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Proof-of-Stake blockchains

G ...

Validators “notarize” blocks



Active validators stay honest
due to incentives



Validator with no incentives can leak old keys

time
validating

validating keys

staked
staking keys

holds assets

no incentives to keep the old 

keys safe!



If old validators become corrupt
safety is broken



Corrupt validators may fork history
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Corrupt validators may fork history

G Users can not 

differentiate!

unless they’ve been 

following all consensus 

rounds actively



Low number of keys don’t protect history well

time

Number of 

validating keys

The historical state most vulnerable here!



Mitigations for
long-range attacks

1. Checkpointing
2. Key-evolving cryptography
3. Keep everybody online 
4. Winkle (user-based consensus)



#1 Checkpointing

● Centralized checkpointing (i.e. hardcode the checkpoints into the 
github codebase)

○ Checkpoint = hash of a block (very small)
○ When synching check that the checkpoint matches the hardcoded one

● Checkpoint to a PoW chain

Problem:   centralized!



Easier to attack if validators are not rotating their keys

Gregory Neven’s presentation at USENIX’20

www.usenix.org/conference/usenixsecurity20/presentation/drijvers

Time

Attacking 2 at time T4 equivalent to attacking 2 at time T2!

T4T3T2T1

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers


Easier to attack if validators are not rotating their keys

2-out-of-10 is not 
enough to attack

2-out-of-5 is 
enough to attack!

Gregory Neven’s presentation at USENIX’20

www.usenix.org/conference/usenixsecurity20/presentation/drijvers

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers


#2 Key-Evolving cryptography

● Rotate validator keys frequently:    (pk, sk) → (pk’, sk’)
● Time-evolving secret-key (public key stays the same!) [DGNW20]:

(pk, sk1) → (pk, sk2) → (pk, sk3) → (pk, sk4) → …
● Assume honest validators forget old keys.

Problem:   erasing the old secret keys is incentive incompatible!

Does not solve our problem, but good practice anyway!



#3: Keep everybody online
When all the nodes are online and monitoring the blockchain closely, 
it is very hard to make them believe a deep fork.

…

Problem is: clients/validators can be sleepy.



#4 Winkle :
make users “vote” inside their transactions on the
current state of the blockchain



● New transaction format:
Tx = [sender, receiver, amount , LAST_BLOCK]σ

● The block is checkpointed when 50% of all coins vote on it.
● Checkpoint can’t be reverted even under Long-Range-Attack.

● To attack the adversary needs to obtain:
validators’ keys   AND   users’ keys

Winkle: users vote on blocks when transacting



All blockchain users

1M – 1B

Validators

100-1,000

To attack the adversary needs to obtain:  validators’ keys AND  users’ keys



Consensus by validators:

● < 1/3 byzantine

● complicated (interactive, computation-

intensive,

requires dedicated infrastructure)

● safe while validators’ keys stay 

secure

Validator-based

consensus

User-based

consensus

Winkle: second layer of confirmation

Consensus by users:

● simple (NON-INTERACTIVE, not computation-intensive,

no additional infrastructure)

● safe while users’ keys stay secure

● large threshold of users need to be active



Mitigations for
long-range attacks

1. Checkpointing
2. Key-evolving cryptography
3. Keep everybody online 
4. Winkle (user-based consensus)

philosophically, a good idea to make all users (not just the validators)
work on maintaining the security of blockchain
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Proposer election goals

● A proposer is elected per time-slot to propose a block.
● A proposer gets rewarded for proposing a good block.
● Election properties

○ Uniqueness of elected proposer
○ UnpredictabilityT : T is the time between proposer getting publicly known and 

proposer announcing a block
■ T > 0 : “public election”
■ T = 0 : “secret election” - the proposer announces itself when published the 

block
■ => fair (each leader is elected with equal probability)

○ Unbiasability (nobody should be able to influence the proposer election in its favor)
= Unpredictability under active attacks



#1 Proposer election : Round-Robin

Round-robin proposer election: proposers are chosen one after the 
other in a lexicographical order.

Unique
Predictable = public: the proposer for the slot is known well in advance:

proposers can be DDoSed

Biasable



#2 Proposer election : Randomness Beacon

Randomness beacon: a distributed protocol that outputs (pseudo)-
random values at regular time intervals

Randomness
beacon

Consensus
Proposer
election

Circular
dependency

Circular dependency is broken by 
induction:

● fix proposer schedule of the current
epoch,

● build randomness beacon to 
randomize proposer schedule of the 
next epoch.

Unique; Unbiasable;
Predictable: schedule known 1 epoch in advance



#2 Proposer election : Randomness Beacon

SoK: Decentralized Randomness 
Beacon Protocols (2022) by M. 
Raikwar and D. Gligoroski 

Practical projects:
drand.love
github.com/drand/drand

blog.chain.link/vrf-v2-mainnet-launch

https://arxiv.org/pdf/2205.13333.pdf
https://drand.love/
https://github.com/drand/drand
https://blog.chain.link/vrf-v2-mainnet-launch/


#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pki

During an epoch:

● node i submits vi =  VRF_Eval(ski, epoch_number)

At the end of the epoch:

● beacon = VDF_Eval(v1⊕ v2⊕ … ⊕ vn) Contributes deterministic 
verifiable randomness:
● can’t compute VRF in two 

possible ways
● output is pseudorandom

Long computation (longer than one 
epoch), fast to verify.



#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pki

During an epoch:

● node i submits vi =  VRF_Eval(ski, epoch_number)

At the end of the epoch:

● beacon = VDF_Eval(v1⊕ v2⊕ … ⊕ vn)

Unique; Unbiasable;
Predictable: schedule of leader is known 1 epoch in advance



#3 Proposer election : SSLE

SSLE: Single Secret Leader Election

1. Each validator publishes a commitment to a secret value.
2. Next, validators take turn shuffling and rerandomizing the list of 

commitments.
3. The random beacon is used to do the final open shuffle, and the final list 

determines the sequence of proposers for the next epoch.
4. Only the proposer knows its position in the list.

Unique
Unbiasable
Unpredictable                  Expensive!

● “Single Secret Leader Election” (2020) by

D.Boneh,S.Eskandarian,L.Hanzlik,N.Greco

● Ethereum’s SSLE: Whisk

https://eprint.iacr.org/2020/025.pdf
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763/2


Proposer election approaches

Unique Unbiasable Unpredictable

Proof-of-Work NO NO NO

Proof-of-Stake

Round-robin YES NO NO

Randomness-

beacon

YES YES NO

SSLE YES YES YES
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Progress in quantum computing

* 1998 - 3 qubits
* 2000 - 7 qubits
* 2005 - 8 qubits
* 2006 - 12 qubits
* 2011 - 14 qubits
* 2017 - 50 qubits (IBM)
* 2018 - 72 qubits (Google)
* 2019 - 27 qbits IBM Falcon
* 2020 - 65 qbits IBM Hummingbird
* 2021 - 127 qbits IBM Eagle
* 2022 - 433 qbits IBM Osprey
…

● 6,146 logical qubits to break RSA-3072 
(Häner-Roetteler-Svore 2017)

● 2,330 logical qubits to break discrete log 
over NIST P-256 curve
(Roetteler-Naehrig-Svore-Lauter 2017)

https://www.youtube.com/watch?v=nZu5hutqANk
https://arxiv.org/abs/1611.07995
https://arxiv.org/abs/1706.06752


The power of a quantum adversary on a blockchain
● Quantum adversary can forge currently used digital signatures = 

steal funds or fork consensus
○ ECDSA, Schnorr/EdDSA, RSA - breakable by a quantum computer
○ There are secure alternatives

● Solve PoW-puzzles faster: D1/2 instead of D to search D-size space
○ Classical miner one thread: T time to search T space
○ Quantum miner one thread: T time to search T2 space (Grover’s search–1996)
○ Superlinearity problem: quantum miners have more advantage  [Park-Spooner-2022]

● Hash functions stay secure
○ Collision: classical algorithm O(2n/2) quantum algorithms O(2n/3) [Brassard-Hoyer-Tapp-

1997]

○ Quantum speed-up is not practical [Bernstein-2009]

○ Wide-believe is that SHA-256 still provides 128-bits collision resistance even 
post-quantum

https://eprint.iacr.org/2022/1423
https://dl.acm.org/doi/pdf/10.1145/261342.261346
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf#page=113


NIST post-quantum standardization

● 2016 - NIST announced a competition
● 2022 (summer) - NIST announced finalists
● 2023 - to open drafts for public comments
● 2024 - to have the first PQC standards

Digital Signatures to be standardized: Crystals-Dilithium, Falcon, Sphincs+

Today

● 3 standard signature schemes: ECDSA, RSA and EdDSA
● BLS is widely used but is not standardized

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/csrc/media/Presentations/2022/nist-pqc-looking-into-the-future/images-media/session-1-moody-looking-into-future-pqc2022.pdf


Post-quantum signature finalists
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pk sig sigs (ms) Verifies (ms) Assumption

Dilithium 3 1.9 KB 3.3 KB AVX: 0.06

0.2

AVX: 0.06

0.2

Lattices

Falcon 1024 1.8 KB 1.3 KB AVX: 0.7

10

AVX: 0.1

0.1

Lattices

Sphincs+
192s,f+ SHAKE

48 B 16 KB

35 KB

5,000

250

4

10

Hashes

BLS 96 B 48 B 0.2 0.9 BDH

EdDSA 32 B 64 B 0.02 0.07 DH

ECDSA 32 B 72 B 0.04 0.07 Ideal model

RSA 348 B 348 B 2.5 0.05 RSA

Compared at level 3 (AES 192)



Stateful (few-times) post-quantum signatures 
that are standardized (2020)

Post-quantum signature finalists

40

pk sig

Dilithium 3 1.9 KB 3.3 KB

Falcon 1024 1.8 KB 1.3 KB

Sphincs+
192s,f+ SHAKE

48 B 16 KB

35 KB

BLS 96 B 48 B

EdDSA 32 B 64 B

ECDSA 32 B 72 B

Compared at level 3 (AES 192)

LMS/XMSS 48 B 1-5 KB

Post-quantum signatures
to be standardized by 2024

Our current signatures, quantum-breakable



NIST: new call for digital signatures

41

Ask: non-lattice-based signatures 
and/or short signatures

Deadline for submission: June 1, 2023



A happy transition of a blockchain to post-quantum

42

Time

Quantum attacker might exist

Not accepting classical 
signatures

Restrict classically-
signed transactions to 
key-rotations only

Accepting classical
signatures

What happens to accounts that did not rotate?

Accept 
classical 
and
quantum
signatures

Good post-quantum signatures available

● EdDSA is good: sk = Hash(seed)

● Bitcoin is good: Address = Hash(pk)

Could tweak keys:
sk = Hash(seed)

Then: prove knowledge of hash-
preimage with a STARK!



Schnorr/EdDSA                 vs.                     Dilithium

43

KeyGen():
sk ← random vector
e  ← random small vector

pk = 
A

sk e+

Sign():
r ← random vector

e ← random small vector

h = Hash(R, tx)
σ = (h, r + h*sk)

KeyGen():
sk ← random integer mod p
pk = G * sk, 
// G generates a p-order 

group

Sign():
r ← random mod p
R = G * r
h = Hash(R, tx)
σ = (h, r + h*sk)

Dilithium is essentially Schnorr but with matrix A 
instead of generator G

R = 
A

r e’+
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Threshold signatures
● In t-out-of-n threshold signature

○ A single public key, the secret key is split between n nodes.
○ Any t nodes can reconstruct the secret key, or sign through a multi-party protocol.

● Important for wallets:   split the key between servers
● Blockchains signatures: ECDSA, Schnorr/EdDSA, BLS
● ECDSA is most widely used on blockchains (NIST standard 1994)

○ Hard to thresholdize
○ [CGGMP-2021]: 4 rounds (= 3 offline + 1 online)

● Schnorr/EdDSA (patent expired 2008)
○ Easy to thresholdize
○ FROST [KG-2020]: 2 rounds (= 1 offline + 1 online)
○ Being standardized by IETF

● BLS
○ Trivial to thresholdize: 1 round
○ Being standardized by IETF (expired)

Need good implementations!

https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2020/852.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
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Thank you!



#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pki

In each epoch:

● node i submits vi =  VRF_Eval(ski, epoch_number)
● beacon = VDF_Eval(v1⊕ v2⊕ … ⊕ vn)

VRF = Verifiable Random Function
● Setup → (sk, pk)
● Eval(sk, x) → (y, [𝜋])
● Verify(pk, x, y, [𝜋]) → {yes/no}

- can’t prove different y1 ≠ y2 same x
- y is indistinguishable from random

Instantiated from unique signatures (BLS or RSA).

VDF = Verifiable Delay Function
● Setup → (pk)
● Eval(pk, x) → (y, [𝜋])
● Verify(pk, x, y, [𝜋]) → {yes/no}

- long to Eval, fast to Verify

Some VDFs require a trusted setup

Contributes deterministic verifiable randomness



VDFs = Verifiable Delay Functions 

● Unbiasable randomness beacons
● Time-release encryption or time-

release commitments
● Proof-of-storage

VDF = Verifiable Delay Function

● Setup → (pk)

● Eval(pk, x) → (y, 𝜋)

● Verify(pk, x, y, 𝜋) → {yes/no}

Long to Eval, fast to Verify.

Some VDFs require a trusted setup



Dilithium

50
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Threshold signatures
VDFs

Merkle/Verkle trees



Threshold Signatures

52



Other options

53

● Double-sign: generate a post-quantum signature alongside the classical 
signature

● Onion-key-generation: generate keys (qpk, qsk) for a stateful hash-
based signature (LMS/XMSS), generate classical key: sk = Hash*(qpk).



Categories of quantum breakable signatures

54

1. The quantum-adversary can fully recover the secret key from on-
chain information

a. ECDSA, BLS, Schnorr
2. The quantum-adversary can forge signatures but can not recover 

the secret key from on-chain information
a. ECDSA, BLS, Schnorr with tweaks or EdDSA

3. The quantum adversary can’t forge signatures from on-chain 
information

a. Only new post-quantum secure signatures



Post-quantum signature finalists
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pk sig keygen (ms) sigs (ms) Verifies (ms) assumption

Dilithium 3 1.9 KB 3.3 KB AVX: 0.07

0.2

AVX: 0.06

0.2

AVX: 0.06

0.2

Lattices

Falcon 1024 1.8 KB 1.3 KB AVX: 25

50

AVX: 0.7

10

AVX: 0.1

0.1

Lattices

Sphincs+
192s,f+ SHAKE

48 B 16 KB

35 KB

500

8.3

5,000

250

4

10

Hashes

BLS 96 B 48 B 0.2 0.9

EdDSA 32 B 64 B 0.003 0.02 0.07

ECDSA 32 B 72 B - 0.04 0.07

RSA 348 B 348 B - 2.5 0.05

Compared at level 3 (AES 192)



More post-quantum crypto-primitives

● Threshold signatures
● Zero-knowledge proofs

○ STARKs

56



Leader election approaches: RANDAO

RANDAO (Ethereum 2.0 approach):
Leaders of the previous epoch contribute 

verifiable deterministic randomness (BLS signing 
epoch number) to the next epoch.

Leader schedule gets known 1 epoch in 
advance.

Public: a leader learns they are a leader at the same 
time

the public learns.
Fair: all nodes are given equal chances to be leaders

(random sampling).
Unbiasable: last leader has only 1 bit of bias by either

revealing/withholding block
Unpredictable: the leader for the slot is known only 1

epoch in advance.

https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md#aside-randao-seeds-and-committee-generation

Good for leaders that take longer than an epoch (6.4 min) to DDoS



Leader election approaches: unbiasable and 
unpredictable ● Public: a leader learns they are a leader at 

the same time the public learns.
● Fair: all nodes are given equal chances to 

be leaders.
● Unbiasable: no node can increase its 

probability of being selected.
● Unpredictable

Assumption Setup Single

round

Self-

cerifying

Albatross, 

HydRand, 

RandHerd

PVSS Free No No

RandRunner, 

RANDAO++, 

cVDF, Veedo 

VDF Yes/No Yes Yes

Dfinity, drand Threshold-

signatures
DKG Yes Yes

● Random lotteries
● Randomness API for smart 

contracts
● Bootstrapping asynchronous 

consensus*

⇒

Good for leaders that are hard to DDoS within the time it takes them to create and broadcast a proposal (< 10 sec))!



VDF-based leader election: biasable → unbiasable

Passing randomness through a VDF 

makes it unbiasable!

R’ is unbiasable as long as

Δbias <  ΔVDF.Eval

VDF = Verifiable Delay Function

● Setup → (pk)

● Eval(pk, x) → (y, 𝜋)

● Verify(pk, x, y, 𝜋) → {yes/no}

Long to Eval, fast to Verify.

Some VDFs require a trusted setup

Randomness R

gets public

R’ = VDF.Eval(ek, R)

gets computed

R’ incorporated

into a protocol

A party can

pick R ∈ ℝ

Time

Δbias ΔVDF.Eval



Threshold-Signature-based leader election
● Setup: collectively generate sk (DKG)

○ sk can be reconstructed from any ⅔n

subset of {sk1, sk2, …, skn}

● Parties collectively-sign a slot number by

submitting signature shares

σi = Sign(ski, msg = slot-number)

● Full signature σ is reconstructed: from ⅔ n

subset of {σ1, σ2, …, σn}

● Randomness is generated as Hash(σ)

● Communication can be pipelined through a leader

Only works with unique signatures e.g. BLS

sk1

sk2

sk3

sk4

sk6

sk7

sk1

sk2

sk3

sk4

sk6

sk7

leader



Private leader election : VRF-based

VRF = Verifiable Random Function

● Setup → (sk, pk)
● Eval(sk, x) → (y, 𝜋)
● Verify(pk, x, y, 𝜋) → {yes/no}

y is indistinguishable from random

Instantiated from unique signatures 
(BLS or RSA).

● Each leader computes
VRF.Eval(sk, #slot) → (y, 𝜋),
if y < threshold, the leader is 
elected

● The leader creates a block and 
broadcasts it together with 𝜋

○ No DDoS window!
● Problem: multiple leaders can get 

elected or none!
○ Consensus protocol needs to handle 

that (e.g. Algorand)


