¢

¢
¢

Hard Problems in Blockchains

.\\-_

olaenko
3th BIU Wir

aaaaaaaaaa

1: Long-Range Attacks on PoS
2: Proposer Election in PoS
3: Post-quantum blockchains

aaaaaaaaaa

1: Long-Range Attacks on PoS

Proof-of-Stake blockchains

5

Proof-of-Stake blockchains

Proof-of-Stake blockchains

Proof-of-Stake blockchains

Validators “notarize” blocks

Active validators stay h’onest
due to incentives

Validator with no incentives can leak old keys

staked no incentives to keep the old
e . keys safe!
BN
SR | time
validating

holds assets

If old validators become corrupt
safety is broken

Corrupt validators may fork history

Corrupt validators may fork history

Corrupt validators may fork history

4> Users can not
differentiate!

Low number of keys don't protect history well

Number of
validating keys

\ / time

The historical state most vulnerable here!

Mitigations for

long-range attacks

1. Checkpointing

2. Key-evolving cryptography

3. Keep everybody online

4. Winkle (user-based consensus)

#1 Checkpointing

e Centralized checkpointing (i.e. hardcode the checkpoints into the

github codebase)

o Checkpoint = hash of a block (very small)
o When synching check that the checkpoint matches the hardcoded one

e Checkpointto a PoW chain

Problem: centralized!

Easier to attack if validators are not rotating their keys

1 1 1 "1 *1 Time

1 ']
————— T o o o o o o e e o o o o o O O EE I O O EE S e EE EE EE e e S e Ea S o =

Attacking 2 at time T, equivalent to attacking 2 at time T,!

WWW.Usenix.org/conference/usenixsecurity20/presentation/drijvers

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

Easier to attack if validators are not rotating their keys

b B &3

< s < <+ < <
: | : N
— <t—— <g—| g -

2-out-of-5 is 2-out-of-10 is not
enough to attack! enough to attack

WWW.Usenix.org/conference/usenixsecurity20/presentation/drijvers

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

#2 Key-Evolving cryptography

e Rotate validator keys frequently: (pk, sk) — (pk’, sk’)

e Time-evolving secret-key (public key stays the same!) [DGNW20]:
(pk, sk,) — (pk, sk,) — (pk, sk3) — (pk, sk,) — ...

e Assume honest validators forget old keys.

Does not solve our problem, but good practice anyway!

Problem: erasing the old secret keys is incentive incompatible!

#3: Keep everybody online

When all the nodes are online and monitoring the blockchain closely,
it is very hard to make them believe a deep fork.

Casper the Friendly Finality Gadget

Vitalik Buterin and Virgil Griffith
Ethereum Foundation

—

In simple terms, long-range attacks are prevented by a fork choice rule to never revert a finalized block, as well as
an expectation that each client will “log on” and gain a complete up-to-date view of the chain at some regular
frequency (e.g., once per 1-2 months). A “long range revision” fork that finalizes blocks older than that will

Problem is: clients/validators can be sleepy.

#4 Winkle :
make users “vote” inside their transactions on the
current state of the blockchain

Winkle: Foiling Long-Range Attacks in Proof-of-Stake Systems

Sarah Azouvi George Danezis Valeria Nikolaenko
University College London, University College London, Facebook Novi
Protocol Labs Facebook Novi
ABSTRACT Validator key rotations help alleviate the problem, assuming

Winkle protects any validator-based byzantine fault tolerant con-
sensus mechanisms, such as those used in modern Proof-of-Stake
blockchains, against long-range attacks where old validators’ sig-
nature keys get compromised. Winkle is a decentralized secondary
layer of client-based validation, where a client includes a single
additional field into a transaction that they sign: a hash of the previ-
ously sequenced block. The block that gets a threshold of signatures
(confirmations) weighted by clients’ coins is called a “confirmed”
checkpoint. We show that under plausible and flexible security
assumptions about clients the confirmed checkpoints can not be
equivocated. We discuss how client key rotation increases secu-
rity, how to accommodate for coins” minting and how delegation
allows for faster checkpoints. We evaluate checkpoint latency ex-
perimentally using Bitcoin and Ethereum transaction graphs, with
and without delegation of stake.

secure destruction of older keys. However, validators might have
auxiliary incentives to sell their old keys to an adversary, espe-
cially when real-world identities of validators are unknown in a
permissionless system and reputation is not at risk. When dishonest
behaviour of a validator becomes rational, real-world security of
the whole system is at great risk. We notice that corrupting a signif-
icant number of coin holders, even after they have no more stake in
the system, is far more challenging as they are much more numer-
ous than validators (we justify this assumption in Section 4). This
observation brings us to introducing Winkle — a novel mechanism
that leverages votes from clients creating a decentralized secondary
layer of client-based validation to confirm checkpoints (snapshots
of the blockchain) and to prevent long-range attacks on proof-of-
stake protocols. The voting mechanism is very simple: each client
augments their transaction with a single additional field — a hash
of a previously sequenced block. Once this transaction gets signed

Winkle: users vote on blocks when transacting

e New transaction format:
Tx = [sender, receiver, amount, 15
e The block is checkpointed when 50% of all coins vote on it.
e Checkpoint can't be reverted even under Long-Range-Attack.

e To attack the adversary needs to obtain:
validators’ keys AND users' keys

Validators
100-1,000

To attack the adversary needs to obtain: EleEIeIENES AND _

Winkle: second layer of confir

Consensus by users:

User-based
consensus

Consensus by validators:

Validator-based

Mitigations for
long-range attacks

1. Checkpointing
2. Key-evolving cryptography
3. Keep everybody online

4. Winkle (user-based consensus)

philosophically, a good idea to make all users (not just the validators)
work on maintaining the security of blockchain

aaaaaaaaaa

2: Proposer Election in PoS

Proposer election goals

e A proposer is elected per time-slot to propose a block.

e A proposer gets rewarded for proposing a good block.
e Election properties
o of elected proposer

0 : T is the time between proposer getting publicly known and
proposer announcing a block

m T>0:"public election”

m T=0:"secretelection” - the proposer announces itself when published the
block

m =>fair (each leader is elected with equal probability)

o (nobody should be able to influence the proposer election in its favor)
= Unpredictability under active attacks

#1 Proposer election : Round-Robin

Round-robin proposer election: proposers are chosen one after the
other in a lexicographical order.

Predictable = public: the proposer for the slot is known well in advance:
proposers can be DDoSed

Biasable

#2 Proposer election : Randomness Beacon

Randomness beacon: a distributed protocol that outputs (pseudo)-
random values at regular time intervals

Randomness is broken by
/ beacon induction:
e fix proposer schedule of the current
Proposer epoch
election '
\ Consensus e Dbuild randomness beacon to
—— randomize proposer schedule of the
next epoch.

Predictable: schedule known 1 epoch in advance

#2 Proposer election : Randomness Beacon

: L
3 k 5 . 3%
E é g El ‘:% gr = 2 2 Ex 2'
3 : opgpsfi 3= 18 i 52 ig
§ Eci9 L EE 2FE £% 2E gZ
i 3 33588 §° &S ES & s
ALBATROSS [18] sy, X W & W 102 O} Mlog)) PV5S v
Algorand [349) semb-syn. ¥ &7 K 1/8° en) oe) a1) VRF v
BRandPiper |8] syn. & W 12 n®) O(n*) On?) PVES 4
Cachin et. al |16 agyn. X o o & 13 Onf) @in) (1) Unbg. thrsig. X
Cauncus [2] syn. X S ST 12 Wm) &1} a1 Hash func. 4
Continuous VDF [34) asyn, X X 12 a0 VDF a1 VDF o
DFINITY |45 sembayn. ¥ o o 173 On®) @in) a(1) BLS thr-atg. X
Dirand [31) L T S I T T Qin) 1] Unbg. thrsig X
GLOW [346) syn. X o & W 173) Oin) a1 DVRF &
GRandPiper [8) sy, X/ £/ 12 O O(n?) Oin?) FV3s s
HERE |20] sy, X o o W 173 Onf)” Qin) On) FHE X
HydHRand |66 syn. X S 13 On®) Qin) On) PVES o
Nguyen-Van et. al |55 ayn X X 4 X 172) {1} O} FHE, VRF 4
Churoboras [47) syn. X o o W 172 Din’) Q(n') Qn’) PVES v
Curoboros Pracs |27] sembsyn. « & % 1/2 On)” o) o) VRF v
Prool-of-Delay |14] sy, X oW 40 102) very high Ofleg A) Hash fune 4
Prool-of-Werk 53] syn. X 4 S E 12 m}) very high O{1) Hash func. v
RandChain [71] ayn. X 4 S0 1A Den) Oen) Ofn) VRF 4
RANDCHAIN [44) syn. W & & 103 O} VDF a1 VDF o
RANDAD |50 agyn. X S X X 102 Nm} VDF a1 VDF o
RandHerd |69 syn. X & & 13 O logn) et logn) (1) PVES, oSt X
RandHound [59] syn. X 4 13 Ofen) etn) etn) PVSS E
RandRunner |65 syn. & S 12 Bn®) VDF a1 VIDF 4
RandShare [69] asyn., o XY & W 173 On’) O’y [l Vas o
Rand Extractor [21,13] asyn® # " o # 172 o1} a1} a{1) Hash fune. o
SCRAPE [17] syn. X/ S/ 12 On) O(n?) Ofn’) PVES o
SPURT |25] semi-ayn X o o o 173 O(n®) @in) On) PVSS, Paring o
Unicorn [49) amyn. X 41 S 4 12 1) high Slath 4

(2022) by M.
Raikwar and D. Gligoroski

ait)

Practical projects:

Distributed randomness beacon.

y

Chainlink VRF

https://arxiv.org/pdf/2205.13333.pdf
https://drand.love/
https://github.com/drand/drand
https://blog.chain.link/vrf-v2-mainnet-launch/

#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pk

During an epoch:

e nodeisubmitsvy, = VRF_g(ski, epoch_numbe
At the end of the epoch:

_ Contributes deterministic
* beacon = VDF_EvaI(V1GB VoD ... © Vi) verifiable randomness:

e can’t compute VRF in two
possible ways
e outputis pseudorandom

Long computation (longer than one
epoch), fast to verify.

#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pk
During an epoch:

e nodeisubmitsv,= VRF_Eval(sk; epoch_number)

At the end of the epoch:

e beacon =VDF_Eval(v,® v.P ... D v,)

Predictable: schedule of leader is known 1 epoch in advance

#3 Proposer election : SSLE

SSLE: Single Secret Leader Election

1.
2.

Each validator publishes a commitment to a secret value.

Next, validators take turn shuffling and rerandomizing the list of
commitments.

The random beacon is used to do the final open shuffle, and the final list
determines the sequence of proposers for the next epoch.

Only the proposer knows its position in the list.

o ° ” (2020) by
D.Boneh,S.Eskandarian,L.Hanzlik,N.Greco
e FEthereum’s SSLE:

https://eprint.iacr.org/2020/025.pdf
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763/2

Proposer election approaches

Unique Unbiasable Unpredictable

Proof-of-Work

Round-robin

Randomness-

Proof-of-Stake
beacon

SSLE

aaaaaaaaaa

3: Post-quantum blockchains

Progress in quantum computing

1998 - 3 qubits

) , e 6,146 logical qubits to break RSA-3072
2000 - 7 qubits)
2005 - 8 qubits o ngical qubits to break discrete log
2006 - 12 qubits NIST P-256 curve
2011 - 14 qubits ()
2017 - 50 qubits (IBM)

Factoring integers with on a super i processor

Bao Yan,'** Ziqi Tan,* * Shijie Wei,* * Haocong Jiang, Weilong Wang,' Hong Wang,' Lan Luo,' Qianheng Duan,'
Yiting Liu,' Wenhao Shi,' Yangyang Fei,' Xiangdong Meng,' Yu Han,' Zheng Shan,' Jiachen Chen,’ Xuhzo Zhu
Chuanyu Zhang,* Feitong Jin,* Hekang Li.* Chao Song.* Zhen Wang,* | Zhi Ma," ' H. Wang.” and Gui-Lu Long>*® "

\State Key Laboratory of Mathematical Eng

2 O 1 9 State Key Laboratory of Low-Dimensional Quantum Phy Peter Shor
*School of Physics, ZIU-Hangzhou Global Scientific and Tec) ol
and Zhejiang Province Key Laboratory of Quantum @PeterShort

. . .
Beijing Academy of Quantu,

!O 2 O H l I m m I n b I r'd Institute of Information Technology, Infi| Replying to @wayintothedeep
? Reijing National Research (

and School of Information | There are apparently possible problems with this paper.

72 qubits (Googlg

* ok F o+ ok F o+ ok F ok *

algorithm experimentally by factoring inte; just don't talk about it. Very bad sign.
integer factored on a quantum device. We
a depth of thousands is necessary to challc

o~ ' Frontier Science Center for,
o Shor’s algorithm has seriously challeng, i Gi @ . .
O 1 4 Howover, & break the widely 1ed RSA @ Craig Gidney @CraigGidney - Dec 26, 2022

I3} far beyond current technical capabilities. arxiv.org/abs/2212.12372 sure space not mentioning the

] factorization by combining the classical latt expected number of circuit shots it requires. It's critical to the entire premise of
a rithm (QAOA). The number of qubits requ h h [Bound on thi b ers | i h

of the integer ', making it the most qubit the paper to have a small bound on this number, and as far as | can tell they

o
o~

2:23PM - Dec 27,2022 - 2,981 Views

6 Retweets 1Quote Tweet 25 Likes

https://www.youtube.com/watch?v=nZu5hutqANk
https://arxiv.org/abs/1611.07995
https://arxiv.org/abs/1706.06752

The power of a quantum adversary on a blockchain

Quantum adversary can forge currently used digital signatures =

steal funds or fork consensus

o ECDSA, Schnorr/EdDSA, RSA - breakable by a quantum computer
o There are secure alternatives

Solve PoW-puzzles faster: D'/?2 instead of D to search D-size space
o Classical miner one thread: T time to search T space
o Quantum miner one thread: T time to search T? space (Grover's search-1996)
o Superlinearity problem: quantum miners have more advantage |]

Hash functions stay secure

o Collision: classical algorithm O(2"2) quantum algorithms O(2"3) |
1
Quantum speed-up is not practical]

Wide-believe is that SHA-256 still provides 128-bits collision resistance even
post-quantum

https://eprint.iacr.org/2022/1423
https://dl.acm.org/doi/pdf/10.1145/261342.261346
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf#page=113

NIST post-quantum standardization

2016 - NIST announced a

2022 (summer) - NIST

2023 - to open drafts for public comments
2024 - to have the first PQC standards

Digital Signatures to be standardized: Crystals-Dilithium, Falcon, Sphincs+

Today

e 3 standard signature schemes: ECDSA, RSA and EdDSA
e BLS is widely used but is not standardized

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/csrc/media/Presentations/2022/nist-pqc-looking-into-the-future/images-media/session-1-moody-looking-into-future-pqc2022.pdf

Post-quantum signature finalists

pk
Dilithium 3 1.9 KB
Falcon 1024 1.8 KB
Sphincs+ 48 B

192s,f+ SHAKE

BLS
EdDSA
ECDSA

RSA

Sig
3.3 KB

1.3 KB

16 KB
35 KB

sigs (ms)

AVX: 0.06
0.2

AVX: 0.7
10

5,000
250

2.5

Verifies (ms) = Assumption

AVX: 0.06
0.2

AVX: 0.1
0.1

4
10

Lattices

Lattices

Hashes

59

Post-quantum signature finalists

Dilithium 3

Falcon 1024

Sphincs+
192s,f+ SHAKE

LMS/XMSS
BLS

EJDSA
ECDSA

pk
1.9 KB

1.8 KB

48 B

48 B

sig
3.3 KB

1.3 KB

16 KB
35 KB

1-5 KB

\

> Post-quantum signatures
to be standardized by 2024

J
Stateful (few-times) post-quantum signatures

that are standardized (2020)

Our current signatures, quantum-breakable

40

NIST: new call for digital signatures

COMPUTER SECURITY
RESOURCE CENTER
CSRC

Request for Additional Digital Signature
Schemes for the Post-Quantum
Cryptography Standardization Process
September 06, 2022

Ask: non-lattice-based signatures
and/or short signatures

Deadline for submission: June 1, 2023

41

A happy transition of a blockchain to post-quantum

Could tweak keys: Quantum attacker might exist
sk = Hash(seed) : >

»

Then: prove knowledge of hash- . Good post-quantum signatures available
preimage with a STARK! i
| |
| I
Accepting classical - Accept Not accepting classical Time
signatures classical signatures
and Restrict classically-

quantum signed transactions What happens to accounts that did not rotate?

signatures key-rotations only e EdJDSA is good: sk = Hash(seed)
e Bitcoin is good: Address = Hash(pk)

42

Schnorr/EdDSA VS.

KeyGen():
sk < random integer mod p
pk =G * sk,
// G generates a p-order
group
Sign():

r — random mod p
R=G*r

h = Hash(R, tx)

o = (h, r + h*sk)

Dilithium is essentially Schnorr but with matrix A
instead of generator G

KeyGen():

Dilithium

sk «— random vector
e «— random small vector

pk = sk +

r — random vector

e «— random small vector

h = Hash(R, tx)
o = (h, r + h*sk)

e

43

aaaaaaaaaa

4: More:
Threshold Signatures

Threshold signatures

In t-out-of-n threshold signature

o Asingle public key, the secret key is split between n nodes.
o Anyt nodes can reconstruct the secret key, or sign through a multi-party protocol.

Important for wallets: split the key between servers
Blockchains signatures: ECDSA, Schnorr/EdDSA, BLS
ECDSA is most widely used on blockchains (NIST standard 1994)

o Hard to thresholdize

. . !
o []: 4 rounds (= 3 offline + 1 online) Need good implementations!

Schnorr/EdDSA (patent expired 2008)

o Easy to thresholdize

o FROST[]: 2 rounds (= 1 offline + 1 online)
o Being
BLS

o Trivial to thresholdize: 1 round
o Being (expired)

https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2020/852.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/

aléz crypto

Disclosures

The views expressed here are those of the individual AH Capital Management, L.L.C. (“a16z”) personnel quoted and are not the
views of al6z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from
portfolio companies of funds managed by al6z. While taken from sources believed to be reliable, al6z has not independently
verified such information and makes no representations about the current or enduring accuracy of the information or its
appropriateness for a given situation. In addition, this content may include third-party advertisements; al6z has not reviewed
such advertisements and does not endorse any advertising content contained therein.This content is provided for informational
purposes only, and should not be relied upon as legal, business, investment, or tax advice. You should consult your own advisers
as to those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an
investment recommendation or offer to provide investment advisory services. Furthermore, this content is not directed at nor
intended for use by any investors or prospective investors, and may not under any circumstances be relied upon when making a
decision to invest in any fund managed by al6z. (An offering to invest in an al6z fund will be made only by the private placement
memorandum, subscription agreement, and other relevant documentation of any such fund and should be read in their entirety.)
Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles
managed by al6z, and there can be no assurance that the investments will be profitable or that other investments made in the
future will have similar characteristics or results. A list of investments made by funds managed by Andreessen Horowitz
(excluding investments for which the issuer has not provided permission for al6z to disclose publicly as well as unannounced
investments in publicly traded digital assets) is available at .Charts and graphs provided within are
for informational purposes solely and should not be relied upon when making any investment decision. Past performance is not
indicative of future results. The content speaks only as of the date indicated. Any projections, estimates, forecasts, targets,
prospects, and/or opinions expressed in these materials are subject to change without notice and may differ or be contrary to
opinions expressed by others. Please see for additional important information.

https://a16z.com/investments/
https://a16z.com/disclosures

WH‘?& ﬁ%maa gﬁﬂwﬁw%ﬁ% 16 \WHY ARE THERE SLHVES IN THE BIBLE
wmmw::mmmm m,% TS 50 EXPENSINE £\ iy’ DD TWING HAVE DIFFERENT FINGERPRINTS 'l...IH‘r'E %ﬂﬁw
puwmm BOOES HURTZ WHY ARE. AMERICANS AFRAID OF DRAGONS HERE A LI

w m mﬁmmgﬁﬂrmw%cﬁmm
WHY IS SEA 5A L ﬁ% ZwWHY'IS HTTPS [ANT
ﬂﬁﬁ%’uﬁ”ﬁm’@%ﬁ MO —' 5 2| UHY ARENT MY 3
WHY IS THERE LADGHING IN TV SHOWS E| ARMS GROWNG 5E
w%I&Lmﬁwﬁéﬁﬂ Mi‘m ™ S ﬁﬁ
lH BRENT THERE Ay COUMTRIES M AHTRECTICN =

O S TERE Ko a S - %
BB Ly ARENT EOONONSTS RIOHE 575520 s s T

[T e s sl e o o o T | R T R T B P

Thank youl

;‘*ﬂﬁ&%ﬁma WHY 15 WOLVERINE. NOT IN THE AVENGERS & WHY 1S THERE. ICE IN SHQICE"Q"(
e ecear S WHY ARE THERE ANTS IN MY LAPTOPS X

THERE. MUSTRCHES WHY 15 EARTH Ti
YA T e B T3 L 6 G AR | MR | e TR o 1 oo £ R T
LY ' HERE S0 0CH RAN N OO o B ke u WHY 16 THERE AN OWL ON THE DOLLAR Eiu.
WHY 15 OHIO WEATHER 50 WEIRD CIY Wi ilA ot bounl D &
WHY ARE THERE MALE AND FEMALE. BIKES HEYYDO D'Hﬂ'&?ﬁﬁsga(PEDPLME
s A LJL ARE THERE TINY SPIDERS IN MY HOUSE ARE S EXPENS
u*"'ﬂ’ﬂ’ﬁ’m e = \WHY DO SPIDERS COME !hEiDE WHY ARE. THERE. HELICOPTERS CRCLING MY HOUSE
mfpﬂf_ THERE | T WHY ARE THERE. HUGE SPIDERS IN My HOUSE WHY ARE THERE. GODS £ WHY PRE MY BOO0ES TCHY

= WiH¥ BEE THERE LOTS OF SPIDERS W HY HOUSE L,HFHEEEIG“EE'JTEE-I_EGW_
™ WHY ARE THERE TWD SPOES M z
SOURRES | UKy ARE THERE SPDERS N MY RIOM 1 [THT e M VB S VILG THERE <l o s &

#2 Simplest Randomness Beacon using VRFs and VDFs

Each node i pre-registers VRF public key: pk;

In each epOCh° Contributes deterministic verifiable randomness

e node isubmits v, = VRF_Eval(sk; epoch_number)
e beacon =VDF_Eval(v,® v,P ... D v,)

VRF = Verifiable Random Function VDF = Verifiable Delay Function
e Setup — (sk, pk) e Setup — (pk)
e Eval(sk, x) — (y, [r]) e Eval(pk, x) — (y, [7])
e Verify(pk, X, y, [r]) — {yes/no} e Verify(pk, X, y, [r]) — {yes/no}
- can’t prove different y, # y, same x - long to Eval, fast to Verify

- yis indistinguishable from random

Some VDFs require a trusted setup

VDFs = Verifiable Delay Functions

VDF = Verifiable Delay Function ® Unbiasable randomness beacons
e Setup — (pk) ® Time-release encryption or time-
e Eval(pk, x) — (y, n) release commitments
e Verify(pk, X, y, ™) — {yes/no} ® Proof-of-storage

Long to Eval, fast to Verify.

Some VDFs require a trusted setup

Dilithium

1A+ Ry

2 (s1,82) + S5 = 8%

2 ti= As) + 82

4 return (pk = (A, t), sk = (A, t,s1,8:))

(=1~ -1

=

Sign{sk, M)

05 m:= 1

06 while 2= 1 do

T ¥ S};, 1

2w = HighBits(Ay, 292)

s c€ B :=H{M || wy)

ZI= ¥+ 08

11 i |2/l 21 — F or |LowBits(Ay — c82, 292)|| 2 52 — d, then z:= L
12 return o = (2, ¢)

s oo o
IS E

Verify(pk, M,o = (s, ¢))
12 wi 1= HighBits(Az — et, 2v1)
14 if return [||2)l. < — 8] and [c = H{M || wi)]

Figure 1: Template for our signature scheme without public key compression.

Key Generation. The key generation algorithm generates a & x £ matrix A each of whose
entries is a polynomial in the ring B, = Z,[X]/{X" 4+ 1). As previously mentioned, we will
always have g = 2%* — 215 + | and n = 256. Afterwards, the algorithm samples random
secret key vectors s; and sy. Each coefficient of these vectors is an element of R, with
small coefficients of size at most 7. Finally, the second part of the public key is computed
as t = As; + 8. All algebraic operations in this scheme are assumed to be over the
polynomial ring R,.

50

aaaaaaaaaa

4: More:;

Threshold sighatures

Threshold Signatures

52

Other options

e Double-sign: generate a post-quantum signature alongside the classical
signature

e Onion-key-generation: generate keys (qpk, gsk) for a stateful hash-
based signature (LMS/XMSS), generate classical key: sk = Hash*(qpk).

58

Categories of quantum breakable signatures

1. The quantum-adversary can fully recover the secret key from on-

chain information
a. ECDSA, BLS, Schnorr
2. The quantum-adversary can forge signatures but can not recover
the secret key from on-chain information
a. ECDSA, BLS, Schnorr with tweaks or EdDSA
3. The quantum adversary can't forge signatures from on-chain

information
a. Only new post-quantum secure signatures

54

Post-quantum signature finalists

pk
Dilithium 3 1.9 KB
Falcon 1024 1.8 KB
Sphincs+ 48 B

192s,f+ SHAKE

BLS
EdDSA
ECDSA
RSA

Sig
3.3 KB

1.3 KB

16 KB
35 KB

keygen (ms)

AVX: 0.07
0.2

AVX: 25
50

500
8.3

sigs (ms)

AVX: 0.06
0.2

AVX: 0.7
10

5,000
250

2.5

Verifies (ms)

AVX: 0.06
0.2

AVX: 0.1
0.1

4
10

assumption

Lattices

Lattices

Hashes

55

More post-quantum crypto-primitives

e Threshold signatures

e Zero-knowledge proofs
o STARKs

56

Leader election approaches: RANDAO

Slot Slot Slot Slot Slot

RAN DAO (Ethereum 2.0 approaCh): " (epoch bhiundaryl N9 Ntz Ntz
randao randao randao randao

reveal

randao
miix

reveal

randao
* miix

reveal reveal

randao
* miix

Leaders of the previous epoch contribute
verifiable deterministic randomness (BLS signing
epoch number) to the next epoch.

Leader schedule gets known 1 epoch in

randao

reveal

randao randao
miix * miix

advance.
Public: a leader learns they are a leader at the same Any valdeorchanges made n o ——{ fancon |
8 until slot after slot N-128, 50 we can | selection
tl me compute the slot N+128 validator .
. set from the (end of) slot N-1
the public learns.
: all nodes are given equal chances to be leaders el e or
(random sampling). T 5

: last leader has only 1 bit of bias by either | _ _

revealing/withholding block R L]
: the leader for the slot is known only 1 | T

epoch in advance. .

validator
set

validator
set -

Leader election approaches: unbiasable and

UNPTredicta g see

Self-
cerifying

Albatross,

HydRand, PVSS

RandHerd

RandRunner,

RANDAO++, VDF

cVDF, Veedo

Dfinity, drand Threshold-
signatures

Public: a leader learns they are a leader at
the same time the public learns.

Fair: all nodes are given equal chances to
be leaders.

Unbiasable: no node can increase its
probability of being selected.
Unpredictable

U

Random lotteries
Randomness API for smart
contracts

Bootstrapping asynchronous
consensus”

Good for leaders that are hard to DDoS within the time it takes them to create and broadcast a proposal (< 10 sec))!

VDF-based leader election: biasable — unbiasable

VDF = Verifiable Delay Function Passing randomness through a VDF
e Setup — (pk) makes it unbiasable!
e Eval(pk, x) — (y, n)
o Verify(pk, x,y,) — {yes/no} R’ is unbiasable as long as

Long to Eval, fast to Verify. Nvios < AypeEval

Some VDFs require a trusted setup
R’ incorporated
into a protoco
Abias AVDF.EvaI P
Time
A party can Randomness R R’ = VDF.Eval(ek, R
pick R € R gets public gets compute

Threshold-Signature-based leader election

sk,
skg ok, ¢
sk °
sk, °
sk,
[]
sk,
Skg sk,

K
sk, (O >

leader

Setup: collectively generate sk (DKG)
o sk can be reconstructed from any %zn

subset of {sk,, sk, ..., sk}

Parties collectively-sign a slot number by

submitting signature shares
0; = Sign(sk;, msg = slot-number)

Full signature o is reconstructed: from % n
subset of {0,, 0,, ..., 0.}

Communication can be pipelined through a leader

Only works with unique signatures e.g. BLS

Private leader election : VRF-based

e Each leader computes

VRF = Verifiable Random Function VRF.Eval(sk, #slot) — (y, 1),
e Setup — (sk, pk) if y <threshold, the leader is
e Eval(sk, x) — (y, m) elected
o Verify(pk, X, y, m) — {yes/no} e The leader creates a block and
y is indistinguishable from random broadcasts it together with

o No DDoS window!
Problem: multiple leaders can get
elected or none!

o Consensus protocol needs to handle
that (e.g. Algorand)

Instantiated from unique signatures
(BLS or RSA).

