
1

Valeria Nikolaenko 
for the 13th BIU Winter School on cryptography 

Data Dispersal, 
Data Retrieval and 
Data Availability Sampling 

a16z crypto  2 2 

How nodes can reliably store data without replicating it? 

File Dispersal  File Retrieval 

Minimize: communication and storage costs. 
Maximize: the number of byzantine nodes that can be safely handled. 
Naive: replicate the file, but we will do much better! 

a16z crypto  3 

Practical motivation for
distributed storage 
 

a16z crypto  4 4 

Why blockchains struggle to scale? 

● Bitcoin:
○ 7 transactions / second
○ 1 MB block per 10 minutes

● Ethereum:
○ 15 transactions / second
○ 80 KB block per 12 seconds (~= 4 MB per 10 minutes)

● Visa
○ 24,000 transactions / second

≈ 41%

Jan 2022, https://coin360.com/ 

… because everybody is doing everything!

a16z crypto  5 5 

Blockchains were designed for catastrophic scenarios 

● Initially thinking: blockchain should survive all except one crash-failing, 
○ therefore: full replication. 

● Today thinking: blockchain should survive < 33.3% byzantine faults, 
○ therefore: instead of full-replication - 66.6%-replication (any 66.6% of nodes

should be able to recover the blockchain instead of any single node).

a16z crypto  6 6 

Modularizing the blockchain 

First break the blockchain into subcomponents.
Optimize each individual component.

Each node is replicating the work of other nodes:
1. Stores transactions
2. Executes transactions ← Roll-ups to execute 

← Data-availability solutions to store 

a16z crypto 

Users are submitting transactions 

7 

G

tx  
tx 

tx 

tx 

tx 

a16z crypto 

Semantically users are transacting with each other 

8 

a16z crypto 

Semantically users are transacting with each other 
 

9 

a16z crypto 

A rollup subsumes users transactions  

10 

“Rollup” 

a16z crypto 

SNARK or fraud proofs alleviate trust 

11 

Proves it knows
a valid 
right tx-list
resulting in 
a left tx-list 

On-chain  Off-chain 

“Rollup” 

a16z crypto 

SNARK or fraud proofs alleviate trust 

12 

Proves it knows
a valid 
right tx-list
resulting in 
a left tx-list 

On-chain  Off-chain 

“Rollup” 

Rollup is a smart-contract and a
service. 
Rollup CAN’T steal funds. 
Rollup CAN: 

● Censor 
○ Mitigation: allow clients

to go on-chain but
higher fees 

● Go down 
○ Mitigation: anybody

can restore the state of
the roll-up (all rollup
transactions are
available) and transact
out of the rollup
on-chain 

Rollups will scale
Ethereum
short/mid-term 
 
Rollups have 2-30x
lower gas costs 

https://l2fees.info/, Oct’22

https://l2fees.info/

a16z crypto  14 

Some users are submitting transactions on chain, 
some through a rollup 

G

a16z crypto  15 

Rollups scale the number of transactions 

G

Fewer transactions hit
the chain, yet there are
more transactions in
total 

a16z crypto 

Roll-ups 

16 

G

tx = (on-chain-tx-list, c, [𝛑]) 
1. on-chain-tx-list = [tx1, tx2, .., txn] 
2. c = commitment(off-chain-tx-list) 
3. [𝛑]: 𝛑 - zk-proof, or Ø - allow clients to

submit fraud-proofs 

Rollup is a smart contract that accepts 

Rollup’s state: Merkle root of
rollup’s accounts state 

a16z crypto 

The blockchain needs to store off-chain transactions 
without executing 
 

17 

G

tx = (on-chain-tx-list, c, [𝛑], [off-chain-tx-list]) 
1. on-chain-tx-list = [tx1, tx2, .., txn] 
2. c = commitment(off-chain-tx-list) 
3. 𝛑 or allow clients to submit fraud-proofs 
4. off-chain-tx-list = [tx1’, tx2’, …, txm’] 

tx = (on-chain-tx-list, c, [𝛑], [off-chain-tx-list]) 
1. on-chain-tx-list = [tx1, tx2, .., txn] 
2. c = commitment(off-chain-tx-list) 
3. 𝛑 or allow clients to submit fraud-proofs 
4. off-chain-tx-list = [tx1’, tx2’, …, txm’] 

● No execution is done over off-chain-tx-list 
● Off-chain-tx-list needs to simply be stored 

New: special type of storage that is guaranteed to not be required for execution! 
=> does not have to be replicated 

Roll-ups pay a lot for the data 

https://dune.com/optimismfnd/optimism-l1-batch-submission-fees-security-costs, Oct’22

To make rollups cheaper,
need to make it cheaper to
store data on Ethereum.

https://dune.com/optimismfnd/optimism-l1-batch-submission-fees-security-costs

a16z crypto  19 

Theoretical solutions to
distributed storage 

a16z crypto  2020 

IDA - Information Dispersal Algorithm 
The dispersal protocol: a client sends a file to an IDA system, the file is redundantly encoded and
split between nodes. 
 
The retrieval protocol: a client reconstructs the file F by interacting with the servers. 

File Dispersal  File Retrieval 

a16z crypto  2121 

The dispersal protocol: a client sends a file to an IDA system, the file is redundantly encoded and
split between nodes. 
 
The retrieval protocol: a client reconstructs the file F by interacting with the servers. 
 
Properties (assuming >= 2f+1 honest servers, n = 3f+1): 

● Termination: If the disperser is honest - all honest servers complete successfully. 
● Agreement: Either all honest servers eventually complete successfully, or none (regardless of

the honesty of the disperser). 
● If f+1 honest servers completed the dispersal: 

○ Availability: The client will eventually reconstruct some F’. 
○ Correctness: all correct clients will reconstruct the same F’, if an honest client dispersed F,

then F == F’. 

IDA - Information Dispersal Algorithm 

a16z crypto  2222 

IDA - Information Dispersal Algorithm 

M. Rabin (1989): “Efficient Dispersal of Information for Security, 
Load Balancing, and Fault Tolerance” 

● Coined the term IDA (Information Dispersal Algorithm) 
● Idea: erasure code the file and send pieces of this encoded file to different nodes 

a16z crypto  2323 

Erasure codes 
File: x = (x1, x2, …, xm) where xi is an integer (Zp) 
G ∈ Zp

n x m: n > m, any m rows of G make up a full-rank matrix 
Erasure coding: y := G・x 
Reconstruction: for y = (y1, y2, …, yn), 

x can be reconstructed from any m elements of y: x = G-1・y’ 

→  G . 

n = 5, m = 3 

x 
y 

✖  =  G . 
? 

y 
✖ 

Reconstruction: Erasure coding: 

a16z crypto  2424 

Erasure codes 
x = (x1, x2, …, xm) where xi is an integer (Zp) 
G ∈ Zp

n x m: n > m, any m rows of G make up a full-rank matrix 
Erasure coding: y := G・x 
Reconstruction: for y = (y1, y2, …, yn), 

x can be reconstructed from any m elements of y: x = G-1・y’ 

→  G . 

n = 5, m = 3 

x 
y 

✖  =  G . 
? 

y 
✖ 

Erasure coding:  Reconstruction: 

a16z crypto  2525 

Erasure codes 
x = (x1, x2, …, xm) where xi is an integer (Zp) 
G ∈ Zp

n x m: n > m, any m rows of G make up a full-rank matrix 
Erasure coding: y := G・x 
Reconstruction: for y = (y1, y2, …, yn), 

x can be reconstructed from any m elements of y: x = G-1・y’ 

→  G . 

n = 5, m = 3 

x 
y 

✖  =  G . 
? 

y 
✖ 

Erasure coding:  Reconstruction: 

a16z crypto  2626 

Erasure codes 
x = (x1, x2, …, xm) where xi is an integer (Zp) 
G ∈ Zp

n x m: n > m, any m rows of G make up a full-rank matrix 
Erasure coding: y := G・x 
Reconstruction: for y = (y1, y2, …, yn), 

x can be reconstructed from any m elements of y: x = G-1・y’ 

→  G . 

n = 5, m = 3 

x 
y 

✖  =  G’ . 
? 

y’ 
✖ 

Erasure coding:  Reconstruction: 

a16z crypto  2727 

Erasure codes 
x = (x1, x2, …, xm) where xi is an integer (Zp) 
G ∈ Zp

n x m: n > m, any m rows of G make up a full-rank matrix 
Erasure coding: y := G・x 
Reconstruction: for y = (y1, y2, …, yn), 

x can be reconstructed from any m elements of y: x = G-1・y’ 

→  G . 

n = 5, m = 3 

x 
y 

✖  = 
 G’ .  ?  y’ ✖ 

Erasure coding:  Reconstruction: 

a16z crypto  2828 

Erasure codes 
x = (x1, x2, …, xm) where xi is an integer (Zp) 
G ∈ Zp

n x m: n > m, any m rows of G make up a full-rank matrix 
Erasure coding: y := G・x 
Reconstruction: for y = (y1, y2, …, yn), 

x can be reconstructed from any m elements of y: x = G-1・y’ 

→  G . 

n = 5, m = 3 

x 
y 

✖  =  G’-1  x  y’ 

Erasure coding:  Reconstruction: 

✖ 

a16z crypto  2929 

How to pick matrix G ? 
● Any m rows of G should constitute an invertible matrix. 
● Random G would work, but expensive to invert. 
● Good choice: G - Vandermonde matrix => Reed-Solomon erasure code 

a16z crypto  3030 

How to pick matrix G ? 

n = 5, m = 3 
Erasure coding: polynomial evaluation 

→ 

10 11 12

20 21 22

30 31 32

40 41 42

50 51 52

a1

a0

a2

y1

y2

y3

y4

y5

✖ 

f(x) = a0 + a1x + a2x2 

y1 = f(1) 
y2 = f(2) 
y3 = f(3) 
y4 = f(4) = a0 + a14 + a242 
y5 = f(5) 

Reconstruction: 

G : Vandermonde matrix

O(n log(n)) for m = O(n) 
both directions using powers of the
root of unity 

polynomial interpolation 

a16z crypto  3131 

Erasure codes for large files 
File: x = (x1, x2, …, xm) where xi is a row-vector of elements in Zp

k 

row xi is called a “fragment” 

→  G . 

n = 5, m = 3 

x ✖ 

Erasure coding: 

y 

a16z crypto  3232 

IDA from erasure coding (Rabin’89) 

Dispersal 
Retrieval 

F 

Y2

→  Y 

Y1

Y3

Y4

Y4

Y’ 

F = G’-1 ・Y’ 

F → 

Y = G ・F 

F ∈ Zp
3 x k, G ∈ Zp

5 x 3, Y ∈ Zp
5 x k 

 
Any 3 rows of G give an invertible matrix G’ ∈ Zp

3 x 3 

 

Only tolerates 50% crash-faults! 

a16z crypto  3333 

● For vectors v1, v2 ∈ Zp: 
Commit(v1) + Commit(v2) == Commit(v1 + v2) 

● For matrix M: Commit(M) - row-wise commitment 
 

G * Commit(M) = Commit(G * M) 

Protect IDA from malicious disperser using
homomorphic vector commitments 

Hendricks-Ganger-Reiter-07, Nazirhanova-Neu-Tse-22, Danksharding

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

a16z crypto  3434 

IDA from erasure coding + homomorphic commitments 

Dispersal 
Retrieval 

F 

Y2

→  Y 

Y1

Y3

Y4

Y4

Y’ 

F = G’-1 ・Y’ 

F → 

G・F → Y 
G・H → C 

H
C

H

H

H

H

H

Filter: 

[Hendricks-Ganger-Reiter-07, Nazirhanova-Neu-Tse-22, Danksharding]

Retriever (Bob): 
● Waits to receive 50% of replies with

consistent H. 
● Filters out Yi that do not match H. 
● Applies erasure-coding to

reconstruct F. 

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

a16z crypto  3535 

Other commitments in IDA - related work 
Paper Name Commitment Notes

[Rabin89] IDA N/A Only tolerates crash faults

[Cachin-Tessaro-05] AVID Hash Replicate file on dispersal,
encode for storage

[Hendricks-Ganger-Reiter-07] AVID-FP Homomorphic
fingerprinting from
universal hashing

Slightly worse
communication then with
commitments

[Yang-Park-Alizadeh-
 Kannan-Tse-22]

AVID-M /
DispersedLedger

Merkle hashing Reconstructing client has to
check for inconsistencies

[Nazirkhanova-Neu-Tse-22] Semi-AVID-PR Homomorphic
commitments

Without agreement, gives
certs-of-storage.

https://dl.acm.org/doi/pdf/10.1145/62044.62050
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=60e8526207b25e6d92bc731577653c28ab8f013d
https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://www.usenix.org/system/files/nsdi22spring_prepub_yang.pdf
https://www.usenix.org/system/files/nsdi22spring_prepub_yang.pdf
https://arxiv.org/pdf/2111.12323.pdf

a16z crypto  3636 

To charge users for storage - IDA with agreement 
● In order for users to pay the servers for data-storage, we add agreement to turn this into a

blockchain! 
 

● Almost the same problem as state-machine replication (SMR), except with a reliable information
dispersal (3 rounds, O(n2)): 

○ Correctness: if sender is honest and sent H, all honest nodes output H 
○ Agreement: either all honest nodes output the same H or none of them outputs

anything. 
○ Availability: if an honest node output H, at least 1/3 honest nodes are storing correct

fragments. 

a16z crypto  3737 

IDA without agreement between the servers 

Dispersal 
Retrieval 

F 
F → 

a16z crypto  3838 

IDA without agreement between the servers 

Dispersal 
Retrieval 

F 
F → 

a16z crypto  3939 

IDA with agreement between the servers 
needs interaction 

Retrieval 

F 
F → 

Dispersal 

a16z crypto  4040 

Reliable broadcast for data-dispersion 

H,Y1 

H,Y2 

H,Y3 

H,Y4 

“echo”  “ready”  “commit” 

Each node checks that Yi
matches H, 
if so, send [“echo”, H] 

Upon receiving 2f+1
echo or (f+1) ready with
matching H send
[“ready”, H] 
 

Upon receiving 2f+1 ready,
commit (honest nodes will
eventually also commit) 

A “proof” of
storage 

Commit guarantees that ≥ f+1
honest nodes are storing correct
fragments Yi with consistent H. 

H: commitment 
Yi: data-fragment 

a16z crypto 

Commitments to data are 
ordered and “written” on-chain 

41 

G

F 1 

The actual data is dispersed 
among the nodes 

F2 

F3 

F4 

Dispersal 

a16z crypto  4242 

Add-ons and Data-Availability Sampling 

● Add-ons: 
○ Setup incentives for nodes to continue storing the data [Tas-Boneh-2022] 
○ Continuously generate proofs of storage 
○ Add proofs of space / replication 
○ Data-availability sampling 

https://arxiv.org/pdf/2208.02999.pdf

a16z crypto  43 

Data-Availability Sampling (DAS) 

a16z crypto  4444 

What is Data-Availability Sampling? 
● Data-availability sampling 

○ Allows a client to request random fragments from nodes to probabilistically
check whether the data is available 

H
Y1

H
Y2

H
Y3

H
Y4

H
Y5

H
Y6

… 

Data is unavailable iff > ⅔n of
fragments are absent. 
 
Sampling client can request a fragment
from a random server #i, if Yi comes
back and it is correct, the probability
the data is unavailable is 

For n nodes, where n is large: 
● H: commitment to the data 
● Yi: fragment of the data

stored by i-th server 
● ⅓n fragments is enough

for reconstruction of data
behind H 

H

⅓  

Y3 ✓ 

a16z crypto  4545 

What is Data-Availability Sampling? 
● Data-availability sampling 

○ Allows a client to request random fragments from nodes to probabilistically
check whether the data is available 

H
Y1

H
Y2

H
Y3

H
Y4

H
Y5

H
Y6

… 

Data is unavailable iff > ⅔n of
fragments are absent. 
 
Sampling client can request a fragment
from a random server #i, if Yi comes
back and it is correct, the probability
the data is unavailable is 

For n nodes, where n is large: 
● H: commitment to the data 
● Yi: fragment of the data

stored by i-th server 
● ⅓n fragments is enough

for reconstruction of data
behind H 

H

(⅓)2  

Y3 ✓ 
Y5 ✓ 

a16z crypto  4646 

What is Data-Availability Sampling? 
● Data-availability sampling 

○ Allows a client to request random fragments from nodes to probabilistically
check whether the data is available 

H
Y1

H
Y2

H
Y3

H
Y4

H
Y5

H
Y6

… 

Data is unavailable iff > ⅔n of
fragments are absent. 
 
Sampling client can request a fragment
from a random server #i, if Yi comes
back and it is correct, the probability
the data is unavailable is 

For n nodes, where n is large: 
● H: commitment to the data 
● Yi: fragment of the data

stored by i-th server 
● ⅓n fragments is enough

for reconstruction of data
behind H 

H

(⅓)T  

Y3 ✓ 
Y5 ✓ … 
Y*

✓ 
T samples 

a16z crypto  47 

● Make such blockchain verifiable for light clients (additional assurance) 
● Allows to build a longest-chain-style (with unknown set of nodes) blockchain instead of BFT  

○ Achieve agreement on data-availability through data-availability sampling 
 

● Original design and motivation: “Fraud and Data Availability Proofs”
[Al-Bassam-Sonnino-Buterin-2019] 

● More efficient techniques: Danksharding Workshop (Devcon, Bogota, Oct 2022) 

What Data-Availability Sampling is good for? 

https://arxiv.org/pdf/1809.09044.pdf
https://www.youtube.com/live/e67G7ej_x5k?feature=share&t=1605

0.1 MB
blocks

Ethereum 
today 

Blocksize: https://etherscan.io/chart/blocksize
Full node sync: https://etherscan.io/chartsync/chaindefault

1 MB
blocks

30 MB
blocks

8 KB/s

Additional data:
● Expires (1-2 months)
● Not accessible to execution
● Only Commitment(data) is accessible to execution
● Main users: roll-ups
● “Blob” data: ~ 1 gas / byte
● Compared to call-data: 16 gas / byte

Ethereum with IDA
Protodanksharding 

EIP-4844  Danksharding 

>>  >> 

Full replication 
++ 100-200 GB per validator 

Data dispersal 
2,500 KB/s

https://etherscan.io/chart/blocksize
https://etherscan.io/chartsync/chaindefault

a16z crypto 

Disclosures 
The views expressed here are those of the individual AH Capital Management, L.L.C. (“a16z”) personnel quoted and are not the
views of a16z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from
portfolio companies of funds managed by a16z. While taken from sources believed to be reliable, a16z has not independently
verified such information and makes no representations about the current or enduring accuracy of the information or its
appropriateness for a given situation. In addition, this content may include third-party advertisements; a16z has not reviewed such
advertisements and does not endorse any advertising content contained therein.This content is provided for informational
purposes only, and should not be relied upon as legal, business, investment, or tax advice. You should consult your own advisers
as to those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an
investment recommendation or offer to provide investment advisory services. Furthermore, this content is not directed at nor
intended for use by any investors or prospective investors, and may not under any circumstances be relied upon when making a
decision to invest in any fund managed by a16z. (An offering to invest in an a16z fund will be made only by the private placement
memorandum, subscription agreement, and other relevant documentation of any such fund and should be read in their entirety.)
Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles
managed by a16z, and there can be no assurance that the investments will be profitable or that other investments made in the
future will have similar characteristics or results. A list of investments made by funds managed by Andreessen Horowitz (excluding
investments for which the issuer has not provided permission for a16z to disclose publicly as well as unannounced investments in
publicly traded digital assets) is available at https://a16z.com/investments/.Charts and graphs provided within are for informational
purposes solely and should not be relied upon when making any investment decision. Past performance is not indicative of future
results. The content speaks only as of the date indicated. Any projections, estimates, forecasts, targets, prospects, and/or
opinions expressed in these materials are subject to change without notice and may differ or be contrary to opinions expressed by
others. Please see https://a16z.com/disclosures for additional important information. 

https://a16z.com/investments/
https://a16z.com/disclosures

Icons created by Freepik, Icon Pond, Roundicons, Prosymbols Premium, Smashicons - Flaticon

Questions?

a16z crypto  5151 

Linear code: #errors = #erasures / 2 

t  t 
Corrects t errors 

Corrects 2t erasures 

x

|x| = m 
|y| = m + 2t 

y

No matter where the errors or erasures are in y! 

a16z crypto  5252 

IDA from erasure coding (Rabin’89) 

Dispersal 
Retrieval 

F 

Y2

→  Y 

Y1

Y3

Y4

Y4

Y’ 

● Works with byzantine faults (33%)! 

F → 

Y = G ・F 

F ∈ Zp
3 x k, G ∈ Zp

5 x 3, Y ∈ Zp
5 x k 

 
Any 3 rows of G give an invertible matrix G’ ∈ Zp

3 x 3 

 

● Does not protect against
malicious disperser. 

● Only works in synchronous
networks. 

a16z crypto  5353 

IDA from erasure coding + homomorphic commitments 

Dispersal 
Retrieval 

F 

Y2

→  Y 

Y1

Y3

Y4

Y4

Y’ 

F = G’-1 ・Y’ 

F → 

G・F → Y 
G・H → C 

F ∈ Zp
3 x k, G ∈ Zp

5 x 3, Y ∈ Zp
5 x k, H ∈ G3, C ∈ G5 

 
Any 3 rows of G give an invertible matrix G’ ∈ Zp

3 x 3 

 

H
C

H

H

H

H

H

Cert-of-storage cert: a list of signatures on H
from a majority of servers 
 
Filter: 

● Checks a cert-of-storage cert or check
with the majority of servers  

○ => any other retrieving client will
assume the same H 

● Reconstruct from those Y that match H 
 
 

Filter: 

[Hendricks-Ganger-Reiter-07, Nazirhanova-Neu-Tse-22, Danksharding]

EXPENSIVE! 

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

a16z crypto  5454 

Idea [Hendricks-Ganger-Reiter-07, Nazirhanova-Neu-Tse-22, Danksharding]: 
commit to each row of F using a homomorphic vector commitment scheme 

 
 
 

● Homomorphic vector commitment scheme 
○ Commit(pp, v) → c // takes a vector v ∈ Zp

k, outputs c ∈ G, non-randomized 
○ Verify(pp, v, c) → 0/1 // recommits to check that it gets c 

 
○ Binding: can’t find two different vectors that commit to the same value 

■ Commit(pp, v1) → c AND Commit(pp, v2) → c => v1 == v2 
○ Homomorphic: 

■ Commit(pp, v1) + Commit(pp, v2) == Commit(pp, v1 + v2) 
■ => G * Commit(pp, F) = Commit(pp, G * F) 

Protect IDA from malicious disperser using
homomorphic commitments 

Hendricks-Ganger-Reiter-07, Nazirhanova-Neu-Tse-22, Danksharding

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal
https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

a16z crypto  5555 

● Idea [Hendricks-Ganger-Reiter-07, Nazirhanova-Neu-Tse-22, Danksharding]: 
commit to each row of F using a homomorphic vector commitment scheme 

● Homomorphic vector commitment scheme 
○ Setup() → pp // randomized 
○ Commit(pp, v) → c // takes a vector v ∈ Zp

k, outputs c ∈ G, non-randomized 
○ Verify(pp, v, c) → 0/1 // recommits to check that it gets c 
○ Binding: can’t find two different vectors that commit to the same value 

■ Commit(pp, v1) → c AND Commit(pp, v2) → c => v1 == v2 
○ Homomorphic: 

■ Commit(pp, v1) + Commit(pp, v2) == Commit(pp, v1 + v2) 
● To commit to a matrix F with m rows: [F1, F2, …, Fm] compute a vector of m

commitments: [C1, C2, …, Cm], where Ci = Commit(pp, Fi): 
○ Commit(pp, F) → [C1, C2, …, Cm] 
○ G * Commit(pp, F) = Commit(pp, G * F) 

Protect IDA from malicious disperser using
homomorphic commitments 

https://pdl.cmu.edu/PDL-FTP/SelfStar/podc07.pdf
https://arxiv.org/pdf/2111.12323.pdf
https://hackmd.io/@vbuterin/sharding_proposal

a16z crypto  5656 

Dispersal 
Retrieval 

F 

Y2

→  Y 

Y1

Y3

Y4

Y4

Y’ 

F = G’-1 ・Y’ 

● Works with crash (omission)-faults. 
● To handle byzantine faults, can use

error-correcting code 
○ Example: n = 3f+1 nodes. 
○ Break F into f+1 fragments. 
○ Encode to Y with 3f+1 fragments. 
○ Can correct f erroneous

fragments. 
● Does not work with malicious disperser 

F → 

Y = G ・F 

F ∈ Zp
3 x k, G ∈ Zp

5 x 3, Y ∈ Zp
5 x k 

 
Any 3 rows of G give an invertible matrix G’ ∈ Zp

3 x 3 

 

Protect IDA from malicious disperser 

a16z crypto  5757 

Protect IDA from malicious disperser 

→  G . 

n = 5 servers, want to tolerate any 2 going missing => m = n-2 = 3 

 . 
 F.. 
 . 

✖ 
Y1 
Y2 
Y3 
Y4 
Y5 

File
Dispersal 

File
Retrieval 

F  Y1 

Y2 

Y5 

Y4 

Y3 

a16z crypto 

Two problems: 
1. Does not protect against byzantine faults, (only crash faults). 
2. No guarantees when Alice (the disperser) is dishonest. 

5858 

IDA from errasure coding (Rabin’89) 

File
Dispersal 

File
Retrieval 

F  Y1 

Y2 

Y5 

Y4 

Y3 
TODO: write the
formula here for
dispersion 

a16z crypto  5959 

IDA from error-correcting codes 

File
Dispersal 

File
Retrieval 

F  Y1 

Y2 

Y5 

Y4 

Y3 

1. Use of error-correcting code protects against byzantine nodes. 
E.g. f+1 fragments are encoded to 3f+1 fragments, f erroneous fragments can be corrected. 

2. Challenge for detecting byzantine disperser: nodes do not know if they are receiving
fragments of the same word or not! 

a16z crypto  6060 

Idea #1: bandwidth O(n|F|), storage O(|F|) 
[Cachin-Tessaro-05]: 
Dispersal: 

● Alice sends the whole file F to each of the nodes. 
● Nodes Encode the file, to produce [Y1, Y2, …, Yn] 
● Compute H = [hash(Y1), hash(Y2), …, hash(Yn)] 
● Node run BA on H, if is not successful, abort. 
● Node i stores Yi, and discards F. 

Reconstruction: 
● Reliably retrieve H. 
● Take fragments that agree with H, treat incorrect of missing fragments as erasures. 
● Decode from erasures. 

a16z crypto  6161 

IDA from error-correction codes 
File
Dispersal 

File
Retrieval 

F  Y1 

Y2 

Y5 

Y4 

Y3 

Assuming byzantine faults and honest disperser: 
○ ✔ Termination: If the disperser is honest - all honest servers complete successfully. 
○ ✗ Agreement: Either all honest servers complete successfully, or none (regardless of the

honesty of the disperser). 
○ If f+1 honest servers completed the dispersal: 

■ ✔ Availability: The client will eventually reconstruct some F’. 
■ ✔ Correctness: all correct clients will reconstruct the same F’, if an honest client

dispersed F, then F == F’. 

a16z crypto  6262 

IDA from erasure coding (Rabin’89) 
File
Dispersal 

File
Retrieval 

F  Y1 

Y2 

Y5 

Y4 

Y3 

Assuming crash-faults and honest disperser: 
○ ✔ Termination: If the disperser is honest - all honest servers complete successfully. 
○ ✗ Agreement: Either all honest servers complete successfully, or none (regardless of the

honesty of the disperser). 
○ If f+1 honest servers completed the dispersal: 

■ ✔ Availability: The client will eventually reconstruct some F’. 
■ ✔ Correctness: all correct clients will reconstruct the same F’, if an honest client

dispersed F, then F == F’. 

Can’t handle byzantine faults of nodes!
A client will reconstruct different files depending on the servers it asks for Y’s.

a16z crypto 

● Commitments are computed per each
element of F. 

● The list of commitments is sent to each node. 
● Each node checks that Yi that it received

conforms with the list 

Getting agreement 

63 

a16z crypto  6464 

From erasure codes to error correcting codes 

→  G . 

n = 5, m = 3 

x 
y 

✖ 

Erasure coding:  Reconstruction: 
from 2 erasures or from 1 error 

x = (x1, x2, …, xm) where xi is an integer (Zp), G ∈ Zp
n x m: n > m 

Erasure coding: y := G・x 
Can reconstruct x from y with (n-m) erased elements. 
Can reconstruct x from y with (n - (n-m)/2) erroneous elements. 

y  y y  y 
✔  ✔ 

a16z crypto  6565 

IDA from erasure coding : Example 

Piece #1

Piece #2

Piece #3

Piece #4

Piece #5

Any 3 pieces suffice to reconstruct F 

File’s encoding 

Contrast to Shamir Secret Sharing: 
● File F is broken into pieces of the

same size as F. 
● Any m-1 (3) or less give no

information about F. 
● <- Whereas here less than m pieces

may give some information about F. 

F = (f1, f2, …, fm) where fi \in GF(p)^D 
G \in GF(p)^{m,n} 

f1

f2

f3

G1

G2

G3

G4

G5

Piece #1

Piece #2

Piece #3

Piece #4

Piece #5

a16z crypto  66

(m, n) erasure code (m < n) encodes a block of data into n fragments, each 1/m-th the size of the
original block, such that any m can be used to reconstruct the original block. 

Thus, (n-m) of fragments can be unavailable without loss of data. 

66 

IDA through Erasure coding 

File F

Piece #1

Piece #2

Piece #3

Piece #4

Piece #5

Any 3 pieces suffice to reconstruct F 

Example: (3, 5) erasure code 

Dispersion 

Contrast to Shamir Secret Sharing: 
● File F is broken into pieces of the

same size as F. 
● Any m-1 (3) or less give no

information about F. 
● <- Whereas here less than m pieces

may give some information about F. 

a16z crypto  67

(m, n) erasure code (reads “m out of n”) encodes a block of data into n fragments, each 1/m-th the
size of the original block, such that any m can be used to reconstruct the original block. 

Thus, (n-m) of fragments can be unavailable without loss of data. 

67 

IDA through Erasure coding 

File F

Piece #1

Piece #2

Piece #3

Piece #4

Piece #5

Any 3 pieces suffice to reconstruct F 

Example: (3, 5) erasure code 

Dispersion  Reconstruction 

File F

1/3-rd of F in size 

a16z crypto  6868 

Byzantine Reliable Broadcast (BRB) 
● Is a sub-protocol - since all the servers need to agree on the commitment to the data. 

○ Agreement: if two honest parties output values v and v’, then v = v’ 
○ Validity: if the broadcaster is honest, then all honest parties output broadcasted value 
○ Termination (async): if honest party terminates and outputs, then all honest parties

terminate and output 
○ Solvable if and only if n ≥ 3f+1, and only with ≥ 2 rounds. 

● 2 rounds of communication of simple messages with O(n^3) total amortized message
complexity [1] 

○ I. Abraham, K.Nayak, L. Ren, Z. Xiang “Good-case Latency of Byzantine Broadcast: A
Complete Categorization” (PODC 2021) 

● 4 rounds of communication with erasure coding with O(n2) total amortized message complexity
[13] 

○ S. Das, Z. Xiang, L. Ren “Asynchronous data dissemination and its applications” (CCS 2021) 
○ O(n |M| + \lambda n^2) 
○
○  

https://arxiv.org/pdf/2102.07240.pdf
https://arxiv.org/pdf/2102.07240.pdf
https://eprint.iacr.org/2021/777.pdf

a16z crypto  69

● M. Rabin (1989): “Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance” - coined the term IDA (Information Dispersal Algorithm) 

○ deals with missing pieces of information 
○ Idea: erasure code the file and send pieces of this file to different nodes 
○ Drawback: does not deal with Byzantine faults 

● H. Krawczyk (1993): “Distributed Fingerprints and Secure Information Dispersal” 
(SIDA - Secure IDA) 

○ deals with malicious modifications 
○ Idea: erasure code the file, split to pieces, hash each piece, make each node store all

hashes (or can also be erasure-coded) and one of the pieces. 
○ Drawback: malicious faults assumed only at reconstruction. 

● Garay-Gennaro-Jutla-Rabin (2000): “Secure distributed storage and retrieval” (SSRI - secure
storage and retrieval of information) 

○ deals with some malicious faults at dispersion and reconstruction, optional confidentiality 
○ Idea: add threshold cryptography for confidentiality 
○ Drawback: synchronous networks 

69 

Works 

a16z crypto  7070 

IDA through Erasure coding 
How do servers verify that they have been given correct pieces? 

● The nodes get the whole file, they check the piece and then erase the file and only store the
piece 
Bandwidth inefficient, storage efficient. 

● Clients observe the servers on reconstruction (servers agree on hashes of pieces), the client
checks all the hashes 

a16z crypto  71

● Cachin-Tessaro (2004): “Asynchronous Verifiable Information Dispersal” (AVID) 
○ async. networks 
○ Introduce the notion of verifiability: whenever the honest servers accept to store some

data, then the data is also consistent and no two distinct honest clients can reconstruct
different data. 

71 

Works 

a16z crypto  7272 

IDA from erasure coding (Rabin’89) 
File
Dispersal 

File
Retrieval 

F  Y1 

Y2 

Y5 

Y4 

Y3 

Assuming crash-faults and honest disperser: 
○ ✔ Termination: If the disperser is honest - all honest servers complete successfully. 
○ ✗ Agreement: Either all honest servers complete successfully, or none (regardless of the

honesty of the disperser). 
● If k honest servers completed the dispersal: 

○ ✔ Availability: The client will eventually reconstruct some F’. 
○ ✔ Correctness: If an honest client dispersed F, an honest client will reconstruct F. 

a16z crypto  7373 

Works 

a16z crypto  7474 

Modular blockchain design : rollups 

tx1, tx2, …, txn

Hash(state0)

txn+1, txn+2, …, tx2n

Hash(state1)[, 𝛑0→1]

tx2n+1, tx2n+2, …, tx3n

Hash(state2) [, 𝛑1→2]
… 

succinct proof for statement for h0, tx1,tx2,...,txn:
 “state1 is the result of applying tx1,tx2,...,txn to state0

AND h0 = Hash(state0)” 

● In order for validators to know if the transaction is valid or not, they need to run it by the
current state. 

● We assume there is prefiltering that leaves out bad transactions. 

a16z crypto  7575 

Modular blockchain design : rollups 

tx1, tx2, …, txn

Hash(state0)

txn+1, txn+2, …, tx2n

Hash(state1)[, 𝛑0→1]

tx2n+1, tx2n+2, …, tx3n

Hash(state2) [, 𝛑1→2]
… 

succinct proof for statement for h0, tx1,tx2,...,txn:
 “state1 is the result of applying tx1,tx2,...,txn to state0

AND h0 = Hash(state0)” 

Decoupling transaction storage and ordering from execution. 
 
Ethereum validators sequences and stores transactions. 
Roll-ups execute transactions and update state 

● prove correct execution (zk-rollups), or 
● allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups) 

a16z crypto  7676 

Modular blockchain design : rollups 

tx1, tx2, …, txn

Hash(state0)

txn+1, txn+2, …, tx2n

Hash(state1)[, 𝛑0→1]

tx2n+1, tx2n+2, …, tx3n

Hash(state2) [, 𝛑1→2]
… 

succinct proof for statement for h0, tx1,tx2,...,txn:
 “state1 is the result of applying tx1,tx2,...,txn to state0

AND h0 = Hash(state0)” 

Decoupling transaction storage and ordering from execution. 
 
Ethereum validators sequences and stores transactions. 
Roll-ups execute transactions and update state 

● prove correct execution (zk-rollups), or 
● allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups) 

a16z crypto  7777 

Modular blockchain design : rollups 

tx1, tx2, …, txn

Hash(state0)

txn+1, txn+2, …, tx2n

Hash(state1)[, 𝛑0→1]

tx2n+1, tx2n+2, …, tx3n

Hash(state2) [, 𝛑1→2]
… 

succinct proof for statement:
 “state1 is the result of applying tx1,tx2,...,txn to state0” 

Decoupling transaction ordering from execution. 
 
First set of validators sequences and stores transactions. 
Second set of validators execute transactions and update state 

● prove correct execution (zk-rollups), or 
● allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups) 

a16z crypto  7878 

Modular blockchain design : rollups 

tx1, tx2, …, txn

Hash(state0)

txn+1, txn+2, …, tx2n

Hash(state1)[, 𝛑0→1]

tx2n+1, tx2n+2, …, tx3n

Hash(state2) [, 𝛑1→2]
… 

succinct proof for statement:
 “state1 is the result of applying tx1,tx2,...,txn to state0” 

Decoupling transaction ordering from execution. 
 
First set of validators sequences and stores transactions. 
Second set of validators execute transactions and update state 

● prove correct execution (zk-rollups), or 
● allow clients to submit a fraud-proof if transactions aren’t executed correctly (optimistic-rollups) 

a16z crypto  7979 

Modular blockchain design : zk-rollups 

Hash(tx-list1)

Hash(state0)

Hash(tx-list2)

Hash(state1), 𝛑0→1

Hash(tx-list3)

Hash(state2), 𝛑1→2

… 

𝛑0→1 is a SNARK for “tx-list1(state0) == state1” 

Component #1: reliable accessible storage for data 
Anybody can make two kinds of request: 
1. by giving h, get back data, s.t. Hash(data) == h 
2. by giving h, get back signature σ on h, if the data behind h is stored 

Component #2: executor to produce 𝛑0→1  

a16z crypto  8080 

Modular blockchain design : rollups 
Data-availability
blockchain: 

“Please store data D” 

certD 

Consensus
blockchain: 

Pull transactions 

Proof of data availability: 
[certD, Hash(D)] 

[Hash(tx-list1),
DA-certtx1]

state0

[Hash(tx1), DA-certtx1]

state1 , 𝛑: state2 =
tx1(state0) AND

[Hash(tx1), DA-certtx1]

state1

a16z crypto  8181 

Blockchains struggle to scale 
● Bitcoin chain size (all transactions): 435 GB (1 MB block per 10 minutes)

○ Bitcoin miner only stores ~7 GB state of it (UTXO set)

● Ethereum chain size (all transactions): 1,200 GB (80 KB on average per 12 seconds = 4 MB per 10
minutes)

○ Growth: 0.5 GB/day
○ Cost: 16 gas / byte

■ $1 per 1 KB (Feb’22),
■ a photo (3 MB) from my phone would cost $3,000

a16z crypto  8282 

Blockchains are expensive for storing data 
● Bitcoin chain size (all transactions): 435 GB (1 MB block per 10 minutes)

○ Bitcoin miner only stores ~7 GB state of it (UTXO set)

● Ethereum chain size (all transactions): 1,200 GB (80 KB on average per 12 seconds = 4 MB per 10
minutes)

○ Growth: 0.5 GB/day
○ Cost: 16 gas / byte

■ $1 per 1 KB (Feb’22),
■ a photo (3 MB) from my phone would cost $3,000

Q: Why an ordinary user would want to store data on chain? The chains are for transactions not for data!
A: Services need to store data, in particular roll-ups.

How can we make the blockchains store more data and make it cheaper?

All data is replicated on all of the nodes:
● Huge redundancy
● Even smaller miners/stakers have to store the whole state
● So that’s the reason we can’t grow the state by a lot naively

You only need some reliable source to get the data,

a16z crypto  83 

Outline 

● Long-range attacks and costless simulation in PoS blockchains 
● Leader election in leader-based consensus protocols 
● Time synchronization 
● Threshold signatures 
● Post-quantum blockchains 

