
1

Valeria (Lera) Nikolaenko
for the 13th BIU Winter School on

cryptography

Hard Problems in Blockchains

a16z crypto 2

1: Long-Range Attacks on PoS
2: Proposer Election in PoS
3: Post-quantum blockchains

a16z crypto 3

1: Long-Range Attacks on PoS
2: Proposer Election in PoS
3: Post-quantum blockchains

Proof-of-Stake blockchains

G ...

Proof-of-Stake blockchains

G ...

Proof-of-Stake blockchains

G ...

Proof-of-Stake blockchains

G ...

Validators “notarize” blocks

Active validators stay honest
due to incentives

Validator with no incentives can leak old keys

time
validating

validating keys

staked
staking keys

holds assets

no incentives to keep the old

keys safe!

If old validators become corrupt
safety is broken

Corrupt validators may fork history

G

Corrupt validators may fork history

G

Corrupt validators may fork history

G Users can not

differentiate!

unless they’ve been

following all consensus

rounds actively

Low number of keys don’t protect history well

time

Number of

validating keys

The historical state most vulnerable here!

Mitigations for
long-range attacks

1. Checkpointing
2. Key-evolving cryptography
3. Keep everybody online
4. Winkle (user-based consensus)

#1 Checkpointing

● Centralized checkpointing (i.e. hardcode the checkpoints into the
github codebase)

○ Checkpoint = hash of a block (very small)
○ When synching check that the checkpoint matches the hardcoded one

● Checkpoint to a PoW chain

Problem: centralized!

Easier to attack if validators are not rotating their keys

Gregory Neven’s presentation at USENIX’20

www.usenix.org/conference/usenixsecurity20/presentation/drijvers

Time

Attacking 2 at time T4 equivalent to attacking 2 at time T2!

T4T3T2T1

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

Easier to attack if validators are not rotating their keys

2-out-of-10 is not
enough to attack

2-out-of-5 is
enough to attack!

Gregory Neven’s presentation at USENIX’20

www.usenix.org/conference/usenixsecurity20/presentation/drijvers

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

#2 Key-Evolving cryptography

● Rotate validator keys frequently: (pk, sk) → (pk’, sk’)
● Time-evolving secret-key (public key stays the same!) [DGNW20]:

(pk, sk1) → (pk, sk2) → (pk, sk3) → (pk, sk4) → …
● Assume honest validators forget old keys.

Problem: erasing the old secret keys is incentive incompatible!

Does not solve our problem, but good practice anyway!

#3: Keep everybody online
When all the nodes are online and monitoring the blockchain closely,
it is very hard to make them believe a deep fork.

…

Problem is: clients/validators can be sleepy.

#4 Winkle :
make users “vote” inside their transactions on the
current state of the blockchain

● New transaction format:
Tx = [sender, receiver, amount , LAST_BLOCK]σ

● The block is checkpointed when 50% of all coins vote on it.
● Checkpoint can’t be reverted even under Long-Range-Attack.

● To attack the adversary needs to obtain:
validators’ keys AND users’ keys

Winkle: users vote on blocks when transacting

All blockchain users

1M – 1B

Validators

100-1,000

To attack the adversary needs to obtain: validators’ keys AND users’ keys

Consensus by validators:

● < 1/3 byzantine

● complicated (interactive, computation-

intensive,

requires dedicated infrastructure)

● safe while validators’ keys stay

secure

Validator-based

consensus

User-based

consensus

Winkle: second layer of confirmation

Consensus by users:

● simple (NON-INTERACTIVE, not computation-intensive,

no additional infrastructure)

● safe while users’ keys stay secure

● large threshold of users need to be active

Mitigations for
long-range attacks

1. Checkpointing
2. Key-evolving cryptography
3. Keep everybody online
4. Winkle (user-based consensus)

philosophically, a good idea to make all users (not just the validators)
work on maintaining the security of blockchain

a16z crypto 26

1: Long-Range Attacks on PoS
2: Proposer Election in PoS
3: Post-quantum blockchains

Proposer election goals

● A proposer is elected per time-slot to propose a block.
● A proposer gets rewarded for proposing a good block.
● Election properties

○ Uniqueness of elected proposer
○ UnpredictabilityT : T is the time between proposer getting publicly known and

proposer announcing a block
■ T > 0 : “public election”
■ T = 0 : “secret election” - the proposer announces itself when published the

block
■ => fair (each leader is elected with equal probability)

○ Unbiasability (nobody should be able to influence the proposer election in its favor)
= Unpredictability under active attacks

#1 Proposer election : Round-Robin

Round-robin proposer election: proposers are chosen one after the
other in a lexicographical order.

Unique
Predictable = public: the proposer for the slot is known well in advance:

proposers can be DDoSed

Biasable

#2 Proposer election : Randomness Beacon

Randomness beacon: a distributed protocol that outputs (pseudo)-
random values at regular time intervals

Randomness
beacon

Consensus
Proposer
election

Circular
dependency

Circular dependency is broken by
induction:

● fix proposer schedule of the current
epoch,

● build randomness beacon to
randomize proposer schedule of the
next epoch.

Unique; Unbiasable;
Predictable: schedule known 1 epoch in advance

#2 Proposer election : Randomness Beacon

SoK: Decentralized Randomness
Beacon Protocols (2022) by M.
Raikwar and D. Gligoroski

Practical projects:
drand.love
github.com/drand/drand

blog.chain.link/vrf-v2-mainnet-launch

https://arxiv.org/pdf/2205.13333.pdf
https://drand.love/
https://github.com/drand/drand
https://blog.chain.link/vrf-v2-mainnet-launch/

#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pki

During an epoch:

● node i submits vi = VRF_Eval(ski, epoch_number)

At the end of the epoch:

● beacon = VDF_Eval(v1⊕ v2⊕ … ⊕ vn) Contributes deterministic
verifiable randomness:
● can’t compute VRF in two

possible ways
● output is pseudorandom

Long computation (longer than one
epoch), fast to verify.

#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pki

During an epoch:

● node i submits vi = VRF_Eval(ski, epoch_number)

At the end of the epoch:

● beacon = VDF_Eval(v1⊕ v2⊕ … ⊕ vn)

Unique; Unbiasable;
Predictable: schedule of leader is known 1 epoch in advance

#3 Proposer election : SSLE

SSLE: Single Secret Leader Election

1. Each validator publishes a commitment to a secret value.
2. Next, validators take turn shuffling and rerandomizing the list of

commitments.
3. The random beacon is used to do the final open shuffle, and the final list

determines the sequence of proposers for the next epoch.
4. Only the proposer knows its position in the list.

Unique
Unbiasable
Unpredictable Expensive!

● “Single Secret Leader Election” (2020) by

D.Boneh,S.Eskandarian,L.Hanzlik,N.Greco

● Ethereum’s SSLE: Whisk

https://eprint.iacr.org/2020/025.pdf
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763/2

Proposer election approaches

Unique Unbiasable Unpredictable

Proof-of-Work NO NO NO

Proof-of-Stake

Round-robin YES NO NO

Randomness-

beacon

YES YES NO

SSLE YES YES YES

a16z crypto 35

1: Long-Range Attacks on PoS
2: Proposer Election in PoS
3: Post-quantum blockchains

Progress in quantum computing

* 1998 - 3 qubits
* 2000 - 7 qubits
* 2005 - 8 qubits
* 2006 - 12 qubits
* 2011 - 14 qubits
* 2017 - 50 qubits (IBM)
* 2018 - 72 qubits (Google)
* 2019 - 27 qbits IBM Falcon
* 2020 - 65 qbits IBM Hummingbird
* 2021 - 127 qbits IBM Eagle
* 2022 - 433 qbits IBM Osprey
…

● 6,146 logical qubits to break RSA-3072
(Häner-Roetteler-Svore 2017)

● 2,330 logical qubits to break discrete log
over NIST P-256 curve
(Roetteler-Naehrig-Svore-Lauter 2017)

https://www.youtube.com/watch?v=nZu5hutqANk
https://arxiv.org/abs/1611.07995
https://arxiv.org/abs/1706.06752

The power of a quantum adversary on a blockchain
● Quantum adversary can forge currently used digital signatures =

steal funds or fork consensus
○ ECDSA, Schnorr/EdDSA, RSA - breakable by a quantum computer
○ There are secure alternatives

● Solve PoW-puzzles faster: D1/2 instead of D to search D-size space
○ Classical miner one thread: T time to search T space
○ Quantum miner one thread: T time to search T2 space (Grover’s search–1996)
○ Superlinearity problem: quantum miners have more advantage [Park-Spooner-2022]

● Hash functions stay secure
○ Collision: classical algorithm O(2n/2) quantum algorithms O(2n/3) [Brassard-Hoyer-Tapp-

1997]

○ Quantum speed-up is not practical [Bernstein-2009]

○ Wide-believe is that SHA-256 still provides 128-bits collision resistance even
post-quantum

https://eprint.iacr.org/2022/1423
https://dl.acm.org/doi/pdf/10.1145/261342.261346
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf#page=113

NIST post-quantum standardization

● 2016 - NIST announced a competition
● 2022 (summer) - NIST announced finalists
● 2023 - to open drafts for public comments
● 2024 - to have the first PQC standards

Digital Signatures to be standardized: Crystals-Dilithium, Falcon, Sphincs+

Today

● 3 standard signature schemes: ECDSA, RSA and EdDSA
● BLS is widely used but is not standardized

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/csrc/media/Presentations/2022/nist-pqc-looking-into-the-future/images-media/session-1-moody-looking-into-future-pqc2022.pdf

Post-quantum signature finalists

39

pk sig sigs (ms) Verifies (ms) Assumption

Dilithium 3 1.9 KB 3.3 KB AVX: 0.06

0.2

AVX: 0.06

0.2

Lattices

Falcon 1024 1.8 KB 1.3 KB AVX: 0.7

10

AVX: 0.1

0.1

Lattices

Sphincs+
192s,f+ SHAKE

48 B 16 KB

35 KB

5,000

250

4

10

Hashes

BLS 96 B 48 B 0.2 0.9 BDH

EdDSA 32 B 64 B 0.02 0.07 DH

ECDSA 32 B 72 B 0.04 0.07 Ideal model

RSA 348 B 348 B 2.5 0.05 RSA

Compared at level 3 (AES 192)

Stateful (few-times) post-quantum signatures
that are standardized (2020)

Post-quantum signature finalists

40

pk sig

Dilithium 3 1.9 KB 3.3 KB

Falcon 1024 1.8 KB 1.3 KB

Sphincs+
192s,f+ SHAKE

48 B 16 KB

35 KB

BLS 96 B 48 B

EdDSA 32 B 64 B

ECDSA 32 B 72 B

Compared at level 3 (AES 192)

LMS/XMSS 48 B 1-5 KB

Post-quantum signatures
to be standardized by 2024

Our current signatures, quantum-breakable

NIST: new call for digital signatures

41

Ask: non-lattice-based signatures
and/or short signatures

Deadline for submission: June 1, 2023

A happy transition of a blockchain to post-quantum

42

Time

Quantum attacker might exist

Not accepting classical
signatures

Restrict classically-
signed transactions to
key-rotations only

Accepting classical
signatures

What happens to accounts that did not rotate?

Accept
classical
and
quantum
signatures

Good post-quantum signatures available

● EdDSA is good: sk = Hash(seed)

● Bitcoin is good: Address = Hash(pk)

Could tweak keys:
sk = Hash(seed)

Then: prove knowledge of hash-
preimage with a STARK!

Schnorr/EdDSA vs. Dilithium

43

KeyGen():
sk ← random vector
e ← random small vector

pk =
A

sk e+

Sign():
r ← random vector

e ← random small vector

h = Hash(R, tx)
σ = (h, r + h*sk)

KeyGen():
sk ← random integer mod p
pk = G * sk,
// G generates a p-order

group

Sign():
r ← random mod p
R = G * r
h = Hash(R, tx)
σ = (h, r + h*sk)

Dilithium is essentially Schnorr but with matrix A
instead of generator G

R =
A

r e’+

a16z crypto 44

1: Long-Range Attacks on PoS
2: Proposer Election in PoS
3: Post-quantum blockchains
4: More:

Threshold Signatures

Threshold signatures
● In t-out-of-n threshold signature

○ A single public key, the secret key is split between n nodes.
○ Any t nodes can reconstruct the secret key, or sign through a multi-party protocol.

● Important for wallets: split the key between servers
● Blockchains signatures: ECDSA, Schnorr/EdDSA, BLS
● ECDSA is most widely used on blockchains (NIST standard 1994)

○ Hard to thresholdize
○ [CGGMP-2021]: 4 rounds (= 3 offline + 1 online)

● Schnorr/EdDSA (patent expired 2008)
○ Easy to thresholdize
○ FROST [KG-2020]: 2 rounds (= 1 offline + 1 online)
○ Being standardized by IETF

● BLS
○ Trivial to thresholdize: 1 round
○ Being standardized by IETF (expired)

Need good implementations!

https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2020/852.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/

a16z crypto

Disclosures
The views expressed here are those of the individual AH Capital Management, L.L.C. (“a16z”) personnel quoted and are not the

views of a16z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from

portfolio companies of funds managed by a16z. While taken from sources believed to be reliable, a16z has not independently

verified such information and makes no representations about the current or enduring accuracy of the information or its

appropriateness for a given situation. In addition, this content may include third-party advertisements; a16z has not reviewed

such advertisements and does not endorse any advertising content contained therein.This content is provided for informational

purposes only, and should not be relied upon as legal, business, investment, or tax advice. You should consult your own advisers

as to those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an

investment recommendation or offer to provide investment advisory services. Furthermore, this content is not directed at nor

intended for use by any investors or prospective investors, and may not under any circumstances be relied upon when making a

decision to invest in any fund managed by a16z. (An offering to invest in an a16z fund will be made only by the private placement

memorandum, subscription agreement, and other relevant documentation of any such fund and should be read in their entirety.)

Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles

managed by a16z, and there can be no assurance that the investments will be profitable or that other investments made in the

future will have similar characteristics or results. A list of investments made by funds managed by Andreessen Horowitz

(excluding investments for which the issuer has not provided permission for a16z to disclose publicly as well as unannounced

investments in publicly traded digital assets) is available at https://a16z.com/investments/.Charts and graphs provided within are

for informational purposes solely and should not be relied upon when making any investment decision. Past performance is not

indicative of future results. The content speaks only as of the date indicated. Any projections, estimates, forecasts, targets,

prospects, and/or opinions expressed in these materials are subject to change without notice and may differ or be contrary to

opinions expressed by others. Please see https://a16z.com/disclosures for additional important information.

https://a16z.com/investments/
https://a16z.com/disclosures

Thank you!

#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pki

In each epoch:

● node i submits vi = VRF_Eval(ski, epoch_number)
● beacon = VDF_Eval(v1⊕ v2⊕ … ⊕ vn)

VRF = Verifiable Random Function
● Setup → (sk, pk)
● Eval(sk, x) → (y, [𝜋])
● Verify(pk, x, y, [𝜋]) → {yes/no}

- can’t prove different y1 ≠ y2 same x
- y is indistinguishable from random

Instantiated from unique signatures (BLS or RSA).

VDF = Verifiable Delay Function
● Setup → (pk)
● Eval(pk, x) → (y, [𝜋])
● Verify(pk, x, y, [𝜋]) → {yes/no}

- long to Eval, fast to Verify

Some VDFs require a trusted setup

Contributes deterministic verifiable randomness

VDFs = Verifiable Delay Functions

● Unbiasable randomness beacons
● Time-release encryption or time-

release commitments
● Proof-of-storage

VDF = Verifiable Delay Function

● Setup → (pk)

● Eval(pk, x) → (y, 𝜋)

● Verify(pk, x, y, 𝜋) → {yes/no}

Long to Eval, fast to Verify.

Some VDFs require a trusted setup

Dilithium

50

a16z crypto 51

1: Long-Range Attacks on PoS
2: Proposer Election in PoS
3: Post-quantum blockchains
4: More:

Threshold signatures
VDFs

Merkle/Verkle trees

Threshold Signatures

52

Other options

53

● Double-sign: generate a post-quantum signature alongside the classical
signature

● Onion-key-generation: generate keys (qpk, qsk) for a stateful hash-
based signature (LMS/XMSS), generate classical key: sk = Hash*(qpk).

Categories of quantum breakable signatures

54

1. The quantum-adversary can fully recover the secret key from on-
chain information

a. ECDSA, BLS, Schnorr
2. The quantum-adversary can forge signatures but can not recover

the secret key from on-chain information
a. ECDSA, BLS, Schnorr with tweaks or EdDSA

3. The quantum adversary can’t forge signatures from on-chain
information

a. Only new post-quantum secure signatures

Post-quantum signature finalists

55

pk sig keygen (ms) sigs (ms) Verifies (ms) assumption

Dilithium 3 1.9 KB 3.3 KB AVX: 0.07

0.2

AVX: 0.06

0.2

AVX: 0.06

0.2

Lattices

Falcon 1024 1.8 KB 1.3 KB AVX: 25

50

AVX: 0.7

10

AVX: 0.1

0.1

Lattices

Sphincs+
192s,f+ SHAKE

48 B 16 KB

35 KB

500

8.3

5,000

250

4

10

Hashes

BLS 96 B 48 B 0.2 0.9

EdDSA 32 B 64 B 0.003 0.02 0.07

ECDSA 32 B 72 B - 0.04 0.07

RSA 348 B 348 B - 2.5 0.05

Compared at level 3 (AES 192)

More post-quantum crypto-primitives

● Threshold signatures
● Zero-knowledge proofs

○ STARKs

56

Leader election approaches: RANDAO

RANDAO (Ethereum 2.0 approach):
Leaders of the previous epoch contribute

verifiable deterministic randomness (BLS signing
epoch number) to the next epoch.

Leader schedule gets known 1 epoch in
advance.

Public: a leader learns they are a leader at the same
time

the public learns.
Fair: all nodes are given equal chances to be leaders

(random sampling).
Unbiasable: last leader has only 1 bit of bias by either

revealing/withholding block
Unpredictable: the leader for the slot is known only 1

epoch in advance.

https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md#aside-randao-seeds-and-committee-generation

Good for leaders that take longer than an epoch (6.4 min) to DDoS

Leader election approaches: unbiasable and
unpredictable ● Public: a leader learns they are a leader at

the same time the public learns.
● Fair: all nodes are given equal chances to

be leaders.
● Unbiasable: no node can increase its

probability of being selected.
● Unpredictable

Assumption Setup Single

round

Self-

cerifying

Albatross,

HydRand,

RandHerd

PVSS Free No No

RandRunner,

RANDAO++,

cVDF, Veedo

VDF Yes/No Yes Yes

Dfinity, drand Threshold-

signatures
DKG Yes Yes

● Random lotteries
● Randomness API for smart

contracts
● Bootstrapping asynchronous

consensus*

⇒

Good for leaders that are hard to DDoS within the time it takes them to create and broadcast a proposal (< 10 sec))!

VDF-based leader election: biasable → unbiasable

Passing randomness through a VDF

makes it unbiasable!

R’ is unbiasable as long as

Δbias < ΔVDF.Eval

VDF = Verifiable Delay Function

● Setup → (pk)

● Eval(pk, x) → (y, 𝜋)

● Verify(pk, x, y, 𝜋) → {yes/no}

Long to Eval, fast to Verify.

Some VDFs require a trusted setup

Randomness R

gets public

R’ = VDF.Eval(ek, R)

gets computed

R’ incorporated

into a protocol

A party can

pick R ∈ ℝ

Time

Δbias ΔVDF.Eval

Threshold-Signature-based leader election
● Setup: collectively generate sk (DKG)

○ sk can be reconstructed from any ⅔n

subset of {sk1, sk2, …, skn}

● Parties collectively-sign a slot number by

submitting signature shares

σi = Sign(ski, msg = slot-number)

● Full signature σ is reconstructed: from ⅔ n

subset of {σ1, σ2, …, σn}

● Randomness is generated as Hash(σ)

● Communication can be pipelined through a leader

Only works with unique signatures e.g. BLS

sk1

sk2

sk3

sk4

sk6

sk7

sk1

sk2

sk3

sk4

sk6

sk7

leader

Private leader election : VRF-based

VRF = Verifiable Random Function

● Setup → (sk, pk)
● Eval(sk, x) → (y, 𝜋)
● Verify(pk, x, y, 𝜋) → {yes/no}

y is indistinguishable from random

Instantiated from unique signatures
(BLS or RSA).

● Each leader computes
VRF.Eval(sk, #slot) → (y, 𝜋),
if y < threshold, the leader is
elected

● The leader creates a block and
broadcasts it together with 𝜋

○ No DDoS window!
● Problem: multiple leaders can get

elected or none!
○ Consensus protocol needs to handle

that (e.g. Algorand)

