Data Dispersal,
Data Retrieval and
Data Availability Sampling

Valeria Nikolaenko dléZ
for the 13th BIU Winter School on cryptography Crypto

aléz crypto

How nodes can reliably store data without replicating it?

Minimize: communication and storage costs.
Maximize: the number of byzantine nodes that can be safely handled.
Naive: replicate the file, but we will do much better!

aaaaaaaaaa

Practical motivation for
distributed storage

aléz crypto

Why blockchains struggle to scale?

e Bitcoin:

o 7 transactions / second

o 1 MB block per 10 minutes
e FEthereum:

o 15 transactions / second

o 80 KB block per 12 seconds (~= 4 MB per 10 minutes)
e Visa

o 24,000 transactions / second

. because everybody is doing everything!

= |

aléz crypto

Blockchains were designed for catastrophic scenarios

]

AN

e Initially thinking: blockchain should survive all except one crash-failing,
o therefore: full replication.

e Today thinking: blockchain should survive < 33.3% byzantine faults,
o therefore: instead of full-replication - 66.6%-replication (any 66.6% of nodes
should be able to recover the blockchain instead of any single node).

aléz crypto

Modularizing the blockchain

First break the blockchain into subcomponents.
Optimize each individual component.

Each node is replicating the work of other nodes:
1. Stores transactions «— Data-availability solutions to store

2. Executes transactions «— Roll-ups to execute

aaaaaaaaaa

Users are submitting transactions

aaaaaaaaaa

aaaaaaaaaa

Semantically users are transacting with each otr

Tle

-

9\0

KEQ

o
D
g
.
<

aaaaaaaaaa

A rollup subsumes users transactions

ORT

50
i 99

e X S X v [BI=0

aaaaaaaaaa

SNARK or fraud proofs alleviate trust

Proves it knows
a valid

right

resulting in

a left

-6
5y Q-

¢t 000D

aléz crypto

SNARK or fraud proofs alleviate trust

Rollup is a smart-contract and a Proves it knows

service. Q a valid
Rollup CAN'T steal funds. :
Rollup CAN: rlght))
e Censor resulting in
o Mitigation: allow clients
to go on-chain but a left
higher fees

e Godown

o Mitigation: anybody
can restore the state of
the roll-up (all rollup
transactions are
available) and transact
out of the rollup
on-chain

~N

)

w
&
-
4
¢
Ap

12

Rollups will scale
Ethereum
short/mid-term

Rollups have 2-30x
lower gas costs

Name
Metis Network &
4~ Loopring
4+ ZKSync
72 Arbitrum One
©® Boba Network
@ Optimism
{0 Polygon Hermez
Aztec Network

4 Ethereum

Send ETH

$0.01

$0.03

$0.04

$0.05

$0.13

$0.16

$0.25

$0.46

$0.92

Swap tokens

$0.06

$0.39 Vv

$0.11 v

$0.15 Vv

$0.29 Vv

$0.23 Vv

- M

WV

$4.59 v

https://l2fees.info/

aaaaaaaaaa

Some users are submitting transactions on chain, »

some through a rollup 8 ﬁ
N

»
i

(‘, apb

aléz cry, pto

Rollups scale the number of transactions

~N

>

~
vy,
<.)20,

% %

H*I*I*I*I*ll *

Fewer transactions hit 0
the chain, yet there are
more transactions in

total

-3 61)

aléz crypto

Roll-ups

Rollup is a smart contract that accepts

tx = (on-chain-tx-list, c, [x])
1. on-chain-tx-list = [tx,, tx,, .., tX]
2. ¢ =commitment(off-chain-tx-list)
3. [m]: = - zk-proof, or @ - allow clients to
submit fraud-proofs

16

Rollup’s state: Merkle root of

rollup’s accounts state

aléz crypto 17

The blockchain needs to store off-chain transactions
without executing

e No execution is done over off-chain-tx-list

H “ e Off-chain-tx-list needs to simply be stored

[off-chain-tx-list]

tx

4. off-chain-tx-list = [tX,) £, v TX]

New: special type of storage that is guaranteed to not be required for execution!
=> does not have to be replicated

Roll-ups pay a lot for the data

Avg Transaction Fee Share by Contributor Optimism - L1 Batch Submission Fees @ @optimismfnd To make roIIups cheaper,

need to make it cheaper to
store data on Ethereum.

L1 Data Fees ®
L2 Execution Fees ©

50%

0
Jul 27th Aug 11th Aug 26th Sep 10th Sep 25th Oct 10th

Day @

Share of Total Fees on L2

https://dune.com/optimismfnd/optimism-11-batch-submission-fees-security-costs, Oct'22

https://dune.com/optimismfnd/optimism-l1-batch-submission-fees-security-costs

aaaaaaaaaa

Theoretical solutions to
distributed storage

aléz crypto =20

IDA - Information Dispersal Algorithm

The dispersal protocol: a client sends a file to an IDA system, the file is redundantly encoded and
split between nodes.

The retrieval protocol: a client reconstructs the file F by interacting with the servers.

aléz crypto 221

IDA - Information Dispersal Algorithm

The dispersal protocol: a client sends a file to an IDA system, the file is redundantly encoded and
split between nodes.

The retrieval protocol: a client reconstructs the file F by interacting with the servers.

Properties (assuming >= 2f+1 honest servers, n = 3f+1):
e Termination: If the disperser is honest - all honest servers complete successfully.
e Agreement: Either all honest servers eventually complete successfully, or none (regardless of
the honesty of the disperser).

e Iff+1 honest servers completed the dispersal:
o Availability: The client will eventually reconstruct some F.
o Correctness: all correct clients will reconstruct the same F, if an honest client dispersed F,

then F==F.

aléz crypto 22

IDA - Information Dispersal Algorithm

M. Rabin (1989): “Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance”

e Coined the term IDA (Information Dispersal Algorithm)
e Idea: erasure code the file and send pieces of this encoded file to different nodes

aléz crypto

Erasure codes

File: x = (x,, X,, ..., X_) where x. is an integer (Zp)
G s Zp”xm: n>m, any m rows of G make up a full-rank matrix
Erasure coding: y := G-X
Reconstruction: fory = (y., ¥, ..., Y,),
X can be reconstructed from any m elements ofy: x=G"-y’

Erasure coding: Reconstruction:
n=5 m=3
X | X X7

223

aléz crypto

Erasure codes

X = (X,, X5 ..., X) Where x. is an integer (Zp)
G s Zp”xm: n>m, any m rows of G make up a full-rank matrix
Erasure coding: y := G-X
Reconstruction: fory = (y., ¥, ..., Y,),
X can be reconstructed from any m elements ofy: x=G"-y’

Erasure coding: Reconstruction:
n=5 m=3
:,‘:)(:,‘: ?> _
— G — —> - y

mps
nnm

aléz crypto

Erasure codes

X = (X,, X5 ..., X) Where x. is an integer (Zp)
G s Zp”xm: n>m, any m rows of G make up a full-rank matrix
Erasure coding: y := G-X
Reconstruction: fory = (y., ¥, ..., Y,),
X can be reconstructed from any m elements ofy: x=G"-y’

Erasure coding: Reconstruction:
n=5 m=3
EREEIE |G| % ?)
G - o y

#25

aléz crypto

Erasure codes

X = (X,, X5 ..., X) Where x. is an integer (Zp)
G s Zp”xm: n>m, any m rows of G make up a full-rank matrix
Erasure coding: y := G-X
Reconstruction: fory = (y., ¥, ..., Y,),
X can be reconstructed from any m elements ofy: x=G"-y’

Erasure coding: Reconstruction:
n=5 m=3
. (T T = [7]
— G — —> y - y’

aléz crypto

Erasure codes

X = (X,, X5 ..., X) Where x. is an integer (Zp)
G s Zp”xm: n>m, any m rows of G make up a full-rank matrix
Erasure coding: y := G-X
Reconstruction: fory = (y., ¥, ..., Y,),
X can be reconstructed from any m elements ofy: x=G"-y’

Erasure coding: Reconstruction:
n=5 m=3
[
I G’ — I
% | x > S) y

aléz crypto

Erasure codes

X = (X,, X5 ..., X) Where x. is an integer (Zp)
G s Zp”xm: n>m, any m rows of G make up a full-rank matrix
Erasure coding: y := G-X
Reconstruction: fory = (y., ¥, ..., Y,),
X can be reconstructed from any m elements ofy: x=G"-y’

Erasure coding: Reconstruction:
n=5 m=3
I I1
= | G'-] ’
% [x X Ry

aléz crypto

How to pick matrix G ?

e Any m rows of G should constitute an invertible matrix.
e Random G would work, but expensive to invert.
e Good choice: G - Vandermonde matrix => Reed-Solomon erasure code

<29

aléz crypto “30

How to pick matrix G ?

Erasure coding: polynomial evaluation Reconstruction:
n=5m=3 polynomial interpolation
10 117 | 12 a, Y,
f(x) = a, + a,x + a,x*
20 | 21| 22 a, Y, y, = f(1)
b 4 —> y2 — f‘(z)
P |3 [|a Yy | Y, =f(3)
y,=f(4) =a,+a,4+a,4
40 | 41 | 42 Y, Y. =f(5)
50 | 5! | 52 Y, O(n log(n))

- Vandermonde matrix

aléz crypto

Erasure codes for large files

File: x = (x,, X,, ..., X_) where x. is a row-vector of elements in Zpk
row x. is called a “fragment”

Erasure coding:

n=5 m=3

31

aléz crypto

IDA from erasure coding (Rabin’'89)
Sand =

L1 <
F=G" -y
Y— — F
F
Y
Y=G-F Only tolerates 50% crash-faults!

3xk 5x3 5xk
FEZp ,GEZp ,YEZp

Any 3 rows of G give an invertible matrix G’ € Zp3X3

232

6z crypto

Protect IDA from malicious disperser using
homomorphic vector commitments

e Forvectorsv,,v, € Z:
Commit(v,) + 8ommit(v2) == Commit(v, + v,)
e For matrix M: Commit(M) - row-wise commitment

Commit(M) = Commit(M)

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

aléz crypto

34

IDA from erasure coding + homomorphic commitments

==l

G'F->Y
G'H—-C

NN

[[E [T

==l

==l

-
@O
F=G -y
Y— — —F
Retriever (Bob):

e Waits to receive 50% of replies with
consistent H.

e Filters outY, that do not match H.

e Applies erasure-coding to
reconstruct F.

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

aléz crypto

35

Other commitments in IDA - related work

Paper Name Commitment
[] IDA N/A

[] AVID Hash

[] AVID-FP Homomorphic

fingerprinting from
universal hashing

[AVID-M / Merkle hashing
] DispersedLedger
[] Semi-AVID-PR Homomorphic

commitments

Notes
Only tolerates crash faults

Replicate file on dispersal,
encode for storage

Slightly worse
communication then with
commitments

Reconstructing client has to
check for inconsistencies

Without agreement, gives
certs-of-storage.

https://dl.acm.org/doi/pdf/10.1145/62044.62050
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=60e8526207b25e6d92bc731577653c28ab8f013d
https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://www.usenix.org/system/files/nsdi22spring_prepub_yang.pdf
https://www.usenix.org/system/files/nsdi22spring_prepub_yang.pdf
https://arxiv.org/pdf/2111.12323.pdf

aléz crypto “36

To charge users for storage - IDA with agreement

e In order for users to pay the servers for data-storage, we add agreement to turn this into a
blockchain!

e Almost the same problem as state-machine replication (SMR), except with a reliable information
dispersal (3 rounds, O(n?)):
o Correctness: if sender is honest and sent H, all honest nodes output H
o Agreement: either all honest nodes output the same H or none of them outputs
anything.
o Availability: if an honest node output H, at least 1/3 honest nodes are storing correct
fragments.

aaaaaaaaaa

-
W

aaaaaaaaaa

aaaaaaaaaa

aléz crypto “40

Reliable broadcast for data-dispersion

H: commitment
Y. data-fragment

Hy

“echo” “ready” “‘commit”

Commit guarantees that = f+1
honest nodes are storing correct
fragments Y, with consistent H.

- A A “proof” of
A Upon receiving 2f+1 storage
Each node checks that Y, echo or (f+1) ready with ypon receiving,
matches H, matching H send commit (honest nodes will

if so, send ["echo”, H] [“ready”, H] eventually also commit)

aaaaaaaaaa

Commitments to data are
ordered and “written” on-chain

The actual data is dispersed
among the nodes

ojelele

aléz crypto

Add-ons and Data-Availability Sampling

e Add-ons:
o Setup incentives for nodes to continue storing the data [
o Continuously generate proofs of storage
o Add proofs of space / replication
o Data-availability sampling

“42

https://arxiv.org/pdf/2208.02999.pdf

aaaaaaaaaa

Data-Availability Sampling (DAS)

aléz crypto “44

What is Data-Availability Sampling?

e Data-availability sampling
o Allows a client to request random fragments from nodes to probabilistically
check whether the data is available

: =N Y, | Data is unavailable iff > %5n of
For n nodes, W-here nis large: ™ fragments are absent.
e H:commitment to the data =g (H
o Y:f t of the dat e N
p Irgiginnisinle @Irinis! ezt [Sampling client can request a fragment

1stored by i-th SRS = H| Y. from a random server #i, if Y, comes

* [fragments 5 e] back and it is correct, the probability
o7 (EERISIIEERN G eElE = A Y | the data is unavailable is Y
behind H - 4 3

il
T |

aléz crypto 45

What is Data-Availability Sampling?

e Data-availability sampling
o Allows a client to request random fragments from nodes to probabilistically
check whether the data is available

=m H
: =N Y, | Data is unavailable iff > %5n of
For n nodes, W-here nis large: ™ fragments are absent.
e H:commitment to the data =g (H
o Y:f t of the dat e N
p Irgiginnisinle @Irinis! ezt [Sampling client can request a fragment
1stored by i-th SRS = H| Y. | from a random server #i, if Y, comes
* [fragments 5 e] back and it is correct, the probability
orF EEONETVETDN Of St =21 v | the data is unavailableis (1,12
behind H =18 4 (V3)
i e ——— ¥
%5 E | Y’% |
E: | YR | | YR |

aléz crypto “46

What is Data-Availability Sampling?

e Data-availability sampling
o Allows a client to request random fragments from nodes to probabilistically
check whether the data is available

: =N Y, | Data is unavailable iff > %4n of
For n nodes, W-here nis large: ™ fragments are absent.
e H: commitment to the data c=g (H
o Y:f t of the dat e N
p Irgiginnisinle @Irinis! ezt [Sampling client can request a fragment

1stored by i-th SRS = H| Y. | from a random server #i, if Y, comes

* [fragments 5 e] back and it is correct, the probability
orF EEONETVETDN Of St = A = | the data is unavailable is 15T
behind H ' 4 (15)

&8 H @
=N Y, |
| Y, |

8| | e | | Y, | T samples

il
T |

| Y. |

aléz crypto

What Data-Availability Sampling is good for?

e Make such blockchain verifiable for light clients (additional assurance)
e Allows to build a longest-chain-style (with unknown set of nodes) blockchain instead of BFT
o Achieve agreement on data-availability through data-availability sampling
e Original design and motivation: “ ¥
[Al-Bassam-Sonnino-Buterin-2019]
e More efficient techniques: (Devcon, Bogota, Oct 2022)

47

https://arxiv.org/pdf/1809.09044.pdf
https://www.youtube.com/live/e67G7ej_x5k?feature=share&t=1605

Ethereum with IDA

Ethereum Protodanksharding
today

EIP-4844 Danksharding

>> 1 MB >>
blocks

Data dispersal

8 KB/s 2,500 KB/s

Full replication
++ 100-200 GB per validator

Additional data:
e Expires (1-2 months)
Not accessible to execution
Only Commitment(data) is accessible to execution
Main users: roll-ups
“Blob” data: ~ 1 gas / byte
Compared to call-data: 16 gas / byte

https://etherscan.io/chart/blocksize
https://etherscan.io/chartsync/chaindefault

https://etherscan.io/chart/blocksize
https://etherscan.io/chartsync/chaindefault

aléz crypto

Disclosures

The views expressed here are those of the individual AH Capital Management, L.L.C. (“a16z”) personnel quoted and are not the
views of a16z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from
portfolio companies of funds managed by a16z. While taken from sources believed to be reliable, a16z has not independently
verified such information and makes no representations about the current or enduring accuracy of the information or its
appropriateness for a given situation. In addition, this content may include third-party advertisements; a16z has not reviewed such
advertisements and does not endorse any advertising content contained therein.This content is provided for informational
purposes only, and should not be relied upon as legal, business, investment, or tax advice. You should consult your own advisers
as to those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an
investment recommendation or offer to provide investment advisory services. Furthermore, this content is not directed at nor
intended for use by any investors or prospective investors, and may not under any circumstances be relied upon when making a
decision to invest in any fund managed by a16z. (An offering to invest in an a16z fund will be made only by the private placement
memorandum, subscription agreement, and other relevant documentation of any such fund and should be read in their entirety.)
Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles
managed by a16z, and there can be no assurance that the investments will be profitable or that other investments made in the
future will have similar characteristics or results. A list of investments made by funds managed by Andreessen Horowitz (excluding
investments for which the issuer has not provided permission for a16z to disclose publicly as well as unannounced investments in
publicly traded digital assets) is available at .Charts and graphs provided within are for informational
purposes solely and should not be relied upon when making any investment decision. Past performance is not indicative of future
results. The content speaks only as of the date indicated. Any projections, estimates, forecasts, targets, prospects, and/or
opinions expressed in these materials are subject to change without notice and may differ or be contrary to opinions expressed by
others. Please see for additional important information.

https://a16z.com/investments/
https://a16z.com/disclosures

Questions?

aléz cry, pto

Linear code: #errors = #erasures / 2

X
y : :
L AN
- \/ -
t
|X| =m w Corrects t errors
ly| = m+ 2t N

Corrects 2t erasures

No matter where the errors or erasures are in y!

aléz crypto 252

IDA from erasure codmg (Rabin’'89)

—
—

e Works with byzantine faults (33%)!

e Does not protect against
malicious disperser.

e Only works in synchronous
networks.

3xk 5x3 5xk
FEZp ,GEZp ,YEZp

Any 3 rows of G give an invertible matrix G’ € ZpBXB

aléz crypto 38

IDA from erasure coding + homomorphic commitments

| -
o i <
N F=G'-Y
H g
/: Y’ — F
F H
| K yv— — L[=
- cert: a list of signatures on H
G'F->Y \H
GeH > C \ e EXPENSIVE!

er retrieving client will
assume the same H
e Reconstruct from those Y that match H

==l

F e Zp3Xk, G e ZPSX3,Y = Zprk’ He G3, Ce G5

Any 3 rows of G give an invertible matrix G’ € Zp3X3

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

aléz crypto “54

Protect IDA from malicious disperser using

homomorphic commitments

Idea [, I

commit to each row of F using a homomorphic vector commitment scheme

e Homomorphic vector commitment scheme
o Commit(pp, v) —» ¢ // takes avectorv € Z X, outputs c € G, non-randomized

o Verify(pp, v, ¢) — 0/1 // recommits to check that it gets c

o Binding: can't find two different vectors that commit to the same value
m Commit(pp,v,) —c AND Commit(pp,Vv,) —Cc => v, ==V,

o Homomorphic:
m Commit(pp, v,) + Commit(pp, v,) == Commit(pp, v, + V,)
| Commit(pp, F) = Commit(pp, F)

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal
https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

aléz crypto 5

Protect IDA from malicious disperser using

homomorphic commitments

o Idea] , ,]:
commit to each row of F using a homomorphic vector commitment scheme
e Homomorphic vector commitment scheme
o Setup() — pp //randomized
o Commit(pp, v) —» ¢ // takes avectorv € Z X, outputs c € G, non-randomized
o Verify(pp, v, ¢) — 0/1 // recommits to check that it gets c
o Binding: can't find two different vectors that commit to the same value
m Commit(pp,v,) —c AND Commit(pp,Vv,) —>C => v, ==V,
o Homomorphic:
m Commit(pp, v,) + Commit(pp, v,) == Commit(pp, v, + V,)
e To commit to a matrix F with m rows: [F1, F2, ..., Fm] compute a vector of m
commitments: [C,, C,, ..., C_], where C. = Commit(pp, F.):
o Commit(pp, F) — [C,, C,, ..., C]
o Commit(pp, F) = Commit(pp, F)

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

aléz crypto “56

-
1 °
F=G"-Y
Y— — —F

F 5 y

e Works with crash (omission)-faults.

e To handle byzantine faults, can use
Y=G-F error-correcting code

o Example: n = 3f+1 nodes.
o Break Finto f+1 fragments.
o Encode to Y with 3f+1 fragments.
o Can correct f erroneous
fragments.
e Does not work with malicious disperser

3xk 5x3 5xk
FEZp ,GEZp ,YEZp

Any 3 rows of G give an invertible matrix G’ € Zp3X3

16z crypto

Protect IDA from malicious disperser

3

aléz crypto

IDA from errasure coding (Rabin’89)

TODO: write the
formula here for
dispersion

Two problems:
1. Does not protect against byzantine faults, (only crash faults).
2. No guarantees when Alice (the disperser) is dishonest.

58

aléz crypto

IDA from error-correcting codes

1. Use of error-correcting code protects against byzantine nodes.

E.g. f+1 fragments are encoded to 3f+1 fragments, f erroneous fragments can be corrected.

2. Challenge for detecting byzantine disperser: nodes do not know if they are receiving
fragments of the same word or not!

59

aléz crypto

Idea #1: bandwidth O(n|F|), storage O(|F|)

[Cachin-Tessaro-05]:
Dispersal:

Alice sends the whole file F to each of the nodes.
Nodes Encode the file, to produce [Y1, Y2, ..., Yn]
Compute H = [hash(Y1), hash(Y2), ..., hash(Yn)]
Node run BA on H, if is not successful, abort.
Node istoresY, and discards F.

Reconstruction:

Reliably retrieve H.
Take fragments that agree with H, treat incorrect of missing fragments as erasures.
Decode from erasures.

“60

aléz crypto

IDA from error-corre‘ction codes

Assuming byzantine faults and honest disperser:
o Termination: If the disperser is honest - all honest servers complete successfully.
o X Agreement: Either all honest servers complete successfully, or none (regardless of the
honesty of the disperser).

o Iff+1 honest servers completed the dispersal:
] Availability: The client will eventually reconstruct some F'.
] Correctness: all correct clients will reconstruct the same F', if an honest client

dispersed F, then F==F.

761

aléz crypto

IDA from erasure coding (Rabin’89)

Can’t handle byzantine faults of nodes!
A client will reconstruct different files depending on the servers it asks for Y's.

“62

aléz crypto

Getting agreement

e Commitments are computed per each
element of F.

The list of commitments is sent to each node.

e Each node checks that Yi that it received
conforms with the list

63

aléz crypto “64

From erasure codes to error correcting codes

X = (X,, X5 ..., X) Where x. is an integer (Zp), G e anxm: n>m
Erasure coding: y:= G-x

Can reconstruct x from y with (n-m) erased elements.

Can reconstruct x from y with (n - (n-m)/2) erroneous elements.

Erasure coding: Reconstruction:
n=5m=3 from 2 erasures or from 1 error
- x| x #&
Yy y y YI Y

aléz crypto

65

IDA from erasure coding : Example

F=(f1, 2, ..., fm) where fi \in GF(p)AD

G \in GF(p){m,n}

f1 Piece #1
f2 Piece #2
f3 Piece #3 | Piece #1
Piece #4 | Piece #2
Piece #5 | Piece #3
\ Piece #4

File’s encoding

Piece #5

Any 3 pieces suffice to reconstruct F

Contrast to Shamir Secret Sharing:
e File Fis broken into pieces of the
same size as F.
e Any m-1(3)or less give no
information about F.
e <-Whereas here less than m pieces
may give some information about F.

aléz crypto “66

IDA through Erasure coding

(m, n) erasure code (m < n) encodes a block of data into n fragments, each 1/m-th the size of the
original block, such that any m can be used to reconstruct the original block.

Thus, (n-m) of fragments can be unavailable without loss of data.

Example: (3, 5) erasure code

Piece #1 Any 3 pieces suffice to reconstruct F
Piece #2 Contrast to Shamir Secret Sharing:
. e File Fis broken into pieces of the
File F — Piece #3 same size as F.

e Any m-1(3)or less give no

Piece #4 information about F.
e <-Whereas here less than m pieces

Dispersion Piece #5 may give some information about F.

aléz crypto

IDA through Erasure coding

(m, n) erasure code (reads “m out of n”) encodes a block of data into n fragments, each 1/m-th the
size of the original block, such that any m can be used to reconstruct the original block.

Thus, (n-m) of fragments can be unavailable without loss of data.

Example: (3, 5) erasure code . 1/3-rd of F in size
_ j Any 3 pieces suffice to reconstruct F
Piece #1
Piece %)
File F —| Piece##3 =~ FileF

Piece 1@

Dispersion Piece #5 Reconstruction

aléz crypto “68

Byzantine Reliable Broadcast (BRB)

e Is asub-protocol - since all the servers need to agree on the commitment to the data.

o Agreement: if two honest parties output values vand v/, then v =V’

o Validity: if the broadcaster is honest, then all honest parties output broadcasted value
Termination (async): if honest party terminates and outputs, then all honest parties
terminate and output

o Solvable if and only if n = 3f+1, and only with = 2 rounds.

e 2 rounds of communication of simple messages with O(nA3) total amortized message
complexity [1]
o L. Abraham, K.Nayak, L. Ren, Z. Xiang “
" (PODC 2021)
e 4 rounds of communication with erasure coding with O(n2) total amortized message complexity
[13]

(@)

S. Das, Z. Xiang, L. Ren “ " (CCS 2021)
O(n [M]| +\lambda n/2)

o O O

https://arxiv.org/pdf/2102.07240.pdf
https://arxiv.org/pdf/2102.07240.pdf
https://eprint.iacr.org/2021/777.pdf

aléz crypto “69

Works

e M. Rabin (1989): “Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance” - coined the term IDA (Information Dispersal Algorithm)
o deals with missing pieces of information
o Idea: erasure code the file and send pieces of this file to different nodes
o Drawback: does not deal with Byzantine faults
e H. Krawczyk (1993): “Distributed Fingerprints and Secure Information Dispersal”
(SIDA - Secure IDA)
o deals with malicious modifications
o Idea: erasure code the file, split to pieces, hash each piece, make each node store all
hashes (or can also be erasure-coded) and one of the pieces.
o Drawback: malicious faults assumed only at reconstruction.
e Garay-Gennaro-Jutla-Rabin (2000): “Secure distributed storage and retrieval” (SSRI - secure
storage and retrieval of information)
o deals with some malicious faults at dispersion and reconstruction, optional confidentiality
o Idea: add threshold cryptography for confidentiality
o Drawback: synchronous networks

aléz crypto

IDA through Erasure coding

How do servers verify that they have been given correct pieces?

e The nodes get the whole file, they check the piece and then erase the file and only store the
piece
Bandwidth inefficient, storage efficient.

e C(lients observe the servers on reconstruction (servers agree on hashes of pieces), the client
checks all the hashes

70

aléz crypto

Works

e Cachin-Tessaro (2004): “Asynchronous Verifiable Information Dispersal” (AVID)
o async. networks
o Introduce the notion of verifiability: whenever the honest servers accept to store some
data, then the data is also consistent and no two distinct honest clients can reconstruct
different data.

771

aléz crypto

IDA from erasure coding (Rabin’89)

Assuming crash-faults and honest disperser:
o « Termination: If the disperser is honest - all honest servers complete successfully.
o X Agreement: Either all honest servers complete successfully, or none (regardless of the
honesty of the disperser).
e If k honest servers completed the dispersal:
o ¢ Availability: The client will eventually reconstruct some F'.
o ¢ Correctness: If an honest client dispersed F, an honest client will reconstruct F.

772

Works

Table 1. Comparison with existing BRB protocols. The computation cost measures the coding and crytographic operations, and O(-)
hides the poly-logarithmic terms (more details in §2.4). The following acronyms are used in the table; g-SDH: g-Strong Diffie-Hellman,
DBDH: Decisional Bilinear Diffie-Hellman. *The protocol of [1] is statistically secure with probability 1 — €.

Communication Cost Computation Cost Cryptographic
Sehieme Broadcaster Other node Total ger—node Ronsids A);Is)urfptiI:)n Setup
Bracha [14] O(n|M|) O(n|M|) on?|M)) 0 4 None (error-free) None
Patra [42] O(n|M|+n3logn) O(|M|+n> log n) O(n|M|+n*log n) o(IM)) 11 None (error-free) None
Nayak et al. [41] O(n|M|+n?logn) O(|M|+n? log n) O(n|M|+n3logn) o(IM)) 7 None (error-free) None
Abraham-Asharov [1]* O(|M|+nlogn) O(IM|+nlog(n3/e)) O(n|M|+n?log(n?/e)) O(n|M)) 7 None (statistical) None
EFBRB (§6) O(n|M|+nlogn) O(|M|+nlogn) O(n|M|+n? log n) O(n|M|) 9 None (error-free) None
BalEFBRB (§6) O(|M|+nlogn) O(|M|+nlogn) O(n|M|+n?log n) O(n|M|) 10 None (error-free) None
Cachin-Tessaro [16] O(|M|+knlogn) O(|M|+knlogn) O(n|M|+kn? log n) (5(|M|+xn) 4 Hash None
Das et al. [21] O(n|M|+kn) O(|M|+kn) O(n|M|+xn?) O(n|M|) 4 Hash None
CCBRSB (§4) O(|M|+kn?) O(|M|+kn) O(n|M|+kn?) O(|M|+xn?) 4 Hash None
BalCCBRB (§4) O(|M|+kn) O(|M|+kn) O(n|M|+xn?) O(|M|+xn?) 5 Hash None
Nayak et al. [41] O(n|M|+kn) O(|M|+kn) O(n|M|+xn?) o(IM)) 7 q-SDH+DBDH Trusted
SigBRB (§5) O(n|M|+kn +nlogn) O(|M|+k + nlogn) O(n|M|+kn + n?log n) O(n|M|) 7 Threshold Sig ~ Trusted
BalSigBRB (§5) O(|M|+xn +nlogn) O(|M|+k + nlogn) O(n|M|+kn + n’ log n) é(nlMl) 8 Threshold Sig ~ Trusted

Lower bound Q(|M|+n) Q(|M|+n) Q(n|M|+n?) - 2 [3] — -

aléz crypto

Modular blockchain design : rollups

e In order for validators to know if the transaction is valid or not, they need to run it by the

current state.

e We assume there is prefiltering that leaves out bad transactions.

tx1, txz, txn

X o DX s X X, 10 Xopips +oes D5

Hash(state)

Hash(state,)[, =

A

o] Hash(state,) [, ,]

succinct proof for statement for h, tx ,tx,,...,tx :
“state is the result of applying tx ,tx,,...,tx to state,
AND h, = Hash(state)”

“74

aléz crypto

Modular blockchain design : rollups

Decoupling transaction storage and ordering from execution.

Ethereum validators sequences and stores transactions.
Roll-ups execute transactions and update state
e prove correct execution (zk-rollups), or
e allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups)

tx1, txz, txn txn+1, txn+2, tx2n tx2n+1, tx2n+2, tx3n

Hash(state) Hash(state,)[, =

A
I

succinct proof for statement for h, tx ,tx,,...,tx :
“state is the result of applying tx ,tx,,...,tx to state,
AND h, = Hash(state)”

o] Hash(state,) [, ,]

aléz crypto

Modular blockchain design : rollups

Decoupling transaction storage and ordering from execution.

Ethereum validators sequences and stores transactions.
Roll-ups execute transactions and update state
e prove correct execution (zk-rollups), or
e allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups)

tx1, txz, txn txn+1, txn+2, tx2n tx2n+1, tx2n+2, tx3n

Hash(state) Hash(state,)[, =

A
I

succinct proof for statement for h, tx ,tx,,...,tx :
“state is the result of applying tx ,tx,,...,tx to state,
AND h, = Hash(state)”

o] Hash(state,) [, ,]

aléz crypto

Modular blockchain design : rollups

Decoupling transaction ordering from execution.

First set of validators sequences and stores transactions.
Second set of validators execute transactions and update state
e prove correct execution (zk-rollups), or
e allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups)

tx1, txz, txn txn+1, txn+2, tx2n tx2n+1, tx2n+2, tx3n
Hash(state) Hash(state,)[, =, ,] Hash(state,) [, ,]

succinct proof for statement:
“state, is the result of applying tx,tx,,...,tx to state ”

aléz crypto

Modular blockchain design : rollups

Decoupling transaction ordering from execution.

First set of validators sequences and stores transactions.
Second set of validators execute transactions and update state
e prove correct execution (zk-rollups), or
e allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups)

tx1, txz, txn txn+1, txn+2, tx2n tx2n+1, tx2n+2, tx3n
Hash(state) Hash(state,)[, =, ,] Hash(state,) [, ,]

succinct proof for statement:
“state, is the result of applying tx,tx,,...,tx to state ”

aléz crypto

Modular blockchain design : zk-rollups

Component #1: reliable accessible storage for data
Anybody can make two kinds of request:
1. by giving h, get back data, s.t. Hash(data) ==
2. by giving h, get back signature o on h, if the data behind h is stored

Hash(tx-list,) Hash(tx-list,) Hash(tx-list,)
Hash(state) Hash(state,), m, , Hash(state,), , ,
I
®, ,is a SNARK for “tx-list (state) == state ”

Component #2: executor to produce m, |

79

aléz crypto

Modular blockchain design : rollups

Proof of data availability:

Data-availability

“Please store data D”

blockchain: %}
cert

Consensus

blockchain: %

@Pull transactions

[cert,, Hash(D)]

@

[Hash(tx-list,),

DA-cert,]

state0

[Hash(tx,), DA-cert, /]

state1 i state2 =
tx, (state,) AND

[Hash(tx,), DA-cert,_.]

state1

—

aléz crypto

Blockchains struggle to scale

e Bitcoin chain size (all transactions): 435 GB (1 MB block per 10 minutes)
o Bitcoin miner only stores ~7 GB state of it (UTXO set)

e Ethereum chain size (all transactions): 1,200 GB (80 KB on average per 12 seconds = 4 MB per 10
minutes)
o Growth: 0.5 GB/day
o Cost: 16 gas / byte
m $1 per1KB (Feb'22),
m a photo (3 MB) from my phone would cost $3,000

81

aléz crypto

Blockchains are expensive for storing data

e Bitcoin chain size (all transactions): 435 GB (1 MB block per 10 minutes)
o Bitcoin miner only stores ~7 GB state of it (UTXO set)

e Ethereum chain size (all transactions): 1,200 GB (80 KB on average per 12 seconds = 4 MB per 10
minutes)
o Growth: 0.5 GB/day
o Cost: 16 gas / byte
m $1 per1KB (Feb'22),
m a photo (3 MB) from my phone would cost $3,000

Q: Why an ordinary user would want to store data on chain? The chains are for transactions not for data!
A: Services need to store data, in particular roll-ups.

How can we make the blockchains store more data and make it cheaper?

All data is replicated on all of the nodes:

82

aléz crypto

Outline

Long-range attacks and costless simulation in PoS blockchains
Leader election in leader-based consensus protocols

Time synchronization

Threshold signatures

Post-quantum blockchains

83

