
FRI
Fast

Reed-Solomon (RS)
Interactive Oracle Proofs of Proximity (IOPP)

From ICALP 2018 presentation

Eli Ben-Sasson Iddo Bentov Yinon Horesh Michael Riabzev

February 2019

Overview
tl;dr: FRI is a fast, FFT-like, IOP solution for verifying deg(f) < d

I motivation
I main result, applications
I FRI protocol dive-in

Reed Solomon (RS) codes [RS60]

I prominent role in algebraic coding and computational complexity
I For S ⊂ F a finite field and ρ ∈ (0, 1] a rate parameter

RS[F,S , ρ] = {f : S → F | deg(f) < ρ|S |}

I RS codes have many desirable properties, like
I maximum distance separable (MDS): rel. Hamming distance 1− ρ
I efficient, quasi-linear time encoding via FFT
I efficient unique decoding [BW83] and list decoding [GS99]
I used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

I notation:
I d = ρ|S | − 1 is degree;
I n = |S | is blocklength;
I ∆ is relative Hamming distance

Reed Solomon (RS) codes [RS60]

I prominent role in algebraic coding and computational complexity
I For S ⊂ F a finite field and ρ ∈ (0, 1] a rate parameter

RS[F,S , ρ] = {f : S → F | deg(f) < ρ|S |}

I RS codes have many desirable properties, like
I maximum distance separable (MDS): rel. Hamming distance 1− ρ
I efficient, quasi-linear time encoding via FFT
I efficient unique decoding [BW83] and list decoding [GS99]
I used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

I notation:
I d = ρ|S | − 1 is degree;
I n = |S | is blocklength;
I ∆ is relative Hamming distance

Reed Solomon (RS) codes [RS60]

I prominent role in algebraic coding and computational complexity
I For S ⊂ F a finite field and ρ ∈ (0, 1] a rate parameter

RS[F,S , ρ] = {f : S → F | deg(f) < ρ|S |}

I RS codes have many desirable properties, like
I maximum distance separable (MDS): rel. Hamming distance 1− ρ
I efficient, quasi-linear time encoding via FFT
I efficient unique decoding [BW83] and list decoding [GS99]
I used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

I notation:
I d = ρ|S | − 1 is degree;
I n = |S | is blocklength;
I ∆ is relative Hamming distance

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.

I Answers:
I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.
I Answers:

I q = d + 1 required and sufficient [folklore]

I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F and PCPP π : S (1) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.
I Answers:

I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]

I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F and PCPP π : S (1) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.
I Answers:

I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F and PCPP π : S (1) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.
I Answers:

I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

I Interactive Oracle Proof of Proximity (IOPP) model
[BCS16,RRR16,BCF+16]
I prover sends f (0) : S (0) → F; verifier sends random x (0)

I prover sends f (1) : S (1) → F; verifier sends random x (1)

I repeat for r rounds
I verifier queries f (0), . . . , f (r); based on answers and (x (0), . . . , x (r−1))

verifier decides to accept/reject claim “f (0) ∈ RS
[
F, S (0), ρ

]
”

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F and PCPP π : S (1) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.
I Answers:

I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

I This work: IOPP model, minimize q and
1. total proof length ` = |π1|+ . . .+ |πr |
2. prover arithmetic complexity tp
3. verifier arithmetic complexity tv

4. for “small”, concrete, non-asymptotic values of n, (< 250), using
non-asymptotic bounds (�O,�Ω,�Θ)

I Why? 1–3 interesting theoretically, 4 important practically, for ZK
systems like Ligero [AHIV17], STARK [BBHR18], Aurora
[BCRSVW19], . . .

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F and PCPP π : S (1) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.
I Answers:

I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

I This work: IOPP model, minimize q and
1. total proof length ` = |π1|+ . . .+ |πr |
2. prover arithmetic complexity tp
3. verifier arithmetic complexity tv
4. for “small”, concrete, non-asymptotic values of n, (< 250), using

non-asymptotic bounds (�O,�Ω,�Θ)

I Why? 1–3 interesting theoretically, 4 important practically, for ZK
systems like Ligero [AHIV17], STARK [BBHR18], Aurora
[BCRSVW19], . . .

RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F and PCPP π : S (1) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.
I Answers:

I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]

I This work: IOPP model, minimize q and
1. total proof length ` = |π1|+ . . .+ |πr |
2. prover arithmetic complexity tp
3. verifier arithmetic complexity tv
4. for “small”, concrete, non-asymptotic values of n, (< 250), using

non-asymptotic bounds (�O,�Ω,�Θ)
I Why? 1–3 interesting theoretically, 4 important practically, for ZK

systems like Ligero [AHIV17], STARK [BBHR18], Aurora
[BCRSVW19], . . .

Prior RS proximity testing (RPT) results

prover
comp.

proof
length

verifier
comp.

query
comp.

round
comp.

folklore 0 0 Õ(ρn) ρn 0
PCP [ALM+92] nO(1) nO(1) nO(1) O

(1
δ

)
1

PCP [BFL+90] n1+ε n1+ε 1
δ

log1/ε n 1
δ

log1/ε n 1
PCPP [BS+05] n log1.5 n n log1.5 n 1

δ
log5.8 n 1

δ
log5.8 n 1

PCPP [D07, M09] n logc n n logc n 1
δ

logc n O
(1
δ

)
1

IOPP [BCF+16] n logc n > 4 · n 1
δ

logc n O
(1
δ

)
log log n

This work < 6 · n < n
3 ≤ 21 · log n 2 log n log n

2

Overview

I motivation X
I main result, applications
I FRI protocol dive-in

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈ 1−ρ
4

Remarks
1. “nice” codes means S (0) is either of following two:

1.1 2-smooth multiplicative group, i.e., |S (0)| = 2k , k ∈ N, or
1.2 binary additive groups, i.e., S(0) an F2-linear space

2. first PCPP/IOPP for RS codes achieving simultaneous
I linear prover complexity, tp = O(n), and
I sub-linear verifier complexity, tv = o(n)

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4

Remarks
1. “nice” codes means S (0) is either of following two:

1.1 2-smooth multiplicative group, i.e., |S (0)| = 2k , k ∈ N, or
1.2 binary additive groups, i.e., S(0) an F2-linear space

2. first PCPP/IOPP for RS codes achieving simultaneous
I linear prover complexity, tp = O(n), and
I sub-linear verifier complexity, tv = o(n)

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ 1

4 [BGKS19]

Remarks
1. “nice” codes means S (0) is either of following two:

1.1 2-smooth multiplicative group, i.e., |S (0)| = 2k , k ∈ N, or
1.2 binary additive groups, i.e., S(0) an F2-linear space

2. first PCPP/IOPP for RS codes achieving simultaneous
I linear prover complexity, tp = O(n), and
I sub-linear verifier complexity, tv = o(n)

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

Remarks
1. “nice” codes means S (0) is either of following two:

1.1 2-smooth multiplicative group, i.e., |S (0)| = 2k , k ∈ N, or
1.2 binary additive groups, i.e., S(0) an F2-linear space

2. first PCPP/IOPP for RS codes achieving simultaneous
I linear prover complexity, tp = O(n), and
I sub-linear verifier complexity, tv = o(n)

Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ρ

δ 0

upper bound
Johnson bound
unique decoding
[BKS18] lower bound
[BGKS19] tight bound
this work

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T , xin, xout) such that nondeterministic
machine M, on input xin reaches output xout after T cycles, T in binary.

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T , xin, xout) such that nondeterministic
machine M, on input xin reaches output xout after T cycles, T in binary.

Lemma
CI is NEXP-complete

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T , xin, xout) such that nondeterministic
machine M, on input xin reaches output xout after T cycles, T in binary.

Lemma
CI is NEXP-complete

Definition (proof system)
An proof system S for L is a pair S = (V,P) satisfying
I efficiency V is randomized polynomial time; P unbounded item

completeness x ∈ L⇒ Pr [V(x)↔ P(x) acc] = 1
I soundness x 6∈ L⇒ Pr [V(x)↔ P(x) acc] ≤ 1/2

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T , xin, xout) such that nondeterministic
machine M, on input xin reaches output xout after T cycles, T in binary.

Lemma
CI is NEXP-complete

Definition (argument system)
An argument system S for L is a pair S = (V,P) satisfying
I efficiency V is randomized polynomial time; P is similarly bounded
I completeness x ∈ L⇒ Pr [V(x)↔ P(x) acc] = 1
I soundness x 6∈ L⇒ Pr [V(x)↔ P(x) acc] ≤ 1/2

FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T , xin, xout) such that nondeterministic
machine M, on input xin reaches output xout after T cycles, T in binary.

Lemma
CI is NEXP-complete

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
CI has an argument system S = (V,P) that is
I succinct: Verifier run-time poly(n, log T); this bounds proof length
I transparent (AM): verifier sends only public random coins
I private (ZK): proof preserves privacy of nondeterministic witness

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
CI has an argument system S = (V,P) that is
I succinct: Verifier run-time poly(n, log T); this bounds proof length
I transparent (AM): verifier sends only public random coins
I private (ZK): proof preserves privacy of nondeterministic witness

1. privacy-preserving proof of computational integrity
I Proof and verification time may be longer than T
I Useful for asserting properties of private, crypto-committed data

2. compression of computation/data, with computational integrity
I meaningful when tv � T or `� witness-size
I useful for compressing blockchain history

I Scalable Transparent ARguments of Knowledge [BBHR18]
I C++ implementation: github.com/elibensasson/libSTARK
I achieves Thm above, quasi-linear tp, “post-quantum secure”
I FRI is a major contributor to STARK efficiency

https://github.com/elibensasson/libSTARK

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
CI has an argument system S = (V,P) that is
I succinct: Verifier run-time poly(n, log T); this bounds proof length
I transparent (AM): verifier sends only public random coins
I private (ZK): proof preserves privacy of nondeterministic witness

1. privacy-preserving proof of computational integrity
I Proof and verification time may be longer than T
I Useful for asserting properties of private, crypto-committed data

2. compression of computation/data, with computational integrity
I meaningful when tv � T or `� witness-size
I useful for compressing blockchain history

I Scalable Transparent ARguments of Knowledge [BBHR18]
I C++ implementation: github.com/elibensasson/libSTARK
I achieves Thm above, quasi-linear tp, “post-quantum secure”
I FRI is a major contributor to STARK efficiency

https://github.com/elibensasson/libSTARK

FRI applications: (i) computational integrity and (ii) privacy

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])
CI has an argument system S = (V,P) that is
I succinct: Verifier run-time poly(n, log T); this bounds proof length
I transparent (AM): verifier sends only public random coins
I private (ZK): proof preserves privacy of nondeterministic witness

1. privacy-preserving proof of computational integrity
I Proof and verification time may be longer than T
I Useful for asserting properties of private, crypto-committed data

2. compression of computation/data, with computational integrity
I meaningful when tv � T or `� witness-size
I useful for compressing blockchain history

I Scalable Transparent ARguments of Knowledge [BBHR18]
I C++ implementation: github.com/elibensasson/libSTARK
I achieves Thm above, quasi-linear tp, “post-quantum secure”
I FRI is a major contributor to STARK efficiency

https://github.com/elibensasson/libSTARK

Overview

I motivation X
I main result, applications X
I FRI protocol dive-in

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
I evaluate P(X), deg(P) < n on 〈ω〉, ω is root of unity of order n = 2k

I write P(X) = P0(X
2) + X · P1(X

2)

I equivalently, P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I notice 〈ω2〉 has size n/2
I so evaluate each of P0(Y),P1(Y) on 〈ω2〉, . . . , O(n log n) runtime

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
I evaluate P(X), deg(P) < n on 〈ω〉, ω is root of unity of order n = 2k

I write P(X) = P0(X
2) + X · P1(X

2)

I equivalently, P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I notice 〈ω2〉 has size n/2
I so evaluate each of P0(Y),P1(Y) on 〈ω2〉, . . . , O(n log n) runtime

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
I evaluate P(X), deg(P) < n on 〈ω〉, ω is root of unity of order n = 2k

I write P(X) = P0(X
2) + X · P1(X

2)

I equivalently, P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I notice 〈ω2〉 has size n/2
I so evaluate each of P0(Y),P1(Y) on 〈ω2〉, . . . , O(n log n) runtime

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
I evaluate P(X), deg(P) < n on 〈ω〉, ω is root of unity of order n = 2k

I write P(X) = P0(X
2) + X · P1(X

2)

I equivalently, P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I notice 〈ω2〉 has size n/2

I so evaluate each of P0(Y),P1(Y) on 〈ω2〉, . . . , O(n log n) runtime

Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
I evaluate P(X), deg(P) < n on 〈ω〉, ω is root of unity of order n = 2k

I write P(X) = P0(X
2) + X · P1(X

2)

I equivalently, P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I notice 〈ω2〉 has size n/2
I so evaluate each of P0(Y),P1(Y) on 〈ω2〉, . . . , O(n log n) runtime

FRI Protocol

I Let S (0) ⊂ F∗ be 2-smooth mult. group: |S (0)| = 2k
(0)
, k(0) ∈ N

I Let f (0) : S (0) → F, FRI for RS(0) = RS
[
F,S (0), ρ = 1

8

]

I Two-phase protocol
I COMMIT: while i < k (0) − log 1

ρ

I verifier sends randomness x(i)

I prover sends oracle f (i+1) : S(i+1) → F, |S(i+1)| = |S(i)|/2
I completeness: If f (i) ∈ RS[F, S(i), ρ] then f (i+1) ∈ RS[F,S(i+1), ρ]
I each entry of f (i+1) computed from 2 distinct entries of f (i) via O(1)

arithmetic operations (so tp = O(n))
I #rounds ≤ k(0) = log n
I last round (i = k(0) − log 1/ρ): prover sends constant function
I (notice |f (i+1)| = |f (i)|/2 so total proof length O(n))

I QUERY: verifier queries oracles (prover not involved)

FRI Protocol

I Let S (0) ⊂ F∗ be 2-smooth mult. group: |S (0)| = 2k
(0)
, k(0) ∈ N

I Let f (0) : S (0) → F, FRI for RS(0) = RS
[
F,S (0), ρ = 1

8

]
I Two-phase protocol

I COMMIT: while i < k (0) − log 1
ρ

I verifier sends randomness x(i)

I prover sends oracle f (i+1) : S(i+1) → F, |S(i+1)| = |S(i)|/2

I completeness: If f (i) ∈ RS[F, S(i), ρ] then f (i+1) ∈ RS[F,S(i+1), ρ]
I each entry of f (i+1) computed from 2 distinct entries of f (i) via O(1)

arithmetic operations (so tp = O(n))
I #rounds ≤ k(0) = log n
I last round (i = k(0) − log 1/ρ): prover sends constant function
I (notice |f (i+1)| = |f (i)|/2 so total proof length O(n))

I QUERY: verifier queries oracles (prover not involved)

FRI Protocol

I Let S (0) ⊂ F∗ be 2-smooth mult. group: |S (0)| = 2k
(0)
, k(0) ∈ N

I Let f (0) : S (0) → F, FRI for RS(0) = RS
[
F,S (0), ρ = 1

8

]
I Two-phase protocol

I COMMIT: while i < k (0) − log 1
ρ

I verifier sends randomness x(i)

I prover sends oracle f (i+1) : S(i+1) → F, |S(i+1)| = |S(i)|/2
I completeness: If f (i) ∈ RS[F, S(i), ρ] then f (i+1) ∈ RS[F,S(i+1), ρ]

I each entry of f (i+1) computed from 2 distinct entries of f (i) via O(1)
arithmetic operations (so tp = O(n))

I #rounds ≤ k(0) = log n
I last round (i = k(0) − log 1/ρ): prover sends constant function
I (notice |f (i+1)| = |f (i)|/2 so total proof length O(n))

I QUERY: verifier queries oracles (prover not involved)

FRI Protocol

I Let S (0) ⊂ F∗ be 2-smooth mult. group: |S (0)| = 2k
(0)
, k(0) ∈ N

I Let f (0) : S (0) → F, FRI for RS(0) = RS
[
F,S (0), ρ = 1

8

]
I Two-phase protocol

I COMMIT: while i < k (0) − log 1
ρ

I verifier sends randomness x(i)

I prover sends oracle f (i+1) : S(i+1) → F, |S(i+1)| = |S(i)|/2
I completeness: If f (i) ∈ RS[F, S(i), ρ] then f (i+1) ∈ RS[F,S(i+1), ρ]
I each entry of f (i+1) computed from 2 distinct entries of f (i) via O(1)

arithmetic operations (so tp = O(n))

I #rounds ≤ k(0) = log n
I last round (i = k(0) − log 1/ρ): prover sends constant function
I (notice |f (i+1)| = |f (i)|/2 so total proof length O(n))

I QUERY: verifier queries oracles (prover not involved)

FRI Protocol

I Let S (0) ⊂ F∗ be 2-smooth mult. group: |S (0)| = 2k
(0)
, k(0) ∈ N

I Let f (0) : S (0) → F, FRI for RS(0) = RS
[
F,S (0), ρ = 1

8

]
I Two-phase protocol

I COMMIT: while i < k (0) − log 1
ρ

I verifier sends randomness x(i)

I prover sends oracle f (i+1) : S(i+1) → F, |S(i+1)| = |S(i)|/2
I completeness: If f (i) ∈ RS[F, S(i), ρ] then f (i+1) ∈ RS[F,S(i+1), ρ]
I each entry of f (i+1) computed from 2 distinct entries of f (i) via O(1)

arithmetic operations (so tp = O(n))
I #rounds ≤ k(0) = log n
I last round (i = k(0) − log 1/ρ): prover sends constant function

I (notice |f (i+1)| = |f (i)|/2 so total proof length O(n))
I QUERY: verifier queries oracles (prover not involved)

FRI Protocol

I Let S (0) ⊂ F∗ be 2-smooth mult. group: |S (0)| = 2k
(0)
, k(0) ∈ N

I Let f (0) : S (0) → F, FRI for RS(0) = RS
[
F,S (0), ρ = 1

8

]
I Two-phase protocol

I COMMIT: while i < k (0) − log 1
ρ

I verifier sends randomness x(i)

I prover sends oracle f (i+1) : S(i+1) → F, |S(i+1)| = |S(i)|/2
I completeness: If f (i) ∈ RS[F, S(i), ρ] then f (i+1) ∈ RS[F,S(i+1), ρ]
I each entry of f (i+1) computed from 2 distinct entries of f (i) via O(1)

arithmetic operations (so tp = O(n))
I #rounds ≤ k(0) = log n
I last round (i = k(0) − log 1/ρ): prover sends constant function
I (notice |f (i+1)| = |f (i)|/2 so total proof length O(n))

I QUERY: verifier queries oracles (prover not involved)

Example: S (0) = F∗17, n = 24, ρ = 2−2

COMMIT phase has log |S (0)| − log ρ= 2 rounds; during ith round
I verifier sends random x (i) ∈ F
I prover sends next oracle f (i+1) : S (i+1) → F

I S (i+1) is 2-smooth multiplicative group, |S (i+1)| = |S (i)|/2
I each entry of f (i+1) computed from 2 distinct entries of f (i)

I termination: When i = k(0) − log 1/ρ prover sends constant function

QUERY phase: pick random s(0) ∈ S (0) and check path-to-root

Example: S (0) = F∗17, n = 24, ρ = 2−2

COMMIT phase has log |S (0)| − log ρ= 2 rounds; during ith round
I verifier sends random x (i) ∈ F
I prover sends next oracle f (i+1) : S (i+1) → F

I S (i+1) is 2-smooth multiplicative group, |S (i+1)| = |S (i)|/2
I each entry of f (i+1) computed from 2 distinct entries of f (i)

I termination: When i = k(0) − log 1/ρ prover sends constant function
QUERY phase: pick random s(0) ∈ S (0) and check path-to-root

Example: S (0) = F∗17, n = 24, ρ = 2−2

COMMIT phase has log |S (0)| − log ρ= 2 rounds; during ith round
I verifier sends random x (i) ∈ F
I prover sends next oracle f (i+1) : S (i+1) → F

I S (i+1) is 2-smooth multiplicative group, |S (i+1)| = |S (i)|/2
I each entry of f (i+1) computed from 2 distinct entries of f (i)

I termination: When i = k(0) − log 1/ρ prover sends constant function
QUERY phase: pick random s(0) ∈ S (0) and check path-to-root

Example: S (0) = F∗17, n = 24, ρ = 2−2

COMMIT phase has log |S (0)| − log ρ= 2 rounds; during ith round
I verifier sends random x (i) ∈ F
I prover sends next oracle f (i+1) : S (i+1) → F

I S (i+1) is 2-smooth multiplicative group, |S (i+1)| = |S (i)|/2
I each entry of f (i+1) computed from 2 distinct entries of f (i)

I termination: When i = k(0) − log 1/ρ prover sends constant function
QUERY phase: pick random s(0) ∈ S (0) and check path-to-root

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4

I let P(X) interpolate f (0), deg(P) < 4
I write P(X) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I consider points in F× F on curve Y − X 2,

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I let P(X) interpolate f (0), deg(P) < 4

I write P(X) = P0(X
2) + X · P1(X

2), FFT-style
I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I consider points in F× F on curve Y − X 2,

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I let P(X) interpolate f (0), deg(P) < 4
I write P(X) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I consider points in F× F on curve Y − X 2,

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I let P(X) interpolate f (0), deg(P) < 4
I write P(X) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I consider points in F× F on curve Y − X 2,

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I let P(X) interpolate f (0), deg(P) < 4
I write P(X) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I consider points in F× F on curve Y − X 2,

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I let P(X) interpolate f (0), deg(P) < 4
I write P(X) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I consider points in F× F on curve Y − X 2,

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I let P(X) interpolate f (0), deg(P) < 4
I write P(X) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I degX (Q) < 2; degY (Q) ≤ deg(P)/2
I S (1) =

{
x2 | x ∈ S (0)

}
is mult. group, |S (1)| = |S (0)|/2

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I let P(X) interpolate f (0), deg(P) < 4
I write P(X) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I degX (Q) < 2; degY (Q) ≤ deg(P)/2
I S (1) =

{
x2 | x ∈ S (0)

}
is mult. group, |S (1)| = |S (0)|/2

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

COMMIT round
I Verifier picks random x (0) ∈ F
I f (1) = Q(x (0),Y)|S(1)

I each entry of f (1) interpolated
from two entries of f (0)

I deg(f (1)) = degY (Q) < ρ|S (1)|

FRI vs. inverse FFT

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I find P(X) that interpolates f (0)

I write P(X) = P0(X
2) + X · P1(X

2), FFT-style
I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I degX (Q) < 2; degY (Q) ≤ deg(P)/2
I S (1) =

{
x2 | x ∈ S (0)

}
is mult. group, |S (1)| = |S (0)|/2

0 1 2 3 4 5 6 7 8 9 10111213141516∞
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

I P0(Y) = Q(0,Y),
P1(Y) = Q(∞,Y)

I let g0 = Q(0,Y)|S (1) ,
g1 = Q(∞,Y)|S(1)

I compute g0, g1, O(n) steps
I recurse on g0, g1

FRI vs. inverse FFT

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I find P(X) that interpolates f (0)

I write P(X) = P0(X
2) + X · P1(X

2), FFT-style
I then P(X) ≡ P0(Y) + X · P1(Y) mod Y − X 2

I let Q(X ,Y) , P0(Y) + X · P1(Y),
I Q(X ,Y) ≡ P(X) mod Y − X 2

I degX (Q) < 2; degY (Q) ≤ deg(P)/2
I S (1) =

{
x2 | x ∈ S (0)

}
is mult. group, |S (1)| = |S (0)|/2

0 1 2 3 4 5 6 7 8 9 10111213141516∞
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

I P0(Y) = Q(0,Y),
P1(Y) = Q(∞,Y)

I let g0 = Q(0,Y)|S (1) ,
g1 = Q(∞,Y)|S(1)

I compute g0, g1, O(n) steps
I recurse on g0, g1

Soundness analysis — low error

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

For simplicity, suppose f (0) is δ < 1−ρ
4 -far from 0

I y ∈ S (1) good if f (0)(x0) = f (0)(x1) = 0 for x2
0 = x2

1 = y

I otherwise, y ∈ S (1) bad
I fraction of bad y ’s in S (1) between δ and 2δ

I interpolant of bad row has at most 1 root

I w.p. 1− |S
(1)|
|F| , x

(0) misses roots of bad rows; call such x (0) good
I prover left with two bad options:

I let f (1) “jump” to be closer to non-zero RS-codeword; large error;
I continue with f (1) close to 0;

Soundness analysis — low error

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

For simplicity, suppose f (0) is δ < 1−ρ
4 -far from 0

I y ∈ S (1) good if f (0)(x0) = f (0)(x1) = 0 for x2
0 = x2

1 = y

I otherwise, y ∈ S (1) bad
I fraction of bad y ’s in S (1) between δ and 2δ
I interpolant of bad row has at most 1 root

I w.p. 1− |S
(1)|
|F| , x

(0) misses roots of bad rows; call such x (0) good
I prover left with two bad options:

I let f (1) “jump” to be closer to non-zero RS-codeword; large error;
I continue with f (1) close to 0;

Soundness analysis — low error

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

For simplicity, suppose f (0) is δ < 1−ρ
4 -far from 0

I y ∈ S (1) good if f (0)(x0) = f (0)(x1) = 0 for x2
0 = x2

1 = y

I otherwise, y ∈ S (1) bad
I fraction of bad y ’s in S (1) between δ and 2δ
I interpolant of bad row has at most 1 root

I w.p. 1− |S
(1)|
|F| , x

(0) misses roots of bad rows; call such x (0) good

I prover left with two bad options:
I let f (1) “jump” to be closer to non-zero RS-codeword; large error;
I continue with f (1) close to 0;

Soundness analysis — low error

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

For simplicity, suppose f (0) is δ < 1−ρ
4 -far from 0

I y ∈ S (1) good if f (0)(x0) = f (0)(x1) = 0 for x2
0 = x2

1 = y

I otherwise, y ∈ S (1) bad
I fraction of bad y ’s in S (1) between δ and 2δ
I interpolant of bad row has at most 1 root

I w.p. 1− |S
(1)|
|F| , x

(0) misses roots of bad rows; call such x (0) good
I prover left with two bad options:

I let f (1) “jump” to be closer to non-zero RS-codeword; large error;
I continue with f (1) close to 0;

Summary

I first RPT solution with tp = O(n) and tv = O(log n)

I nearly optimal soundness for δ < δ0

I what’s δ0? (higher lines are better)

Summary

I first RPT solution with tp = O(n) and tv = O(log n)

I nearly optimal soundness for δ < δ0
I what’s δ0? (higher lines are better)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ρ

δ 0
[BBHR18] lower bound
[BKS18] lower bound
upper bound
unique decoding
Johnson bound

Summary

I first RPT solution with tp = O(n) and tv = O(log n)

I nearly optimal soundness for δ < δ0
I what’s δ0? (higher lines are better)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ρ

δ 0
[BBHR18] lower bound
[BKS18] lower bound
upper bound
unique decoding
DEEP-FRI [BGKS19]
FRI tight [BGKS19]

I New protocol: DEEP-FRI [B, Goldberg, Kopparty, Saraf 2019]
I DEEP-FRI: Domain Extending for Eliminating Pretenders FRI
I like FRI, has linear proving complexity, logarithmic verifer complexity
I DEEP-FRI soundness reaches Johnson bound δ0 ≈ 1−√ρ
I Under plausible list decoding conjecture, reaches δ0 ≈ 1− ρ

Summary

I first RPT solution with tp = O(n) and tv = O(log n)

I nearly optimal soundness for δ < δ0
I what’s δ0? (higher lines are better)

I Questions
I “sliding scale” soundness-error ≈ 1/poly(|F|) for RS-IOPPs?

I want to learn more? workshop@starkware.co
I want to realize in practice? jobs@starkware.co

Summary

I first RPT solution with tp = O(n) and tv = O(log n)

I nearly optimal soundness for δ < δ0
I what’s δ0? (higher lines are better)

I Questions
I “sliding scale” soundness-error ≈ 1/poly(|F|) for RS-IOPPs?
I want to learn more? workshop@starkware.co
I want to realize in practice? jobs@starkware.co

	Motivation

