

FRI
Fast
Reed-Solomon (RS)
Interactive Oracle Proofs of Proximity (IOPP)
From ICALP 2018 presentation

Eli Ben-Sasson Iddo Bentov Yinon Horesh Michael Riabzev

February 2019

Overview

tl;dr: FRI is a fast, FFT-like, IOP solution for verifying $\deg(f) < d$

- ▶ motivation
- ▶ main result, applications
- ▶ FRI protocol dive-in

Reed Solomon (RS) codes [RS60]

- ▶ prominent role in algebraic coding and computational complexity
- ▶ For $S \subset \mathbb{F}$ a finite field and $\rho \in (0, 1]$ a *rate* parameter

$$\text{RS}[\mathbb{F}, S, \rho] = \{f : S \rightarrow \mathbb{F} \mid \deg(f) < \rho|S|\}$$

Reed Solomon (RS) codes [RS60]

- ▶ prominent role in algebraic coding and computational complexity
- ▶ For $S \subset \mathbb{F}$ a finite field and $\rho \in (0, 1]$ a *rate* parameter

$$\text{RS}[\mathbb{F}, S, \rho] = \{f : S \rightarrow \mathbb{F} \mid \deg(f) < \rho|S|\}$$

- ▶ RS codes have many desirable properties, like
 - ▶ maximum distance separable (MDS): rel. Hamming distance $1 - \rho$
 - ▶ efficient, quasi-linear time encoding via FFT
 - ▶ efficient unique decoding [BW83] and list decoding [GS99]
 - ▶ used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

Reed Solomon (RS) codes [RS60]

- ▶ prominent role in algebraic coding and computational complexity
- ▶ For $S \subset \mathbb{F}$ a finite field and $\rho \in (0, 1]$ a *rate* parameter

$$\text{RS}[\mathbb{F}, S, \rho] = \{f : S \rightarrow \mathbb{F} \mid \deg(f) < \rho|S|\}$$

- ▶ RS codes have many desirable properties, like
 - ▶ maximum distance separable (MDS): rel. Hamming distance $1 - \rho$
 - ▶ efficient, quasi-linear time encoding via FFT
 - ▶ efficient unique decoding [BW83] and list decoding [GS99]
 - ▶ used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]
- ▶ notation:
 - ▶ $d = \rho|S| - 1$ is **degree**;
 - ▶ $n = |S|$ is **blocklength**;
 - ▶ Δ is **relative Hamming distance**

RS proximity testing (RPT) problem

► **Question:** Construct a verifier V that has

- oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$
- **completeness:** If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
- **soundness:** otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$

while minimizing query complexity q .

RS proximity testing (RPT) problem

- ▶ **Question:** Construct a verifier V that has
 - ▶ oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$
 - ▶ **completeness:** If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ **soundness:** otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$while minimizing query complexity q .
- ▶ **Answers:**
 - ▶ $q = d + 1$ required and sufficient [folklore]

RS proximity testing (RPT) problem

- ▶ **Question:** Construct a verifier V that has
 - ▶ oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$ and PCPP $\pi : S^{(1)} \rightarrow \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$while minimizing query complexity q .
- ▶ **Answers:**
 - ▶ $q = d + 1$ required and sufficient [folklore]
 - ▶ $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]

RS proximity testing (RPT) problem

- ▶ **Question:** Construct a verifier V that has
 - ▶ oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$ and PCPP $\pi : S^{(1)} \rightarrow \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$while minimizing query complexity q .
- ▶ **Answers:**
 - ▶ $q = d + 1$ required and sufficient [folklore]
 - ▶ $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length $O(n)$ [BCF⁺16, BBGR16]

RS proximity testing (RPT) problem

- ▶ **Question:** Construct a verifier V that has
 - ▶ oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$ and PCPP $\pi : S^{(1)} \rightarrow \mathbb{F}$
 - ▶ completeness: If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ soundness: otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$while minimizing query complexity q .
- ▶ **Answers:**
 - ▶ $q = d + 1$ required and sufficient [folklore]
 - ▶ $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length $O(n)$ [BCF⁺16, BBGR16]
- ▶ Interactive Oracle Proof of Proximity (IOPP) model
[BCS16, RRR16, BCF+16]
 - ▶ prover sends $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$; verifier sends random $x^{(0)}$
 - ▶ prover sends $f^{(1)} : S^{(1)} \rightarrow \mathbb{F}$; verifier sends random $x^{(1)}$
 - ▶ repeat for r rounds
 - ▶ verifier queries $f^{(0)}, \dots, f^{(r)}$; based on answers and $(x^{(0)}, \dots, x^{(r-1)})$ verifier decides to accept/reject claim " $f^{(0)} \in \text{RS}[\mathbb{F}, S^{(0)}, \rho]$ "

RS proximity testing (RPT) problem

- ▶ **Question:** Construct a verifier V that has
 - ▶ oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$ and PCPP $\pi : S^{(1)} \rightarrow \mathbb{F}$
 - ▶ **completeness:** If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ **soundness:** otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$while minimizing query complexity q .
- ▶ **Answers:**
 - ▶ $q = d + 1$ required and sufficient [folklore]
 - ▶ $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length $O(n)$ [BCF⁺16, BBGR16]
- ▶ This work: IOPP model, minimize q and
 1. total proof length $\ell = |\pi_1| + \dots + |\pi_r|$
 2. prover arithmetic complexity t_p
 3. verifier arithmetic complexity t_v

RS proximity testing (RPT) problem

- ▶ **Question:** Construct a verifier V that has
 - ▶ oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$ and PCPP $\pi : S^{(1)} \rightarrow \mathbb{F}$
 - ▶ **completeness:** If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ **soundness:** otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$while minimizing query complexity q .
- ▶ **Answers:**
 - ▶ $q = d + 1$ required and sufficient [folklore]
 - ▶ $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length $O(n)$ [BCF⁺16, BBGR16]
- ▶ This work: IOPP model, minimize q and
 1. total proof length $\ell = |\pi_1| + \dots + |\pi_r|$
 2. prover arithmetic complexity t_p
 3. verifier arithmetic complexity t_v
 4. for “small”, concrete, non-asymptotic values of n , ($< 2^{50}$), using non-asymptotic bounds ($\emptyset, \mathcal{A}, \Theta$)

RS proximity testing (RPT) problem

- ▶ **Question:** Construct a verifier V that has
 - ▶ oracle access to $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$ and PCPP $\pi : S^{(1)} \rightarrow \mathbb{F}$
 - ▶ **completeness:** If $f^{(0)} \in \text{RS}[\mathbb{F}, S, \rho]$, then $\Pr[V \text{ accepts } f^{(0)}] = 1$
 - ▶ **soundness:** otherwise, $\Pr[V \text{ rejects } f^{(0)}] \geq \Delta(f^{(0)}, \text{RS}[\mathbb{F}, S^{(0)}, \rho])$while minimizing query complexity q .
- ▶ **Answers:**
 - ▶ $q = d + 1$ required and sufficient [folklore]
 - ▶ $q = O(1/\delta)$, if verifier has oracle access to PCPP [AS+ALMSS98]
 - ▶ PCPP can have quasi-linear length $n \log^{O(1)} n$ [BS08, D07]
 - ▶ IOPP can have linear length $O(n)$ [BCF⁺16, BBGR16]
- ▶ This work: IOPP model, minimize q and
 1. total proof length $\ell = |\pi_1| + \dots + |\pi_r|$
 2. prover arithmetic complexity t_p
 3. verifier arithmetic complexity t_v
 4. for “small”, concrete, non-asymptotic values of n , ($< 2^{50}$), using non-asymptotic bounds (\mathcal{O} , \mathcal{A} , \mathcal{S})
- ▶ **Why?** 1–3 interesting theoretically, 4 important practically, for ZK systems like Ligero [AHIV17], STARK [BBHR18], Aurora [BCRSVW19], ...

Prior RS proximity testing (RPT) results

	prover comp.	proof length	verifier comp.	query comp.	round comp.
folklore	0	0	$\tilde{O}(\rho n)$	ρn	0
PCP <small>[ALM+92]</small>	$n^{O(1)}$	$n^{O(1)}$	$n^{O(1)}$	$O\left(\frac{1}{\delta}\right)$	1
PCP <small>[BFL+90]</small>	$n^{1+\epsilon}$	$n^{1+\epsilon}$	$\frac{1}{\delta} \log^{1/\epsilon} n$	$\frac{1}{\delta} \log^{1/\epsilon} n$	1
PCPP <small>[BS+05]</small>	$n \log^{1.5} n$	$n \log^{1.5} n$	$\frac{1}{\delta} \log^{5.8} n$	$\frac{1}{\delta} \log^{5.8} n$	1
PCPP <small>[D07, M09]</small>	$n \log^c n$	$n \log^c n$	$\frac{1}{\delta} \log^c n$	$O\left(\frac{1}{\delta}\right)$	1
IOPP <small>[BCF+16]</small>	$n \log^c n$	$> 4 \cdot n$	$\frac{1}{\delta} \log^c n$	$O\left(\frac{1}{\delta}\right)$	$\log \log n$
This work	$< 6 \cdot n$	$< \frac{n}{3}$	$\leq 21 \cdot \log n$	$2 \log n$	$\frac{\log n}{2}$

Overview

- ▶ motivation ✓
- ▶ main result, applications
- ▶ FRI protocol dive-in

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta - \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta - \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4}$

Remarks

1. “nice” codes means $S^{(0)}$ is either of following two:
 - 1.1 2-smooth multiplicative group, i.e., $|S^{(0)}| = 2^k$, $k \in \mathbb{N}$, or
 - 1.2 binary additive groups, i.e., $S^{(0)}$ an \mathbb{F}_2 -linear space
2. first PCPP/IOPP for RS codes achieving simultaneous
 - ▶ linear prover complexity, $t_p = O(n)$, and
 - ▶ sub-linear verifier complexity, $t_v = o(n)$

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{4}}$ [BGKS19]

Remarks

1. “nice” codes means $S^{(0)}$ is either of following two:
 - 1.1 2-smooth multiplicative group, i.e., $|S^{(0)}| = 2^k$, $k \in \mathbb{N}$, or
 - 1.2 binary additive groups, i.e., $S^{(0)}$ an \mathbb{F}_2 -linear space
2. first PCPP/IOPP for RS codes achieving simultaneous
 - ▶ linear prover complexity, $t_p = O(n)$, and
 - ▶ sub-linear verifier complexity, $t_v = o(n)$

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{k+3}}$ [BGKS19]

Remarks

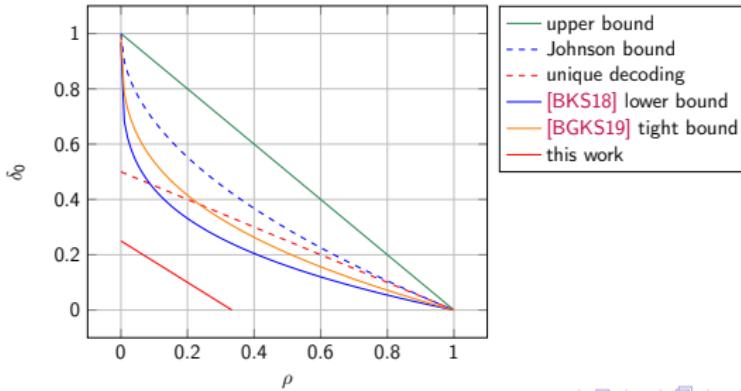
1. “nice” codes means $S^{(0)}$ is either of following two:
 - 1.1 2-smooth multiplicative group, i.e., $|S^{(0)}| = 2^k$, $k \in \mathbb{N}$, or
 - 1.2 binary additive groups, i.e., $S^{(0)}$ an \mathbb{F}_2 -linear space
2. first PCPP/IOPP for RS codes achieving simultaneous
 - ▶ linear prover complexity, $t_p = O(n)$, and
 - ▶ sub-linear verifier complexity, $t_v = o(n)$

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS $[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{4} \cdot \frac{1}{3}}$ [BGKS19]



FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M , on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M , on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M , on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

Definition (proof system)

An proof system S for L is a pair $S = (V, P)$ satisfying

- ▶ **efficiency** V is randomized polynomial time; P unbounded item
- ▶ **completeness** $x \in L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \text{acc}] = 1$
- ▶ **soundness** $x \notin L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \text{acc}] \leq 1/2$

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M , on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

Definition (argument system)

An **argument** system S for L is a pair $S = (V, P)$ satisfying

- ▶ **efficiency** V is randomized polynomial time; P is similarly bounded
- ▶ **completeness** $x \in L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \text{acc}] = 1$
- ▶ **soundness** $x \notin L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \text{acc}] \leq 1/2$

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples $(M, \mathcal{T}, x_{\text{in}}, x_{\text{out}})$ such that nondeterministic machine M , on input x_{in} reaches output x_{out} after \mathcal{T} cycles, \mathcal{T} in binary.

Lemma

CI is NEXP-complete

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

CI has an argument system $S = (V, P)$ that is

- ▶ **succinct**: Verifier run-time $\text{poly}(n, \log \mathcal{T})$; this bounds proof length
- ▶ **transparent (AM)**: verifier sends only public random coins
- ▶ **private (ZK)**: proof preserves privacy of nondeterministic witness

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

CI has an argument system $S = (V, P)$ that is

- ▶ **succinct**: Verifier run-time $\text{poly}(n, \log T)$; this bounds proof length
- ▶ **transparent (AM)**: verifier sends only public random coins
- ▶ **private (ZK)**: proof preserves privacy of nondeterministic witness

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

CI has an argument system $S = (V, P)$ that is

- ▶ **succinct**: Verifier run-time $\text{poly}(n, \log T)$; this bounds proof length
- ▶ **transparent (AM)**: verifier sends only public random coins
- ▶ **private (ZK)**: proof preserves privacy of nondeterministic witness

1. privacy-preserving proof of computational integrity

- ▶ Proof and verification time may be longer than T
- ▶ Useful for asserting properties of private, crypto-committed data

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

CI has an argument system $S = (V, P)$ that is

- ▶ **succinct**: Verifier run-time $\text{poly}(n, \log T)$; this bounds proof length
- ▶ **transparent (AM)**: verifier sends only public random coins
- ▶ **private (ZK)**: proof preserves privacy of nondeterministic witness

1. *privacy-preserving* proof of computational integrity
 - ▶ Proof and verification time may be longer than T
 - ▶ Useful for asserting properties of private, crypto-committed data
2. *compression* of computation/data, with computational integrity
 - ▶ meaningful when $t_v \ll T$ or $\ell \ll$ witness-size
 - ▶ useful for compressing blockchain history

▶ Scalable Transparent ARguments of Knowledge [BBHR18]

- ▶ C++ implementation: github.com/elibensasson/libSTARK
- ▶ achieves Thm above, quasi-linear t_p , “post-quantum secure”
- ▶ FRI is a major contributor to STARK efficiency

Overview

- ▶ motivation ✓
- ▶ main result, applications ✓
- ▶ FRI protocol dive-in

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes $\text{RS}[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{k} \frac{1}{3}}$ [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

- ▶ evaluate $P(X)$, $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes $\text{RS}[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{2} \cdot \frac{1}{3}}$ [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

- ▶ evaluate $P(X)$, $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes $\text{RS}[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{k+3}}$ [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

- ▶ evaluate $P(X)$, $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$
- ▶ equivalently, $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes $\text{RS}[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{k+3}}$ [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

- ▶ evaluate $P(X)$, $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$
- ▶ equivalently, $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ notice $\langle \omega^2 \rangle$ has size $n/2$

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes $\text{RS}[\mathbb{F}, S^{(0)}, \rho]$, the FRI protocol satisfies

- ▶ $t_p(n) \leq 6 \cdot n$ and $\ell(n) \leq n/3$
- ▶ $t_v(n) \leq 21 \cdot \log n$ and $q(n) \leq 2 \log n$
- ▶ $r(n) \leq \frac{1}{2} \log n$ (round complexity)
- ▶ soundness (rejection prob.) $\delta = \frac{2n}{|\mathbb{F}|}$ for all $f^{(0)}$ that are $\delta < \delta_0$ -far from code, $\delta_0 \approx \frac{1-\rho}{4} \cdot 1 - \rho^{\frac{1}{k+3}}$ [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

- ▶ evaluate $P(X)$, $\deg(P) < n$ on $\langle \omega \rangle$, ω is root of unity of order $n = 2^k$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$
- ▶ equivalently, $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ notice $\langle \omega^2 \rangle$ has size $n/2$
- ▶ so evaluate each of $P_0(Y), P_1(Y)$ on $\langle \omega^2 \rangle, \dots, O(n \log n)$ runtime

FRI Protocol

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}, k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$, FRI for $\text{RS}^{(0)} = \text{RS} [\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}]$

FRI Protocol

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}, k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$, FRI for $\text{RS}^{(0)} = \text{RS} [\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}]$
- ▶ Two-phase protocol
 - ▶ **COMMIT**: while $i < k^{(0)} - \log \frac{1}{\rho}$
 - ▶ verifier sends randomness $x^{(i)}$
 - ▶ prover sends oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}, |S^{(i+1)}| = |S^{(i)}|/2$

FRI Protocol

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}, k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$, FRI for $\text{RS}^{(0)} = \text{RS}[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}]$
- ▶ Two-phase protocol
 - ▶ **COMMIT**: while $i < k^{(0)} - \log \frac{1}{\rho}$
 - ▶ verifier sends randomness $x^{(i)}$
 - ▶ prover sends oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}, |S^{(i+1)}| = |S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in \text{RS}[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in \text{RS}[\mathbb{F}, S^{(i+1)}, \rho]$

FRI Protocol

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}, k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$, FRI for $\text{RS}^{(0)} = \text{RS}[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}]$
- ▶ Two-phase protocol
 - ▶ **COMMIT**: while $i < k^{(0)} - \log \frac{1}{\rho}$
 - ▶ verifier sends randomness $x^{(i)}$
 - ▶ prover sends oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}, |S^{(i+1)}| = |S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in \text{RS}[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in \text{RS}[\mathbb{F}, S^{(i+1)}, \rho]$
 - ▶ each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$ via $O(1)$ arithmetic operations (so $t_p = O(n)$)

FRI Protocol

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}, k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$, FRI for $\text{RS}^{(0)} = \text{RS}[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}]$
- ▶ Two-phase protocol
 - ▶ **COMMIT**: while $i < k^{(0)} - \log \frac{1}{\rho}$
 - ▶ verifier sends randomness $x^{(i)}$
 - ▶ prover sends oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}, |S^{(i+1)}| = |S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in \text{RS}[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in \text{RS}[\mathbb{F}, S^{(i+1)}, \rho]$
 - ▶ each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$ via $O(1)$ arithmetic operations (so $t_p = O(n)$)
 - ▶ #rounds $\leq k^{(0)} = \log n$
 - ▶ last round ($i = k^{(0)} - \log 1/\rho$): prover sends constant function

FRI Protocol

- ▶ Let $S^{(0)} \subset \mathbb{F}^*$ be 2-smooth mult. group: $|S^{(0)}| = 2^{k^{(0)}}, k^{(0)} \in \mathbb{N}$
- ▶ Let $f^{(0)} : S^{(0)} \rightarrow \mathbb{F}$, FRI for $\text{RS}^{(0)} = \text{RS}[\mathbb{F}, S^{(0)}, \rho = \frac{1}{8}]$
- ▶ Two-phase protocol
 - ▶ **COMMIT**: while $i < k^{(0)} - \log \frac{1}{\rho}$
 - ▶ verifier sends randomness $x^{(i)}$
 - ▶ prover sends oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}, |S^{(i+1)}| = |S^{(i)}|/2$
 - ▶ completeness: If $f^{(i)} \in \text{RS}[\mathbb{F}, S^{(i)}, \rho]$ then $f^{(i+1)} \in \text{RS}[\mathbb{F}, S^{(i+1)}, \rho]$
 - ▶ each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$ via $O(1)$ arithmetic operations (so $t_p = O(n)$)
 - ▶ #rounds $\leq k^{(0)} = \log n$
 - ▶ last round ($i = k^{(0)} - \log 1/\rho$): prover sends constant function
 - ▶ (notice $|f^{(i+1)}| = |f^{(i)}|/2$ so total proof length $O(n)$)
 - ▶ **QUERY**: verifier queries oracles (prover not involved)

Example: $S^{(0)} = \mathbb{F}_{17}^*$, $n = 2^4$, $\rho = 2^{-2}$

COMMIT phase has $\log |S^{(0)}| - \log \rho = 2$ rounds; during i th round

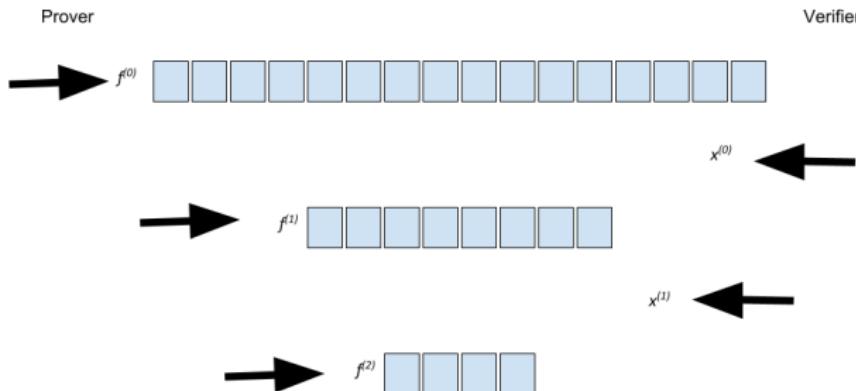
- verifier sends random $x^{(i)} \in \mathbb{F}$
- prover sends next oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}$
 - $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- **termination:** When $i = k^{(0)} - \log 1/\rho$ prover sends constant function

Example: $S^{(0)} = \mathbb{F}_{17}^*$, $n = 2^4$, $\rho = 2^{-2}$

COMMIT phase has $\log |S^{(0)}| - \log \rho = 2$ rounds; during i th round

- verifier sends random $x^{(i)} \in \mathbb{F}$
- prover sends next oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}$
 - $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- **termination:** When $i = k^{(0)} - \log 1/\rho$ prover sends constant function

QUERY phase: pick random $s^{(0)} \in S^{(0)}$ and check path-to-root

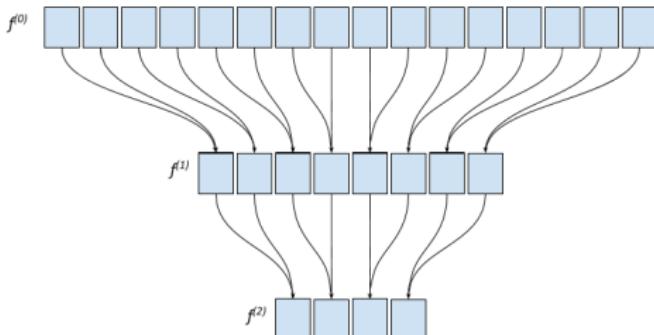


Example: $S^{(0)} = \mathbb{F}_{17}^*$, $n = 2^4$, $\rho = 2^{-2}$

COMMIT phase has $\log |S^{(0)}| - \log \rho = 2$ rounds; during i th round

- verifier sends random $x^{(i)} \in \mathbb{F}$
- prover sends next oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}$
 - $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- **termination:** When $i = k^{(0)} - \log 1/\rho$ prover sends constant function

QUERY phase: pick random $s^{(0)} \in S^{(0)}$ and check path-to-root

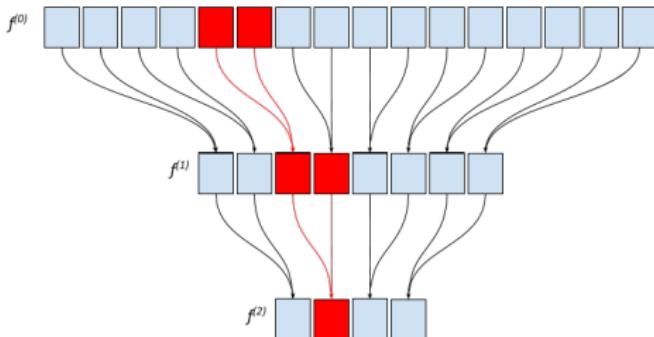


Example: $S^{(0)} = \mathbb{F}_{17}^*$, $n = 2^4$, $\rho = 2^{-2}$

COMMIT phase has $\log |S^{(0)}| - \log \rho = 2$ rounds; during i th round

- verifier sends random $x^{(i)} \in \mathbb{F}$
- prover sends next oracle $f^{(i+1)} : S^{(i+1)} \rightarrow \mathbb{F}$
 - $S^{(i+1)}$ is 2-smooth multiplicative group, $|S^{(i+1)}| = |S^{(i)}|/2$
 - each entry of $f^{(i+1)}$ computed from 2 distinct entries of $f^{(i)}$
- **termination:** When $i = k^{(0)} - \log 1/\rho$ prover sends constant function

QUERY phase: pick random $s^{(0)} \in S^{(0)}$ and check path-to-root



FRI COMMIT — single round

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$

FRI COMMIT — single round

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let $P(X)$ interpolate $f^{(0)}$, $\deg(P) < 4$

FRI COMMIT — single round

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let $P(X)$ interpolate $f^{(0)}$, $\deg(P) < 4$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style

FRI COMMIT — single round

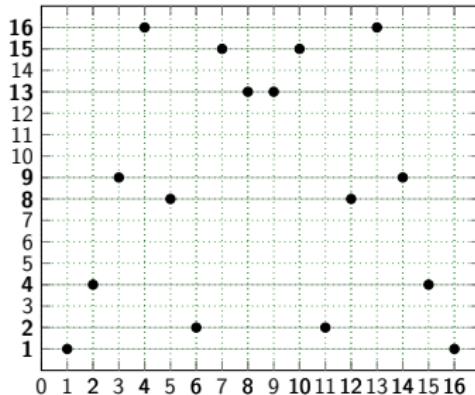
- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let $P(X)$ interpolate $f^{(0)}$, $\deg(P) < 4$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$

FRI COMMIT — single round

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let $P(X)$ interpolate $f^{(0)}$, $\deg(P) < 4$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - ▶ $Q(X, Y) \equiv P(X) \pmod{Y - X^2}$

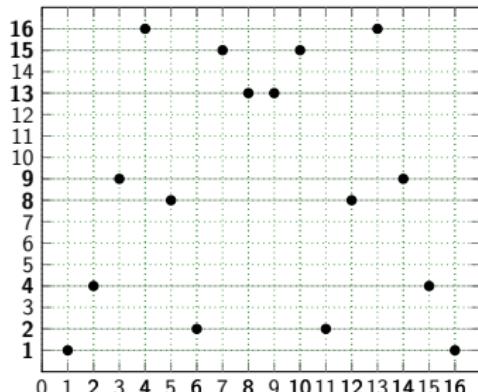
FRI COMMIT — single round

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let $P(X)$ interpolate $f^{(0)}$, $\deg(P) < 4$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - ▶ $Q(X, Y) \equiv P(X) \pmod{Y - X^2}$
 - ▶ consider points in $\mathbb{F} \times \mathbb{F}$ on curve $Y - X^2$,



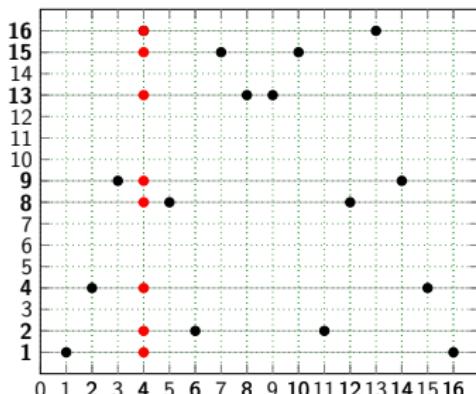
FRI COMMIT — single round

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let $P(X)$ interpolate $f^{(0)}$, $\deg(P) < 4$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - ▶ $Q(X, Y) \equiv P(X) \pmod{Y - X^2}$
 - ▶ $\deg_X(Q) < 2$; $\deg_Y(Q) \leq \deg(P)/2$
 - ▶ $S^{(1)} = \{x^2 \mid x \in S^{(0)}\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$



FRI COMMIT — single round

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ let $P(X)$ interpolate $f^{(0)}$, $\deg(P) < 4$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - ▶ $Q(X, Y) \equiv P(X) \pmod{Y - X^2}$
 - ▶ $\deg_X(Q) < 2$; $\deg_Y(Q) \leq \deg(P)/2$
 - ▶ $S^{(1)} = \{x^2 \mid x \in S^{(0)}\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$

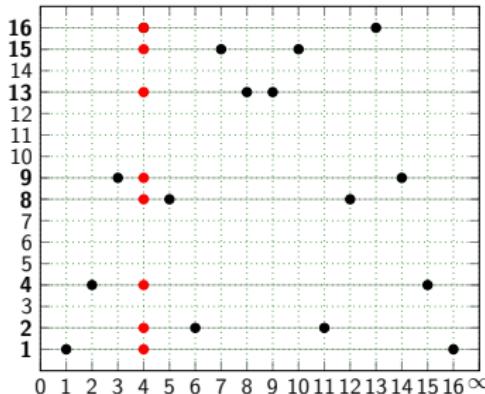


COMMIT round

- ▶ Verifier picks random $x^{(0)} \in \mathbb{F}$
- ▶ $f^{(1)} = Q(x^{(0)}, Y)|_{S^{(1)}}$
- ▶ each entry of $f^{(1)}$ interpolated from two entries of $f^{(0)}$
- ▶ $\deg(f^{(1)}) = \deg_Y(Q) < \rho|S^{(1)}|$

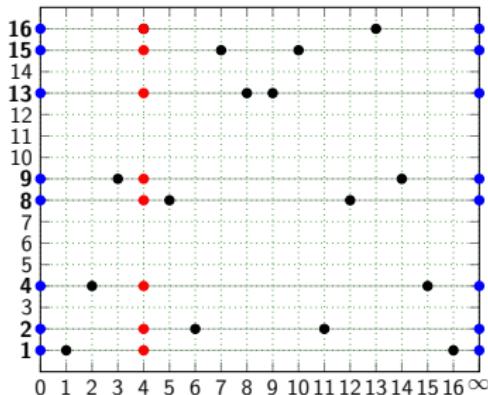
FRI vs. inverse FFT

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ **find** $P(X)$ that interpolates $f^{(0)}$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - ▶ $Q(X, Y) \equiv P(X) \pmod{Y - X^2}$
 - ▶ $\deg_X(Q) < 2$; $\deg_Y(Q) \leq \deg(P)/2$
 - ▶ $S^{(1)} = \{x^2 \mid x \in S^{(0)}\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$



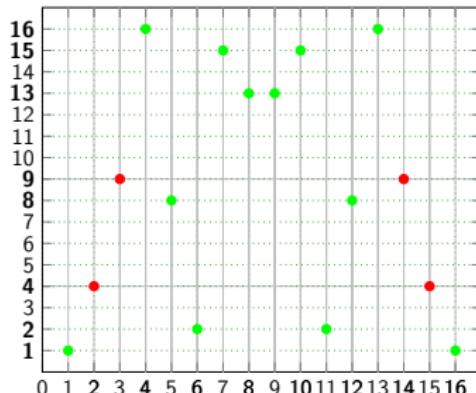
FRI vs. inverse FFT

- ▶ suppose $f^{(0)} : \mathbb{F}_{17}^* \rightarrow \mathbb{F}_{17}$ satisfies $\deg(f^{(0)}) < 4$
- ▶ **find** $P(X)$ that interpolates $f^{(0)}$
- ▶ write $P(X) = P_0(X^2) + X \cdot P_1(X^2)$, FFT-style
- ▶ then $P(X) \equiv P_0(Y) + X \cdot P_1(Y) \pmod{Y - X^2}$
- ▶ let $Q(X, Y) \triangleq P_0(Y) + X \cdot P_1(Y)$,
 - ▶ $Q(X, Y) \equiv P(X) \pmod{Y - X^2}$
 - ▶ $\deg_X(Q) < 2$; $\deg_Y(Q) \leq \deg(P)/2$
 - ▶ $S^{(1)} = \{x^2 \mid x \in S^{(0)}\}$ is mult. group, $|S^{(1)}| = |S^{(0)}|/2$



- ▶ $P_0(Y) = Q(0, Y)$,
 $P_1(Y) = Q(\infty, Y)$
- ▶ let $g_0 = Q(0, Y)|_{S^{(1)}}$,
 $g_1 = Q(\infty, Y)|_{S^{(1)}}$
- ▶ compute g_0, g_1 , $O(n)$ steps
- ▶ recurse on g_0, g_1

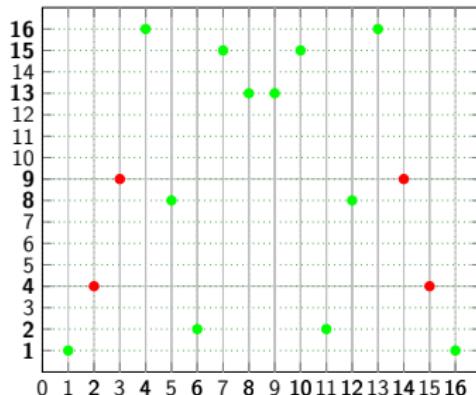
Soundness analysis — low error



For simplicity, suppose $f^{(0)}$ is $\delta < \frac{1-\rho}{4}$ -far from $\mathbf{0}$

- ▶ $y \in S^{(1)}$ **good** if $f^{(0)}(x_0) = f^{(0)}(x_1) = 0$ for $x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ **bad**
- ▶ fraction of bad y 's in $S^{(1)}$ between δ and 2δ

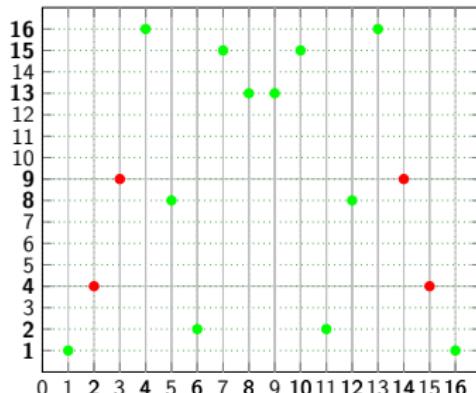
Soundness analysis — low error



For simplicity, suppose $f^{(0)}$ is $\delta < \frac{1-\rho}{4}$ -far from $\mathbf{0}$

- ▶ $y \in S^{(1)}$ **good** if $f^{(0)}(x_0) = f^{(0)}(x_1) = 0$ for $x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ **bad**
- ▶ fraction of bad y 's in $S^{(1)}$ between δ and 2δ
- ▶ interpolant of bad row has at most 1 root

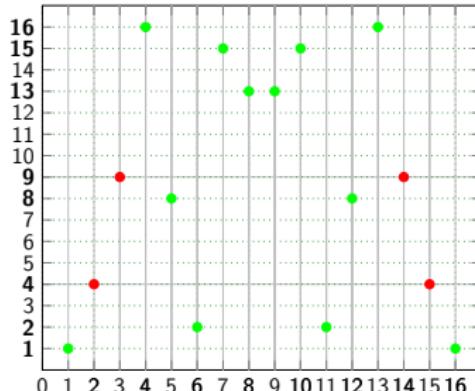
Soundness analysis — low error



For simplicity, suppose $f^{(0)}$ is $\delta < \frac{1-\rho}{4}$ -far from $\mathbf{0}$

- ▶ $y \in S^{(1)}$ **good** if $f^{(0)}(x_0) = f^{(0)}(x_1) = 0$ for $x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ **bad**
- ▶ fraction of bad y 's in $S^{(1)}$ between δ and 2δ
- ▶ interpolant of bad row has at most 1 root
- ▶ w.p. $1 - \frac{|S^{(1)}|}{|\mathbb{F}|}$, $x^{(0)}$ misses roots of bad rows; call such $x^{(0)}$ **good**

Soundness analysis — low error



For simplicity, suppose $f^{(0)}$ is $\delta < \frac{1-\rho}{4}$ -far from $\mathbf{0}$

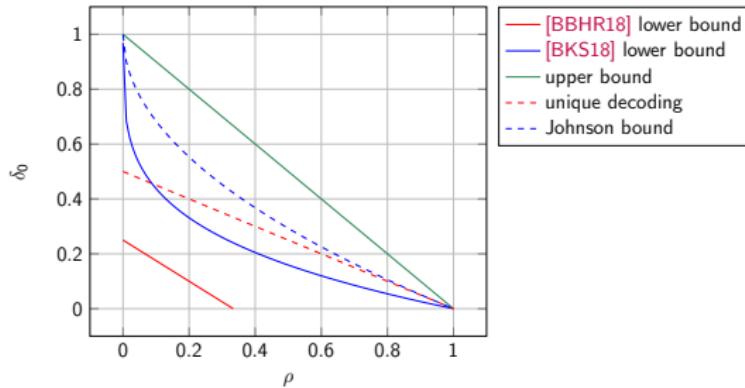
- ▶ $y \in S^{(1)}$ **good** if $f^{(0)}(x_0) = f^{(0)}(x_1) = 0$ for $x_0^2 = x_1^2 = y$
- ▶ otherwise, $y \in S^{(1)}$ **bad**
- ▶ fraction of bad y 's in $S^{(1)}$ between δ and 2δ
- ▶ interpolant of bad row has at most 1 root
- ▶ w.p. $1 - \frac{|S^{(1)}|}{|\mathbb{F}|}$, $x^{(0)}$ misses roots of bad rows; call such $x^{(0)}$ **good**
- ▶ prover left with two bad options:
 - ▶ let $f^{(1)}$ "jump" to be closer to non-zero RS-codeword; large error;
 - ▶ continue with $f^{(1)}$ close to $\mathbf{0}$;

Summary

- ▶ first RPT solution with $t_p = O(n)$ **and** $t_v = O(\log n)$
- ▶ nearly optimal soundness for $\delta < \delta_0$

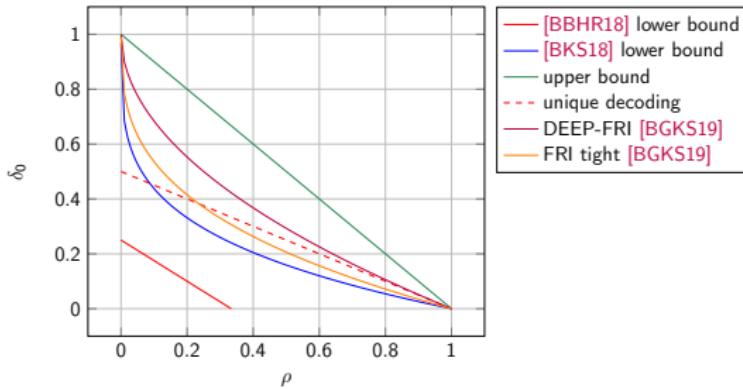
Summary

- ▶ first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- ▶ nearly optimal soundness for $\delta < \delta_0$
- ▶ what's δ_0 ? (higher lines are better)



Summary

- ▶ first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- ▶ nearly optimal soundness for $\delta < \delta_0$
- ▶ what's δ_0 ? (higher lines are better)



- ▶ New protocol: DEEP-FRI [B, Goldberg, Kopparty, Saraf 2019]
 - ▶ DEEP-FRI: Domain Extending for Eliminating Pretenders FRI
 - ▶ like FRI, has linear proving complexity, logarithmic verifier complexity
 - ▶ DEEP-FRI soundness reaches Johnson bound $\delta_0 \approx 1 - \sqrt{\rho}$
 - ▶ Under plausible list decoding conjecture, reaches $\delta_0 \approx 1 - \rho$

Summary

- ▶ first RPT solution with $t_p = O(n)$ **and** $t_v = O(\log n)$
- ▶ nearly optimal soundness for $\delta < \delta_0$
- ▶ what's δ_0 ? (higher lines are better)
- ▶ Questions
 - ▶ “sliding scale” soundness-error $\approx 1/\text{poly}(|\mathbb{F}|)$ for RS-IOPPs?

Summary

- ▶ first RPT solution with $t_p = O(n)$ and $t_v = O(\log n)$
- ▶ nearly optimal soundness for $\delta < \delta_0$
- ▶ what's δ_0 ? (higher lines are better)
- ▶ Questions
 - ▶ “sliding scale” soundness-error $\approx 1/\text{poly}(|\mathbb{F}|)$ for RS-IOPPs?
 - ▶ want to learn more? workshop@starkware.co
 - ▶ want to realize in practice? jobs@starkware.co

