watrous’s rewinding

Theorem

Let Q be a quantum circuit such that ∃p∀|ψ〉

Q|ψ〉|0〉 =
√
p|0〉|φ0(ψ)〉+

√
1− p|1〉|φ1(ψ)〉

Then ∀ε > 0, we can construct a circuit R of size poly(|Q|, log 1/ε, 1/p) that receives an
input |ψ〉 and outputs |φ0(ψ)〉 w.p. 1− ε

Similar statement holds for the non-exact case

21 / 58

Watrous’s rewinding - idea of the proof

|1〉|φ1(ψ)〉 has all the information that we need to get |0〉|φ0(ψ)〉

We can “extract” |0〉|φ0(ψ)〉 efficiently

Quantum rewinding operator: Q(2∆− I)Q†

∆ is the projection onto the valid initial states of Q

Figure from Watrous’09

22 / 58

Watrous’s rewinding - idea of the proof

|1〉|φ1(ψ)〉 has all the information that we need to get |0〉|φ0(ψ)〉
We can “extract” |0〉|φ0(ψ)〉 efficiently

Quantum rewinding operator: Q(2∆− I)Q†

∆ is the projection onto the valid initial states of Q

Figure from Watrous’09

22 / 58

Watrous’s rewinding - idea of the proof

|1〉|φ1(ψ)〉 has all the information that we need to get |0〉|φ0(ψ)〉
We can “extract” |0〉|φ0(ψ)〉 efficiently

Quantum rewinding operator: Q(2∆− I)Q†

∆ is the projection onto the valid initial states of Q

Figure from Watrous’09

22 / 58

Watrous’s rewinding - idea of the proof

|1〉|φ1(ψ)〉 has all the information that we need to get |0〉|φ0(ψ)〉
We can “extract” |0〉|φ0(ψ)〉 efficiently

Quantum rewinding operator: Q(2∆− I)Q†

∆ is the projection onto the valid initial states of Q

Figure from Watrous’09

22 / 58

Watrous’s rewinding - wrapping up

R(ψ)

1 Run Q(ψ)
2 Repeat T times

1 Measure first qubit
2 If outcome is 0, output second register
3 Apply Q(2∆− I)Q∗

3 Output ⊥ Figure from Watrous’09

Theorem

Let Q be a quantum circuit such that ∃p∀|ψ〉 Q|ψ〉|0〉 =
√
p|0〉|φ0(ψ)〉+

√
1− p|1〉|φ1(ψ)〉

Then ∀ε > 0, we can pick some T = poly(|Q|, log 1/ε, 1/p) and R(ψ) outputs |φ0(ψ)〉 w.p. 1− ε

23 / 58

Watrous’s rewinding - wrapping up

R(ψ)

1 Run Q(ψ)
2 Repeat T times

1 Measure first qubit
2 If outcome is 0, output second register
3 Apply Q(2∆− I)Q∗

3 Output ⊥

Figure from Watrous’09

Theorem

Let Q be a quantum circuit such that ∃p∀|ψ〉 Q|ψ〉|0〉 =
√
p|0〉|φ0(ψ)〉+

√
1− p|1〉|φ1(ψ)〉

Then ∀ε > 0, we can pick some T = poly(|Q|, log 1/ε, 1/p) and R(ψ) outputs |φ0(ψ)〉 w.p. 1− ε

23 / 58

Watrous’s rewinding - wrapping up

R(ψ)

1 Run Q(ψ)
2 Repeat T times

1 Measure first qubit
2 If outcome is 0, output second register
3 Apply Q(2∆− I)Q∗

3 Output ⊥ Figure from Watrous’09

Theorem

Let Q be a quantum circuit such that ∃p∀|ψ〉 Q|ψ〉|0〉 =
√
p|0〉|φ0(ψ)〉+

√
1− p|1〉|φ1(ψ)〉

Then ∀ε > 0, we can pick some T = poly(|Q|, log 1/ε, 1/p) and R(ψ) outputs |φ0(ψ)〉 w.p. 1− ε

23 / 58

Watrous’s rewinding - wrapping up

R(ψ)

1 Run Q(ψ)
2 Repeat T times

1 Measure first qubit
2 If outcome is 0, output second register
3 Apply Q(2∆− I)Q∗

3 Output ⊥ Figure from Watrous’09

Theorem

Let Q be a quantum circuit such that ∃p∀|ψ〉 Q|ψ〉|0〉 =
√
p|0〉|φ0(ψ)〉+

√
1− p|1〉|φ1(ψ)〉

Then ∀ε > 0, we can pick some T = poly(|Q|, log 1/ε, 1/p) and R(ψ) outputs |φ0(ψ)〉 w.p. 1− ε

23 / 58

Quantum simulator for classical protocol

Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′, open the commitment of nodes in e′,
and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If e = e′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have e = e′

Runtime of Sim2 is poly(|Ṽ |, n)

24 / 58

Quantum simulator for classical protocol

Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′, open the commitment of nodes in e′,
and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If e = e′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have e = e′

Runtime of Sim2 is poly(|Ṽ |, n)

24 / 58

Quantum simulator for classical protocol

Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′, open the commitment of nodes in e′,
and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If e = e′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have e = e′

Runtime of Sim2 is poly(|Ṽ |, n)

24 / 58

Quantum simulator for classical protocol

Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick e ∈ E uniformly at random

3 Commit to a random coloring that is correct on
edge e

4 Receive a challenge e′ from Ṽ

5 If e 6= e′, open the commitment of nodes in e′,
and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If e = e′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have e = e′

Runtime of Sim2 is poly(|Ṽ |, n)

24 / 58

Classical ZK - wrap up

Theorem

Assuming post-quantum commitment schemes, GMW’91 is secure against quantum
adversaries.

Theorem

Naor’s commitment scheme implemented with post-quantum OWF is secure against quantum
adversaries.

Corollary

Zero-knowledge proofs for NP is in MiniQCrypt

Can we have (simple) zero-knowledge protocols for quantum proofs?

25 / 58

Classical ZK - wrap up

Theorem

Assuming post-quantum commitment schemes, GMW’91 is secure against quantum
adversaries.

Theorem

Naor’s commitment scheme implemented with post-quantum OWF is secure against quantum
adversaries.

Corollary

Zero-knowledge proofs for NP is in MiniQCrypt

Can we have (simple) zero-knowledge protocols for quantum proofs?

25 / 58

Classical ZK - wrap up

Theorem

Assuming post-quantum commitment schemes, GMW’91 is secure against quantum
adversaries.

Theorem

Naor’s commitment scheme implemented with post-quantum OWF is secure against quantum
adversaries.

Corollary

Zero-knowledge proofs for NP is in MiniQCrypt

Can we have (simple) zero-knowledge protocols for quantum proofs?

25 / 58

Classical ZK - wrap up

Theorem

Assuming post-quantum commitment schemes, GMW’91 is secure against quantum
adversaries.

Theorem

Naor’s commitment scheme implemented with post-quantum OWF is secure against quantum
adversaries.

Corollary

Zero-knowledge proofs for NP is in MiniQCrypt

Can we have (simple) zero-knowledge protocols for quantum proofs?

25 / 58

Classical ZK - wrap up

Theorem

Assuming post-quantum commitment schemes, GMW’91 is secure against quantum
adversaries.

Theorem

Naor’s commitment scheme implemented with post-quantum OWF is secure against quantum
adversaries.

Corollary

Zero-knowledge proofs for NP is in MiniQCrypt

Can we have (simple) zero-knowledge protocols for quantum proofs?

25 / 58

Quantum proofs

L ∈ QMA L ∈ QIP

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts whp
for x 6∈ L, ∀P
V rejects whp

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Expected: NP (QMA (IP = QIP = PSPACE

26 / 58

Quantum proofs

L ∈ QMA

L ∈ QIP

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts whp
for x 6∈ L, ∀P
V rejects whp

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Expected: NP (QMA (IP = QIP = PSPACE

26 / 58

Quantum proofs

L ∈ QMA L ∈ QIP

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts whp
for x 6∈ L, ∀P
V rejects whp

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Expected: NP (QMA (IP = QIP = PSPACE

26 / 58

Quantum proofs

L ∈ QMA L ∈ QIP = PSPACE

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts whp
for x 6∈ L, ∀P
V rejects whp

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Expected: NP (QMA (IP = QIP = PSPACE

26 / 58

Quantum proofs

L ∈ QMA L ∈ QIP = PSPACE

V

0/1

P

V

0/1

P

..
.

for x ∈ L, ∃P
V accepts whp
for x 6∈ L, ∀P
V rejects whp

for x ∈ L, ∃P
V accepts

for x 6∈ L, ∀P
V rejects whp

Expected: NP (QMA (IP = QIP = PSPACE

26 / 58

Quantum Zero-knowledge

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

27 / 58

Quantum Zero-knowledge

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

27 / 58

Quantum Zero-knowledge

Ṽ

P

ρ

..
.

SṼ σψ ψ

Zero-knowledge property: ρ is indistinguishable from σ

Quantum (Computational) ZK: ∀ψ, No efficient distinguishers for ρ and σ

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)

Quantum Statistical ZK: ∀ψ, ‖ρ− σ‖tr ≤ negl(n) for ρ and σ
Quantum Perfect ZK: ∀ψ, ρ = σ

27 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA.

We need structure.

Option 2: ZK from Local Hamiltonian problem.

We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem.

It works [BJSW’20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.

Option 2: ZK from Local Hamiltonian problem.

We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem.

It works [BJSW’20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.

Option 2: ZK from Local Hamiltonian problem.

We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem.

It works [BJSW’20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.

Option 2: ZK from Local Hamiltonian problem. We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem.

It works [BJSW’20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.

Option 2: ZK from Local Hamiltonian problem. We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem.

It works [BJSW’20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.

Option 2: ZK from Local Hamiltonian problem. We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem. It works [BJSW’20].

It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.

Option 2: ZK from Local Hamiltonian problem. We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem. It works [BJSW’20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.

Option 2: ZK from Local Hamiltonian problem. We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem. It works [BJSW’20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

28 / 58

Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

Input: Reduced density matrices ρ1, ..., ρm on k-qubits

Output: yes: ∃ψ such that ∀i :
∥∥TrSi

(ψ)− ρi
∥∥ ≤ ε

no: ∀ψ, ∃i :
∥∥TrSi

(ψ)− ρi
∥∥ ≥ 1

poly(n)

Liu’06: containment in QMA, and QMA-hardness under Turing reduction

Broadbent-G’20: QMA-hardness under Karp reductions

29 / 58

Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

Input: Reduced density matrices ρ1, ..., ρm on k-qubits

Output: yes: ∃ψ such that ∀i :
∥∥TrSi

(ψ)− ρi
∥∥ ≤ ε

no: ∀ψ, ∃i :
∥∥TrSi

(ψ)− ρi
∥∥ ≥ 1

poly(n)

Liu’06: containment in QMA, and QMA-hardness under Turing reduction

Broadbent-G’20: QMA-hardness under Karp reductions

29 / 58

Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

Input: Reduced density matrices ρ1, ..., ρm on k-qubits

Output: yes: ∃ψ such that ∀i :
∥∥TrSi

(ψ)− ρi
∥∥ ≤ ε

no: ∀ψ, ∃i :
∥∥TrSi

(ψ)− ρi
∥∥ ≥ 1

poly(n)

Liu’06: containment in QMA, and QMA-hardness under Turing reduction

Broadbent-G’20: QMA-hardness under Karp reductions

29 / 58

Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

Input: Reduced density matrices ρ1, ..., ρm on k-qubits

Output: yes: ∃ψ such that ∀i :
∥∥TrSi

(ψ)− ρi
∥∥ ≤ ε

no: ∀ψ, ∃i :
∥∥TrSi

(ψ)− ρi
∥∥ ≥ 1

poly(n)

Liu’06: containment in QMA, and QMA-hardness under Turing reduction

Broadbent-G’20: QMA-hardness under Karp reductions

29 / 58

Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

Input: Reduced density matrices ρ1, ..., ρm on k-qubits

Output: yes: ∃ψ such that ∀i :
∥∥TrSi

(ψ)− ρi
∥∥ ≤ ε

no: ∀ψ, ∃i :
∥∥TrSi

(ψ)− ρi
∥∥ ≥ 1

poly(n)

Liu’06: containment in QMA, and QMA-hardness under Turing reduction

Broadbent-G’20: QMA-hardness under Karp reductions
29 / 58

CLDM is in QMA - overview

Completeness:

Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness:

Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness:

Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness:

Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness: Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness: Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness: Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness: Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness:

Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

CLDM is in QMA - overview

Completeness: Verifier accepts w.p. ≥ 1− negl(n)

1 Prover sends ψ⊗`

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

...

ψψψψ

Soundness: Verifier accepts w.p. ≤ 1− 1
m
− negl(n)

1 Prover sends σ

2 Verifier chooses i ∈ [m] uniformly at random

3 Verifier performs checks on qubits corresponding to ρi

σ

30 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ b

ψ⊗`

Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ b

ψ⊗`

Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ bψ⊗`Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ bψ⊗`Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ bψ⊗`Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ bψ⊗`Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ bψ⊗`Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ bψ⊗`Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

ZK proof for CLDM: BG’20

V

ρ1, ..., ρm

P

X aZ bψ⊗`Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of qubits of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 CZK

31 / 58

Zero-knowledge (sketch of the proof)

Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick i ∈ [m] uniformly at random

3 Commit to a state that has ρi in the right position

4 Receive a challenge i ′ from Ṽ

5 If i 6= i ′, open the commitment of OTP of the
corresponding qubits, and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If i = i ′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have i = i ′

Runtime of Sim2 is poly(|Ṽ |, n)

Corollary

Quantum zero-knowledge proofs for QMA is in MiniQCrypt

32 / 58

Zero-knowledge (sketch of the proof)
Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick i ∈ [m] uniformly at random

3 Commit to a state that has ρi in the right position

4 Receive a challenge i ′ from Ṽ

5 If i 6= i ′, open the commitment of OTP of the
corresponding qubits, and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If i = i ′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have i = i ′

Runtime of Sim2 is poly(|Ṽ |, n)

Corollary

Quantum zero-knowledge proofs for QMA is in MiniQCrypt

32 / 58

Zero-knowledge (sketch of the proof)
Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick i ∈ [m] uniformly at random

3 Commit to a state that has ρi in the right position

4 Receive a challenge i ′ from Ṽ

5 If i 6= i ′, open the commitment of OTP of the
corresponding qubits, and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If i = i ′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have i = i ′

Runtime of Sim2 is poly(|Ṽ |, n)

Corollary

Quantum zero-knowledge proofs for QMA is in MiniQCrypt

32 / 58

Zero-knowledge (sketch of the proof)
Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick i ∈ [m] uniformly at random

3 Commit to a state that has ρi in the right position

4 Receive a challenge i ′ from Ṽ

5 If i 6= i ′, open the commitment of OTP of the
corresponding qubits, and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If i = i ′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have i = i ′

Runtime of Sim2 is poly(|Ṽ |, n)

Corollary

Quantum zero-knowledge proofs for QMA is in MiniQCrypt

32 / 58

Zero-knowledge (sketch of the proof)
Sim1(ψ):

1 Give ψ to Ṽ .

2 Pick i ∈ [m] uniformly at random

3 Commit to a state that has ρi in the right position

4 Receive a challenge i ′ from Ṽ

5 If i 6= i ′, open the commitment of OTP of the
corresponding qubits, and forward output

6 Output ⊥ from Ṽ

Sim2(ψ):

1 Watrous’ rewinding on Sim1 with
ε = negl(n)

If i = i ′, output of Sim1 is good

Sim1 succeeds with probability 1
m (+ negl(n))

Output of Sim2 is negl(n) close to the
output when we have i = i ′

Runtime of Sim2 is poly(|Ṽ |, n)

Corollary

Quantum zero-knowledge proofs for QMA is in MiniQCrypt

32 / 58

Further development
1 Perfect ZK for multi-prover entangled proof systems (MIP∗) [GSY’19]

2 Constant round post-quantum ZK for NP/QMA [Bitansky-S’20]
3 Proof of Knowledge

I Usual soundness: there is no good strategy for no-instance
I PoK: If Prover passes with high enough probability, then a NP-witness is known

There is an extractor K , such that if P̃ passes with probability ≥ κ, K P̃ outputs a witness

I Proof of Knowledge against quantum provers [Unruh’12]
I Proof of Quantum Knowledge [Broadbent-G’20,Coladangelo-VZ’20, Ananth-CLP’20]

4 Classical ZK arguments for QMA
I Computational soundness: no poly-time adversary can make V accept a no-instance
I Classical argument system for QMA [Mahadev’18,Alagic-CGH’20, Chia-CY’20]
I Classical ZK protocols for QMA [Vidick-Z’20]

5 NIZKs in the quantum setting
I Post-quantum NIZK for NP [Peikert-S’19]
I Quantum NIZK for QMA [Broadbent-G’20,Coladangelo-VZ’20]
I Classical NIZK arguments for QMA [Alagic-CGH’20]

33 / 58

Multi-party (quantum) computation in the quantum world

34 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8

F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8

F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Are classical protocols
secure against quantum

adversaries?

Are there better quantum
protocols for MPC?

Are there protocols for
MPQC?

35 / 58

Security definition (two-party case)

Real world

D D

Ã B

≈

Ideal world

S

Ã

F B

For every polynomial-time D, |Pr [D(real)]− Pr [D(ideal)]| ≤ negl(λ)

36 / 58

Security definition (two-party case)

Real world

D D

Ã B

≈

Ideal world

S

Ã

F B

For every polynomial-time D, |Pr [D(real)]− Pr [D(ideal)]| ≤ negl(λ)

36 / 58

Security definition (two-party case)

Real world

D D

Ã B

≈

Ideal world

S

Ã

F B

For every polynomial-time D, |Pr [D(real)]− Pr [D(ideal)]| ≤ negl(λ)

36 / 58

Security definition (two-party case)

Real world

D D

Ã B ≈

Ideal world

S

Ã

F B

For every polynomial-time D, |Pr [D(real)]− Pr [D(ideal)]| ≤ negl(λ)

36 / 58

Classical MPC protocols

37 / 58

Classical MPC protocols

37 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities

I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions

1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities

I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions

1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities

I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions

1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities

I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions

1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities
I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions

1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities
I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions

1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities
I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions
1 Implementations from trusted setup (e.g. Garg-S’18)

2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,
Agarwal-BGKM’20)

3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities
I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions
1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)

3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities
I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions
1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols

(from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities
I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions
1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols (from weaker assumptions!)

38 / 58

Classical MPC protocols

GMW family
Honest MPC + FZK

IPS family
Honest MPC + FOT

Unruh’10: protocols are secure against quantum adversaries in the ideal world

Implementation of ideal functionalities
I Classically: from PKE assumptions
I Quantumly: extraction without disturbing internal state of adversaries is cumbersome

Solutions
1 Implementations from trusted setup (e.g. Garg-S’18)
2 Implementations from stronger functionalities/assumptions (Bitansky-S’20,

Agarwal-BGKM’20)
3 Implementations with quantum protocols (from weaker assumptions!)

38 / 58

Oblivious transfer

Ideal functionality

S Fot R

(m0,m1) b

mb

Real world

S R(m0,m1) b

mb

39 / 58

Oblivious transfer

Ideal functionality

S Fot R

(m0,m1) b

mb

Real world

S R(m0,m1) b

mb

39 / 58

Oblivious transfer

Ideal functionality

S Fot R
(m0,m1) b

mb

Real world

S R(m0,m1) b

mb

39 / 58

Oblivious transfer

Ideal functionality

S Fot R
(m0,m1) b

mb

Real world

S R(m0,m1) b

mb

39 / 58

Oblivious transfer

Ideal functionality

S Fot R
(m0,m1) b

mb

Real world

S R(m0,m1) b

mb

39 / 58

Oblivious transfer - security definitions

Security against malicious receiver

S R̃

ρ

(m0,m1)

≈

S Fot Sim

σ

R̃

(m0,m1)
b

mb

Security against malicious sender

S̃ R

ρ

b

m̃b

≈

Sim Fot R

σ mb

S̃

(m0,m1) b

mb

40 / 58

Oblivious transfer - security definitions

Security against malicious receiver

S R̃

ρ

(m0,m1)

≈

S Fot Sim

σ

R̃

(m0,m1)
b

mb

Security against malicious sender

S̃ R

ρ

b

m̃b

≈

Sim Fot R

σ mb

S̃

(m0,m1) b

mb

40 / 58

Oblivious transfer - security definitions

Security against malicious receiver

S R̃

ρ

(m0,m1)

≈

S Fot Sim

σ

R̃

(m0,m1)
b

mb

Security against malicious sender

S̃ R

ρ

b

m̃b

≈

Sim Fot R

σ mb

S̃

(m0,m1) b

mb

40 / 58

MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

Unruh’10: Classical reduction from Fot to MPC holds in the quantum world

Bennet-BCS’92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS’09 Bouman-F’10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

Bartusek-CKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)

vs.
Impagliazzo-R’91: We don’t expect MPC in MiniCrypt!

41 / 58

MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

Unruh’10: Classical reduction from Fot to MPC holds in the quantum world

Bennet-BCS’92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS’09 Bouman-F’10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

Bartusek-CKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)

vs.
Impagliazzo-R’91: We don’t expect MPC in MiniCrypt!

41 / 58

MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

Unruh’10: Classical reduction from Fot to MPC holds in the quantum world

Bennet-BCS’92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS’09 Bouman-F’10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

Bartusek-CKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)

vs.
Impagliazzo-R’91: We don’t expect MPC in MiniCrypt!

41 / 58

MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

Unruh’10: Classical reduction from Fot to MPC holds in the quantum world

Bennet-BCS’92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS’09 Bouman-F’10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

Bartusek-CKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)

vs.
Impagliazzo-R’91: We don’t expect MPC in MiniCrypt!

41 / 58

MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

Unruh’10: Classical reduction from Fot to MPC holds in the quantum world

Bennet-BCS’92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS’09 Bouman-F’10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

Bartusek-CKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)

vs.
Impagliazzo-R’91: We don’t expect MPC in MiniCrypt!

41 / 58

MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

Unruh’10: Classical reduction from Fot to MPC holds in the quantum world

Bennet-BCS’92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS’09 Bouman-F’10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

Bartusek-CKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)

vs.
Impagliazzo-R’91: We don’t expect MPC in MiniCrypt!

41 / 58

MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

Unruh’10: Classical reduction from Fot to MPC holds in the quantum world

Bennet-BCS’92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS’09 Bouman-F’10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

Bartusek-CKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)
vs.

Impagliazzo-R’91: We don’t expect MPC in MiniCrypt!

41 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

BBCS protocol (I)

S R

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

|x1
θ1
〉|x2
θ2
〉...|xλθλ 〉 ~̂

θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

~θ

Ib = {i : θi = θ̂i}
Ib = {i : θi 6= θ̂i}

I0, I1
a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)
a0, a1

mb = Dec~̂xIb
(ab)

Attack for malicious receiver: R̃ waits ~θ to measure the qubits using the right basis

42 / 58

Bit-commitment with simulation security

Cm R

commitment

opening

comm(m)

m

Equivocality: “simulation” hiding

Equiv. R̃

comm(m)

open m ≈

ρ

Equiv. R̃

comm(m)

open m’

σ

Extractability: “simulation” binding

Ext.C̃

comm(m)

open m

ρ

≈ Ext.C̃

comm(m)

open m

σ m′m

43 / 58

Bit-commitment with simulation security

Cm R

commitment

opening

comm(m)

m

Equivocality: “simulation” hiding

Equiv. R̃

comm(m)

open m ≈

ρ

Equiv. R̃

comm(m)

open m’

σ

Extractability: “simulation” binding

Ext.C̃

comm(m)

open m

ρ

≈ Ext.C̃

comm(m)

open m

σ m′m

43 / 58

Bit-commitment with simulation security

Cm R

commitment

opening

comm(m)

m

Equivocality: “simulation” hiding

Equiv. R̃

comm(m)

open m ≈

ρ

Equiv. R̃

comm(m)

open m’

σ

Extractability: “simulation” binding

Ext.C̃

comm(m)

open m

ρ

≈ Ext.C̃

comm(m)

open m

σ m′m

43 / 58

BBCS protocol (II)

S R

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi 6= θ̂i}

\ T

mb = Dec~̂xIb
(ab)

44 / 58

BBCS protocol (II)

S R

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi 6= θ̂i}

\ T

mb = Dec~̂xIb
(ab)

44 / 58

BBCS protocol (II)

S R

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi 6= θ̂i}

\ T

mb = Dec~̂xIb
(ab)

44 / 58

BBCS protocol (II)

S R

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi 6= θ̂i}

\ T

mb = Dec~̂xIb
(ab)

44 / 58

BBCS protocol (II)

S R

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i} \ T
Ib = {i : θi 6= θ̂i} \ T

mb = Dec~̂xIb
(ab)

44 / 58

Security of BBCS against malicious sender

S̃ Sim

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i} \ T
Ib = {i : θi 6= θ̂i} \ T

Measure qubits in T

Measure remaining qubits using ~θ (get ~x)

Partition I0 and I1 at random

m0 = Dec~̂xI0
(a0)

m1 = Dec~̂xI1
(a1)

45 / 58

Security of BBCS against malicious sender

S̃ Sim

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Equivocation of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i} \ T
Ib = {i : θi 6= θ̂i} \ T

Measure qubits in T

Measure remaining qubits using ~θ (get ~x)

Partition I0 and I1 at random

m0 = Dec~̂xI0
(a0)

m1 = Dec~̂xI1
(a1)

45 / 58

Security of BBCS against malicious sender

S̃ Sim

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Equivocation of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

Measure qubits in T

Measure remaining qubits using ~θ (get ~x)

Partition I0 and I1 at random

m0 = Dec~̂xI0
(a0)

m1 = Dec~̂xI1
(a1)

45 / 58

Security of BBCS against malicious sender

S̃ Sim

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Equivocation of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

Measure qubits in T

Measure remaining qubits using ~θ (get ~x)

Partition I0 and I1 at random

m0 = Dec~̂xI0
(a0)

m1 = Dec~̂xI1
(a1)

45 / 58

Security of BBCS against malicious sender

S̃ Sim

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Equivocation of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

Measure qubits in T

Measure remaining qubits using ~θ (get ~x)

Partition I0 and I1 at random

m0 = Dec~̂xI0
(a0)

m1 = Dec~̂xI1
(a1)

45 / 58

Security of BBCS against malicious receiver

Sim R̃

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

Extract ~̂θ

Compute b

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i} \ T
Ib = {i : θi 6= θ̂i} \ T

mb = Dec~̂xIb
(ab)

46 / 58

Security of BBCS against malicious receiver

Sim R̃

|x1
θ1
〉|x2
θ2
〉...|xλ

θλ
〉

ci = comm(θ̂i , x̂i)

T

Opening of ci for i ∈ T

~θ

I0, I1

a0, a1

~x ∈ {0, 1}λ
~θ ∈ {+,×}λ

a0 = Enc~xI0 (m0)

a1 = Enc~xI1 (m0)

Extract ~̂θ

Compute b

~̂
θ ∈ {+,×}λ

~̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i} \ T
Ib = {i : θi 6= θ̂i} \ T

mb = Dec~̂xIb
(ab)

46 / 58

Implemententing commitment scheme with simulation security from OWF

•

•

•

•

47 / 58

Implemententing commitment scheme with simulation security from OWF

•

•

•

•

47 / 58

Multi-party quantum computation

Parties share some input state ρA1....A8

Apply U on ρ

Goal: Compute U on joint share state ρ without
revealing their share

Ideal world

Each party gets their share of the output UρU

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn their share even if they behave disonestly

Security definition similar to the classical setting

48 / 58

Multi-party quantum computation

Parties share some input state ρA1....A8

Apply U on ρ

Goal: Compute U on joint share state ρ without
revealing their share

Ideal world

Each party gets their share of the output UρU

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn their share even if they behave disonestly

Security definition similar to the classical setting

48 / 58

Multi-party quantum computation

Parties share some input state ρA1....A8

Apply U on ρ

Goal: Compute U on joint share state ρ without
revealing their share

Ideal world

Each party gets their share of the output UρU

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn their share even if they behave disonestly

Security definition similar to the classical setting

48 / 58

Multi-party quantum computation

Parties share some input state ρA1....A8

Apply U on ρ

Goal: Compute U on joint share state ρ without
revealing their share

Ideal world

Each party gets their share of the output UρU

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn their share even if they behave disonestly

Security definition similar to the classical setting

48 / 58

Multi-party quantum computation

Parties share some input state ρA1....A8

Apply U on ρ

Goal: Compute U on joint share state ρ without
revealing their share

Ideal world

Each party gets their share of the output UρU

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn their share even if they behave disonestly

Security definition similar to the classical setting

48 / 58

Multi-party quantum computation

Parties share some input state ρA1....A8

Apply U on ρ

Goal: Compute U on joint share state ρ without
revealing their share

Ideal world

Each party gets their share of the output UρU

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn their share even if they behave disonestly

Security definition similar to the classical setting

48 / 58

Multi-party quantum computation

Parties share some input state ρA1....A8

Apply U on ρ

Goal: Compute U on joint share state ρ without
revealing their share

Ideal world

Each party gets their share of the output UρU

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn their share even if they behave disonestly

Security definition similar to the classical setting

48 / 58

MPQC

Statistically secure MPQC with honest majority [Crépeau-GS’02,BenOr-CGHS’06]

Computationally secure 2PQC [Dupuis-NS’10, Dupuis-NS’12, Kashefi-MW’17]

MPQC with allowed dishonest subsets [Kashefi-P’17]

Computationally secure MPQC with arbitrary dishonest majority [Dulek-GJMS’20]

I Extends DNS’12 to the multi-party setting
I Assumes ideal MPC functionality (FMPC)

49 / 58

MPQC

Statistically secure MPQC with honest majority [Crépeau-GS’02,BenOr-CGHS’06]

Computationally secure 2PQC [Dupuis-NS’10, Dupuis-NS’12, Kashefi-MW’17]

MPQC with allowed dishonest subsets [Kashefi-P’17]

Computationally secure MPQC with arbitrary dishonest majority [Dulek-GJMS’20]

I Extends DNS’12 to the multi-party setting
I Assumes ideal MPC functionality (FMPC)

49 / 58

MPQC

Statistically secure MPQC with honest majority [Crépeau-GS’02,BenOr-CGHS’06]

Computationally secure 2PQC [Dupuis-NS’10, Dupuis-NS’12, Kashefi-MW’17]

MPQC with allowed dishonest subsets [Kashefi-P’17]

Computationally secure MPQC with arbitrary dishonest majority [Dulek-GJMS’20]
I Extends DNS’12 to the multi-party setting
I Assumes ideal MPC functionality (FMPC)

49 / 58

Clifford encoding

Clifford operations:
Unitaries generated by {H,P,CNOT}
Cm = {Clifford circuits on m qubits }

Clifford encoding for n-qubit state |ψ〉 and security parameter λ:

1 Pick a random (λ+ n)-qubit Clifford C

2 C (|ψ〉 ⊗ |0λ〉)

Privacy:
C |ψ〉 is one-time padded

Authentication:
For any non-trivial A, trap qubits of C †A(C |ψ〉|0n〉) will be non-zero w.p. 1− negl(λ)

50 / 58

Clifford encoding

Clifford operations:
Unitaries generated by {H,P,CNOT}
Cm = {Clifford circuits on m qubits }

Clifford encoding for n-qubit state |ψ〉 and security parameter λ:

1 Pick a random (λ+ n)-qubit Clifford C

2 C (|ψ〉 ⊗ |0λ〉)

Privacy:
C |ψ〉 is one-time padded

Authentication:
For any non-trivial A, trap qubits of C †A(C |ψ〉|0n〉) will be non-zero w.p. 1− negl(λ)

50 / 58

Clifford encoding

Clifford operations:
Unitaries generated by {H,P,CNOT}
Cm = {Clifford circuits on m qubits }

Clifford encoding for n-qubit state |ψ〉 and security parameter λ:

1 Pick a random (λ+ n)-qubit Clifford C

2 C (|ψ〉 ⊗ |0λ〉)

Privacy:
C |ψ〉 is one-time padded

Authentication:
For any non-trivial A, trap qubits of C †A(C |ψ〉|0n〉) will be non-zero w.p. 1− negl(λ)

50 / 58

Clifford encoding

Clifford operations:
Unitaries generated by {H,P,CNOT}
Cm = {Clifford circuits on m qubits }

Clifford encoding for n-qubit state |ψ〉 and security parameter λ:

1 Pick a random (λ+ n)-qubit Clifford C

2 C (|ψ〉 ⊗ |0λ〉)

Privacy:
C |ψ〉 is one-time padded

Authentication:
For any non-trivial A, trap qubits of C †A(C |ψ〉|0n〉) will be non-zero w.p. 1− negl(λ)

50 / 58

Clifford encoding

Clifford operations:
Unitaries generated by {H,P,CNOT}
Cm = {Clifford circuits on m qubits }

Clifford encoding for n-qubit state |ψ〉 and security parameter λ:

1 Pick a random (λ+ n)-qubit Clifford C

2 C (|ψ〉 ⊗ |0λ〉)

Privacy:
C |ψ〉 is one-time padded

Authentication:
For any non-trivial A, trap qubits of C †A(C |ψ〉|0n〉) will be non-zero w.p. 1− negl(λ)

50 / 58

MPQC protocol - General idea

Focus on a single (pure) qubit

Pi∗ holds C (|ψ〉|02λ〉)
All players (secret) share C

I Players share random Ci ’s s.t. Ck ...C1 = C

Public authentication test

I λ trap qubits used in the test
I remaining λ to keep privacy/authentication even in the test

Computation on encoded data

51 / 58

MPQC protocol - General idea

Focus on a single (pure) qubit

Pi∗ holds C (|ψ〉|02λ〉)
All players (secret) share C

I Players share random Ci ’s s.t. Ck ...C1 = C

Public authentication test

I λ trap qubits used in the test
I remaining λ to keep privacy/authentication even in the test

Computation on encoded data

51 / 58

MPQC protocol - General idea

Focus on a single (pure) qubit

Pi∗ holds C (|ψ〉|02λ〉)
All players (secret) share C

I Players share random Ci ’s s.t. Ck ...C1 = C

Public authentication test
I λ trap qubits used in the test
I remaining λ to keep privacy/authentication even in the test

Computation on encoded data

51 / 58

MPQC protocol - General idea

Focus on a single (pure) qubit

Pi∗ holds C (|ψ〉|02λ〉)
All players (secret) share C

I Players share random Ci ’s s.t. Ck ...C1 = C

Public authentication test
I λ trap qubits used in the test
I remaining λ to keep privacy/authentication even in the test

Computation on encoded data

51 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉) Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?

I Public authentication test

52 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉) Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1

, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?

I Public authentication test

52 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉) Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?

I Public authentication test

52 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉)

Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?

I Public authentication test

52 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉) Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?

I Public authentication test

52 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉) Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?

I Public authentication test

52 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉) Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?

I Public authentication test

52 / 58

MPQC protocol - Encoding

P1 P2
... Pk−1 Pk

Fmpc

|φ〉

C1, ..., Ck

C1 C2 Ck−1 Ck

C1(|φ〉|02λ〉) Ck−1...C1(|φ〉|02λ〉)

CkCk−1...C1(|φ〉|02λ〉)

Fmpc computes random {Ci}2λ+1, parties apply Ci and send the state around the table

How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?
I Public authentication test

52 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck

, E ,U, r, C ′,D

C ′

,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉

I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′

,D

C ′

,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉

I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′

,D

C ′

,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉

I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′

,D

C ′

,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉
I Honest case: E (|φ〉|0λ〉)|r 〉

I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′

,D

C ′

,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉
I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′

,D

C ′

,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉
I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′

,D

C ′

,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉
I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′,D

C ′,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉
I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Public authentication test

P1 P2
... Pk−1 Pk

Fmpc C1, ..., Ck , E ,U, r, C
′,D

C ′,D

Ck ...,C1(|φ〉|02λ〉)

?
=

|ψ〉

Fmpc computes random C ′ ∈ C2λ+1, E ∈ Cλ+1, linear function U and r ∈ {0, 1}λ s.t.

C ′ = (E ⊗ X r)(I2 ⊗ U)C †1 ...C
†
k−1C

†
k

FMPC sends only C ′ to P1 and P1 applies C ′ on |ψ〉
I Honest case: E (|φ〉|0λ〉)|r 〉
I Dishonest case: last λ qubits are different of r with overwhelming probability

Unknown to all parties!

Parties interact with FMPC to check if the value of the traps is correct

FMPC sends new D ∈ C2λ+1 to P1

Similar procedure enables (secure) public measurement in the computational basis

53 / 58

MPQC protocol - Applying gates

1 One-qubit Clifford D: can be perfomed by “changing the key”

Ck ...C1(|φ〉|02λ〉) = Ck ...C
′
1(D|φ〉|02λ〉), for C ′1 = C1D

†

2 CNOT:

1 Send two qubits to a single party (+ public authentication test)
2 Re-encode the two qubits altogether (+ public authentication test)
3 Apply CNOT “changing the key”
4 Split the encoding of the two qubits (+ public authentication test)
5 Send each qubit to the corresponding party (+ public authentication test)

3 T-gate:

54 / 58

MPQC protocol - Applying gates

1 One-qubit Clifford D: can be perfomed by “changing the key”

Ck ...C1(|φ〉|02λ〉) = Ck ...C
′
1(D|φ〉|02λ〉), for C ′1 = C1D

†

2 CNOT:
1 Send two qubits to a single party (+ public authentication test)
2 Re-encode the two qubits altogether (+ public authentication test)
3 Apply CNOT “changing the key”
4 Split the encoding of the two qubits (+ public authentication test)
5 Send each qubit to the corresponding party (+ public authentication test)

3 T-gate:

54 / 58

MPQC protocol - Applying gates

1 One-qubit Clifford D: can be perfomed by “changing the key”

Ck ...C1(|φ〉|02λ〉) = Ck ...C
′
1(D|φ〉|02λ〉), for C ′1 = C1D

†

2 CNOT:
1 Send two qubits to a single party (+ public authentication test)
2 Re-encode the two qubits altogether (+ public authentication test)
3 Apply CNOT “changing the key”
4 Split the encoding of the two qubits (+ public authentication test)
5 Send each qubit to the corresponding party (+ public authentication test)

3 T-gate:

Enc(|ψ〉)

Enc(|T〉) Enc(T |ψ〉)P

54 / 58

MPQC protocol - creating T magic states

1 P1 create poly(λ, k) T-magic states

2 Parties run sub-protocol to encode the (supposed) magic states
3 Each party tests a random subset

I Locally decode (with the help of Fmpc)
I Check if the “raw” qubit is indeed |T 〉

4 Use magic state destillation procedure to transform somewhat-good T -magic states into
almost-perfect ones

I Only need Clifford circuit + measurement

55 / 58

MPQC protocol - creating T magic states

1 P1 create poly(λ, k) T-magic states

2 Parties run sub-protocol to encode the (supposed) magic states
3 Each party tests a random subset

I Locally decode (with the help of Fmpc)
I Check if the “raw” qubit is indeed |T 〉

4 Use magic state destillation procedure to transform somewhat-good T -magic states into
almost-perfect ones

I Only need Clifford circuit + measurement

55 / 58

MPQC protocol - overall protocol

Protocol

1 Parties run sub-protocol to create Enc(|T 〉⊗t)
2 Parties run sub-protocol to encode each qubit

3 For each gate/measurement, parties run the corresponding sub-protocol

4 Each party decodes her own output (with the help of FMPC)

56 / 58

MPQC protocol - overall protocol

Protocol
1 Parties run sub-protocol to create Enc(|T 〉⊗t)
2 Parties run sub-protocol to encode each qubit

3 For each gate/measurement, parties run the corresponding sub-protocol

4 Each party decodes her own output (with the help of FMPC)

56 / 58

Summary

Zero-knowledge proofs
Central tool in crypto toolbox

1 ZK for NP in MiniCrypt

2 ZK against quantum adversaries

3 ZK for QMA (“quantum NP”)

Multi-party computation
Most-general functionality (modulo #rounds)

1 MPC from Oblivious transfer

2 OT is in MiniQCrypt

3 Multi-party quantum computation

57 / 58

Some open questions

1 (Im)possitiblity of constant-round quantum ZK protocol in the plain model

2 Applications of zero-knowledge for quantum proofs

3 (Q)NIZK for QMA with RO/CRS

4 Zero-knowledge with multiple non-signaling provers

5 (Im)possibility of MPQC in constant rounds

6 (Black-box) separations of cryptographic primitives in the quantum setting

7 Further quantum protocols from weaker assumptions

8 Practical quantum cryptographic protocols

9 ...

Thank you for your attention!

58 / 58

Some open questions

1 (Im)possitiblity of constant-round quantum ZK protocol in the plain model

2 Applications of zero-knowledge for quantum proofs

3 (Q)NIZK for QMA with RO/CRS

4 Zero-knowledge with multiple non-signaling provers

5 (Im)possibility of MPQC in constant rounds

6 (Black-box) separations of cryptographic primitives in the quantum setting

7 Further quantum protocols from weaker assumptions

8 Practical quantum cryptographic protocols

9 ...

Thank you for your attention!

58 / 58

	Zero-knowledge in the quantum world
	Multi-party (quantum) computation in the quantum world

