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The Related-Key Model

◮ Introduced by Biham and independently by Knudsen in
1993 [B93,K93]

◮ A block cipher is a keyed permutation, i.e.,
E : {0, 1}n × {0, 1}k → {0, 1}n (or
Ek : {0, 1}n → {0, 1}n)

◮ Regular cryptanalytic attacks attack E by controlling the
input/output of Ek(·)

◮ In related-key attacks the adversary can ask to control k
(chosen key attacks)

◮ This make look like a very strong notion, but the model
allows for the adversary to control only the relation
between keys
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The Related-Key Model (cont.)

◮ In standard attacks, the adversary can query an oracle for
Ek .

◮ In related-key attacks, the adversary can query the oracles
Ek1 , Ek2 , . . .

◮ The adversary is either aware of the relation between the
keys or can choose the relation

◮ This model which may look strong is actually not so far
fetched:

◮ Real life protocols allow for that (e.g., WEP)
◮ When the block cipher is used as a compression function

— the adversary may control actually control the key
◮ In some cases, there are properties so “strong”, that it is

sufficient to have access to encryption under one key
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DES’s Key Schedule Algorithm

◮ The key is divided into two registers C
and D (28-bit each)

◮ Each round both registers are rotated
to the left (1 or 2 bits)

◮ 24 bits from C are chosen as the
subkey entering S1,S2,S3,S4

◮ 24 bits from D are chosen as the
subkey entering S5,S6,S7,S8

K

PC-1

C D

ROL1 ROL1

ROL1 ROL1

ROL2 ROL2

ROL2 ROL2

PC-2

PC-2

PC-2

Round 1 2 3 4 5 6 7 8
Rotation 1 1 2 2 2 2 2 2
Round 9 10 11 12 13 14 15 16
Rotation 1 2 2 2 2 2 2 1
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DES’s Complementation Property

◮ If the key is bitwise complemented, so
are all the subkeys
K → K1,K2, . . . ,K16 and
K → K1,K2, . . . ,K16

◮ If the input to the round function is
also bitwise complemented, the
complementation is canceled

◮ In other words, the input to the
S-boxes is the same And the output
of the S-boxes (and the round)

◮ DES’s complementation property:

DESK (P) = DESK (P)

Li RiLi RiLi Ri

Li+1 Ri+1Li+1 Ri+1Li+1 Ri+1

E

KiKi

S1
S2
S3
S4
S5
S6
S7
S8

P

Orr Dunkelman Related-Key Attacks 6/ 42



Related-Key Attacks Slide Statistical RK Conclusion Model First Attack Second Attack

Using the Complementation Property

◮ Using the complementation property it is possible to
speed up exhaustive key search of DES by a factor of 2

◮ The adversary asks for the encryption of P and P

◮ Let C1 = EK (P) and C2 = EK (P), where K is the
unknown key

◮ For each possible key k whose most significant bit is 0:

1 Check whether DESk(P) = C1 (if yes, k is the key)
2 Check whether DESk(P) = C2 (if yes, k is the key)

Note that DESk(P) = C2 ⇒ (C2) = DESk(P).

As C2 = DESK (P), then DESK (P) = DESk(P), i.e., K = k
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A Related-Key Attack on a Slightly Modified DES

◮ Assume that all the rotations in the
key schedule are all by 2 bits to the
left

◮ Consider two keys K and K ′, such
that the subkeys produced by the
key schedule algorithm satisfy
Ki = K ′

i+1 (i.e.,
K1 = K ′

2,K2 = K ′
3, . . .)

◮ Then the first 15 rounds of
encryption under K are just like the
last 15 rounds of encryption under
K ′

K

K ′

K ′

1

K ′

2K1

K ′

3K2

K ′

4K3

...

K ′

16K15

K16

=

=

=

=

P ′

F

F

F

F

...

F

C ′

P
P

F

F

F

...

F

F

C

C ′
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A Related-Key Attack on a Slightly Modified DES

◮ Let P = FK ′
1
(P ′)

◮ Due to the equality between the
functions, P and P ′ share 15
rounds of the encryption

◮ Thus, C = FK16
(C ′)

◮ Given (P,C ) and (P ′,C ′), deducing
K ′

1 and K16 (given DES’s round
function) is easy

K

K ′

K ′

1

K ′

2K1

K ′

3K2

K ′

4K3

...
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16K15

K16

=

=

=

=

P ′

F

F

F

F

...

F

C ′

P
P
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A Related-Key Attack on a Slightly Modified DES

◮ Ask for the encryption of 216 plaintexts P ′
i = (A, x ′

i )
under K ′. Let C ′

i = EK ′(P ′
i )

◮ Ask for the encryption of 216 plaintexts Pi = (y ′
j ,A) under

K . Let Cj = EK (Pj)

1 By birthday arguments there is a pair of values P ′
i which

is encrypted under one round to Pj . From this point
forward, they are “evolving” together, and thus,
Cj = FK16

(C ′
i )

2 From Feistel properties, that means that the left half of
C ′
i is equal to the right half of Cj
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A Related-Key Attack on a Slightly Modified DES

◮ Search for a pair of ciphertexts C ′
i and Cj such that the

left half of C ′
i is equal to the right half of Cj

◮ Deduce that Pj = FK ′
1
(P ′

i ) and that Cj = FK16
(C ′

i ), and
retrieve the key

◮ This pair is called a related-key plaintext pair

◮ Using this pair it is easy to deduce K ′
1 and K16 (which are

also share bits between themselves)

Data complexity: 216 CPs under two related-keys (the
relation was chosen by the adversary)
Time complexity: 217 encryptions (the analysis phase is very
efficient)
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A Second Attack on a Slightly Modified DES

◮ It is possible to use 234 encrypted under one key, and still
use the above property

◮ The idea is to generate a related-key plaintext pair by
using one key, and then, trying to identify the pair

◮ Pick P0 at random, and let P1 = P0

◮ Define the set of plaintexts {Pi ,t = (PiR ,PiL ⊕ t)} for all
possible t’s, P0, and P1

◮ Define the set of plaintexts {P∗
i ,t = (PiR ⊕ k,PiL)} for all

possible t’s, P0, and P1

◮ Ask for the encryption of Pi ,Pi ,t and P∗
i ,t
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Preprocessing

◮ Consider 28-bit half subkeys such the MSB is 0

◮ Define the next operation, which takes a subkey, rotates
it to the left by 2 bits. In case the obtained subkey has its
MSB equal to 1, the subkey is complemented

◮ After at most 14 next operations, a cycle is found

◮ Thus, in the preprocessing we generate a list of one half
subkey Li from every such cycle (the list contains about
223.2 values)
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The Attack

◮ Given Ci , Ci ,t and C ∗
i ,t:

1 For each key of the form (Lj , Lk), generate all keys

K
′ = (ROLm(Lj )||ROLn(Lk)) or K

′ = (ROLm(Lj)||ROLn(Lk))

where m ∈ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26}
and n ∈ {0, 6, 12, 18, 24}

2 Encrypt P0 under each K ′, and obtain C ′ = EK ′(P0)
3 If C ′ = C0 or C ′ = C1, deduce that the original key to is

K ′ or K ′, respectively
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The Attack

◮ 4 Assume that the output of the F function in the first
round is t (when using the key K ′ to encrypt P0). If C

′
L

is equal to some C0,tR or C1,tR , “continue” the
encryption of P0 to the 17th round. If the result C ′′ is
C0,t or C1,t , then the key is

ROL2(K
′
R)||ROL2(K

′
L),

or its complement, respectively
5 “Decrypt” P0 one round, and let the output of the F

function in the 0th round be t (when using the key K ′

to encrypt P0). If the intermediate encryption value of
P0 in the 15th round is C ∗

0,k or C ∗
1,k , then the key is

ROR2(K
′
R)||ROR2(K

′
L),

or its complement, respectively
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Final Remarks

◮ The set of plaintexts Pi ,t is actually the set of possible
related-key plaintext pairs where the shared rounds are
2–16

◮ The set of plaintexts P∗
i ,t is actually the set of possible

related-key plaintext pairs where the shared rounds are
1–15

◮ Homework: Check that we covered all possible keys

Data Complexity: 234 chosen plaintexts
Time Complexity: P0 is encrypted under about 1/6 of the
keys — 1.4 · 253 encryptions
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The Slide Attack

◮ Presented by Biryukov and Wagner
in 1999

◮ Can be applied to ciphers with the
same keyed permutation

◮ Independent of the number of
rounds of the cipher

◮ To some extent, this attack is a
related-key plaintext attack when
the key is its own related-key
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An Example — Slide Attack on 2K-DES

◮ Consider a variant of DES with 2r
rounds, where the subkeys are
(K1,K2,K1,K2, . . . ,K1,K2)

◮ This variant has 96-bit key, and if r
is large enough, no conventional
attacks apply
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A Related-Key Attack on a 2K-DES (cont.)

◮ Take 232 known plaintexts, Pi (and their corresponding
ciphertexts Ci)

◮ Let fK1,K2
(·) be two rounds of DES with the subkeys K1

and K2

◮ Then, the data set is expected to contain two plaintexts
Pi and Pj such that fK1,K2

(Pi) = Pj and fK1,K2
(Ci) = Cj

(denoted as a slid pair)
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How do you Find the Slid Pair?

◮ Generally speaking, the best way to find the slid pairs is
to try all of them

◮ So in this attack, the adversary considers each pair
(Pi ,Pj) (there are 264 pairs, as the pair is ordered)

◮ For each pair, the adversary has two equations to solve:

fK1,K2
(Pi) = Pj ; fK1,K2

(Ci) = Cj

◮ This can be done very easily

◮ For each solution (if exists), verify the suggested key

◮ Time complexity — 264 times solving the above set

◮ A possible improvement: Guess some part of K1 (or K2)
which gives filtering on the pairs, and then there are less
pairs to analyze

Orr Dunkelman Related-Key Attacks 20/ 42



Related-Key Attacks Slide Statistical RK Conclusion Intro 2K-DES Advanced SlideX

How do you Find the Slid Pair? (cont.)

◮ This leads to a very interesting approach in block ciphers
cryptanalysis

◮ To break a cipher X (to find the secret key), we need a
slid pair

◮ To find this slid pair, we take many candidate pairs

◮ For each candidate pair, we analyze which key it suggests

◮ Then, if the key suggested is correct we found the slid
pair. . . . which is what we need for finding the right key
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Summary of the Slide Attack

◮ Independent of the number of rounds

◮ Generation of a slid pair in O(2n/2) known plaintexts (or
2n/4 for Feistel block ciphers)

◮ Works if FK (Pi) = Pj , FK (Ci) = Cj is sufficient for finding
K

Orr Dunkelman Related-Key Attacks 22/ 42



Related-Key Attacks Slide Statistical RK Conclusion Intro 2K-DES Advanced SlideX

Complementation Slide Attack

◮ Consider 2K-DES

◮ Let ∆ = K1 ⊕ K2

◮ Consider two plaintexts Pi ,Pj

such that if X = fK1
(Pi) then

Xi = Pj ⊕ (∆,∆)

◮ This relation remains until
Cj = fK2

(Ci)⊕ (∆,∆)

Pi

Li Ri

Pj

Lj Rj

⊕

K1

F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

K2

K1

K2

K1

K1

K2

K1

K2

Lj ⊕ ∆ Rj ⊕ ∆

Rj ⊕ ∆ ⊕ K2

= Rj ⊕ (K1 ⊕ K2) ⊕ K2

= Rj ⊕ K1
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Complementation Slide Attack

◮ As half of the data is unchanged by f (·), the
identification of slid pairs is easier

◮ Starting with 232 known plaintexts, and use the filter
condition on the differences (right half of Pi XOR the left
half of Pj is equal to the right half of Ci XOR the left half
of Cj) to discard most of the wrong candidate keys

◮ There is a small technicality here that makes the attack
fail. If you recall, the difference in the data words is of 32
bits, and of the subkey is in 48-bit words

◮ Hence, this attack works, only if ∆ is a legitimate output
of E (·) of DES (i.e., the actual difference in the plaintext
is E−1(∆))
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Slide Attack with a Twist

◮ Consider encryption and
decryption in a Feistel block
cipher

◮ They are the same up to the
order of subkeys

◮ Now, consider 2K-DES, with
one round slide in the
encryption direction and the
decryption direction. . .

◮ Given 232 known plaintexts, it
is possible to find a twisted
slid pair and repeat the
analysis.

Pi

Li Ri

Pj

Lj Rj

⊕

K1

F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

⊕F⊕

K2

K1

K2

K2

K1

K2

K1

Lj Rj

Mi Ni Mi Ni
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Slide Attack with a Twist (cont.)

◮ This time, it is possible to analyze only one subkey (K1),
as the relations are

fK1
(Ni) = Cj ⊕Mi ; fK1

(Ri) = Rj ⊕ Li .

◮ This allows applying a chosen plaintext and ciphertext
attacks with 216 of each

◮ The adversary asks for the encryption of (A, x) and the
decryption of (A, y )

◮ Note that this variant actually works

◮ And do note that you can combine the two techniques
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The Even-Mansour Block Cipher

◮ Suggested by Even and Mansour in 1991,
as a generalization of the DESX approach

◮ Apparently, even if you know the internal
key of DESX, the system is still secure

◮ Main idea: Change the keyed permutation
in the middle to an n-bit pseudo-random
permutation F

◮ Block size: n bits, Key size: 2n bits

F

K2

⊕

C

⊕
K1

P

EMF
K1,K2

(P) = F(P ⊕ K1)⊕ K2
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Security of the Even-Mansour Scheme

◮ A simple attack that requires 2 plaintext/ciphertext pairs
and 2n time (so security is n-bits at most)

◮ There is a proof that any attack that uses D
plaintext/ciphertext pairs, and T queries to F , has
success rate of O(DT/2n)

◮ There is a differential attack that offers this tradeoff [D92]

◮ There is also a slide with a twist attack that uses 2n/2

data and time
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Slide with a Twist Attack on Even-Mansour

◮ Consider two plaintexts P and P∗

such that P∗ = P ⊕ K1

◮ The inputs to F are swapped,
which means that so does the
outputs

◮ Hence, C ⊕ C ∗ = F(P)⊕F(P∗)

◮ So the attack starts with 2n/2

plaintexts Pi , each is encrypted to
the corresponding Ci , and a
collision in the values of Ci ⊕F(Pi)
is expected to suggest a slid pair

F F

K2 K2

⊕ ⊕

C C∗

P∗ P

⊕ ⊕
K1 K1

P P∗
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Slide with a Twist Attack on Even-Mansour

◮ The attack requires D = 2n/2 known plaintexts

◮ To generate the table, T = 2n/2 additional queries to F
are made

◮ The success rate is the probability of having a slid pair,
which is quite high

◮ We note that having even slightly less than O(2n/2)
plaintexts results in the failure of the attack

◮ So this attack satisfies the bound, but at the same time,
offers no tradeoff
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Motivation

◮ The slide attack requires one slid pair to work

◮ To find such a pair, we need at least 2n/2 known plaintexts

◮ If we are given less data, can we somehow compensate for
the lack of slid pairs with some computation?
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SlideX Attack on Even-Mansour

◮ Consider two plaintexts P and P∗

such that P∗ = P ⊕ K1 ⊕∆

◮ Then:

EMF

K1,K2
(P) = F(P ⊕ K1)⊕ K2

= F(P∗ ⊕∆)⊕ K2

EMF

K1,K2
(P∗) = F(P∗ ⊕ K1)⊕ K2

= F(P ⊕∆)⊕ K2

◮ Hence,

F F

K2 K2

⊕ ⊕

C C∗

V V ∗

⊕ ⊕
K1 K1

P P∗

∆ ∆

EMF

K1,K2
(P)⊕ F(P ⊕∆) = EMF

K1,K2
(P∗)⊕F(P∗ ⊕∆)
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SlideX Attack on Even-Mansour (cont.)

◮ We define a SlideX pair, as a pair which actually satisfies
the required relation P = P∗ ⊕ K1 ⊕∆

◮ To check for the SlideX pair, we take the D

plaintext/ciphertext pairs (Pi ,Ci), and for each ∆ guess,
we construct a table of all values Ci ⊕F(Pi ⊕∆)

◮ The trick here, is that we check O(D2) pairs by each
such guess of ∆

◮ Hence, we repeat the construction of the table O(2n/D2)
times, each time with D calls to F , or T = O(2n/D)
times in total

And we’re done!
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SlideX vs. Slide (with a Twist)

◮ The attack can work with any given amount of data

◮ As a SlideX pair is actually a SlideX tuple (with respect
to some ∆), we can increase the number of ∆’s to
compensate for the reduced data

◮ Additionally, we just need to store O(D) values, so if
D ≪ 2n/2, we can use a significantly smaller amount of
memory
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Related Work

◮ Finding more slid pairs [F01]: continuing to encrypt a slid
pair offers another slid pair

◮ Reflection attacks [KM07,K08]: targets Feistel ciphers
with key schedule such that Kr+t = Kr−t−1(symmetry
around Kr )

◮ Identification of slid pairs based on cycles [BDK07]

Orr Dunkelman Related-Key Attacks 35/ 42



Related-Key Attacks Slide Statistical RK Conclusion RK-Diff GOST Differences

Related-Key Differential Attacks

◮ Consider the complementation property of DES:

DESK (P) = DESK (P)

◮ This equality can be rewritten as:

DESK (P)⊕ DESK (P) = FFFF FFFF FFFF FFFFx

◮ Does this look familiar?

◮ This motivated Kelsey, Schneier and Wagner to introduce
related-key differentials
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Related-Key Differentials (cont.)

◮ The probability of regular differential is:

Pr P,K [EK (P)⊕ EK (P ⊕∆P) = ∆C ]

◮ The probability of related-key differential is:

Pr P,K [EK (P)⊕ EK⊕∆K (P ⊕∆P) = ∆C ]

◮ The key difference leads to subkey differences, that may
be used to cancel the differences in the input to the round
function

◮ The reminder of the differential attack using a related-key
attack is quite the same (up to the use of two keys)

◮ Usually, the key relation is by a difference, but other
relations may be used as well∗

∗Note that the relation K ′ = K ∧ Const and K ′ = K ∨ Const, for any
constant Const, allow for a trivial key recovery attack.
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The Block Cipher GOST

◮ The Soviet/Russian block cipher
standard (GOST 28147-89)

◮ 64-bit block, 256-bit key, 32 rounds

◮ S-boxes: 4× 4. Implementation
specific

◮ Key schedule very simple, take
K = (K1,K2, . . . ,K8):

Round 1 2 3 4 5 6 7 8
Subkey K1 K2 K3 K4 K5 K6 K7 K8

Round 9 10 11 12 13 14 15 16
Subkey K1 K2 K3 K4 K5 K6 K7 K8

Round 17 18 19 20 21 22 23 24
Subkey K1 K2 K3 K4 K5 K6 K7 K8

Round 25 26 27 28 29 30 31 32
Subkey K8 K7 K6 K5 K4 K3 K2 K1

Li Ri

Li+1 Ri+1

⊞

Ki

S1
S2
S3
S4
S5
S6
S7
S8

≪ 11
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Related-Key Differentials in GOST

◮ Flipping the MSBs of all key words, flips the MSB of all
the subkeys

◮ Flipping the two MSBs of the plaintext words, leads to
the same input entering the S-boxes in all rounds

◮ Thus, under a key difference
(80000000x , 80000000x , . . . , 80000000x) the plaintext
difference (80000000x , 80000000x) leads to ciphertext
difference (80000000x , 80000000x) with probability 1

◮ Can speed up exhaustive search by a factor of 2 (like in
DES)

◮ Or for a very simple distinguishing attack (with 2 chosen
plaintexts)

Orr Dunkelman Related-Key Attacks 39/ 42



Related-Key Attacks Slide Statistical RK Conclusion RK-Diff GOST Differences

Recovering the Key in GOST in a Related-Key

Attack

◮ For a differential key recovery attack we need a
differential with nontrivial probability

◮ Pick ∆K = (40000000x , 40000000x , . . . , 40000000x)

◮ An input difference ∆ = (40000000x , 40000000x) remains
unchanged after one round with probability 1/2

◮ Thus, it is easy to build a 30-round related-key differential
with probability 2−30 for GOST

◮ Then, GOST can be attacked using standard differential
techniques
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The Differences from Regular Differentials

◮ Despite the above there are few subtle differences
between regular differentials and related-key differentials

◮ The amount of possible pairs, for example. In a one-key
scenario, for a given input difference there are 2n−1

possible distinct pairs (n being the block size). In two-key
scenario — 2n

◮ Consider an input difference to an s-bit round function.
Once the key is fixed, for any given input difference, there
are at most 2s−1 output differences In the related-key
model there are 2s (if there is a key difference, of course)
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Concluding Remarks — Related Key Attacks

◮ Almost any statistical attack has a related-key variant:
◮ Related-key impossible differential attack
◮ Related-key boomerang/amplified boomerang/rectangle

attack
◮ Related-key linear attack
◮ Related-key . . .

◮ There are several works that actually run a statistical
related-key attack inside a related-key attack
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