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Overview
tl;dr: FRI is a fast, FFT-like, IOP solution for verifying deg(f ) < d

I motivation
I main result, applications
I FRI protocol dive-in



Reed Solomon (RS) codes [RS60]

I prominent role in algebraic coding and computational complexity
I For S ⊂ F a finite field and ρ ∈ (0, 1] a rate parameter

RS[F,S , ρ] = {f : S → F | deg(f ) < ρ|S |}

I RS codes have many desirable properties, like
I maximum distance separable (MDS): rel. Hamming distance 1− ρ
I efficient, quasi-linear time encoding via FFT
I efficient unique decoding [BW83] and list decoding [GS99]
I used in quasi-linear PCPs [BS05] and constant rate IOPs [BCGRS16]

I notation:
I d = ρ|S | − 1 is degree;
I n = |S | is blocklength;
I ∆ is relative Hamming distance
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RS proximity testing (RPT) problem

I Question: Construct a verifier V that has
I oracle access to f (0) : S (0) → F
I completeness: If f (0) ∈ RS[F,S , ρ], then Pr[V accepts f (0)] = 1
I soundness: otherwise, Pr[V rejects f (0)] ≥ ∆(f (0),RS[F,S (0), ρ])

while minimizing query complexity q.

I Answers:
I q = d + 1 required and sufficient [folklore]
I q = O(1/δ), if verifier has oracle access to PCPP [AS+ALMSS98]
I PCPP can have quasi-linear length n logO(1) n [BS08, D07]
I IOPP can have linear length O(n) [BCF+16, BBGR16]
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I Interactive Oracle Proof of Proximity (IOPP) model
[BCS16,RRR16,BCF+16]
I prover sends f (0) : S (0) → F; verifier sends random x (0)

I prover sends f (1) : S (1) → F; verifier sends random x (1)

I repeat for r rounds
I verifier queries f (0), . . . , f (r); based on answers and (x (0), . . . , x (r−1))

verifier decides to accept/reject claim “f (0) ∈ RS
[
F, S (0), ρ

]
”
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Main Result — Fast RS IOPP (FRI)

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈ 1−ρ
4

Remarks
1. “nice” codes means S (0) is either of following two:

1.1 2-smooth multiplicative group, i.e., |S (0)| = 2k , k ∈ N, or
1.2 binary additive groups, i.e., S(0) an F2-linear space

2. first PCPP/IOPP for RS codes achieving simultaneous
I linear prover complexity, tp = O(n), and
I sub-linear verifier complexity, tv = o(n)
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FRI applications: (i) computational integrity and (ii) privacy

Definition (Computational Integrity (CI))
is the language of quadruples (M, T , xin, xout) such that nondeterministic
machine M, on input xin reaches output xout after T cycles, T in binary.
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I soundness x 6∈ L⇒ Pr [V(x)↔ P(x) acc] ≤ 1/2
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I succinct: Verifier run-time poly(n, log T ); this bounds proof length
I transparent (AM): verifier sends only public random coins
I private (ZK): proof preserves privacy of nondeterministic witness
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I meaningful when tv � T or `� witness-size
I useful for compressing blockchain history

I Scalable Transparent ARguments of Knowledge [BBHR18]
I C++ implementation: github.com/elibensasson/libSTARK
I achieves Thm above, quasi-linear tp, “post-quantum secure”
I FRI is a major contributor to STARK efficiency
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Overview of FRI protocol

Theorem (Informal)

For “nice” RS codes RS
[
F,S (0), ρ

]
, the FRI protocol satisfies

I tp(n) ≤ 6 · n and `(n) ≤ n/3
I tv(n) ≤ 21 · log n and q(n) ≤ 2 log n
I r(n) ≤ 1

2 log n (round complexity)
I soundness (rejection prob.) δ − 2n

|F| for all f
(0) that are

δ < δ0-far from code, δ0 ≈�
�1−ρ
4 1− ρ��14 1

3 [BGKS19]

Recall the inverse Fast Fourier Transform (iFFT)
I evaluate P(X ), deg(P) < n on 〈ω〉, ω is root of unity of order n = 2k

I write P(X ) = P0(X
2) + X · P1(X

2)

I equivalently, P(X ) ≡ P0(Y ) + X · P1(Y ) mod Y − X 2

I notice 〈ω2〉 has size n/2
I so evaluate each of P0(Y ),P1(Y ) on 〈ω2〉, . . . , O(n log n) runtime
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FRI Protocol

I Let S (0) ⊂ F∗ be 2-smooth mult. group: |S (0)| = 2k
(0)
, k(0) ∈ N

I Let f (0) : S (0) → F, FRI for RS(0) = RS
[
F,S (0), ρ = 1

8

]

I Two-phase protocol
I COMMIT: while i < k (0) − log 1

ρ

I verifier sends randomness x(i)

I prover sends oracle f (i+1) : S(i+1) → F, |S(i+1)| = |S(i)|/2
I completeness: If f (i) ∈ RS[F, S(i), ρ] then f (i+1) ∈ RS[F,S(i+1), ρ]
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Example: S (0) = F∗17, n = 24, ρ = 2−2

COMMIT phase has log |S (0)| − log ρ= 2 rounds; during ith round
I verifier sends random x (i) ∈ F
I prover sends next oracle f (i+1) : S (i+1) → F

I S (i+1) is 2-smooth multiplicative group, |S (i+1)| = |S (i)|/2
I each entry of f (i+1) computed from 2 distinct entries of f (i)

I termination: When i = k(0) − log 1/ρ prover sends constant function

QUERY phase: pick random s(0) ∈ S (0) and check path-to-root
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FRI COMMIT — single round

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4

I let P(X ) interpolate f (0), deg(P) < 4
I write P(X ) = P0(X

2) + X · P1(X
2), FFT-style

I then P(X ) ≡ P0(Y ) + X · P1(Y ) mod Y − X 2

I let Q(X ,Y ) , P0(Y ) + X · P1(Y ),
I Q(X ,Y ) ≡ P(X ) mod Y − X 2

I consider points in F× F on curve Y − X 2,
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COMMIT round
I Verifier picks random x (0) ∈ F
I f (1) = Q(x (0),Y )|S(1)

I each entry of f (1) interpolated
from two entries of f (0)

I deg(f (1)) = degY (Q) < ρ|S (1)|



FRI vs. inverse FFT

I suppose f (0) : F∗17 → F17 satisfies deg(f (0)) < 4
I find P(X ) that interpolates f (0)

I write P(X ) = P0(X
2) + X · P1(X

2), FFT-style
I then P(X ) ≡ P0(Y ) + X · P1(Y ) mod Y − X 2
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I P0(Y ) = Q(0,Y ),
P1(Y ) = Q(∞,Y )

I let g0 = Q(0,Y )|S (1) ,
g1 = Q(∞,Y )|S(1)

I compute g0, g1, O(n) steps
I recurse on g0, g1
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Soundness analysis — low error
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For simplicity, suppose f (0) is δ < 1−ρ
4 -far from 0

I y ∈ S (1) good if f (0)(x0) = f (0)(x1) = 0 for x2
0 = x2

1 = y

I otherwise, y ∈ S (1) bad
I fraction of bad y ’s in S (1) between δ and 2δ

I interpolant of bad row has at most 1 root

I w.p. 1− |S
(1)|
|F| , x

(0) misses roots of bad rows; call such x (0) good
I prover left with two bad options:

I let f (1) “jump” to be closer to non-zero RS-codeword; large error;
I continue with f (1) close to 0;
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I New protocol: DEEP-FRI [B, Goldberg, Kopparty, Saraf 2019]
I DEEP-FRI: Domain Extending for Eliminating Pretenders FRI
I like FRI, has linear proving complexity, logarithmic verifer complexity
I DEEP-FRI soundness reaches Johnson bound δ0 ≈ 1−√ρ
I Under plausible list decoding conjecture, reaches δ0 ≈ 1− ρ
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