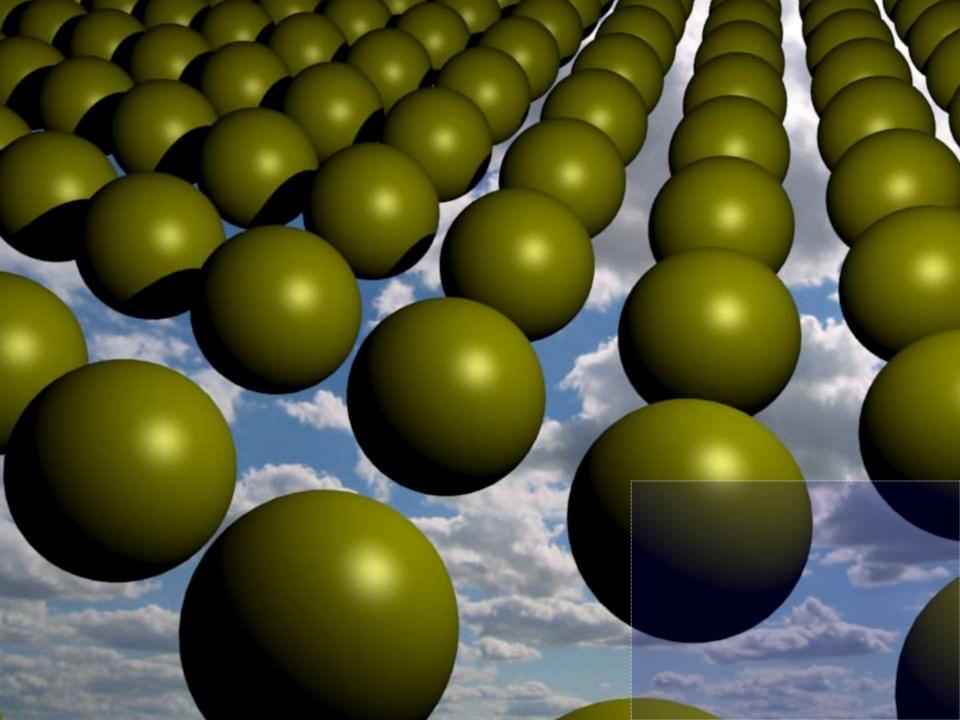
Winter School on Lattice-Based Cryptography and Applications
Bar-llan University, Israel 20/2/2012

Learning a Parallelepiped:

Cryptanalysis of GGH and NTRU Signatures Oded Regev (Tel Aviv University and CNRS, ENS-Paris)

Based on work with Phong Q. Nguyen (École normale supérieure)

[Eurocrypt'06]



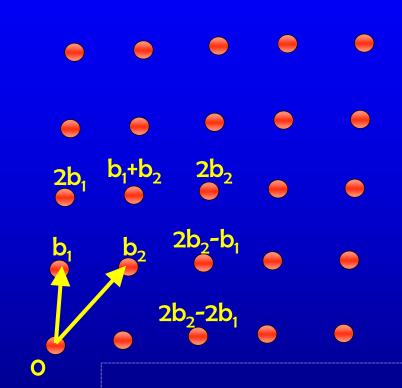
Lattices

Basis:

b₁,...,b_n vectors in Rⁿ

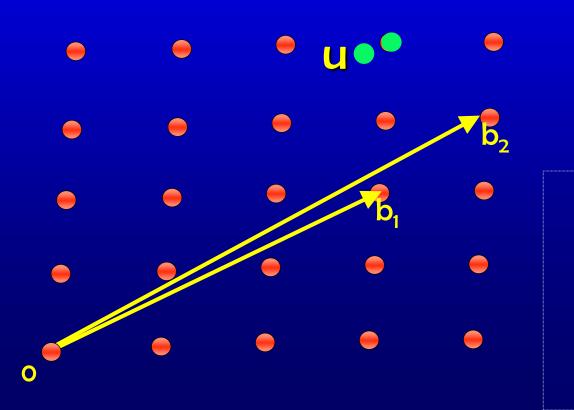
The lattice L is

 $L=\{a_1b_1+...+a_nb_n|a_i \text{ integers}\}$



Closest Vector Problem (CVP)

- CVP: Given a lattice and a target vector, find the closest lattice point
- Seems very difficult; best algorithms take time 2ⁿ
- However, checking if a point is in a lattice is easy



Babai's (rounding) CVP Algorithm

Babai's algorithm: given a point u, write

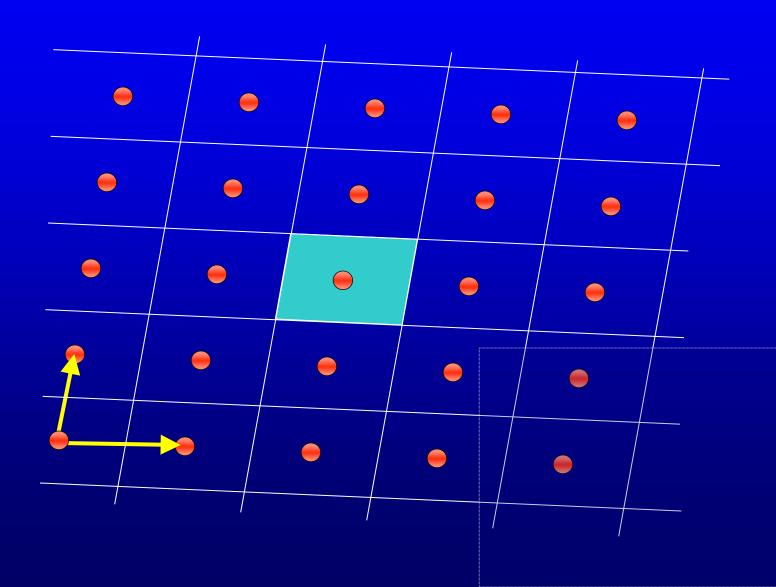
$$u = \alpha_1 b_1 + \dots + \alpha_n b_n$$

and output

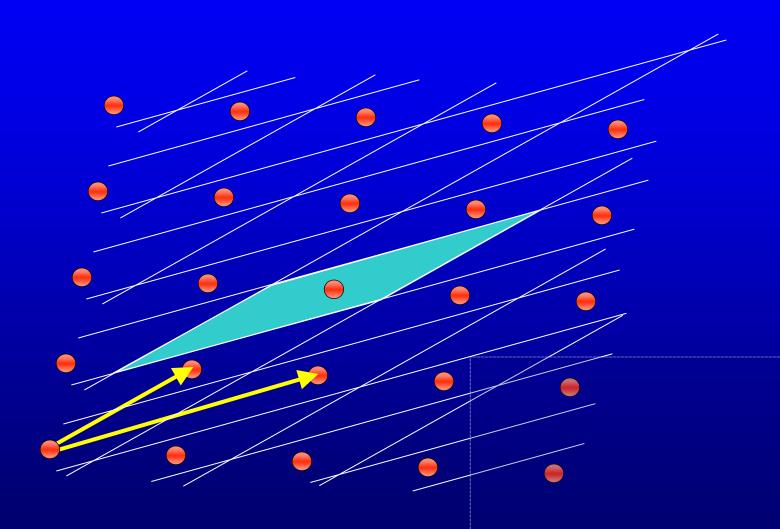
$$\lceil \alpha_1 \rfloor b_1 + \dots + \lceil \alpha_n \rfloor b_n$$

Works well for "good" bases

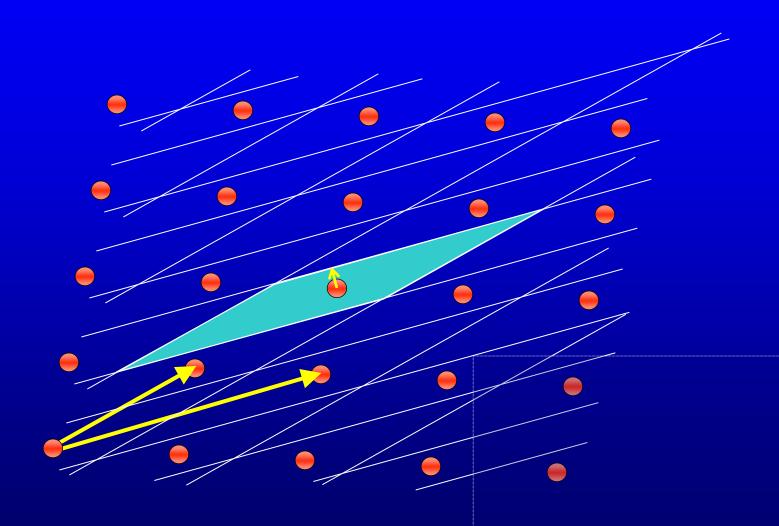
Babai's CVP Algorithm



Babai's CVP Algorithm



Babai's CVP Algorithm: Analysis



Babai's CVP Algorithm: Analysis

- For a basis b₁,...,b_n, define the dual basis b₁*,...,b_n* by taking b_i* to be the vector satisfying ⟨b_i*,b_i⟩=1 and ⟨b_i*,b_j⟩=0 for all i≠j.
- In matrix notation, if $B=(b_1,...,b_n)$, then $B^*=(B^{-1})^T$
- Notice that if $u = \alpha_1 b_1 + \cdots + \alpha_n b_n$ then $\alpha_i = \langle u, b_i^* \rangle$
- We can therefore equivalently write Babai's algorithm as:
 - Given a point u, output

$$[\langle u, b_1^* \rangle | b_1 + \cdots + [\langle u, b_n^* \rangle] b_n$$

So the radius of correct decoding is:

$$2 \max ||b_i^*||$$

• The lattice generated by b_1^*, \dots, b_n^* is called the dual lattice

Signature Scheme

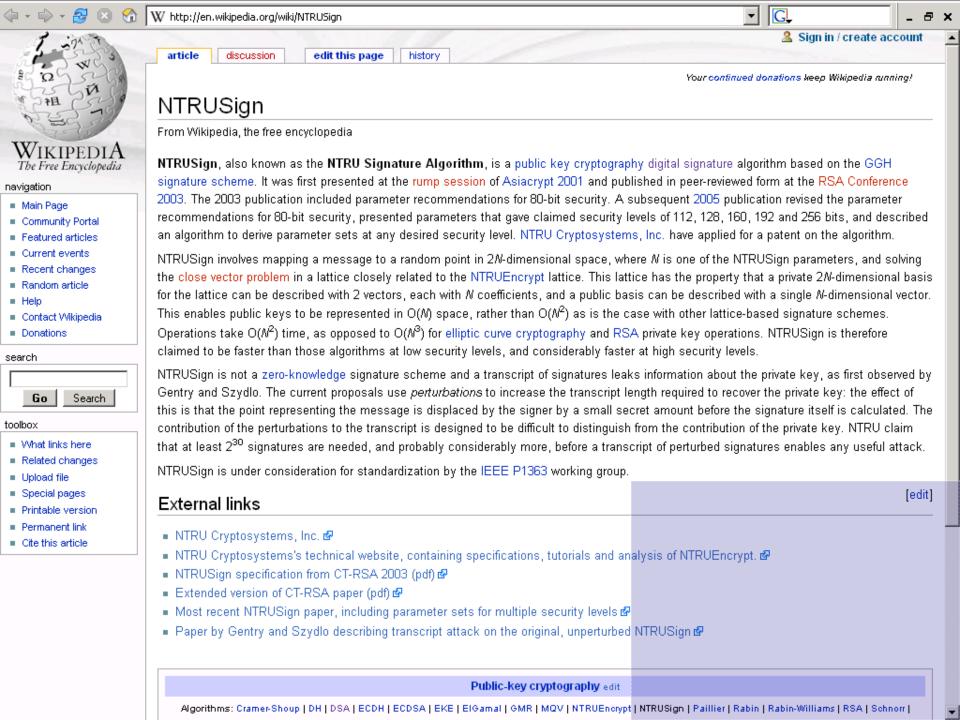
- Consists of:
 - Key generation algorithm: produces a (publickey,private-key) pair
 - Signing algorithm: given a message and a private-key, produces a signature
 - Verification algorithm: given a pair (message, signature) and a public key, verifies that the signature matches
- Although can be built from any one-way function, <u>efficient</u> constructions are very important and still a main open question

The GGH Signature Scheme [1997]

- Suggested in [GoldreichGoldwasserHalevi97]; no security proof
- Idea: CVP is hard, but easy with good basis
- The scheme:
 - Key generation algorithm: choose a lattice with some good basis
 - Private-key = good basis
 - Public-key = bad basis
 - Signing algorithm: given a message and a private key,
 - Map message to a point in space
 - Apply Babai's algorithm with good basis to obtain the signature
 - Verification algorithm: given message+signature and a public key, verify that
 - Signature is a lattice point, and
 - Signature is close to the message

GGH Signature Scheme: Private-key: Public-key: Message: Signature:

GGH Signature Scheme: Public-key: Message: Signature: Verification: 1. ● should be a lattice point 2. distance between • and • should be small



The NTRUsign Signature Scheme

[HoffsteinHowgraveGrahamPipherSilvermanWhyte01]

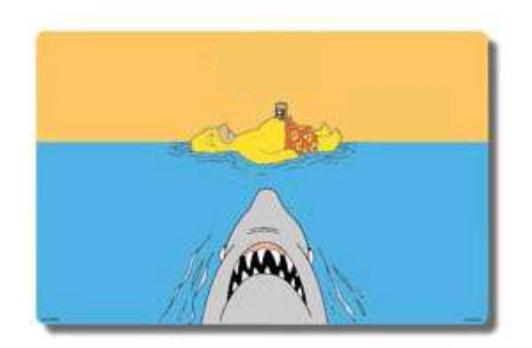
- Essentially a very efficient implementation of the GGH signature scheme
 - Signature length only 1757 bits
 - Signing and verification are faster than RSA-based methods
- Based on the NTRU lattices (bicyclic lattices generated from a polynomial ring)
- Developed by the company NTRU and was under IEEE P1363.1
- Some flaws pointed out in [GentrySzydlo'02]

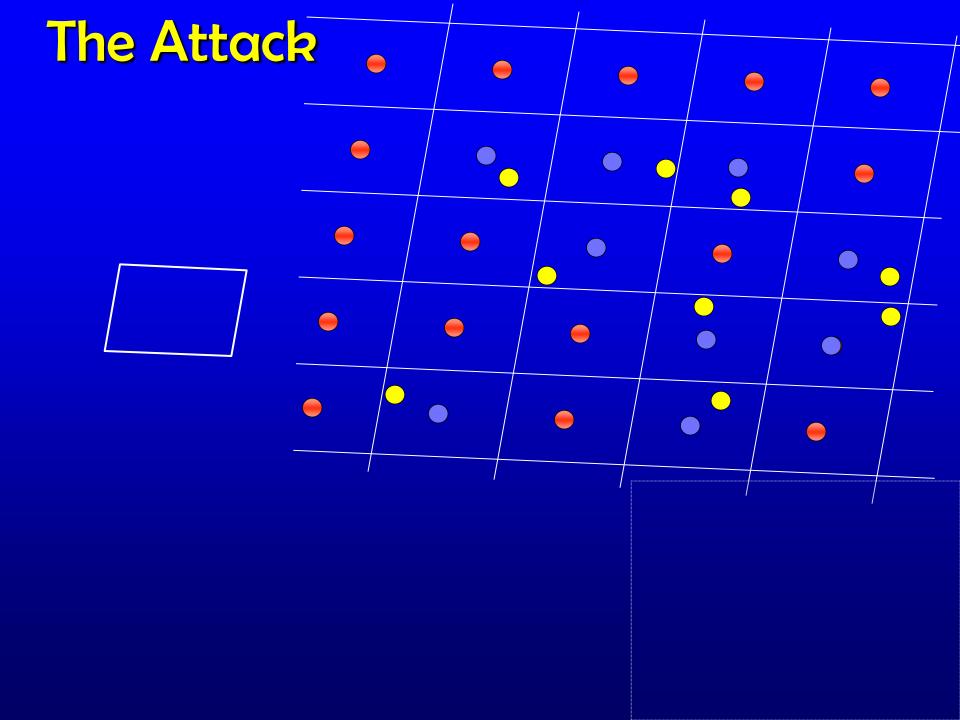
Main Result

- An inherent security flaw in GGH-based signature schemes
- Demonstrated a practical attack on:
 - GGH
 - Up to dimension 400
 - NTRUsign
 - Dimension 502
 - Applies to half of the parameter sets in IEEE P1363.1
 - Only 400 signatures needed!
- The attack recovers the private key
- Running time is a few minutes on a 2Ghz/2GB PC

Main Result

- Possible countermeasures:
 - Pertubations, as suggested by NTRU in several of the IEEE P1363.1 parameter sets
 - Larger entries in private key
 - It is not clear if the attack can be extended to deal with these extensions
 - Use provably secure alternatives!!
- NTRUEncrypt is still secure, as is all provably secure lattice-based crypto!



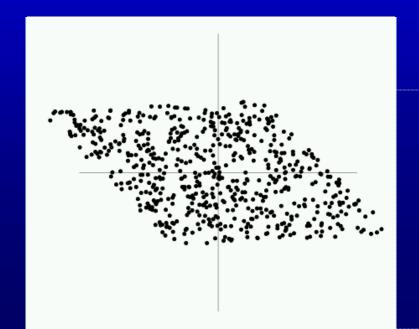


Hidden Parallelepiped Problem

So it is enough to solve the following problem:

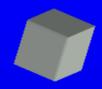
Given points sampled uniformly from an nodimensional centered parallelepiped, recover the parallelepiped

This would enable us to recover the private key



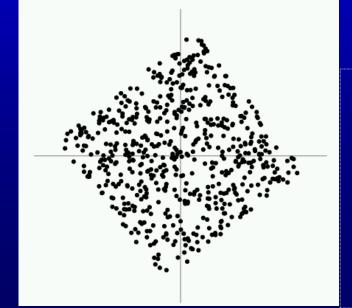
Hidden Hypercube Problem

Let's try to solve an easier problem:



Given points sampled uniformly from an n-dimensional centered unit hypercube, recover the hypercube

 We will later reduce the general case to the hypercube



HHP: First Attempt

For a unit vector u define the variance in the direction u as

$$Var(u) = E_x[\langle u, x \rangle^2]$$

- Perhaps by computing Var(u) for many u's we can learn something
- The samples x can be written as x = Uy for y chosen uniformly from [-1,1]ⁿ and an orthogonal matrix U, so

$$Var(u) = \mathbf{E}[\langle u, x \rangle^2] = \mathbf{E}[u^T x x^T u]$$

$$= \mathbf{E}[u^T U y y^T U^T u] = u^T U \mathbf{E}[y y^T] U^T u$$

$$= u^T U (I/3) U^T u = u^T u/3 = 1/3.$$

HHP: Second Attempt

So let's try the fourth moment instead:

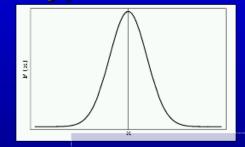
$$\operatorname{Kur}(u) = \operatorname{E}_{x}[\langle u, x \rangle^{4}]$$

A short calculation shows that

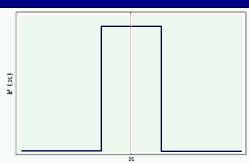
$$\operatorname{Kur}(u) = \frac{1}{3} - \frac{2}{15} \sum_{i=1}^{n} u_i^4$$

where u_i are u's coordinates in the hypercube basis

- Therefore:
 - In direction of the corners the kurtosis is ~1/3



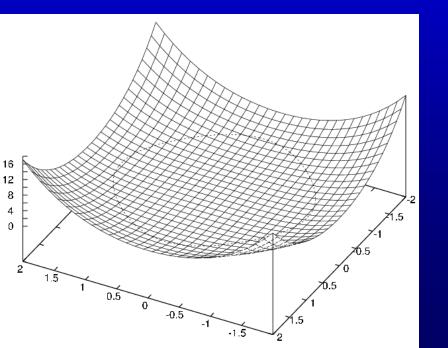
 In direction of the faces the kurtosis is 1/5



HHP: The Algorithm

The algorithm repeats the following steps:

- Choose a random unit vector u
- Perform a gradient descent on the sphere to find a local minimum of Kur(u)
- Output the resulting vector



Each application randomly yields one of the 2n face vectors

Back to HPP

- Now the samples can be written as x=Ry where y is chosen uniformly from [-1,1] $^{\rm n}$ and R is some matrix
- Consider the average of the matrix xx^T

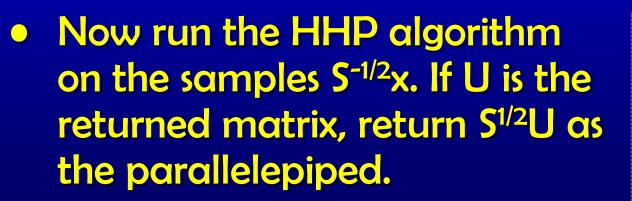
$$\mathbf{E}[xx^T] = \mathbf{E}[Ryy^TR^T]$$
$$= R\mathbf{E}[yy^T]R^T = RR^T/3.$$

- Hence, we can get an approximation of S=RR^T (the Gram matrix of R)
- Now the matrix S^{-1/2}R is orthogonal:

$$R^T S^{-1/2} S^{-1/2} R = I$$

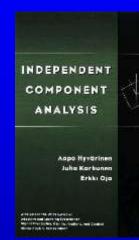
Back to HPP

- Hence, by applying the transformation S^{-1/2} to our samples x, we obtain samples from a unit hypercube, so we're back to HCP
- In other words, we have morphed a parallelepiped into a hypercube:



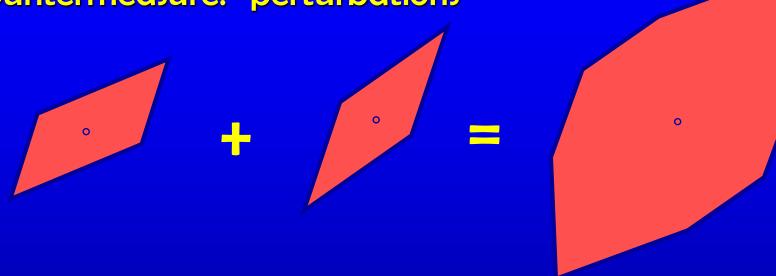
We're not alone

- The HPP has already been looked at:
 - In statistical analysis, and in particular Independent Component Analysis (ICA). The FastICA algorithm is very similar to ours [HyvärinenOja97]. Many applications in signal processing, neural networks, etc.
 - In the computational learning community, by [FriezelerrumKannan96]. A somewhat different



 However, none gives a rigorous analysis. We analyze the algorithm rigorously, taking into account the effects of noise Followup Work

Countermeasure: "perturbations"



- Can the attack be extended to deal with pertubrations?
 - Yes, to some extent![DucasNguyen12]
- Provably secure signat
 Gaussian sampler
 [GentryPeikertVaikuntanat

Thanks