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Primitives
Public-key encryption Functional encryption

Oblivious transfer indistinguishable Obfuscation
Secret-key encryption
Two-party computation Witness encryption

One-way functions Multi-party computation

Pseudo-random number generators Zero-knowledge proof systems

How to propose implementations and prove their security?
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art it anone: feungum iF 7
%D : > &
% N\ A Minicrypt: OWFs exist

Cryptomania: PKE schemes exist

Obfutopia: iO exists
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if crypto is possible

Algorithmica(+Heuristica): We can solve NP (in practice)

Pessiland: We cannot solve NP and OWFs do not exist
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How do quantum resources affect these reductions/worlds?

Quantum helps honest parties Quantum helps malicious parties

What are the minimal assumptions for quantum functionalities?
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/K and MPC in the quantum world

Zero-knowledge proofs Multi-party computation

Central tool in crypto toolbox Most-general functionality (modulo #rounds)
Q@ ZK for NP in MiniCrypt @ MPC from Oblivious transfer
@ ZK against quantum adversaries @ OT is in MiniQCrypt
© ZK for QMA (“quantum NP") © Multi-party quantum computation
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Interactive proofs

L e NP

P

%4

1
0/1

for x e L, AP
V accepts

for x ¢ L, VP
V rejects

L € IP = PSPACE

P

v
1
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forx € L, AP
V accepts
for x € L, VP
V rejects whp
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Zero-knowledge

p LezK
for x € L, AP
V' accepts

\Y
~L forx ¢ L, VP

V rejects whp
0/1

Zero-knowledge: V “learns nothing” when x € L
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Zero-knowledge

p L eZK
. for xe L, 3P
- V accepts
%4

forx ¢ L, VP

V rejects whp
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Zero-knowledge

vV =X

Zero-knowledge property: X is indistinguishable from Y
(Computational) ZK: No efficient distinguishers for the distributions
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Zero-knowledge

z— V=X zSy > Y

Zero-knowledge property: X is indistinguishable from Y
(Computational) ZK: Vz, No efficient distinguishers for the distributions

V poly-time A : |Pro x[A(x) = 1] — Pr,oy[A(y) = 1]| < negl(n)

Statistical ZK: Vz, Distribution X is statistically close to distribution Y
Perfect ZK: Vz, Distribution X = distribution Y
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ZK: bread-and-butter of cryptography

@ Applications: authentication schemes, building block of several cryptographic compilers,

blockchains, ...

o Example:

y =f(x)

X Al zk proof that 3x s.t. y = f(x) B

@ Zero-knowledge protocols for problems in NP
» ZK proof of 3-coloring
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ZK proof for 3-coloring: attempt 1

Completeness v/ Soundness v/ ZK X )
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Bit-commitment

998012

“Cryptographic safe”

S
?)

C

998012
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R

More concretely...

commitment

opening

_.R__

_comm( m)
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Bit-commitment

“Cryptographic safe”

M

998012 | C 998012 R m
More concretely...
commitment
comm(m)
m -fG{-aaa--C -R -
opening m
Hiding: R cannot learn m from comm(m)
Binding: C cannot successfully open comm(m) to a message m’ # m J
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ZK proof for 3-coloring: GMW'91

P 4
A — 564651
B — 867132
C — 984565
D — 894102
E — 069732

- 0
F — 873210 564651, 984565
G — 897966

{A.Ch
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ZK proof for 3-coloring: GMW'91

P 4
A — 564651 == == &=
B — 867132 SNy %
C — 984565 L
D — 894102
E — 069732

- 0
F — 873210 564651, 984565

A y
G — 897966 —

Completeness v/ Soundness v/ CZK
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Sim(z):
Give z to V.

Pick e € E uniformly at random

Commit to a random coloring that is correct on
edge e

Receive a challenge e’ from V

If e #£ €' rewind to step 2

Otherwise, open the commitment of nodes in &’

000 000

Forward output from V/
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Simulator

Sim(z):

Give z to V.

Pick e € E uniformly at random

o
(2]
© Commit to a random coloring that is correct on
edge e

@ Receive a challenge e’ from V
@ If e # € rewind to step 2

@ Otherwise, open the commitment of nodes in €’

@ Forward output from V/

Sketch of the proof
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Simulator

Sim(z):
) Sketch of the proof
(& ¥ e = €’ = output of Sim(z) is computationally
@ Pick e € E uniformly at random indistinguishable of (V < P) by the hiding
© Commit to a random coloring that is correct on property of the commitment scheme.
edge e
© Receive a challenge e’ from V/ V' is computationally bounded = distribution
© Ife 2 ¢ rewind to step 2 of e’ does not depend on the commited values.
@ Otherwise, open the commitment of nodes in €’
@ Forward output from V s
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Simulator

Sim(z):
) Sketch of the proof
Q Givezto V. e = €’ = output of Sim(z) is computationally
© Pick e € E uniformly at random indistinguishable of (V/ <+ P) by the hiding
© Commit to a random coloring that is correct on property of the commitment scheme.
edge e
@ Receive a challenge ¢’ from V/ V' is computationally bounded = distribution
O Ife e rewind to step 2 of e’ does not depend on the commited values.
@ Otherwise, open the commitment of nodes in e’ Pr[e _ e'] > # o neg/(n).
@ Forward output from V s

S R T W



Simulator

Sim(z):
) Sketch of the proof
Q Givezto V. e = €’ = output of Sim(z) is computationally
© Pick e € E uniformly at random indistinguishable of (V/ <+ P) by the hiding
© Commit to a random coloring that is correct on property of the commitment scheme.
edge e
@ Receive a challenge ¢’ from V/ V' is computationally bounded = distribution
O Ife e rewind to step 2 of e’ does not depend on the commited values.
@ Otherwise, open the commitment of nodes in e’ Pr[e _ e'] > # o neg/(n).
@ Forward output from V s

What happens if Vis quantum?
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Classical zero-knowledge against quantum adversaries

P

7/1_’ii—>p P S\"/ o

Zero-knowledge property: p is indistinguishable from o
Quantum (Computational) ZK: Vi), No efficient distinguishers for p and o
V quantum poly-time A : |Pr[A(p) = 1] — Pr[A(c) = 1]| < negl(n)

19 /58



Classical zero-knowledge against quantum adversaries

P

1L

7/1_’Lr—>p P 3\7 o

Zero-knowledge property: p is indistinguishable from o
Quantum (Computational) ZK: Vi), No efficient distinguishers for p and o
V quantum poly-time A : |Pr[A(p) = 1] — Pr[A(c) = 1]| < negl(n)

Quantum Statistical ZK: V¢, ||p — o||,, < negl(n) for p and o
Quantum Perfect ZK: Y, p = o
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Sim(y = |z)(z]):
@ Give z to V.
@ Pick e € E uniformly at random

© Commit to a random coloring that is correct on
edge e

@ Receive a challenge €’ from V

Q@ If e # € rewind to step 2
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@ Forward output from V
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Quantum simulator for classical protocol: warm-up

Sim(y = |z)z|):
@ Give z to V.

@ Pick e € E uniformly at random

© Commit to a random coloring that is correct on
edge e

@ Receive a challenge €’ from V

Q@ If e # € rewind to step 2

@ Otherwise, open the commitment of nodes in e’

@ Forward output from V

State of V right before sending challenge:

|9) = 2 ver|€)mlver ) v

Sim measures register M and gets e’ w.p.

|er|? and post-meas. state is |e’)|7L):
e’ = e: all is good
e’ # e: rewinding does not work

Vile)ve) vs. VTg)
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Quantum simulator for classical protocol: warm-up

Sim(y = |z)(z]):
@ Give z to V.
@ Pick e € E uniformly at random

© Commit to a random coloring that is correct on
edge e

@ Receive a challenge €’ from V
Q@ If e # € rewind-to-step2 reset V and go to step 1
@ Otherwise, open the commitment of nodes in e’

@ Forward output from V

T 208



Quantum simulator for classical protocol: warm-up

Sim(y = |z)z|):
) Sketch of the proof
i V. . . .
° G_Ne zto _ e = e’ = output of Sim(z) is computationally
© Pick e € E uniformly at random indistinguishable of (\/ <+ P) by the hiding
© Commit to a random coloring that is correct on property of the commitment scheme.
edge e
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Quantum simulator for classical protocol: warm-up

Sim(y = |z)z|):
) Sketch of the proof
i V. . . .
° G_Ne zto _ e = e’ = output of Sim(z) is computationally
© Pick e € E uniformly at random indistinguishable of (\/ <+ P) by the hiding
© Commit to a random coloring that is correct on property of the commitment scheme.
edge e
© Receive a challenge ¢’ from V/ V/ is computationally bounded = distribution
Q Ifete . 2 reset U/ and go to step 1 of €’ does not depend on the commited values.
@ Otherwise, open the cczmmitment of nodes in e’ Prle = ¢'] > # — negl(n).
@ Forward output from V 7

Does not work with quantum side information!

We cannot sequentially repeat this protocol!
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Watrous's rewinding

Theorem
Let Q be a quantum circuit such that 3pV|¢)

Ql¥)[0) = v/p|0)|¢o(¥)) + V1 = plL)|¢1(¥))

Then Ve > 0, we can construct a circuit R of size poly(|Q|,log1/e,1/p) that receives an
input |¢) and outputs |po(1))) w.p. 1 —¢

@ Similar statement holds for the non-exact case
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Watrous's rewinding - idea of the proof

@ |1)|¢1(¢)) has all the information that we need to get |0)|¢o(¢)))
We can “extract” |0)|¢o(v))) efficiently

@ Quantum rewinding operator: Q(2A — I)QT
A is the projection onto the valid initial states of @

DIO) 510 it + VT Iy

Q(2a —-1)Q" [1) |1 (¥))

‘ 10) I¢po(¥))

Figure from Watrous'09
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Watrous's rewinding - wrapping up

R(¢)
Q Run Q(¢)

@ Repeat T times

@ Measure first qubit
@ If outcome is 0, output second register

© Apply Q(2A - 1)Q*
© Output L

1) e(9))

Ve

[0) [¢o())

Figure from Watrous’'09
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Watrous's rewinding - wrapping up

R(¢)

@ Run Q(v)
© Repeat T times

@® Measure first qubit
@ If outcome is 0, output second register

@ Apply Q(2A —1)Q*
© Output L

Theorem

Let @ be a quantum circuit such that 3pV¥|¢) Q|v)|0)

Then Ve > 0, we can pick some T = poly(|Q|,log1/e,1/p) and R(%)) outputs |¢o(t)))

|E|¢1<‘/’> VEI0) [eo(9)) + T p[1) 1 (9))

N

/\\Q(ZA Q" [1) g1 (¥))

-
T Figure from Watrous'09

= V/Pl0)|¢o(¥)) + VI = p[1)|¢1(¥))

w.p. 1 —¢

T 238
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@ Pick e € E uniformly at random
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edge e

@ Receive a challenge e’ from V

@ If e £ €, open the commitment of nodes in €',
and forward output

@ Output L from V

o If e =€/, output of Sim; is good

@ Sim; succeeds with probability £ (+ negl(n))
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Quantum simulator for classical protocol

Simy(v):

Q Give ¢ to V.
@ Pick e € E uniformly at random

© Commit to a random coloring that is correct on
edge e

@ Receive a challenge e’ from V

@ If e £ €, open the commitment of nodes in €',
and forward output

@ Output L from V

o If e =€/, output of Sim; is good

@ Sim; succeeds with probability £ (+ negl(n))

Sim,(v)):

@ Watrous' rewinding on Sim; with
e = negl(n)
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Quantum simulator for classical protocol

Simy(v):

Q Give ¢ to V.

@ Pick e € E uniformly at random S; ( )
m .

© Commit to a random coloring that is correct on z 1/}

edge e @ Watrous’ rewinding on Simy with

@ Receive a challenge e’ from % € = negl(n)

@ If e £ €, open the commitment of nodes in €',
and forward output

@ Output L from V

@ Output of Sim; is negl(n) close to the

@ If e =€/, output of Sim; is good
P 1158 output when we have e = ¢’

@ Sim; succeeds with probability £ (+ negl(n)) o Runtime of Sims is poly(| /|, n)

S e N VR
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Classical ZK - wrap up

Theorem

Assuming post-quantum commitment schemes, GMW'91 is secure against quantum
adversaries.

Theorem

Naor’s commitment scheme implemented with post-quantum OWF is secure against quantum
adversaries.

Corollary
Zero-knowledge proofs for NP is in MiniQ Crypt

Can we have (simple) zero-knowledge protocols for quantum proofs?

S e N T
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Quantum proofs

L € QMA

0/1

for x e L, 3P
V accepts whp

for x g L, VP
V rejects whp

L € QIP = PSPACE

0/1

for x e L, 3P

V accepts

for x ¢ L, VP
V rejects whp
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Quantum proofs

L € QMA L € QIP = PSPACE
—®
|
jVJ
0/1
for x e L, 3P for x e L, 3P
V' accepts whp V accepts
forx ¢ L, VP forx ¢ L, VP
V rejects whp V rejects whp

Expected: NP C QMA C IP = QIP = PSPACE
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Quantum Zero-knowledge

P

1L,

w—)ir—)P P 5\7 o

Zero-knowledge property: p is indistinguishable from o
Quantum (Computational) ZK: Vi, No efficient distinguishers for p and o
V quantum poly-time A : |Pr[A(p) = 1] — Pr[A(c) = 1]| < negl(n)

Quantum Statistical ZK: V4, ||p — o ||,, < negl(n) for p and o
Quantum Perfect ZK: Vi, p = o
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Quantum ZK protocols for QMA

Option 1: ZK from generic problem in QMA. We need structure.
Option 2: ZK from Local Hamiltonian problem. We need more structure.

Option 3: ZK from Clifford Local Hamiltonian problem. It works [BJSW'20]. It is
somewhat complicated.

Option 4: ZK from Consistency of Local density matrices

S Y W
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Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

k qubits

—

e}

|/P1\

—

—

Py

—

P

)

m____»

——

n qubits
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Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

k qubits
I/ Py \}— |(' P
S P P
—
n qubits

Input: Reduced density matrices p1, ..., pm on k-qubits
Output: yes: i such that Vi : || Tre(v) — pi|| < ¢

no: Vo, 3i : || Tre(¥) — pi|| > pol;(")
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Consistency of local density matrices problem

Do “pieces” of quantum state come from the same global state?

k qubits
I/ Py \}— |(' P
S P P
—
n qubits

Input: Reduced density matrices p1, ..., pm on k-qubits
Output: yes: i such that Vi : || Tre(v) — pi|| < ¢

no: Vb, Ji : || Trs(¢y) — pil| = m
@ Liu'06: containment in QMA, and QMA-hardness under Turing reduction

@ Broadbent-G'20: QMA-hardness under Karp reductions
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CLDM is in QMA - overview

Completeness: Verifier accepts w.p. > 1 — negl(n)

@ Prover sends ®¢
@ \Verifier chooses i € [m] uniformly at random

© Verifier performs checks on qubits corresponding to p;

Y Y ¥

Soundness: Verifier accepts w.p. < 1 — L — negl(n)

@ Prover sends o
@ \Verifier chooses i € [m] uniformly at random

© Verifier performs checks on qubits corresponding to p;
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984565, 894102

keys to open otp of qubits of p; a, b2
—
an, bn
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Zero-knowledge (sketch of the proof)
Simy():
© Give ¢ to V.

@ Pick i € [m] uniformly at random Sim2(1/})2

Commit to a state that has p; in the right position . . .
° & ety @ Watrous' rewinding on Sim; with

@ Receive a challenge i’ from V/ € = negl(n)

@ If i #i’, open the commitment of OTP of the
corresponding qubits, and forward output

@ Output L from V

o If i = i output of Sim; is good @ Output of Simy is negll(n) Slose to the
output when we have j = |

@ Simy succeeds with probability . (+ negl(n)) o Runtime of Simy is poly(| 7], n)

Corollary
Quantum zero-knowledge proofs for QMA is in MiniQ Crypt J
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Further development

@ Perfect ZK for multi-prover entangled proof systems (MIP*) [GSY'19]
@ Constant round post-quantum ZK for NP/QMA [Bitansky-S'20]
© Proof of Knowledge

» Usual soundness: there is no good strategy for no-instance
» PoK: If Prover passes with high enough probability, then a NP-witness is known

There is an extractor K, such that if P passes with probability > «, KP outputs a witness

» Proof of Knowledge against quantum provers [Unruh'12]

» Proof of Quantum Knowledge [Broadbent-G'20,Coladangelo-VZ'20, Ananth-CLP'20]
@ C(lassical ZK arguments for QMA

» Computational soundness: no poly-time adversary can make V accept a no-instance

» Classical argument system for QMA [Mahadev'18,Alagic-CGH'20, Chia-CY'20]

» Classical ZK protocols for QMA [Vidick-Z'20]
@ NIZKs in the quantum setting

» Post-quantum NIZK for NP [Peikert-S'19]

» Quantum NIZK for QMA [Broadbent-G'20,Coladangelo-VZ'20]

» Classical NIZK arguments for QMA [Alagic-CGH'20 ]
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. ‘::7 @ o Goal: Compute f(xg, ..., xg) without revealing their input

@ Ideal world

. z v o e Each party learns F = f(xi, ..., xg) and nothing else
x1 @ @ Real world
z @ Goal: implement the ideal functionality

Vs
. @ Protocols where parties interact, but still they only

X2 * * learn F
~ S
X4

@ Even if they behave disonestly

Are classical protocols

secure against quantum
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Real world Ideal world

For every polynomial-time D, |Pr[D(real)] — Pr[D(ideal)]| < negl(\) J
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SECURE COMPUTATION AND EFFICIENCY

JANUARY 30 - February 1, 2011

The 5th BIU Winter School
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FEBRUARY 15-19,2015
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MPC from Quantum-+OWF

IPS'08: MPC protocols from Fo;
Unruh'10: Classical reduction from F,; to MPC holds in the quantum world
Bennet-BCS'92: Quantum protocol for OT based on commitment schemes

Damgard-FLSS'09 Bouman-F'10: Security proof of BBCS protocol based on strong
classical commitment schemes (likely to lie outside of MiniCrypt)

@ Bartusek-CKM'21 and GLSV'21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF (i.e. MPC is in MiniQCrypt)
vs.

Impagliazzo-R'91: We don't expect MPC in MiniCrypt!
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BBCS protocol (1)

x € {0,1}*
0 e {+, x}*

ag = Enc;,o(mo)

a1 = Encg, (mo)
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>

lo, h

40, a1

fc{+ x}*
4 Measurement
%€ {0,1}*

Attack for malicious receiver: R waits § to measure the qubits using the right basis
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Bit-commitment with simulation security
commitment
comm(m)
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opening m

Equivocality: “simulation” hiding
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a1 = Encz, (mo)

(9%}

IX;1)|X32>-~|X0)‘>\>

Ci = comm(é,-,)?,-)

T

Equivocation of ¢; for i € T

2

lo, h

a0, a1

Sim

Measure qubits in T

Measure remaining qubits using g(get X)

Partition fy and /; at random
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Security of BBCS against malicious sender

= {07 1}>\ IX;1>|X32>-~|X0)‘>\>
o \ ]
S {+’ X} Cci = comm(@,-,)?,-)
T
§ Equivocation of ¢; for i € T Sim Measure qubits in T
5 —
Measure remaining qubits using 6 (get X)
o, Partition /y and /; at random
a0 = Encz, (mo) 0 1
a1 = Encz, (mo) a0, a1

mo = DeC)A?IO (ao)
m = Dec;l1 (a1)
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Security of BBCS against malicious

%€ {01}
0e{+ x}*

a0 = Encg, (mo)
a; = Enc;,l(mo)

Sim

‘X‘;1>|X§2>"'|X;\A>

o= comm(@,-7 Xi)

T

Opening of ¢; for i € T

2

lo, hh

a0, a1

receiver

e {+,x}*
4 Measurement
% e{0,1}*

5 T



Security of BBCS against malicious

%€ {01}
0e{+ x}*

Extract

a0 = Encg, (mo)
a; = Enc;,l(mo)
Compute b

Sim

‘X‘;1>|X§2>"'|X;\A>

o= comm(@,-7 Xi)

T

Opening of ¢; for i € T

2

lo, hh

a0, a1

receiver

e {+,x}*
4 Measurement
% e{0,1}*
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Implemententing commitment scheme with simulation security from OWF

[BCKM21]

[GLSV21]

1. (Black-box) equivocality compiler
2.  Extractable commitment from

equivocal commitment and
quantum communication

Features:

* Black-Box use of one-way functions

» Statistical security against malicious
receiver

Equivocal commitment from Naor’s
commitment and zero-knowledge

Unbounded-simulator OT from
equivocal commitment

Extractable and equivocal
commitment from

unbounded-simulator OT and
quantum communication

Constant-Round OT in the CRS model

Statistically binding extractable commitment
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Multi-party quantum computation

Parties share some input state pa, .4 L .
P PA-A Goal: Compute U on joint share state p without

°
? & revealing their share
[ ] [ ]
@@ *Q Ideal world
Apply U on p
° ~ °
= T B

@@ ?@ @@
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Multi-party quantum computation

Parties share some input state pa, ... 4,
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p- §e

@@u— M;@—» @@
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Ideal world
o Each party gets their share of the output UpU
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Multi-party quantum computation

Parties share some input state pa, ... 4,

| 4
@@
Ped S

Goal: Compute U on joint share state p without
revealing their share

Ideal world

@ Each party gets their share of the output UpU
Real world

@ Goal: implement the ideal functionality

@ Protocols where parties interact, but still they only
learn their share even if they behave disonestly
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Multi-party quantum computation

Parties share some input state pa, ... 4,

| 4
@@
Ped S

Goal: Compute U on joint share state p without
revealing their share

Ideal world

@ Each party gets their share of the output UpU
Real world

@ Goal: implement the ideal functionality

@ Protocols where parties interact, but still they only
learn their share even if they behave disonestly

@ Security definition similar to the classical setting
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MPQC

Statistically secure MPQC with honest majority [Crépeau-GS'02,BenOr-CGHS'06]
Computationally secure 2PQC [Dupuis-NS'10, Dupuis-NS'12, Kashefi-MW'17]
MPQC with allowed dishonest subsets [Kashefi-P'17]

Computationally secure MPQC with arbitrary dishonest majority [Dulek-GJMS'20]
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MPQC

Statistically secure MPQC with honest majority [Crépeau-GS'02,BenOr-CGHS'06]
Computationally secure 2PQC [Dupuis-NS'10, Dupuis-NS'12, Kashefi-MW'17]
MPQC with allowed dishonest subsets [Kashefi-P'17]

Computationally secure MPQC with arbitrary dishonest majority [Dulek-GJMS'20]

» Extends DNS'12 to the multi-party setting
> Assumes ideal MPC functionality (Fppc)
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Clifford encoding

Clifford operations:

Unitaries generated by {H, P, CNOT}
Cm = {Clifford circuits on m qubits }
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Clifford encoding

Clifford operations:
Unitaries generated by {H, P, CNOT}
Cm = {Clifford circuits on m qubits }

Clifford encoding for n-qubit state |¢)) and security parameter A:
@ Pick a random (A + n)-qubit Clifford C
@ C(jy)®[0Y)

Privacy:
C|4) is one-time padded

Authentication:
For any non-trivial A, trap qubits of CTA(C|%)|0")) will be non-zero w.p. 1 — negl(\)

B
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MPQC protocol - General idea

Focus on a single (pure) qubit

o P;- holds C(|)|0%))
o All players (secret) share C
» Players share random C;'s s.t. C...CG; = C
@ Public authentication test
> ) trap qubits used in the test
» remaining X to keep privacy/authentication even in the test

@ Computation on encoded data

S R R
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Cll Czl Ck—ll Ckl
22
6| Py Gu(1¢)107)) (=S I P,

® Fmpc computes random {C;}oxry1, parties apply C; and send the state around the table
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MPQC protocol - Encoding

Fmpe Cly s Cu

ClJr CZl Ck_]_l Ckl
Gi(]9)10% Ch1...Ci(|¢)|0*

O P e P N P e S T

® Fmpc computes random {C;}oxry1, parties apply C; and send the state around the table
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MPQC protocol - Encoding

)

[T

Cll Czl Ck—ll Ckl
C o Ci_1...C o

P, 1(14)10%%)) Pyl o Py k—1---C1(|#)]0°)) P,

T ]

CkCi1...Gi(|$)]0°*))

® Fmpc computes random {C;}oxry1, parties apply C; and send the state around the table
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MPQC protocol - Encoding

}—mpc Cly s Cu
ClJr C2l Ck_]_l Ckl
Ci(|9)|0** Cir...Ci(|0) 0P
o) | p LGN o [GaGURO) ]

T

CkCi1...Gi(|$)]0°*))

® Fmpc computes random {C;}oxry1, parties apply C; and send the state around the table
@ How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?
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MPQC protocol - Encoding

}—mpc Cly s Cu
ClJr C2l Ck_]_l Ckl
Ci(|9)|0** Cir...Ci(|0) 0P
o) | p LGN o [GaGURO) ]

T

CkCi1...Gi(|$)]0°*))

® Fmpc computes random {C;}oxry1, parties apply C; and send the state around the table
@ How to prevent that any of the parties replaces the quantum state (or cheat arbitrarily)?
» Public authentication test
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MPQC protocol - Public authentication test

fmpc | Ciyooos G, E, Uy r, €1 |

%)
2 Py Po| - | Pk Pr

Ci.., Gi(|6)]0%))

® Fmpc computes random C" € Coxy1, E € Cy41, linear function U and r € {0, 1} st

C'=(EeX)(heU)]..cl_cl
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F mpc

| G, G, E U, C7 |

z P &
Ci.., Gi(|6)]0%))

® Fmpc computes random C" € Coxy1, E € Cy41, linear function U and r € {0, 1} st

Pr—1

Py

C'=(EeX)(heU)]..cl_cl

@ Fupc sends only C' to Py and Py applies C’ on [¢)

» Honest case: E(|¢)|0M))|r)
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MPQC protocol - Public authentication test

F mpc

‘ G, G, E U, C7 ‘

Cir., Ci(|8)[0PMY)

® Fmpc computes random C" € Coxy1, E € Cy41, linear function U and r € {0, 1} st

P>

Pr—1

@ Fupc sends only C' to Py and Py applies C’ on [¢)

» Honest case: E(|¢)|0M))|r)

Py

C'=(EeX)(heU)]..cl_cl

» Dishonest case: last A qubits are different of r with overwhelming probability
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MPQC protocol - Public authentication test
fmpc

‘ G, G, E U, C7 ‘
c’ l

2 Py | - | Pk1
Ci.., Gi(|6)]0%))

Py

® Fmpc computes random C" € Coxy1, E € Cy41, linear function U and r € {0, 1} st

C'=(EeX)(heU)]..cl_cl
@ Fupc sends only C' to Py and Py applies C’ on [¢)
» Honest case: E(|¢)|0M))|r)

» Dishonest case: last A qubits are different of r with overwhelming probability
Unknown to all parties!
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MPQC protocol - Public authentication test

F mpc

‘ G, G, E U, C7 ‘

Cir., Ci(|8)[0PMY)

® Fmpc computes random C" € Coxy1, E € Cy41, linear function U and r € {0, 1} st

P>

Pr—1

@ Fupc sends only C' to Py and Py applies C’ on [¢)

» Honest case: E(|¢)|0M))|r)

Unknown to all parties!

Py

C'=(EeX)(heU)]..cl_cl

» Dishonest case: last A qubits are different of r with overwhelming probability

@ Parties interact with Fpc to check if the value of the traps is correct
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@ Fupc sends only C' to Py and Py applies C’ on [¢)
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MPQC protocol - Public authentication test

meC ‘ Ciyeoos G, E, Uy r, €1, D ‘

C’,Dl
[¥)
Ci.., Gi(|6)]0%))

® Fmpc computes random C" € Coxy1, E € Cy41, linear function U and r € {0, 1} st

C'=(EeX)(heU)]..cl_cl

@ Fupc sends only C' to Py and Py applies C’ on [¢)

» Honest case: E(|¢)|0M))|r)
» Dishonest case: last A qubits are different of r with overwhelming probability
Unknown to all parties!

@ Parties interact with Fpc to check if the value of the traps is correct
@ Fuypc sends new D € Copgq to Pp
e Similar procedure enables (secure) public measurement in the computational basis
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MPQC protocol - Applying gates

© One-qubit Clifford D: can be perfomed by “changing the key”
C...C1(|$)|0*)) = Cy...C{(D]9)|0*)), for C] = G, DT

Q@ CNOT:

@ Send two qubits to a single party (+ public authentication test)

® Re-encode the two qubits altogether (4 public authentication test)

@ Apply CNOT “changing the key”

@ Split the encoding of the two qubits (4 public authentication test)

© Send each qubit to the corresponding party (4 public authentication test)
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MPQC protocol - Applying gates

© One-qubit Clifford D: can be perfomed by “changing the key”
C...C1(|$)|0*)) = Cy...C{(D]9)|0*)), for C] = G, DT

@ CNOT:
@ Send two qubits to a single party (+ public authentication test)
® Re-encode the two qubits altogether (4 public authentication test)
@ Apply CNOT “changing the key”
@ Split the encoding of the two qubits (4 public authentication test)
© Send each qubit to the corresponding party (4 public authentication test)

© T-gate:
Ene(|y)) F—A—1
Ene(|T)) %*Enc(T )
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MPQC protocol - creating T magic states

@ P; create poly(\, k) T-magic states
@ Parties run sub-protocol to encode the (supposed) magic states

© Each party tests a random subset

» Locally decode (with the help of Fppc)
» Check if the “raw” qubit is indeed | T)

@ Use magic state destillation procedure to transform somewhat-good T-magic states into
almost-perfect ones

> Only need Clifford circuit + measurement

B
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MPQC protocol - overall protocol

Protocol
@ Parties run sub-protocol to create Enc(| T)®*)
@ Parties run sub-protocol to encode each qubit

© For each gate/measurement, parties run the corresponding sub-protocol

© Each party decodes her own output (with the help of Fupc)
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Summary

Zero-knowledge proofs
Central tool in crypto toolbox

@ ZK for NP in MiniCrypt
@ ZK against quantum adversaries
@ ZK for QMA (“quantum NP")

Multi-party computation
Most-general functionality (modulo #rounds)

@ MPC from Oblivious transfer
@ OT is in MiniQCrypt
© Multi-party quantum computation
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Some open questions

(Im)possitiblity of constant-round quantum ZK protocol in the plain model
Applications of zero-knowledge for quantum proofs

(Q)NIZK for QMA with RO/CRS

Zero-knowledge with multiple non-signaling provers

(Im)possibility of MPQC in constant rounds

(Black-box) separations of cryptographic primitives in the quantum setting
Further quantum protocols from weaker assumptions

Practical quantum cryptographic protocols
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Thank you for your attention!
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