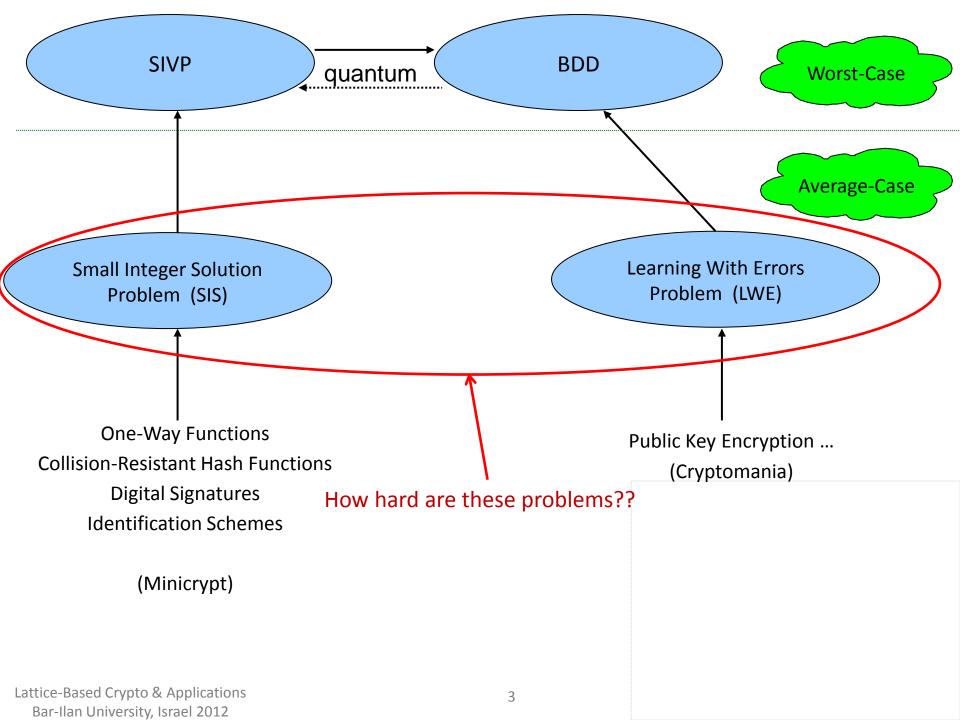
Basic Cryptanalysis

Vadim Lyubashevsky INRIA / ENS, Paris

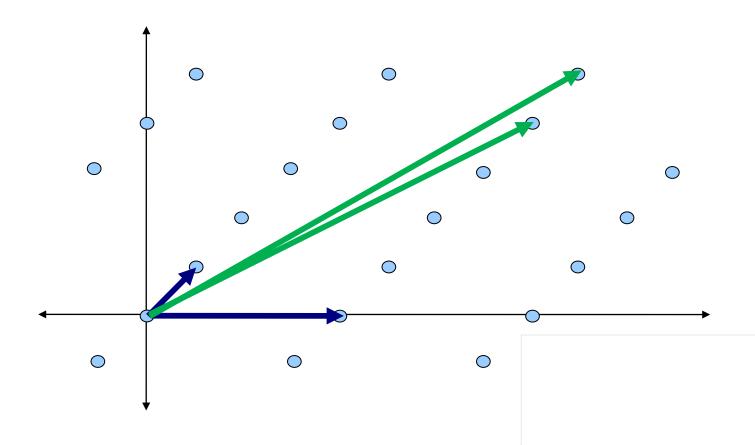
Outline

- LLL sketch
- Application to Subset Sum
- Application to SIS
- Application to LWE
- Lattice Reduction in Practice



[Lenstra, Lenstra, Lovasz '82]

Lattice Bases



The Goal of Lattice Reduction

Obtain a basis **B** in which the Gram-Schmidt vectors are not decreasing too quickly

This roughly means that the basis vectors are somewhat orthogonal to each other

LLL Reduced Basis **B**

$$\mu_{i,j} = (\mathbf{b_i} \cdot \mathbf{\tilde{b}_j}) / ||\mathbf{\tilde{b}_j}||^2$$

1. All
$$|\mu_{i,j}| \le 0.5$$

1. All
$$|\mu_{i,j}| \le 0.5$$

2. $0.75||\tilde{\mathbf{b}}_{i}||^{2} \le ||\mu_{i+1,i}\tilde{\mathbf{b}}_{i} + \tilde{\mathbf{b}}_{i+1}||^{2}$ $||\tilde{\mathbf{b}}_{i+1}||^{2} \ge 0.5||\tilde{\mathbf{b}}_{i}||^{2}$

Short Vector in an LLL-reduced Basis

<u>Thm:</u> The vector $\mathbf{b_1}$ in an LLL-reduced basis has length at most $2^{(n-1)/2} \cdot \lambda_1(L(\mathbf{B}))$

Proof:

$$||\tilde{\mathbf{b}}_{\mathbf{n}}||^{2} \ge 0.5||\tilde{\mathbf{b}}_{\mathbf{n-1}}||^{2} \ge ... \ge 0.5^{n-1}||\tilde{\mathbf{b}}_{\mathbf{1}}||^{2} = 0.5^{n-1}||\mathbf{b}_{\mathbf{1}}||^{2}$$

 $||\mathbf{b}_{\mathbf{1}}|| \le 2^{(n-1)/2}||\tilde{\mathbf{b}}_{\mathbf{i}}||$ for all i
Since, $\min_{\mathbf{i}} ||\tilde{\mathbf{b}}_{\mathbf{i}}|| \le \lambda_{1}(L(\mathbf{B}))$, we have
 $||\mathbf{b}_{\mathbf{1}}|| \le 2^{(n-1)/2} \cdot \lambda_{1}(L(\mathbf{B}))$

$$\begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

- 1. All $|\mu_{i,i}| \le 0.5$
- 2. $0.75||\tilde{\mathbf{b}}_{\mathbf{i}}||^2 \le ||\mu_{\mathbf{i+1},\mathbf{i}}\tilde{\mathbf{b}}_{\mathbf{i}} + \tilde{\mathbf{b}}_{\mathbf{i+1}}||^2$

- 1. All $|\mu_{i,j}| \le 0.5$
- 2. $0.75||\tilde{\mathbf{b}}_{\mathbf{i}}||^2 \le ||\mu_{\mathbf{i+1},\mathbf{i}}\tilde{\mathbf{b}}_{\mathbf{i}} + \tilde{\mathbf{b}}_{\mathbf{i+1}}||^2$

- 1. All $|\mu_{i,j}| \le 0.5$
- 2. $0.75||\tilde{\mathbf{b}}_{\mathbf{i}}||^2 \le ||\mu_{\mathbf{i+1},\mathbf{i}}\tilde{\mathbf{b}}_{\mathbf{i}} + \tilde{\mathbf{b}}_{\mathbf{i+1}}||^2$

- 1. All $|\mu_{i,j}| \le 0.5$
- 2. $0.75||\tilde{\mathbf{b}}_{\mathbf{i}}||^2 \le ||\mu_{\mathbf{i+1},\mathbf{i}}\tilde{\mathbf{b}}_{\mathbf{i}} + \tilde{\mathbf{b}}_{\mathbf{i+1}}||^2$

APPLICATION OF LLL: THE SUBSET SUM PROBLEM

Subset Sum Problem

$$a_i$$
, T in Z_M

a_i are chosen randomly

T is a sum of a random subset of the a_i

 $a_1 \quad a_2 \quad a_3 \quad \dots \quad a_n$

Find a subset of a_i's that sums to T (mod M)

Subset Sum Problem

$$a_i$$
, T in Z_{49}

a_i are chosen randomlyT is a sum of a random subset of the a_i

15 31 24 3 14

11

$$15 + 31 + 14 = 11 \pmod{49}$$

How Hard is Subset Sum?

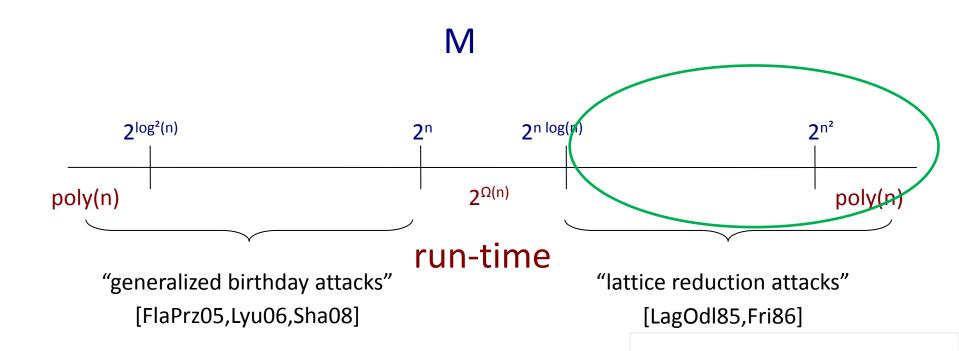
$$a_i$$
, T in Z_M
 a_1 a_2 a_3 ... a_n T

Find a subset of a 's that sums to T (mod M)

Hardness Depends on:

- Size of n and M
- Relationship between n and M

Complexity of Solving Subset Sum



Subset Sum and Lattices

$$a_1 \ a_2 \ a_3 \ ... \ a_n \ T = (\Sigma a_i x_i \mod M) \text{ for } x_i \text{ in } \{0,1\}$$

$$a = (a_1, a_2, ..., a_n, -T)$$

$$L^{\perp}(a) = \{y \text{ in } \mathbf{Z}^{n+1} : \mathbf{a} \cdot \mathbf{y} = 0 \mod M\}$$

Notice that
$$\mathbf{x} = (x_1, x_2, \dots, x_n, 1)$$
 is in $L^{\perp}(\mathbf{a})$

$$||\mathbf{x}|| < \sqrt{(n+1)}$$

Want to use LLL to find this x

When Will LLL Solve Subset Sum?

$$L^{\perp}(\mathbf{a}) = \{ \mathbf{y} \text{ in } \mathbf{Z}^{n+1} : \mathbf{a} \cdot \mathbf{y} = 0 \text{ mod } \mathbf{M} \}$$

Notice that
$$\mathbf{x} = (x_1, x_2, ..., x_n, 1)$$
 is in $L^{\perp}(\mathbf{a}), ||\mathbf{x}|| < \sqrt{(n+1)}$

LLL can find a vector
$$< \delta^{n+1} \lambda_1(L^{\perp}(a)) < \delta^{n+1} \sqrt{(n+1)}$$

So if there are *no other vectors* in $L^{\perp}(a)$ of length $< \delta^{n+1} V(n+1)$, LLL must find $\mathbf{x} = (x_1, x_2, ..., x_n, 1)$!

Caveat: $\pm x$, $\pm 2x$, $\pm 3x$, ... are all in $L^{\perp}(a)$, but we could recover x from these Good vectors: $(kx_1, kx_2, ..., kx_n, k)$

The "Bad" Vectors

$$y=(y_1, ..., y_n, k)$$
 such that $||y|| < \delta^{n+1} \sqrt{(n+1)} = r$ and

$$a_1y_1 + ... + a_ny_n - kT = 0 \mod M$$

 $a_1y_1 + ... + a_ny_n - k(a_1x_1 + ... + a_nx_n) = 0 \mod M$
 $a_1(y_1 - kx_1) + ... + a_n(y_n - kx_n) = 0 \mod M$

(and for some i, y_i - $kx_i \neq 0 \mod M$)

Probability of a Bad Lattice Vector

$$S_r = \{ y \text{ in } Z^{n+1}, ||y|| < r \}$$

For any
$$(x_1,...,x_n)$$
 in $\{0,1\}^n$ and $(y_1, ..., y_n,k)$ in S_r :

$$Pr_{a_1,...,a_n}[a_1(y_1 - kx_1) + ... + a_n(y_n - kx_n) = 0 \mod M]$$

$$= 1/M \quad unless (y_i - kx_i) = 0 \mod M \text{ for all i}$$
(the last line assumes that M is prime)

Probability of a Bad Lattice Vector

$$S_r = \{ y \text{ in } Z^{n+1}, ||y|| < r \}$$

For <u>all</u> $(x_1,...,x_n)$ in $\{0,1\}^n$ and $(y_1, ..., y_n, k)$ in S_r such that $y_i - kx_i \neq 0$ mod M for some i:

$$Pr_{a_1, ..., a_n}[a_1(y_1 - kx_1) + ... + a_n(y_n - kx_n) = 0 \mod M]$$

 $\leq |S_r| \cdot 2^n / M$

Want $|S_r| \cdot 2^n \ll M$

Number of **Z**ⁿ Points in a Sphere

of integer points in a sphere of radius r

 \approx

volume of sphere of radius r

 \approx

 $(\pi n)^{-1/2}(2\pi e/n)^{n/2} r^n$

(r needs to be at least $n^{1/2+\epsilon}$)

Probability of a Bad Lattice Vector

Want $|S_r| \cdot 2^n \ll M$, where $r = \delta^{n+1} \sqrt{(n+1)}$

$$|S_r| \cdot 2^n < 9^{n+1} \cdot \delta^{(n+1)^2}$$

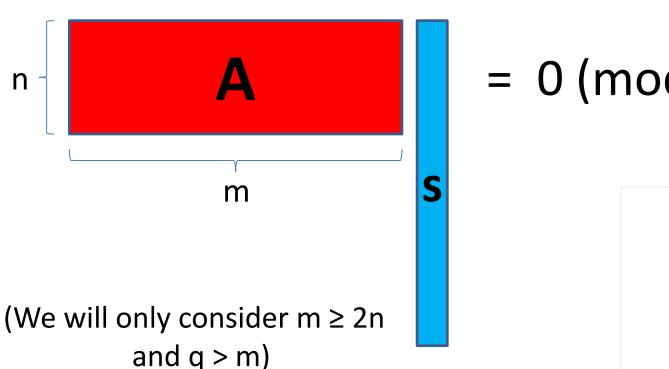
If M > $9^{n+1} \cdot \delta^{(n+1)^2}$, subset sum can be solved in poly-time

(for all but a negligible number of instances)

APPLICATION OF LLL: THE SIS PROBLEM

The SIS Problem

Given a random **A** in $\mathbf{Z}_{\alpha}^{n \times m}$, Find a "small" s such that As = 0 mod q



 $= 0 \pmod{q}$

Finding "Small" Vectors Using LLL

$$L^{\perp}(\mathbf{A}) = \{\mathbf{y} \text{ in } \mathbf{Z}^{m} : \mathbf{A}\mathbf{y} = 0 \text{ mod } \mathbf{q}\}$$

What is the shortest vector of $L^{\perp}(A)$?

Minkowski's Theorem: $\lambda_1(L^{\perp}(\mathbf{A})) \leq \sqrt{m} \det(L^{\perp}(\mathbf{A}))^{1/m}$

What is $det(L^{\perp}(\mathbf{A}))^{1/m}$?

Determinant of an Integer Lattice

If L is an integer lattice, then $det(L) = \# (Z^m/L)$

- 1. $\#(\mathbf{Z}^{m}/L^{\perp}(\mathbf{A})) \leq q^{n}$
 - For any $\mathbf{x_1}$, $\mathbf{x_2}$ in \mathbf{Z}^m , if $\mathbf{A}\mathbf{x_1} = \mathbf{A}\mathbf{x_2}$ mod q, then $\mathbf{x_1}$, $\mathbf{x_2}$ are in the same coset of $\mathbf{Z}^m / \mathbf{L}^{\perp}(\mathbf{A})$.
- 2. If **A** has n linearly-independent columns, then $\#(\mathbf{Z}^m/L^{\perp}(\mathbf{A})) = q^n$

For every \mathbf{y} in \mathbf{Z}_{q}^{n} , there is an \mathbf{x} in \mathbf{Z}^{m} such that $\mathbf{A}\mathbf{x}=\mathbf{y}$ mod \mathbf{q}

Shortest Vector in $L^{\perp}(\mathbf{A})$

Minkowski's Theorem: $\lambda_1(L^{\perp}(\mathbf{A})) \leq \sqrt{m} \det(L^{\perp}(\mathbf{A}))^{1/m}$ For almost all \mathbf{A} , $\det(L^{\perp}(\mathbf{A})) = q^n$ Thus, $\lambda_1(L^{\perp}(\mathbf{A})) \leq \sqrt{m} \ q^{n/m}$

Can it be much smaller??

If $q^{n/m} >> \sqrt{2\pi e}$, then No.

Shortest Vector in $L^{\perp}(\mathbf{A})$

$$S_r = \{ y \text{ in } Z^m, ||y|| < r \}$$

For any $s\neq 0$ mod q in S_r , $Pr_A[As = 0 \mod q] = 1/q^n$ For all $s\neq 0$ mod q in S_r , $Pr_A[As = 0 \mod q] \leq |S_r|/q^n$ $\approx (\pi m)^{-1/2}(2\pi e/m)^{m/2} r^m / q^n$

r needs to be
$$\approx \sqrt{m/(2\pi e)}q^{n/m}$$

(since we assumed, $q^{n/m} >> \sqrt{2\pi e}$, we have $r >> \sqrt{m}$, and so # of integer points in a sphere of radius $r \approx$ volume of sphere of radius r)

Shortest Vector in $L^{\perp}(\mathbf{A})$

For almost all **A** in $\mathbb{Z}_q^{n \times m}$, when $q^{n/m} >> \sqrt{2\pi e}$

$$(1-ε)\sqrt{m/(2πe)}q^{n/m} \le \lambda_1(L^{\perp}(\mathbf{A})) \le \sqrt{m} q^{n/m}$$

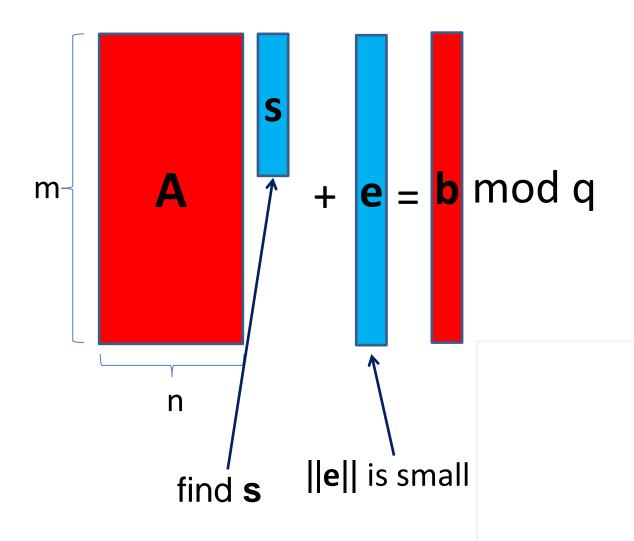
Experiments show that it's closer to this

Using LLL, can find a vector of length δ^{m} . $\sqrt{m/(2\pi e)}q^{n/m}$

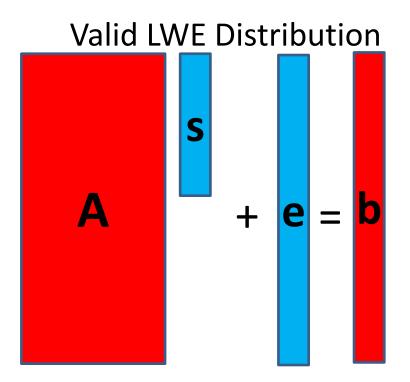
- Sometimes, to break a system, need to bound the infinity norm, so could be harder
- Sometimes it makes sense to not use all m columns

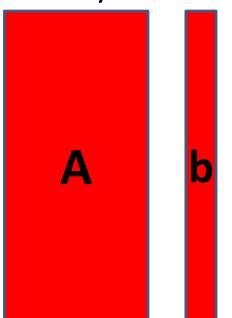
APPLICATION OF LLL: THE LWE PROBLEM

The LWE Problem



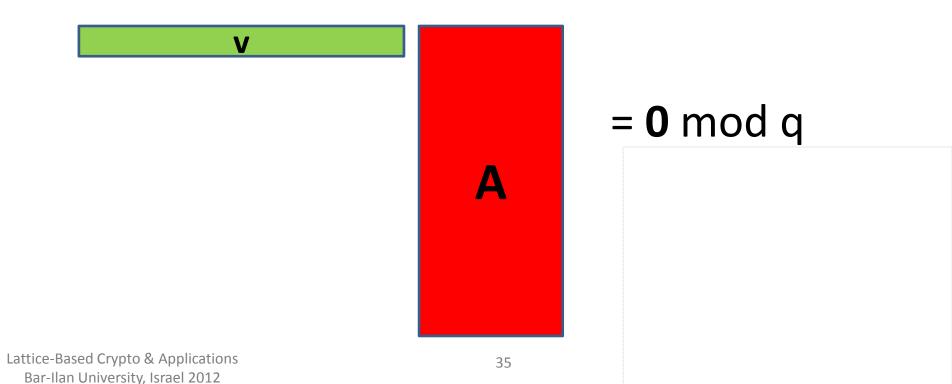
Decision LWE





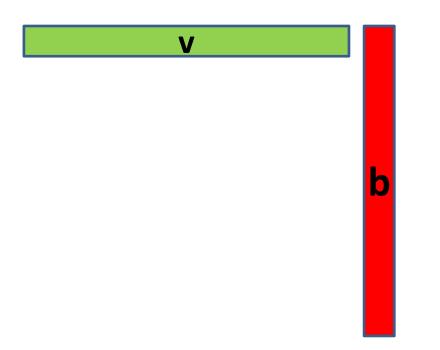
Solve SIS to Solve LWE

Using LLL, can find a vector \mathbf{v} of length $\delta^{m} \cdot \sqrt{m/(2\pi e)} q^{n/m}$ (set m optimally, to minimize the length of \mathbf{v})



Solve SIS to Solve LWE

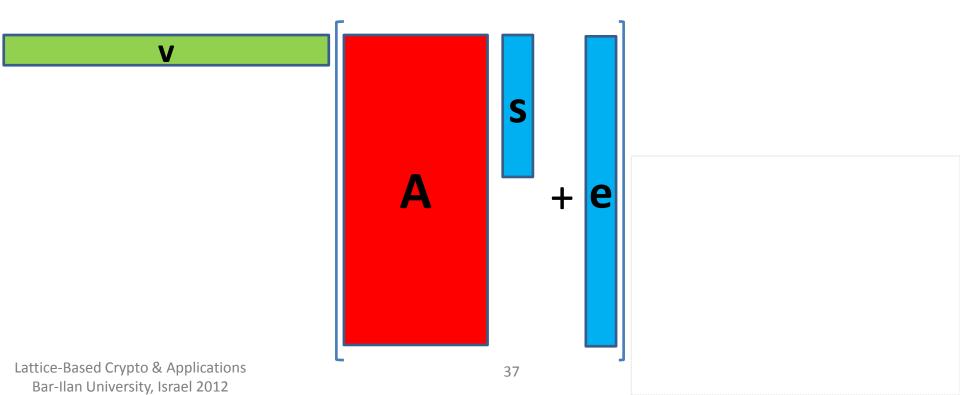
Using LLL, can find a vector \mathbf{v} of length $\delta^{m} \cdot \sqrt{m/(2\pi e)}q^{n/m}$ (set m optimally, to minimize the length of \mathbf{v}) Compute $\mathbf{v} \cdot \mathbf{b}$ mod q.



Lattice-Based Crypto & Applications Bar-Ilan University, Israel 2012

Solve SIS to Solve LWE

Using LLL, can find a vector \mathbf{v} of length $\delta^{m} \cdot \sqrt{m/(2\pi e)}q^{n/m}$ (set m optimally, to minimize the length of \mathbf{v}) Compute $\mathbf{v} \cdot \mathbf{b}$ mod q. If $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, then $\mathbf{v} \cdot \mathbf{b} = \mathbf{v} \cdot \mathbf{e}$ is small.



Solve SIS to Solve LWE

Using LLL, can find a vector \mathbf{v} of length $\delta^{m} \cdot \sqrt{m/(2\pi e)} q^{n/m}$ (set m optimally, to minimize the length of \mathbf{v})

Compute $\mathbf{v} \cdot \mathbf{b}$ mod q. If $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, then $\mathbf{v} \cdot \mathbf{b} = \mathbf{v} \cdot \mathbf{e}$ is small.

If \mathbf{b} is uniform, then $\mathbf{v} \cdot \mathbf{b}$ mod q is uniform.

Solve SIS to Solve LWE

Using LLL, can find a vector \mathbf{v} of length $\delta^{m} \cdot \sqrt{m/(2\pi e)} q^{n/m}$ (set m optimally, to minimize the length of \mathbf{v})
Compute $\mathbf{v} \cdot \mathbf{b}$ mod q. If $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, then $\mathbf{v} \cdot \mathbf{b} = \mathbf{v} \cdot \mathbf{e}$ is small.

If \mathbf{b} is uniform, then $\mathbf{v} \cdot \mathbf{b}$ mod q is uniform.

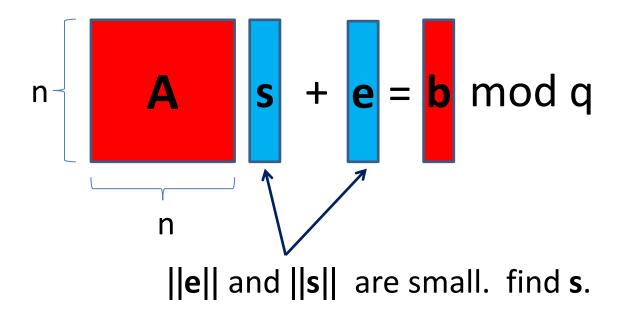
$$||\mathbf{v} \cdot \mathbf{e}|| \le ||\mathbf{v}|| \cdot ||\mathbf{e}|| \le \delta^{m} \cdot \sqrt{m/(2\pi e)} q^{n/m} ||\mathbf{e}||$$

So, if $\delta^m \cdot \sqrt{m/(2\pi e)} q^{n/m} || \mathbf{e} || < q/2$, can solve decision LWE and then search LWE as well

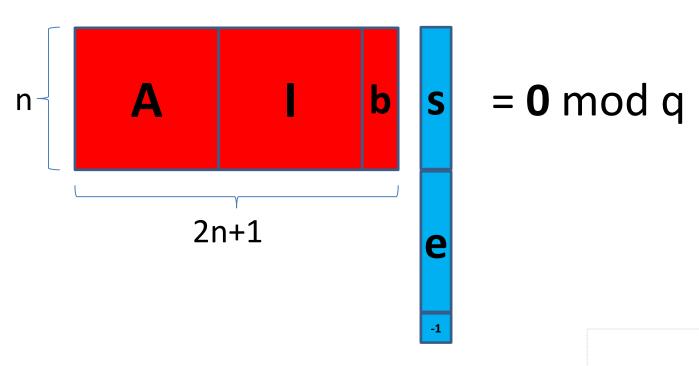
A Different Algorithm

- The previous algorithm assumed we could obtain a lot of samples. Many crypto applications do not provide this.
- If we don't have a lot of samples can use "sample-preserving" reduction from search to decision LWE [MicMol '11]
- In some cases, that reduction does not apply (e.g. ideal lattices ...)

LWE Problem With Few Samples



LWE Problem With Few Samples



 $L^{\perp}(A') = \{y \text{ in } Z^{2n+1} : [A|I|b]y = 0 \text{ mod } q\}$

Can show that for most **A**, the "bad" vectors have length at least $(1-\epsilon)\sqrt{m/(2\pi e)}q^{n/m}$

Important Caveat

$$L^{\perp}(A') = \{y \text{ in } Z^{2n+1} : [A|I|b]y = 0 \text{ mod } q\}$$

Can show that for most **A**, the "bad" vectors have length at least $(1-\epsilon)\sqrt{m/(2\pi e)}q^{n/m}$

Can find s,e if $||\mathbf{s}|\mathbf{e}| - \mathbf{1}|| \le \delta^{m} (1-\epsilon) \sqrt{m/(2\pi e)} q^{n/m}$

What if LLL does not find s,e?

Then it will act as if the short vector **s**|**e**|**-1** does not exist!

IN PRACTICE

[Gama and Nguyen '08]

Two Types of Problems

Short Vector

given **A**, find a short **s** such that **As=0** mod q

Unique Short Vector

given **A** and **As** mod q, find this short **s**

||s|| is greater than det^{1/m}

||s|| is less than det^{1/m}

Unique Short Vector Problem

Looking for very short vector s

The next shortest vector not equal to ks is v

The hardness of finding s depends on ||v|| / ||s||

Let
$$\alpha = ||\mathbf{v}|| / ||\mathbf{s}|| = \lambda_2 / \lambda_1$$

Short Vector Problem

Looking for vector **s** such that $\mathbf{As} = \mathbf{0}$ mod q (and there are no very short vectors in $L^{\perp}(\mathbf{A})$)

The shortest **s** that can be found depends on $\alpha = ||\mathbf{s}|| / \det(\mathbf{L}^{\perp}(\mathbf{A}))^{1/m}$

Two Types of Problems

Short Vector

i.e. given **A**, find a short **s** such that **As=0** mod q

$$\alpha = ||\mathbf{s}|| / \det(\mathbf{L}^{\perp}(\mathbf{A}))^{1/m}$$

Unique Short Vector

i.e. given **A** and **As** mod q, find this short **s**

$$\mathbf{A'} = [\mathbf{A} \mid \mathbf{As}]$$

$$\alpha = \lambda_2(\mathsf{L}^{\perp}(\mathbf{A'})) / ||\mathbf{s}||$$

$$\approx \lambda_1(\mathsf{L}^{\perp}(\mathbf{A})) / ||\mathbf{s}||$$

α =1.02 ^m	Can be broken using LLL
α =1.01 ^m	Can be broken using BKZ (improvement of LLL)
α =1.007 ^m	Seems quite secure for now
α=1.005 ^m	Seems quite secure for the foreseeable future

Further References

LLL Algorithm: Oded Regev's lecture notes

www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2009/index.html

Cryptanalysis using lattice reduction algorithms:

Nicolas Gama and Phong Nguyen: "Predicting Lattice Reduction"

Oded Regev and Daniele Micciancio: "Lattice-Based Cryptography"