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Overview
tl;dr: FRI is a fast, FFT-like, IOP solution for verifying deg(f) < d

» motivation
» main result, applications
» FRI protocol dive-in
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» RS codes have many desirable properties, like
» maximum distance separable (MDS): rel. Hamming distance 1 — p
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Reed Solomon (RS) codes [RS60]

» prominent role in algebraic coding and computational complexity
» For S C F a finite field and p € (0,1] a rate parameter

RSIE. S. ] = {f : S — F | deg(f) < pIS|}

» RS codes have many desirable properties, like
» maximum distance separable (MDS): rel. Hamming distance 1 — p
> efficient, quasi-linear time encoding via FFT
» efficient unique decoding [BW83] and list decoding [GS99]
» used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

» notation:
» d = p|S| —1is degree;
» n =S| is blocklength;
> A is relative Hamming distance



RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

> oracle access to f(o) ;SO L F
> completeness: If f© ¢ RSJ[F, S, p], then Pr[V accepts (]
(0

> soundness: otherwise, Pr[V rejects F(@] > A(F© RS[F, §© p])

while minimizing query complexity q.
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RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

» oracle access to f(o) :S© 4 F and PCPP 7: S & F
> completeness: If £ ¢ RS[F, S, p], then Pr[V accepts (]
(0

> soundness: otherwise, Pr[V rejects F(@] > A(f© RS[F, $© p])

while minimizing query complexity q.
» Answers:
» q = d+ 1 required and sufficient [folklore]
» q = 0(1/9), if verifier has oracle access to PCPP [AS+ALMSS98]
> PCPP can have quasi-linear length nlog®® n [BS08, D07]
» IOPP can have linear length O(n) [BCF716, BBGR16]
> Interactive Oracle Proof of Proximity (IOPP) model
[BCS16,RRR16,BCF+16]
> prover sends f(® : §(© _ F; verifier sends random x(©)
prover sends ) : S — F; verifier sends random x®)
repeat for r rounds
verifier queries f© ... f: based on answers and (x(o), e ,x(r_l))
verifier decides to accept/reject claim “fO ¢ RS [IF, 50O p]"
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RS proximity testing (RPT) problem

» Question: Construct a verifier V that has
> oracle access to £ : §© — F and PCPP 7 : SV » F
> completeness: If (%) € RS[F, S, p], then Pr[V accepts f(0] =1
> soundness: otherwise, Pr[V rejects f@] > A(F(© RS[F, S©, p])
while minimizing query complexity q.
» Answers:
» q=d+ 1 required and sufficient [folklore]
> q = 0(1/9), if verifier has oracle access to PCPP [AS+ALMSS98]
» PCPP can have quasi-linear length nlog®® n [BS08, D07]
» |OPP can have linear length O(n) [BCF'16, BBGR16]
» This work: IOPP model, minimize q and
1. total proof length ¢ = |m1| + ... + |7/]
2. prover arithmetic complexity t,
3. verifier arithmetic complexity t,
4. for "small”, concrete, non-asymptotic values of n, (< 250), using
non-asymptotic bounds (&, €, &)
» Why? 1-3 interesting theoretically, 4 important practically, for ZK
systems like Ligero [AHIV17], STARK [BBHR18], Aurora
[BCRSVW1Y], ...



Prior RS proximity testing (RPT) results

prover proof verifier query round

comp. length comp. comp. comp.
folklore 0 0 O(pn) pn 0
PCP [aLM+402] no@ no® n°® (0] (%) 1
PCP (gFL+90] ntte ntte % log!/€ n % log!/¢ n 1
PCPP (ss+os] nlog'®n | nlog®n | 1log®®n | %log®>®n 1
PCPP (po7, mos1 | nlog®n nlog®n % log® n o (%) 1
IOPP [8cF+16] nlog®n >4-n 3 log®n 0(3) log log n
This work <6-n <3 <21-logn 2logn '(’%
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Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
» t,(n) <6-nand¥(n)<n/3
> t,(n) <21-logn and q(n) <2logn
> r(n) < Llogn (round complexity)
» soundness (rejection prob.) § — ﬁT"\ for all £(©) that are

0 < dp-far from code, dp ~ 1pr
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Remarks
1. “nice" codes means S(® is either of following two:
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2. first PCPP/IOPP for RS codes achieving simultaneous
> linear prover complexity, t, = O(n), and
» sub-linear verifier complexity, tv = o(n)
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Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3
ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)
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soundness (rejection prob.) § — ﬁT"\ for all £(©) that are
0 < do-far from code, o %% 1- p%% [BGKS19]

—— upper bound
- - - Johnson bound
- - unique decoding

0.8 |\, || ——[BKS18] lower bound
——[BGKS19] tight bound
0.6 | | — this work
S
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FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.
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Definition (Computational Integrity (CI))
is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

Lemma
Cl is NEXP-complete

Definition (proof system)
An proof system S for L is a pair S = (V, P) satisfying

» efficiency V is randomized polynomial time; P unbounded item
completeness x € L = Pr[V(x) <> P(x) ~» acc] =1

» soundness x ¢ L = Pr[V(x) <> P(x) ~» acc] <1/2



FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

Lemma
Cl is NEXP-complete

Definition (argument system)

An argument system S for L is a pair S = (V, P) satisfying
» efficiency V is randomized polynomial time; P is similarly bounded
» completeness x € L = Pr[V(x) <> P(x) ~ acc] =1
» soundness x ¢ L = Pr[V(x) < P(x) ~ acc] <1/2



FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

Lemma
Cl is NEXP-complete

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
Cl has an argument system S = (V,P) that is
» succinct: Verifier run-time poly(n,log T); this bounds proof length
> transparent (AM): verifier sends only public random coins

» private (ZK): proof preserves privacy of nondeterministic witness
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FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
Cl has an argument system S = (V,P) that is
» succinct: Verifier run-time poly(n,log T); this bounds proof length
» transparent (AM): verifier sends only public random coins

» private (ZK): proof preserves privacy of nondeterministic witness

1. privacy-preserving proof of computational integrity

» Proof and verification time may be longer than T
» Useful for asserting properties of private, crypto-committed data

2. compression of computation/data, with computational integrity

» meaningful when t, < T or £ < witness-size
» useful for compressing blockchain history

» Scalable Transparent ARguments of Knowledge [BBHR18]

» C++ implementation: github.com/elibensasson/libSTARK
» achieves Thm above, quasi-linear t,, “post-quantum secure”
» FRI is a major contributor to STARK efficiency


https://github.com/elibensasson/libSTARK
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Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3

ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)
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soundness (rejection prob.) ¢ — ﬁT"\ for all £©) that are

0 < do-far from code, o %% 1- p%% [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

> evaluate P(X),deg(P) < non (w), w is root of unity of order n = 2k
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Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
» t,(n) <6-nand{(n)<n/3
> t,(n) <21-logn and q(n) <2logn
> r(n) < %logn (round complexity)
» soundness (rejection prob.) § — ﬁT"\ for all £(©) that are
0 < do-far from code, &g z% 1- p}a/i [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
> evaluate P(X),deg(P) < non (w), w is root of unity of order n = 2k
> write P(X) = Po(X2) + X - P(X2)
> equivalently, P(X) = Po(Y) + X - Pi(Y) mod Y — X?
» notice (w?) has size n/2
>

so evaluate each of Py(Y), P1(Y) on (w?), ..., O(nlogn) runtime
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> COMMIT: while i < k(@
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FRI Protocol

> Let S© c F* be 2-smooth mult. group: |S©| = 2K? k() ¢ N

> Let O .

S© — T, FRI for RS = RS [F, 5O, p = 1]

» Two-phase protocol
> COMMIT: while j < k' —log 2

>
>
>
>
>

>
>

verifier sends randomness x(/)

prover sends oracle £(it1) ; §(i+1) _, 7 |5(i+1)| = |5()|/2
completeness: If £() € RS[F, S() p] then f(i+1) € RS[F, S(+1) p]
each entry of f(it1) computed from 2 distinct entries of #(!) via O(1)
arithmetic operations (so tp = O(n))

#rounds < k(© = logn

last round (i = k(©) —log1/p): prover sends constant function
(notice |FU+1)| = |£()]/2 so total proof length O(n))

» QUERY: verifier queries oracles (prover not involved)



Example: S© =i, n=2%p=272

COMMIT phase has log |S©)| — log p= 2 rounds; during ith round
> verifier sends random x() ¢ F
> prover sends next oracle f(+1) : §(+1) _y
> S0+ is 2-smooth multiplicative group, |S(*Y| = |S0)|/2
> each entry of f(™1) computed from 2 distinct entries of fU
> termination: When i = k(®) —log 1/p prover sends constant function
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Example: S© =i, n=2%p=272

COMMIT phase has log |S©)| — log p= 2 rounds; during ith round
> verifier sends random x() ¢ F
> prover sends next oracle f(+1) : §(+1) _y
> S0+ is 2-smooth multiplicative group, |S(*Y| = |S0)|/2
> each entry of f(™1) computed from 2 distinct entries of fU
> termination: When i = k(®) —log 1/p prover sends constant function
QUERY phase: pick random s(® e S(©) and check path-to-root
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> suppose (0 : F}, — Fy; satisfies deg(f()) < 4
> let P(X) interpolate f(9), deg(P) < 4

> write P(X) = Po(X?) + X - P1(X?), FFT-style
> then P(X) = Po(Y)+ X-Pi(Y) mod Y — X2
> let Q(X,Y) 2 Po(Y)+ X - Pi(Y),

> Q(X,Y)=P(X) mod Y — X2
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FRI COMMIT — single round

> suppose f(0) : F}, — Fy; satisfies deg(f(?)) < 4
> let P(X) interpolate f(©), deg(P) < 4
> write P(X) = Po(X?) + X - P1(X?), FFT-style
» then P(X) = Po(Y)+ X -P(Y) mod Y — X2
> let Q(X,Y) 2 Po(Y)+ X - Pi(Y),

> Q(X,Y)=P(X) mod Y — X2

> degx(Q) < 2; degy(Q) < deg(P)/2

> s = {x2 | x € S(o)} is mult. group, |SM| =(5©)]/2
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FRI COMMIT — single round

>
>
>
>
>

suppose f(0) : F}, — Fy7 satisfies deg(f(?)) < 4
let P(X) interpolate f(©, deg(P) < 4

write P(X) = Po(X?) + X - P1(X?), FFT-style
then P(X) = Po(Y)+ X - P1(Y) mod Y — X2

let Q(X,Y) 2 Po(Y)+ X -Pi(Y),
> Q(X,Y)=P(X) mod Y — X2
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> degy(Q) < 2; degy (Q) < deg(P)/2

> s = {x2 | x € 5(0)}

ol

N O
10111213141516

is mult. group, |SM| =(5©)]/2

COMMIT round
> Verifier picks random x(©) e F
> ) = Q(x9,Y)|sw
» each entry of (1) interpolated
from two entries of (9

> deg(f1)) = degy (Q) < ISV



FRI vs. inverse FFT

>
>
>
>
>

suppose f(0) : F}, — Fy7 satisfies deg(f(?)) < 4
find P(X) that interpolates f(°)

write P(X) = Po(X?) + X - P1(X?), FFT-style
then P(X) = Po(Y)+ X - P1(Y) mod Y — X2
let Q(X,Y) 2 Po(Y)+X-Pi(Y),
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> Q(X,Y)=P(X) mod Y — X2
> degx(Q) < 2; degy(Q) < deg(P)/2
> s = {x2 | x € S(o)} is mult. group, |SM| =(5©)]/2
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FRI vs. inverse FFT

> suppose f(0) : F}, — Fy; satisfies deg(f(?)) < 4
> find P(X) that interpolates f(©)
> write P(X) = Po(X?) + X - P1(X?), FFT-style
» then P(X) = Po(Y)+ X -P(Y) mod Y — X2
> let Q(X,Y) 2 Po(Y)+ X - Pi(Y),

> Q(X,Y)=P(X) mod Y — X2

> degx(Q) < 2; degy(Q) < deg(P)/2

> s = {x2 | x € S(o)} is mult. group, |SM| =(5©)]/2

16¢- -

15¢- . . . .

18 . e b > Po(Y)=Q(0,Y),

it ] P1(Y) = Q(o0, Y)

F) G . > let go = Q(0, Y)|sw,

A ] g1 = Q(o0,Y)|sw

EE e . o > compute go, g1, O(n) steps
F} SO M o] > recurse on go, g1
012345678 010111213141516%



Soundness analysis — low error
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For simplicity, suppose f(©) is § < 122-far from 0
> y € SM) good if FO(xg) =FO(x) =0forxg =xZ =y
> otherwise, y € S(1) pad
> fraction of bad y's in S() between § and 2§
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Soundness analysis — low error
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15 ] . 8
14 - ~
13+ o n
12 =
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10 - —
9 ° ° —
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70 4
61 4
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4 e ° —
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2+ ° ® —
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> fraction of bad y's in S() between § and 2§
> interpolant of bad row has at most 1 root
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Soundness analysis — low error
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For simplicity, suppose f(©) is § < 122-far from 0
> y € SM) good if FO(xg) =FO(x) =0forxg =xZ =y
otherwise, y € S(1) pad
fraction of bad y's in S() between § and 26

>
>
> interpolant of bad row has at most 1 root
>
>

ISM] (0)
[IF]

prover left with two bad options:

w.p. 1— , x(©) misses roots of bad rows; call such x(®) good

> let M) “jump” to be closer to non-zero RS-codeword; large error;
> continue with f) close to 0;
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Summary

» first RPT solution with t, = O(n) and t, = O(log n)
» nearly optimal soundness for § < dg
» what's 69?7 (higher lines are better)

_| |— [BBHR18] lower bound
— [BKS18] lower bound
| | —— upper bound

1}

0.8} : .
- - unique decoding
—— DEEP-FRI [BGKS19)]
_oer 1 FRI tight [BGKS19]
B
0.4 8
0.2} -

ol

» New protocol: DEEP-FRI [B, Goldberg, Kopparty, Saraf 2019]

» DEEP-FRI: Domain Extending for Eliminating Pretenders FRI

» like FRI, has linear proving complexity, logarithmic verifer complexity
» DEEP-FRI soundness reaches Johnson bound do =~ 1 — /p

» Under plausible list decoding conjecture, reaches §o ~ 1 — p
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Summary

» first RPT solution with t, = O(n) and t, = O(log n)
» nearly optimal soundness for § < dg
» what's 69?7 (higher lines are better)

» Questions

> “sliding scale” soundness-error ~ 1/poly(|F|) for RS-IOPPs?
» want to learn more? workshop@starkware.co
> want to realize in practice? jobs@starkware.co
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