FRI
Fast
Reed-Solomon (RS)

Interactive Oracle Proofs of Proximity (IOPP)
From ICALP 2018 presentation

Eli Ben-Sasson Iddo Bentov Yinon Horesh Michael Riabzev

February 2019

Overview
tl;dr: FRI is a fast, FFT-like, IOP solution for verifying deg(f) < d

» motivation
» main result, applications
» FRI protocol dive-in

Reed Solomon (RS) codes [RS60]

» prominent role in algebraic coding and computational complexity
» For S C F a finite field and p € (0,1] a rate parameter

RSIE. S.] = {f : S — F | deg(f) < pIS|}

Reed Solomon (RS) codes [RS60]

» prominent role in algebraic coding and computational complexity
» For S C F a finite field and p € (0,1] a rate parameter

RSIE. S.] = {f : S — F | deg(f) < pIS|}

» RS codes have many desirable properties, like
» maximum distance separable (MDS): rel. Hamming distance 1 — p
efficient, quasi-linear time encoding via FFT
efficient unique decoding [BW83] and list decoding [GS99]
used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

vvyy

Reed Solomon (RS) codes [RS60]

» prominent role in algebraic coding and computational complexity
» For S C F a finite field and p € (0,1] a rate parameter

RSIE. S.] = {f : S — F | deg(f) < pIS|}

» RS codes have many desirable properties, like
» maximum distance separable (MDS): rel. Hamming distance 1 — p
> efficient, quasi-linear time encoding via FFT
» efficient unique decoding [BW83] and list decoding [GS99]
» used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

» notation:
» d = p|S| —1is degree;
» n =S| is blocklength;
> A is relative Hamming distance

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

> oracle access to f(o) ;SO L F
> completeness: If f© ¢ RSJ[F, S, p], then Pr[V accepts (]
(0

> soundness: otherwise, Pr[V rejects F(@] > A(F© RS[F, §© p])

while minimizing query complexity q.

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

> oracle access to f(o) ;SO L F

> completeness: If f© ¢ RSJ[F, S, p], then Pr[V accepts f(0] =

> soundness: otherwise, Pr[V rejects F(@] > A(F© RS[F, §© p])
while minimizing query complexity q.

» Answers:

» q = d+ 1 required and sufficient [folklore]

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

» oracle access to f(o) :S© 4 F and PCPP 7: S & F

> completeness: If f© ¢ RSJ[F, S, p], then Pr[V accepts f0] =

> soundness: otherwise, Pr[V rejects F@] > A(F©, RS[F, 5© p])
while minimizing query complexity q.

» Answers:

» q = d+ 1 required and sufficient [folklore]
> q = O(1/4), if verifier has oracle access to PCPP [AS+ALMSS98]

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

> oracle access to f(o) :S© 4 F and PCPP 7: S & F
> completeness: If f© ¢ RSJ[F, S, p], then Pr[V accepts f0] =
> soundness: otherwise, Pr[V rejects F@] > A(F©, RS[F, 5© p])
while minimizing query complexity q.
» Answers:
» q = d+ 1 required and sufficient [folklore]
> q = O(1/4), if verifier has oracle access to PCPP [AS+ALMSS98]
> PCPP can have quasi-linear length nlog®® n [BS08, D07]
» |OPP can have linear length O(n) [BCF*16, BBGR16]

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

» oracle access to f(o) :S© 4 F and PCPP 7: S & F
> completeness: If £ ¢ RS[F, S, p], then Pr[V accepts (]
(0

> soundness: otherwise, Pr[V rejects F(@] > A(f© RS[F, $© p])

while minimizing query complexity q.
» Answers:
» q = d+ 1 required and sufficient [folklore]
» q = 0(1/9), if verifier has oracle access to PCPP [AS+ALMSS98]
> PCPP can have quasi-linear length nlog®® n [BS08, D07]
» IOPP can have linear length O(n) [BCF716, BBGR16]
> Interactive Oracle Proof of Proximity (IOPP) model
[BCS16,RRR16,BCF+16]
> prover sends f(® : §(© _ F; verifier sends random x(©)
prover sends) : S — F; verifier sends random x®)
repeat for r rounds
verifier queries f© ... f: based on answers and (x(o), e ,x(r_l))
verifier decides to accept/reject claim “fO ¢ RS [IF, 50O p]"

vvyy

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has
» oracle access to f(o) : S 5 F and PCPP 7 : SW

> completeness: If f® ¢ RS[F, S, o], then Pr[V accepts f]
> soundness: otherwise, Pr[V rejects F(@] > A(f© RS[F, S©

while minimizing query complexity q.
» Answers:
» q=d+ 1 required and sufficient [folklore]
> q = 0(1/9), if verifier has oracle access to PCPP [AS+ALMSS98]
» PCPP can have quasi-linear length nlog®® n [BS08, D07]
» |OPP can have linear length O(n) [BCF'16, BBGR16]
» This work: IOPP model, minimize q and
1. total proof length ¢ = |m1| + ... + |7/]
2. prover arithmetic complexity t,
3. verifier arithmetic complexity t,

)

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has

» oracle access to f(o) : S 5 F and PCPP 7 : SW
> completeness: If f® ¢ RS[F, S, o], then Pr[V accepts f]
(0

> soundness: otherwise, Pr[V rejects (@] > A(f© RS[F, S p])

while minimizing query complexity q.
» Answers:
» q=d+ 1 required and sufficient [folklore]
> q = 0(1/9), if verifier has oracle access to PCPP [AS+ALMSS98]
» PCPP can have quasi-linear length nlog®® n [BS08, D07]
» |OPP can have linear length O(n) [BCF'16, BBGR16]
» This work: IOPP model, minimize q and
1. total proof length ¢ = |m1| + ... + |7/]
2. prover arithmetic complexity t,
3. verifier arithmetic complexity t,
4. for "small”, concrete, non-asymptotic values of n, (< 250), using

non-asymptotic bounds (&, €, &)

RS proximity testing (RPT) problem

» Question: Construct a verifier V that has
> oracle access to £ : §© — F and PCPP 7 : SV » F
> completeness: If (%) € RS[F, S, p], then Pr[V accepts f(0] =1
> soundness: otherwise, Pr[V rejects f@] > A(F(© RS[F, S©, p])
while minimizing query complexity q.
» Answers:
» q=d+ 1 required and sufficient [folklore]
> q = 0(1/9), if verifier has oracle access to PCPP [AS+ALMSS98]
» PCPP can have quasi-linear length nlog®® n [BS08, D07]
» |OPP can have linear length O(n) [BCF'16, BBGR16]
» This work: IOPP model, minimize q and
1. total proof length ¢ = |m1| + ... + |7/]
2. prover arithmetic complexity t,
3. verifier arithmetic complexity t,
4. for "small”, concrete, non-asymptotic values of n, (< 250), using
non-asymptotic bounds (&, €, &)
» Why? 1-3 interesting theoretically, 4 important practically, for ZK
systems like Ligero [AHIV17], STARK [BBHR18], Aurora
[BCRSVW1Y], ...

Prior RS proximity testing (RPT) results

prover proof verifier query round

comp. length comp. comp. comp.
folklore 0 0 O(pn) pn 0
PCP [aLM+402] no@ no® n°® (0] (%) 1
PCP (gFL+90] ntte ntte % log!/€ n % log!/¢ n 1
PCPP (ss+os] nlog'®n | nlog®n | 1log®®n | %log®>®n 1
PCPP (po7, mos1 | nlog®n nlog®n % log® n o (%) 1
IOPP [8cF+16] nlog®n >4-n 3 log®n 0(3) log log n
This work <6-n <3 <21-logn 2logn '(’%

Overview

» motivation v’
» main result, applications

» FRI protocol dive-in

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
» t,(n) <6-nand¥(n)<n/3
> t,(n) <21-logn and q(n) <2logn
> r(n) < Llogn (round complexity)
» soundness (rejection prob.) § — ﬁT"\ for all £(©) that are

0 < dp-far from code, dp ~ 1pr

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3
ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

vVvyyvyy

soundness (rejection prob.) ¢ — ﬁT"\ for all £©) that are
0 < do-far from code, dg %%

Remarks
1. “nice" codes means S(® is either of following two:
1.1 2-smooth multiplicative group, i.e., |S(°)| =2 keN, or
1.2 binary additive groups, i.e., S© an Fa-linear space
2. first PCPP/IOPP for RS codes achieving simultaneous
> linear prover complexity, t, = O(n), and
» sub-linear verifier complexity, tv = o(n)

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3
ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

vVvyyvyy

soundness (rejection prob.) ¢ — ﬁT"\ for all £©) that are
0 < do-far from code, do %% 1—ps [BGKS19]

Remarks
1. “nice" codes means S(® is either of following two:
1.1 2-smooth multiplicative group, i.e., |S(°)| =2 keN, or
1.2 binary additive groups, i.e., S© an Fa-linear space
2. first PCPP/IOPP for RS codes achieving simultaneous
> linear prover complexity, t, = O(n), and
» sub-linear verifier complexity, tv = o(n)

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3
ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

vVvyyvyy

soundness (rejection prob.) § — ﬁT"\ for all £(©) that are
0 < do-far from code, &g z% 1-— p}a/i [BGKS19]

Remarks
1. “nice" codes means S(® is either of following two:
1.1 2-smooth multiplicative group, i.e., |[S©®| = 2% k € N, or
1.2 binary additive groups, i.e., S© an Fa-linear space
2. first PCPP/IOPP for RS codes achieving simultaneous
» linear prover complexity, t, = O(n), and
> sub-linear verifier complexity, tv = o(n)

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3
ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

vV VvyVvYyy

soundness (rejection prob.) § — ﬁT"\ for all £(©) that are
0 < do-far from code, o %% 1- p%% [BGKS19]

—— upper bound
- - - Johnson bound
- - unique decoding

0.8 |\, || ——[BKS18] lower bound
——[BGKS19] tight bound
0.6 | | — this work
S
0.4} j
0.2 j

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

Lemma
Cl is NEXP-complete

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

Lemma
Cl is NEXP-complete

Definition (proof system)
An proof system S for L is a pair S = (V, P) satisfying

» efficiency V is randomized polynomial time; P unbounded item
completeness x € L = Pr[V(x) <> P(x) ~» acc] =1

» soundness x ¢ L = Pr[V(x) <> P(x) ~» acc] <1/2

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

Lemma
Cl is NEXP-complete

Definition (argument system)

An argument system S for L is a pair S = (V, P) satisfying
» efficiency V is randomized polynomial time; P is similarly bounded
» completeness x € L = Pr[V(x) <> P(x) ~ acc] =1
» soundness x ¢ L = Pr[V(x) < P(x) ~ acc] <1/2

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))

is the language of quadruples (M, T, Xin, Xout) Such that nondeterministic
machine M, on input x;, reaches output x.,; after 7 cycles, 7 in binary.

Lemma
Cl is NEXP-complete

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
Cl has an argument system S = (V,P) that is
» succinct: Verifier run-time poly(n,log T); this bounds proof length
> transparent (AM): verifier sends only public random coins

» private (ZK): proof preserves privacy of nondeterministic witness

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
Cl has an argument system S = (V,P) that is
» succinct: Verifier run-time poly(n,log T); this bounds proof length
> transparent (AM): verifier sends only public random coins
» private (ZK): proof preserves privacy of nondeterministic witness

https://github.com/elibensasson/libSTARK

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
Cl has an argument system S = (V,P) that is
» succinct: Verifier run-time poly(n,log T); this bounds proof length
> transparent (AM): verifier sends only public random coins

» private (ZK): proof preserves privacy of nondeterministic witness

1. privacy-preserving proof of computational integrity

» Proof and verification time may be longer than T
» Useful for asserting properties of private, crypto-committed data

https://github.com/elibensasson/libSTARK

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
Cl has an argument system S = (V,P) that is
» succinct: Verifier run-time poly(n,log T); this bounds proof length
» transparent (AM): verifier sends only public random coins

» private (ZK): proof preserves privacy of nondeterministic witness

1. privacy-preserving proof of computational integrity

» Proof and verification time may be longer than T
» Useful for asserting properties of private, crypto-committed data

2. compression of computation/data, with computational integrity

» meaningful when t, < T or £ < witness-size
» useful for compressing blockchain history

» Scalable Transparent ARguments of Knowledge [BBHR18]

» C++ implementation: github.com/elibensasson/libSTARK
» achieves Thm above, quasi-linear t,, “post-quantum secure”
» FRI is a major contributor to STARK efficiency

https://github.com/elibensasson/libSTARK

Overview

» motivation v’
» main result, applications v/

» FRI protocol dive-in

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3

ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

vVvyyvyy

soundness (rejection prob.) ¢ — ﬁT"\ for all £©) that are

0 < do-far from code, o %% 1- p%% [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)

> evaluate P(X),deg(P) < non (w), w is root of unity of order n = 2k

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3

ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

soundness (rejection prob.) ¢ — ﬁT"\ for all £©) that are
d < do-far from code, do %% 1-— p%% [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
> evaluate P(X),deg(P) < non (w), w is root of unity of order n = 2k
> write P(X) = Po(X2) + X - P(X2)

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3

ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

soundness (rejection prob.) ¢ — ﬁT"\ for all £©) that are
0 < do-far from code, &g z% 1- p}a/i [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
> evaluate P(X),deg(P) < non (w), w is root of unity of order n = 2k
> write P(X) = Po(X2) + X - P(X2)
> equivalently, P(X) = Po(Y) + X - Pi(Y) mod Y — X?

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
tp(n) <6-nand ¢(n) <n/3

ty(n) <21-logn and q(n) <2logn

r(n) < 3 logn (round complexity)

soundness (rejection prob.) ¢ — ﬁT"\ for all £©) that are

0 < do-far from code, &g z% 1-— p}a/i [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
> evaluate P(X),deg(P) < non (w), w is root of unity of order n = 2k
> write P(X) = Po(X2) + X - P(X2)
> equivalently, P(X) = Po(Y) + X - Pi(Y) mod Y — X?
» notice (w?) has size n/2

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS [F, S, p], the FRI protocol satisfies
» t,(n) <6-nand{(n)<n/3
> t,(n) <21-logn and q(n) <2logn
> r(n) < %logn (round complexity)
» soundness (rejection prob.) § — ﬁT"\ for all £(©) that are
0 < do-far from code, &g z% 1- p}a/i [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
> evaluate P(X),deg(P) < non (w), w is root of unity of order n = 2k
> write P(X) = Po(X2) + X - P(X2)
> equivalently, P(X) = Po(Y) + X - Pi(Y) mod Y — X?
» notice (w?) has size n/2
>

so evaluate each of Py(Y), P1(Y) on (w?), ..., O(nlogn) runtime

FRI Protocol

> Let 5(0 C F* be 2-smooth muIt group: [S@| = 2K k) ¢ N
> Let (0 : 5O 5 F, FRI for RS() = RS [F, 5, p = 1]

FRI Protocol

> Let 5(0 C F* be 2-smooth muIt group: [S@| = 2K k) ¢ N

> Let (0 : 5O 5 F, FRI for RS() = RS [F, 5, p = 1]
> Two—phase protocol
> COMMIT: while i < k(@

—log
gP

> verifier sends randomness x(/)
> prover sends oracle f(it1) . S(i+1) _ | |S(+D)| = |5()|/2

FRI Protocol

> Let 5(0) C F* be 2-smooth muIt group: [S@| = 2K k) ¢ N

> Let (0 : 5O 5 F, FRI for RS() = RS [F, 5, p = 1]
> Two—phase protocol
> COMMIT: while j < k' —log 2
> verifier sends randomness x(/)
> prover sends oracle f(+1) : S(+1) — F |50+ = |S(0)| /2
> completeness: If () ¢ RS[F, S(), p] then f(i+1) ¢ RS[F, SUH1)]

FRI Protocol

> Let S© c F* be 2-smooth mult. group: |S©| = 2K? k() ¢ N

> Let O .

S© — T, FRI for RS = RS [F, 5O, p = 1]

» Two-phase protocol
> COMMIT: while j < k' —log 2

>

>
>
>

verifier sends randomness x(/)

prover sends oracle £(it1) ; §(i+1) _, 7 |5(i+1)| = |5()|/2
completeness: If £() € RS[F, S() p] then f(i+1) € RS[F, S(+1) p]
each entry of f(it1) computed from 2 distinct entries of #(!) via O(1)
arithmetic operations (so tp = O(n))

FRI Protocol

> Let S© c F* be 2-smooth mult. group: |S©| = 2K? k() ¢ N

> Let O .

S© — T, FRI for RS = RS [F, 5O, p = 1]

» Two-phase protocol
> COMMIT: while j < k' —log 2

>

>
>
>

vy

verifier sends randomness x(/)

prover sends oracle £(it1) ; §(i+1) _, 7 |5(i+1)| = |5()|/2
completeness: If £() € RS[F, S() p] then f(i+1) € RS[F, S(+1) p]
each entry of f(it1) computed from 2 distinct entries of #(!) via O(1)
arithmetic operations (so tp = O(n))

#rounds < k(© = logn

last round (i = k(©) —log1/p): prover sends constant function

FRI Protocol

> Let S© c F* be 2-smooth mult. group: |S©| = 2K? k() ¢ N

> Let O .

S© — T, FRI for RS = RS [F, 5O, p = 1]

» Two-phase protocol
> COMMIT: while j < k' —log 2

>
>
>
>
>

>
>

verifier sends randomness x(/)

prover sends oracle £(it1) ; §(i+1) _, 7 |5(i+1)| = |5()|/2
completeness: If £() € RS[F, S() p] then f(i+1) € RS[F, S(+1) p]
each entry of f(it1) computed from 2 distinct entries of #(!) via O(1)
arithmetic operations (so tp = O(n))

#rounds < k(© = logn

last round (i = k(©) —log1/p): prover sends constant function
(notice |FU+1)| = |£()]/2 so total proof length O(n))

» QUERY: verifier queries oracles (prover not involved)

Example: S© =i, n=2%p=272

COMMIT phase has log |S©)| — log p= 2 rounds; during ith round
> verifier sends random x() ¢ F
> prover sends next oracle f(+1) : §(+1) _y
> S0+ is 2-smooth multiplicative group, |S(*Y| = |S0)|/2
> each entry of f(™1) computed from 2 distinct entries of fU
> termination: When i = k(®) —log 1/p prover sends constant function

Example: S© =i, n=2%p=272

COMMIT phase has log |S©)| — log p= 2 rounds; during ith round
> verifier sends random x() ¢ F
> prover sends next oracle f(i+1) . §(+1) 4
> S0+ is 2-smooth multiplicative group, |S(*Y| = |S0)|/2
> each entry of f("Y) computed from 2 distinct entries of £()
> termination: When i = k(®) —log 1/p prover sends constant function
QUERY phase: pick random s(® € S and check path-to-root

Prover Verifier

—»~ [| e e
X0 ‘

Example: S© =i, n=2%p=272

COMMIT phase has log |S©)| — log p= 2 rounds; during ith round
> verifier sends random x() ¢ F
> prover sends next oracle f(i+1) . §(+1) 4
> S0+ is 2-smooth multiplicative group, |S(*Y| = |S0)|/2
> each entry of f("Y) computed from 2 distinct entries of £()
> termination: When i = k(®) —log 1/p prover sends constant function
QUERY phase: pick random s(® € S and check path-to-root

1o

AL L]

Example: S© =i, n=2%p=272

COMMIT phase has log |S©)| — log p= 2 rounds; during ith round
> verifier sends random x() ¢ F
> prover sends next oracle f(+1) : §(+1) _y
> S0+ is 2-smooth multiplicative group, |S(*Y| = |S0)|/2
> each entry of f(™1) computed from 2 distinct entries of fU
> termination: When i = k(®) —log 1/p prover sends constant function
QUERY phase: pick random s(® e S(©) and check path-to-root

1o

FRI COMMIT — single round

> suppose f(0) : F}, — Fy; satisfies deg(f(?)) < 4

FRI COMMIT — single round

> suppose f(0) : F}, — Fy; satisfies deg(f(?)) < 4
> let P(X) interpolate f(©), deg(P) < 4

FRI COMMIT — single round

> suppose f(0) : F}, — Fy; satisfies deg(f(?)) < 4
> let P(X) interpolate f(©), deg(P) < 4
> write P(X) = Po(X?) + X - P1(X?), FFT-style

FRI COMMIT — single round

> suppose (0 : F}, — Fy; satisfies deg(f()) < 4
> let P(X) interpolate f(9), deg(P) < 4

> write P(X) = Po(X?) + X - P1(X?), FFT-style
> then P(X) = Po(Y) + X -Pi(Y) mod Y — X2

FRI COMMIT — single round

> suppose (0 : F}, — Fy; satisfies deg(f()) < 4
> let P(X) interpolate f(9), deg(P) < 4
> write P(X) = Po(X?) + X - P1(X?), FFT-style
> then P(X) = Po(Y) + X -Pi(Y) mod Y — X2
> let Q(X,Y) 2 Po(Y)+ X - Pi(Y),

> Q(X,Y)=P(X) mod Y — X2

FRI COMMIT — single round

> suppose (0 : F}, — Fy; satisfies deg(f()) < 4
> let P(X) interpolate f(9), deg(P) < 4

> write P(X) = Po(X?) + X - P1(X?), FFT-style
> then P(X) = Po(Y)+ X-Pi(Y) mod Y — X2
> let Q(X,Y) 2 Po(Y)+ X - Pi(Y),

> Q(X,Y)=P(X) mod Y — X2
» consider points in F x F on curve Y — X2,

e

HNWAROO~N®O©

T Y T Y
10111213141516

OrT T 1T T T T T T T T T T T T T 717
-

ol

whk

iy

[y

ol e

~b

o

ol

FRI COMMIT — single round

> suppose f(0) : F}, — Fy; satisfies deg(f(?)) < 4
> let P(X) interpolate f(©), deg(P) < 4
> write P(X) = Po(X?) + X - P1(X?), FFT-style
» then P(X) = Po(Y)+ X -P(Y) mod Y — X2
> let Q(X,Y) 2 Po(Y)+ X - Pi(Y),

> Q(X,Y)=P(X) mod Y — X2

> degx(Q) < 2; degy(Q) < deg(P)/2

> s = {x2 | x € S(o)} is mult. group, |SM| =(5©)]/2

T T T T T T T T T T T T T T 7T
*

16

=
HNWROTONEOO

N T Y
10111213141516

o T 1T T 17 1T T T 17 17 T T 1T 11717
—

ol

wl

N .
ol [

o |- L

S

o

ol

FRI COMMIT — single round

>
>
>
>
>

suppose f(0) : F}, — Fy7 satisfies deg(f(?)) < 4
let P(X) interpolate f(©, deg(P) < 4

write P(X) = Po(X?) + X - P1(X?), FFT-style
then P(X) = Po(Y)+ X - P1(Y) mod Y — X2

let Q(X,Y) 2 Po(Y)+ X -Pi(Y),
> Q(X,Y)=P(X) mod Y — X2

16

=
=HNWwWROONRWOO

OSrT T T T T T T T T T T T T T 7

> degy(Q) < 2; degy (Q) < deg(P)/2

> s = {x2 | x € 5(0)}

ol

N O
10111213141516

is mult. group, |SM| =(5©)]/2

COMMIT round
> Verifier picks random x(©) e F
>) = Q(x9,Y)|sw
» each entry of (1) interpolated
from two entries of (9

> deg(f1)) = degy (Q) < ISV

FRI vs. inverse FFT

>
>
>
>
>

suppose f(0) : F}, — Fy7 satisfies deg(f(?)) < 4
find P(X) that interpolates f(°)

write P(X) = Po(X?) + X - P1(X?), FFT-style
then P(X) = Po(Y)+ X - P1(Y) mod Y — X2
let Q(X,Y) 2 Po(Y)+X-Pi(Y),

16

=
=HNWwWROONRWOO

OSrT T T T T T T T T T T T T T 7

> Q(X,Y)=P(X) mod Y — X2
> degx(Q) < 2; degy(Q) < deg(P)/2
> s = {x2 | x € S(o)} is mult. group, |SM| =(5©)]/2

'S o o

N O N
10111213141516°°

-
o

Wl

IS

12 1 T S
o e

~

oo |-

ol

FRI vs. inverse FFT

> suppose f(0) : F}, — Fy; satisfies deg(f(?)) < 4
> find P(X) that interpolates f(©)
> write P(X) = Po(X?) + X - P1(X?), FFT-style
» then P(X) = Po(Y)+ X -P(Y) mod Y — X2
> let Q(X,Y) 2 Po(Y)+ X - Pi(Y),

> Q(X,Y)=P(X) mod Y — X2

> degx(Q) < 2; degy(Q) < deg(P)/2

> s = {x2 | x € S(o)} is mult. group, |SM| =(5©)]/2

16¢- -

15¢-

18 . e b > Po(Y)=Q(0,Y),

it] P1(Y) = Q(o0, Y)

F) G . > let go = Q(0, Y)|sw,

A] g1 = Q(o0,Y)|sw

EE e . o > compute go, g1, O(n) steps
F} SO M o] > recurse on go, g1
012345678 010111213141516%

Soundness analysis — low error

T T T T T T T T T T T T T T 1
L] L]

.

=HNWHROTO N

CrT T T T T T T T T T T T T 117
-

L]

.
N Y Y N I Y
2345678 910111213141516

For simplicity, suppose f(©) is § < 122-far from 0
> y € SM) good if FO(xg) =FO(x) =0forxg =xZ =y
> otherwise, y € S(1) pad
> fraction of bad y's in S() between § and 2§

Soundness analysis — low error

T T T T T T T T T T T T T T 1
L] L]

.

=HNWHROTO N

CrT T T T T T T T T T T T T 117
-

L]

.
N Y Y N I Y
2345678 910111213141516

For simplicity, suppose f(©) is § < 122-far from 0
> y € SM) good if FO(xg) =FO(x) =0forxg =xZ =y
> otherwise, y € S(1) pad
> fraction of bad y's in S() between § and 2§
> interpolant of bad row has at most 1 root

Soundness analysis — low error

T T T T T T T T T T T T T T 1
L] L]

16 - n
15] . 8
14 - ~
13+ o n
12 =
11 —
10 - —
9 ° ° —
8 ° ° —
70 4
61 4
5 4
4 e ° —
3 4
2+ ° ® —
1+ e ® —

Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
012345678 910111213141516

For simplicity, suppose f(©) is § < 122-far from 0
> y € SM) good if FO(xg) =FO(x) =0forxg =xZ =y
> otherwise, y € S(1) pad
> fraction of bad y's in S() between § and 2§
> interpolant of bad row has at most 1 root

@ .
> wp. 1— l‘TFl\ [, x(© misses roots of bad rows; call such x(© good

Soundness analysis — low error

HNWAOO~N®OO©

CrT T T T T T T T T T T T T 117

N S Y
12345678 910111213141516

For simplicity, suppose f(©) is § < 122-far from 0
> y € SM) good if FO(xg) =FO(x) =0forxg =xZ =y
otherwise, y € S(1) pad
fraction of bad y's in S() between § and 26

>
>
> interpolant of bad row has at most 1 root
>
>

ISM] (0)
[IF]

prover left with two bad options:

w.p. 1— , x(©) misses roots of bad rows; call such x(®) good

> let M) “jump” to be closer to non-zero RS-codeword; large error;
> continue with f) close to 0;

Summary

» first RPT solution with t, = O(n) and t, = O(log n)

» nearly optimal soundness for § < dg

Summary

» first RPT solution with t, = O(n) and t, = O(log n)
» nearly optimal soundness for § < dg
» what's 69?7 (higher lines are better)

1 ‘ _| |— [BBHR18] lower bound
—— [BKS18] lower bound

0.8 |- | | —— upper bound

’ - - unique decoding
06 - -~ Johnson bound

&

0.4 o
0.2 i

0 i

| I | | | I

Summary

» first RPT solution with t, = O(n) and t, = O(log n)
» nearly optimal soundness for § < dg
» what's 69?7 (higher lines are better)

_| |— [BBHR18] lower bound
— [BKS18] lower bound
| | —— upper bound

1}

0.8} : .
- - unique decoding
—— DEEP-FRI [BGKS19)]
_oer 1 FRI tight [BGKS19]
B
0.4 8
0.2} -

ol

» New protocol: DEEP-FRI [B, Goldberg, Kopparty, Saraf 2019]

» DEEP-FRI: Domain Extending for Eliminating Pretenders FRI

» like FRI, has linear proving complexity, logarithmic verifer complexity
» DEEP-FRI soundness reaches Johnson bound do =~ 1 — /p

» Under plausible list decoding conjecture, reaches §o ~ 1 — p

Summary

» first RPT solution with t, = O(n) and t, = O(log n)
» nearly optimal soundness for § < dg
» what's 69?7 (higher lines are better)

» Questions
> “sliding scale” soundness-error ~ 1/poly(|F|) for RS-IOPPs?

Summary

» first RPT solution with t, = O(n) and t, = O(log n)
» nearly optimal soundness for § < dg
» what's 69?7 (higher lines are better)

» Questions

> “sliding scale” soundness-error ~ 1/poly(|F|) for RS-IOPPs?
» want to learn more? workshop@starkware.co
> want to realize in practice? jobs@starkware.co

STARKWARE

	Motivation

