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1: Long-Range Attacks on PoS



Proof-of-Stake blockchains
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Proof-of-Stake blockchains




Proof-of-Stake blockchains

Validators “notarize” blocks



Active validators stay h’onest
due to incentives



Validator with no incentives can leak old keys

staked no incentives to keep the old
e . keys safe!
BN
SR | time
validating

holds assets



If old validators become corrupt
safety is broken



Corrupt validators may fork history



Corrupt validators may fork history




Corrupt validators may fork history

4> Users can not
differentiate!




Low number of keys don't protect history well

Number of
validating keys

\ / time

The historical state most vulnerable here!




Mitigations for

long-range attacks

1. Checkpointing

2. Key-evolving cryptography

3. Keep everybody online

4. Winkle (user-based consensus)



#1 Checkpointing

e Centralized checkpointing (i.e. hardcode the checkpoints into the

github codebase)

o Checkpoint = hash of a block (very small)
o  When synching check that the checkpoint matches the hardcoded one

e Checkpointto a PoW chain

Problem: centralized!




Easier to attack if validators are not rotating their keys
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Attacking 2 at time T, equivalent to attacking 2 at time T,!

WWW.Usenix.org/conference/usenixsecurity20/presentation/drijvers



https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

Easier to attack if validators are not rotating their keys
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2-out-of-5 is 2-out-of-10 is not
enough to attack! enough to attack

WWW.Usenix.org/conference/usenixsecurity20/presentation/drijvers



https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

#2 Key-Evolving cryptography

e Rotate validator keys frequently: (pk, sk) — (pk’, sk’)

e Time-evolving secret-key (public key stays the same!) [DGNW20]:
(pk, sk,) — (pk, sk,) — (pk, sk3) — (pk, sk,) — ...

e Assume honest validators forget old keys.

Does not solve our problem, but good practice anyway!

Problem: erasing the old secret keys is incentive incompatible!




#3: Keep everybody online

When all the nodes are online and monitoring the blockchain closely,
it is very hard to make them believe a deep fork.

Casper the Friendly Finality Gadget

Vitalik Buterin and Virgil Griffith
Ethereum Foundation

—

In simple terms, long-range attacks are prevented by a fork choice rule to never revert a finalized block, as well as
an expectation that each client will “log on” and gain a complete up-to-date view of the chain at some regular
frequency (e.g., once per 1-2 months). A “long range revision” fork that finalizes blocks older than that will

Problem is: clients/validators can be sleepy.




#4 Winkle :
make users “vote” inside their transactions on the
current state of the blockchain

Winkle: Foiling Long-Range Attacks in Proof-of-Stake Systems

Sarah Azouvi George Danezis Valeria Nikolaenko
University College London, University College London, Facebook Novi
Protocol Labs Facebook Novi
ABSTRACT Validator key rotations help alleviate the problem, assuming

Winkle protects any validator-based byzantine fault tolerant con-
sensus mechanisms, such as those used in modern Proof-of-Stake
blockchains, against long-range attacks where old validators’ sig-
nature keys get compromised. Winkle is a decentralized secondary
layer of client-based validation, where a client includes a single
additional field into a transaction that they sign: a hash of the previ-
ously sequenced block. The block that gets a threshold of signatures
(confirmations) weighted by clients’ coins is called a “confirmed”
checkpoint. We show that under plausible and flexible security
assumptions about clients the confirmed checkpoints can not be
equivocated. We discuss how client key rotation increases secu-
rity, how to accommodate for coins” minting and how delegation
allows for faster checkpoints. We evaluate checkpoint latency ex-
perimentally using Bitcoin and Ethereum transaction graphs, with
and without delegation of stake.

secure destruction of older keys. However, validators might have
auxiliary incentives to sell their old keys to an adversary, espe-
cially when real-world identities of validators are unknown in a
permissionless system and reputation is not at risk. When dishonest
behaviour of a validator becomes rational, real-world security of
the whole system is at great risk. We notice that corrupting a signif-
icant number of coin holders, even after they have no more stake in
the system, is far more challenging as they are much more numer-
ous than validators (we justify this assumption in Section 4). This
observation brings us to introducing Winkle — a novel mechanism
that leverages votes from clients creating a decentralized secondary
layer of client-based validation to confirm checkpoints (snapshots
of the blockchain) and to prevent long-range attacks on proof-of-
stake protocols. The voting mechanism is very simple: each client
augments their transaction with a single additional field — a hash
of a previously sequenced block. Once this transaction gets signed



Winkle: users vote on blocks when transacting

e New transaction format:
Tx = [sender, receiver, amount, 15
e The block is checkpointed when 50% of all coins vote on it.
e Checkpoint can't be reverted even under Long-Range-Attack.

e To attack the adversary needs to obtain:
validators’ keys AND users' keys



Validators
100-1,000

To attack the adversary needs to obtain: EleEIeIENES AND _



Winkle: second layer of confir

Consensus by users:

User-based
consensus

Consensus by validators:

Validator-based



Mitigations for
long-range attacks

1. Checkpointing
2. Key-evolving cryptography
3. Keep everybody online

4. Winkle (user-based consensus)

philosophically, a good idea to make all users (not just the validators)
work on maintaining the security of blockchain
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2: Proposer Election in PoS



Proposer election goals

e A proposer is elected per time-slot to propose a block.

e A proposer gets rewarded for proposing a good block.
e Election properties
o of elected proposer

0 : T is the time between proposer getting publicly known and
proposer announcing a block

m T>0:"public election”

m T=0:"secretelection” - the proposer announces itself when published the
block

m =>fair (each leader is elected with equal probability)

o (nobody should be able to influence the proposer election in its favor)
= Unpredictability under active attacks



#1 Proposer election : Round-Robin

Round-robin proposer election: proposers are chosen one after the
other in a lexicographical order.

Predictable = public: the proposer for the slot is known well in advance:
proposers can be DDoSed

Biasable



#2 Proposer election : Randomness Beacon

Randomness beacon: a distributed protocol that outputs (pseudo)-
random values at regular time intervals

Randomness is broken by
/ beacon induction:
e fix proposer schedule of the current
Proposer epoch
election '
\ Consensus e Dbuild randomness beacon to
—— randomize proposer schedule of the
next epoch.

Predictable: schedule known 1 epoch in advance



#2 Proposer election : Randomness Beacon
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(2022) by M.
Raikwar and D. Gligoroski

ait)

Practical projects:

Distributed randomness beacon.

y

Chainlink VRF


https://arxiv.org/pdf/2205.13333.pdf
https://drand.love/
https://github.com/drand/drand
https://blog.chain.link/vrf-v2-mainnet-launch/

#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pk

During an epoch:

e nodeisubmitsvy, = VRF_g(ski, epoch_numbe
At the end of the epoch:

_ Contributes deterministic
* beacon = VDF_EvaI(V1GB VoD ... © Vi) verifiable randomness:

e can’t compute VRF in two
possible ways
e outputis pseudorandom

Long computation (longer than one
epoch), fast to verify.



#2 Simplest Randomness Beacon using VRFs and VDFs
Each node i pre-registers VRF public key: pk
During an epoch:

e nodeisubmitsv,= VRF_Eval(sk; epoch_number)

At the end of the epoch:

e beacon =VDF_Eval(v,® v.P ... D v,)

Predictable: schedule of leader is known 1 epoch in advance



#3 Proposer election : SSLE

SSLE: Single Secret Leader Election

1.
2.

Each validator publishes a commitment to a secret value.

Next, validators take turn shuffling and rerandomizing the list of
commitments.

The random beacon is used to do the final open shuffle, and the final list
determines the sequence of proposers for the next epoch.

Only the proposer knows its position in the list.

o ° ” (2020) by
D.Boneh,S.Eskandarian,L.Hanzlik,N.Greco
e FEthereum’s SSLE:


https://eprint.iacr.org/2020/025.pdf
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763/2

Proposer election approaches

Unique Unbiasable Unpredictable

Proof-of-Work

Round-robin

Randomness-

Proof-of-Stake
beacon

SSLE
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3: Post-quantum blockchains



Progress in quantum computing

1998 - 3 qubits

) , e 6,146 logical qubits to break RSA-3072
2000 - 7 qubits )
2005 - 8 qubits o ngical qubits to break discrete log
2006 - 12 qubits NIST P-256 curve
2011 - 14 qubits ( )
2017 - 50 qubits (IBM)

Factoring integers with on a super i processor

Bao Yan,'** Ziqi Tan,* * Shijie Wei,* * Haocong Jiang, Weilong Wang,' Hong Wang,' Lan Luo,' Qianheng Duan,'
Yiting Liu,' Wenhao Shi,' Yangyang Fei,' Xiangdong Meng,' Yu Han,' Zheng Shan,' Jiachen Chen,’ Xuhzo Zhu
Chuanyu Zhang,* Feitong Jin,* Hekang Li.* Chao Song.* Zhen Wang,* | Zhi Ma," ' H. Wang.” and Gui-Lu Long>*® "

\State Key Laboratory of Mathematical Eng

2 O 1 9 State Key Laboratory of Low-Dimensional Quantum Phy Peter Shor
*School of Physics, ZIU-Hangzhou Global Scientific and Tec) ol
and Zhejiang Province Key Laboratory of Quantum @PeterShort

. . .
Beijing Academy of Quantu,

!O 2 O H l I m m I n b I r'd Institute of Information Technology, Infi|  Replying to @wayintothedeep
? Reijing National Research (

and School of Information | There are apparently possible problems with this paper.

72 qubits (Googlg

* ok F o+ ok F o+ ok F ok *

algorithm experimentally by factoring inte; just don't talk about it. Very bad sign.
integer factored on a quantum device. We
a depth of thousands is necessary to challc

o~ ' Frontier Science Center for,
o Shor’s algorithm has seriously challeng, i Gi @ . .
O 1 4 Howover, & break the widely 1ed RSA @ Craig Gidney @CraigGidney - Dec 26, 2022

I3} far beyond current technical capabilities. arxiv.org/abs/2212.12372 sure space not mentioning the

] factorization by combining the classical latt expected number of circuit shots it requires. It's critical to the entire premise of
a rithm (QAOA). The number of qubits requ h h [Bound on thi b ers | i h

of the integer ', making it the most qubit the paper to have a small bound on this number, and as far as | can tell they

o
o~

2:23PM - Dec 27,2022 - 2,981 Views

6 Retweets 1Quote Tweet 25 Likes


https://www.youtube.com/watch?v=nZu5hutqANk
https://arxiv.org/abs/1611.07995
https://arxiv.org/abs/1706.06752

The power of a quantum adversary on a blockchain

Quantum adversary can forge currently used digital signatures =

steal funds or fork consensus

o ECDSA, Schnorr/EdDSA, RSA - breakable by a quantum computer
o There are secure alternatives

Solve PoW-puzzles faster: D'/?2 instead of D to search D-size space
o Classical miner one thread: T time to search T space
o Quantum miner one thread: T time to search T? space (Grover's search-1996)
o Superlinearity problem: quantum miners have more advantage | ]

Hash functions stay secure

o Collision: classical algorithm O(2"2) quantum algorithms O(2"3) |
1
Quantum speed-up is not practical ]

Wide-believe is that SHA-256 still provides 128-bits collision resistance even
post-quantum



https://eprint.iacr.org/2022/1423
https://dl.acm.org/doi/pdf/10.1145/261342.261346
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf#page=113

NIST post-quantum standardization

2016 - NIST announced a

2022 (summer) - NIST

2023 - to open drafts for public comments
2024 - to have the first PQC standards

Digital Signatures to be standardized: Crystals-Dilithium, Falcon, Sphincs+

Today

e 3 standard signature schemes: ECDSA, RSA and EdDSA
e BLS is widely used but is not standardized


https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/csrc/media/Presentations/2022/nist-pqc-looking-into-the-future/images-media/session-1-moody-looking-into-future-pqc2022.pdf

Post-quantum signature finalists

pk
Dilithium 3 1.9 KB
Falcon 1024 1.8 KB
Sphincs+ 48 B

192s,f+ SHAKE

BLS
EdDSA
ECDSA

RSA

Sig
3.3 KB

1.3 KB

16 KB
35 KB

sigs (ms)

AVX: 0.06
0.2

AVX: 0.7
10

5,000
250

2.5

Verifies (ms) = Assumption

AVX: 0.06
0.2

AVX: 0.1
0.1

4
10

Lattices

Lattices

Hashes

59



Post-quantum signature finalists

Dilithium 3

Falcon 1024

Sphincs+
192s,f+ SHAKE

LMS/XMSS
BLS

EJDSA
ECDSA

pk
1.9 KB

1.8 KB

48 B

48 B

sig
3.3 KB

1.3 KB

16 KB
35 KB

1-5 KB

\

> Post-quantum signatures
to be standardized by 2024

J
Stateful (few-times) post-quantum signatures

that are standardized (2020)

Our current signatures, quantum-breakable

40



NIST: new call for digital signatures

COMPUTER SECURITY
RESOURCE CENTER
CSRC

Request for Additional Digital Signature
Schemes for the Post-Quantum
Cryptography Standardization Process
September 06, 2022

Ask: non-lattice-based signatures
and/or short signatures

Deadline for submission: June 1, 2023

41



A happy transition of a blockchain to post-quantum

Could tweak keys: Quantum attacker might exist
sk = Hash(seed) : >

»

Then: prove knowledge of hash- . Good post-quantum signatures available
preimage with a STARK! i
| |
| I
Accepting classical - Accept Not accepting classical Time
signatures classical signatures
and Restrict classically-

quantum  signed transactions What happens to accounts that did not rotate?

signatures key-rotations only e EdJDSA is good: sk = Hash(seed)
e Bitcoin is good: Address = Hash(pk)

42



Schnorr/EdDSA VS.

KeyGen():
sk < random integer mod p
pk =G * sk,
// G generates a p-order
group
Sign():

r — random mod p
R=G*r

h = Hash(R, tx)

o = (h, r + h*sk)

Dilithium is essentially Schnorr but with matrix A
instead of generator G

KeyGen():

Dilithium

sk «— random vector
e «— random small vector

pk = sk +

r — random vector

e «— random small vector

h = Hash(R, tx)
o = (h, r + h*sk)

e

43
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4: More:
Threshold Signatures



Threshold signatures

In t-out-of-n threshold signature

o Asingle public key, the secret key is split between n nodes.
o Anyt nodes can reconstruct the secret key, or sign through a multi-party protocol.

Important for wallets: split the key between servers
Blockchains signatures: ECDSA, Schnorr/EdDSA, BLS
ECDSA is most widely used on blockchains (NIST standard 1994)

o Hard to thresholdize

. . !
o [ ]: 4 rounds (= 3 offline + 1 online) Need good implementations!

Schnorr/EdDSA (patent expired 2008)

o Easy to thresholdize

o FROST[ ]: 2 rounds (= 1 offline + 1 online)
o Being
BLS

o Trivial to thresholdize: 1 round
o Being (expired)


https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2020/852.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
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#2 Simplest Randomness Beacon using VRFs and VDFs

Each node i pre-registers VRF public key: pk;

In each epOCh° Contributes deterministic verifiable randomness

e node isubmits v, = VRF_Eval(sk; epoch_number)
e beacon =VDF_Eval(v,® v,P ... D v,)

VRF = Verifiable Random Function VDF = Verifiable Delay Function
e Setup — (sk, pk) e Setup — (pk)
e Eval(sk, x) — (y, [r]) e Eval(pk, x) — (y, [7])
e Verify(pk, X, y, [r]) — {yes/no} e Verify(pk, X, y, [r]) — {yes/no}
- can’t prove different y, # y, same x - long to Eval, fast to Verify

- yis indistinguishable from random

Some VDFs require a trusted setup



VDFs = Verifiable Delay Functions

VDF = Verifiable Delay Function ® Unbiasable randomness beacons
e Setup — (pk) ® Time-release encryption or time-
e Eval(pk, x) — (y, n) release commitments
e Verify(pk, X, y, ™) — {yes/no} ® Proof-of-storage

Long to Eval, fast to Verify.

Some VDFs require a trusted setup



Dilithium

1A+ Ry

2 (s1,82) + S5 = 8%

2 ti= As) + 82

4 return (pk = (A, t), sk = (A, t,s1,8:))

(=1~ -1

=

Sign{sk, M)

05 m:= 1

06 while 2= 1 do

T ¥ S};, 1

2w = HighBits( Ay, 292)

s c€ B :=H{M || wy)

ZI= ¥+ 08

11 i |2/l 21 — F or |LowBits(Ay — c82, 292)|| 2 52 — d, then z:= L
12 return o = (2, ¢)

s oo o
IS E

Verify(pk, M,o = (s, ¢))
12 wi 1= HighBits(Az — et, 2v1)
14 if return [||2)l. < — 8] and [c = H{M || wi)]

Figure 1: Template for our signature scheme without public key compression.

Key Generation. The key generation algorithm generates a & x £ matrix A each of whose
entries is a polynomial in the ring B, = Z,[X]/{X" 4+ 1). As previously mentioned, we will
always have g = 2%* — 215 + | and n = 256. Afterwards, the algorithm samples random
secret key vectors s; and sy. Each coefficient of these vectors is an element of R, with
small coefficients of size at most 7. Finally, the second part of the public key is computed
as t = As; + 8. All algebraic operations in this scheme are assumed to be over the
polynomial ring R,.
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4: More:;

Threshold sighatures



Threshold Signatures

52



Other options

e Double-sign: generate a post-quantum signature alongside the classical
signature

e Onion-key-generation: generate keys (qpk, gsk) for a stateful hash-
based signature (LMS/XMSS), generate classical key: sk = Hash*(qpk).

58



Categories of quantum breakable signatures

1. The quantum-adversary can fully recover the secret key from on-

chain information
a. ECDSA, BLS, Schnorr
2. The quantum-adversary can forge signatures but can not recover
the secret key from on-chain information
a. ECDSA, BLS, Schnorr with tweaks or EdDSA
3. The quantum adversary can't forge signatures from on-chain

information
a. Only new post-quantum secure signatures

54



Post-quantum signature finalists

pk
Dilithium 3 1.9 KB
Falcon 1024 1.8 KB
Sphincs+ 48 B

192s,f+ SHAKE

BLS
EdDSA
ECDSA
RSA

Sig
3.3 KB

1.3 KB

16 KB
35 KB

keygen (ms)

AVX: 0.07
0.2

AVX: 25
50

500
8.3

sigs (ms)

AVX: 0.06
0.2

AVX: 0.7
10

5,000
250

2.5

Verifies (ms)

AVX: 0.06
0.2

AVX: 0.1
0.1

4
10

assumption

Lattices

Lattices

Hashes
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More post-quantum crypto-primitives

e Threshold signatures

e Zero-knowledge proofs
o STARKs

56



Leader election approaches: RANDAO

Slot Slot Slot Slot Slot

RAN DAO (Ethereum 2.0 approaCh): " (epoch bhiundaryl N9 Ntz Ntz
randao randao randao randao

reveal

randao
miix

reveal

randao
* miix

reveal reveal

randao
* miix

Leaders of the previous epoch contribute
verifiable deterministic randomness (BLS signing
epoch number) to the next epoch.

Leader schedule gets known 1 epoch in

randao

reveal

randao randao
miix * miix

advance.
Public: a leader learns they are a leader at the same Any valdeorchanges made n o ——{ fancon |
8 until slot after slot N-128, 50 we can | selection
tl me compute the slot N+128 validator .
. set from the (end of) slot N-1
the public learns.
: all nodes are given equal chances to be leaders el e or
(random sampling). T 5

: last leader has only 1 bit of bias by either | _ _

revealing/withholding block R L ]
: the leader for the slot is known only 1 | T

epoch in advance. .

validator
set

validator
set -




Leader election approaches: unbiasable and

UNPTredicta g see

Self-
cerifying

Albatross,

HydRand, PVSS

RandHerd

RandRunner,

RANDAO++, VDF

cVDF, Veedo

Dfinity, drand Threshold-
signatures

Public: a leader learns they are a leader at
the same time the public learns.

Fair: all nodes are given equal chances to
be leaders.

Unbiasable: no node can increase its
probability of being selected.
Unpredictable

U

Random lotteries
Randomness API for smart
contracts

Bootstrapping asynchronous
consensus”

Good for leaders that are hard to DDoS within the time it takes them to create and broadcast a proposal (< 10 sec))!




VDF-based leader election: biasable — unbiasable

VDF = Verifiable Delay Function Passing randomness through a VDF
e Setup — (pk) makes it unbiasable!
e Eval(pk, x) — (y, n)
o Verify(pk, x,y, ) — {yes/no} R’ is unbiasable as long as

Long to Eval, fast to Verify. Nvios < AypeEval

Some VDFs require a trusted setup
R’ incorporated
into a protoco
Abias AVDF.EvaI P
Time
A party can Randomness R R’ = VDF.Eval(ek, R
pick R € R gets public gets compute




Threshold-Signature-based leader election

sk,
skg ok, ¢
sk °
sk, °
sk,
[ ]
sk,
Skg sk,

K
sk, (O >

leader

Setup: collectively generate sk (DKG)
o sk can be reconstructed from any %zn

subset of {sk,, sk, ..., sk}

Parties collectively-sign a slot number by

submitting signature shares
0; = Sign(sk;, msg = slot-number)

Full signature o is reconstructed: from % n
subset of {0,, 0,, ..., 0.}

Communication can be pipelined through a leader

Only works with unique signatures e.g. BLS



Private leader election : VRF-based

e Each leader computes

VRF = Verifiable Random Function VRF.Eval(sk, #slot) — (y, 1),
e Setup — (sk, pk) if y <threshold, the leader is
e Eval(sk, x) — (y, m) elected
o Verify(pk, X, y, m) — {yes/no} e The leader creates a block and
y is indistinguishable from random broadcasts it together with

o No DDoS window!
Problem: multiple leaders can get
elected or none!

o Consensus protocol needs to handle
that (e.g. Algorand)

Instantiated from unique signatures
(BLS or RSA).



