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 Optimizations of Somewhat Homomorphic 
Encryption (SWHE) 

 Constructions of Fully Homomorphic 
Encryption (FHE) 
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And Better Management of Ciphertext 
Noise… 
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Focusing on the “noise 
problem”… 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 Noisy Polly Cracker Version: 
◦ Let χ be an error distribution. 

◦ Distinguish these distributions: 

 Generate uniform s ← Zq
n.  For many i, generate ei ← χ 

and a linear polynomial fi(x1, …, xn) = f0+f1x1+…+fnxn 
(from Zq

n+1) such that [fi(s1, …, sn)]q = ei.  

 For many i, generate and output a uniformly random 
linear polynomial fi(x1, …, xn) (from Zq

n+1). 
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 ADD and MULT:  

 Output sum or product of 
ciphertext polynomials. 

 Relinearize / Key-Switch 

 Parameters: q such that gcd(q,2)=1. 

 KeyGen: Secret = uniform s 2 Zq
n.  Public key: 

linear polys {fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q. 

 Encrypt: Set g(x1,…,xn) as a random subset sum of 
{fi(x1,…,xn)}.  Output c(x1,…,xn)=m+g(x1,…,xn). 

 Decrypt: [c(s)]q = m+smeven.  Reduce mod 2. 
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 ADD: c(x) = c1(x)+c2(x). 
◦ Noise of c(x) – namely, [c(s)]q – is sum of noises. 

 MULT: c(x) = c1(x)∙c2(x). 
◦ Noise [c(s)]q is product of noises. 

◦ Sort of… After MULT, there is “relinearization” step that 
adds a small amount to the noise. 

 Function F: c(x) ≈ F(c1(x),…,ct(x)).   
◦ Noise [c(s)]q ≈ f(c1(s),…,ct(s)) – i.e., F applied to noises. 

◦ Rough approximation:  

 If F has degree d and fresh noises are                                   
bounded by B, c(x) has noise Bd. 

 Noise magnitude increases                                           
exponentially with degree. 
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 SWHE ciphertexts must be large to let noise 
“room to grow”. 

 “Noise” grows exponentially with degree. To 
successfully evaluate degree-d poly, noise        
B Ã Bd without “wrapping”. 

 So, coefficients of lattice vectors have > d bits. 

 For security, we need it to be hard to                   
Bd-1 > 2d-approximate lattice problems in 2k 
time. 
 Requires lattice dim > d∙k.  
 Total ciphertext length > d2∙k bits. 
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 Since total ciphertext length ≈ d2∙k bits, we 
have SWHE for bounded degree: 

 SWHE for bounded degree: A family of schemes 
E(d), d ∈ Z, that for security parameter k, 
◦ E(d) can homomorphically evaluate functions of degree d. 

◦ KeyGen, Enc, Dec, ADD, MULT are all poly(k,d). 

◦ Eval has complexity polynomial in k, d, and circuit size. 

 

 This is the best we can hope for 
when noise grows exponentially 

with degree. 
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 “Leveled FHE” [Gen09]: Relaxation of FHE… A 
family of schemes E(L), L ∈ Z, is “leveled fully 
homomorphic” if, for security parameter k, 
◦ E(L) can homomorphically evaluate circuits of depth L, 

◦ The Dec (decrypt) function is the same for all L, 

◦ KeyGen, Enc, Dec, ADD, MULT are all poly(k,L). 

◦ Eval has complexity polyomial in k, L, and circuit size. 

 Humbler name for it: “SWHE 
for bounded depth circuits”. 
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 Our fantasy: 
◦ Noise doesn’t grow exponentially with degree. 

◦ There is some simple trick to reduce noise after 
MULTs. 

◦ We get better noise management, hence shorter 
ciphertexts and SWHE for bounded depth. 
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 Crazy Idea [BV11b, BGV12]:  
◦ Suppose c encrypts m – that is, m = [[c(s)]q]2. 

◦ Let’s pick p<q and set c*(x) = (p/q)¢c(x), rounded. 

◦ Maybe it is true that: 

 c*(x) encrypts m: m = [[c*(s)]p]2 (new inner modulus). 

 |[c*(s)]p| ≈ (p/q) ¢ |[c(s)]q| (noise is smaller). 

◦ This really shouldn’t work… 
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 Scaling lemma: Let p < q be odd moduli. 

◦ Given c with m = [[<c,s>]q]2. Set c’ = (p/q)c.  
Set c” to be 
 the integer vector closest to c’ 

 such that c” = c mod 2. 

◦ If |[<c,s>]q| < q/2 - (q/p)¢ l1(s), then c” is a valid 
encryption of m with possibly much less noise! 

 m = [<c”,s>]p]2. 

 |[<c”,s>]p| < (p/q) ¢ |[<c,s>]q| + l1(s),                                                    
where l1(s) is l1-norm of s. 
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Annotated Proof 

1. For some k, [<c,s>]q=<c,s>-kq. 

2. (p/q)[<c,s>]q = <c’,s>-kp. 

3. |<c”-c’,s>|  < l1(s). 

4.  Thus, |<c”,s>-kp|< (p/q) |[<c,s>]q| + l1(s) < p/2. 

5.  So, [<c”,s>]p = <c”,s> – kp.  

6.  Since c’ = c and p = q mod 2, we have [<c”,s>]p]2=[<c,s>]q]2. 

1. Imagine <c,s> is close to kq. 

2. Then <c’,s> is close to kp. 

3. <c”,s> close to kp if s is small. 

Scaling lemma:Let p<q be odd moduli. 
◦ Given c with m = [[<c,s>]q]2. Set c’ 

= (p/q)c.  Set c” to be 
 the integer (ring) vector closest to c’ such 

that c” = c mod 2. 
◦ If |[<c,s>]q| < q/2 - (q/p)¢ l1(s), then: 
 c” is a valid encryption of m with possibly 

much less noise! 
 m = [<c”,s>]p]2,   and                       

|[<c”,s>]p| < (p/q) ¢ |[<c,s>]q| + l1(s). 
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 Example: q=127, p=29, c=(175,212), s=(2,3) 

 <c,s> mod q = 986-8∙127 = -30 

 c’ = (p/q) ∙ c = (39.9,48.4) 
◦ To get c”, we round down both values (39,48). 

 <c”,s> mod p = 222-8∙29 = -10 

 k=8 in both cases, and -30=-10 mod 2. 

 The noise magnitude decreases from 30 to 10. 
◦ But relative magnitude increases:                                     

10/29 > 30/127. 
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 Recall |[<c”,s>]p| < (p/q) ¢ |[<c,s>]q| + l1(s). 

 Luckily [ACPS 2009] proved that LWE is hard 
even when s is small  
◦ chosen from the error distribution χ. 

◦ So we use this distribution for the secret keys. 
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 Scaling lemma also holds for LPR10, BV11a. 

 [LPR10]: Ring-LWE encryption scheme can 
can also have small secret keys, from the 
error distribution χ. 
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To evaluate a circuit of depth L… 
 Start with a large modulus qL and noise η « qL.  
 After first MULT, noise grows to η2. 
 Switch the modulus to qL-1 ≈ qL/η. 
◦ Noise reduced to η2/η ≈ η. 

 After next MULT, noise again grows to η2.   Switch 
to qL-2 ≈ qL-1/η to reduce the noise to η. 

 Keep switching moduli after each layer. 
◦ Setting qi-1 ≈ qi/η. (“Ladder” of decreasing moduli.) 
◦ Until the last modulus just barely                                      

satisfies q1 > η. 
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 Example: q9 ≈ n9 with modulus reduction. 

2/29/2012 

Noise Modulus 

Fresh ciphertexts η q9 = η9 

Level-1, Degree=2 η q8 = η8 

Level-2, Degree=4 η q7 = η7 

Level-3, Degree=8 η q6 = η6 

Level-4, Degree=16 η q5 = η5 

Level-5, Degree=32 η q4 = η4 

Level-6, Degree=64 η q3 = η3 

Level-7, Degree=128 η q2 = η2 

Level-8, Degree=256 η q1 = η 
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 Example: q9 ≈ n9 with no modulus reduction. 

2/29/2012 

Noise Modulus 

Fresh ciphertexts η q9 = η9 

Level-1, Degree=2 η2 q9 = η9 

Level-2, Degree=4 η4 q9 = η9 

Level-3, Degree=8 η8 q9 = η9 

Level-4, Degree=16 η16 q9 = η9 

Level-5, Degree=32 η32 

Level-6, Degree=64 η64 

Level-7, Degree=128 η128 

Level-8, Degree=256 η256 

Decryption 

error 
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 To evaluate circuit of depth L; 
◦ Largest modulus is qL ≈ q1

L ≈ ηL. 

◦ Largest ciphertext is O(k∙poly(L)) bits, where k is the 
security parameter. 

 Compare: without modulus reduction: 
◦ ciphertext was O(k∙d2) bits, where d was the degree 

(not the depth) of the circuit. 

 Depth is logarithmic in degree. 

 Exponential improvement. 
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 Final ciphertext (at output level) is small 
◦ q1 is small. 

◦ Use key-switching to reduce dimension of the 
ciphertext if needed (“dimension reduction” [BV11b]). 

◦ Final ciphertext can be as small as a normal (non-
homomorphic) Regev’05 ciphertext. 

 We have SWHE for bounded depth circuits. 

 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 Based on (R)LWE, but for what approx factor? 

 Approx factor = modulus/|noise| = (poly(k))depth. 
◦ Previously, modulus/|noise| = (poly(k))degree. 
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 [CNT12] extends the modulus reduction trick 
to the integer scheme. 
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Each ciphertext is “packed” with an array of 
plaintexts… 
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 Ciphertexts are long, plaintexts are often short. 

 Wasteful! 

 Overhead of homomorphic encryption  
   = (encrypted comp. time)/(unencrypted comp. time) 

   > (ciphertext length)/(plaintext length) 
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 Each ciphertext has an array of “plaintext slots”. 

 An operation (+,x) on a ciphertext acts separately, in 
parallel, on each “plaintext slot” (each index in array). 
◦ Suppose two ciphertexts c and c’ have (b1,b2,b3) and 

(b1’,b2’,b3’) respectively in their “slots” 

◦ 3-ADD(c,c’) → (b1+b1’, b2+b2’, b3+b3’).  

◦ 3-MULT(c,c’) → (b1∙b1’, b2∙b2’, b3∙b3’). 

◦ 3-ADD, 3-MULT cost same as ADD, MULT. 

 Think Chinese Remainder Theorem. 
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 ADD and MULT:  

 Output sum or product of 
ciphertext polynomials. 

 Parameters: q such that gcd(q,2)=1. 

 KeyGen: Secret = uniform s 2 Zq
n.  Public key: linear polys 

{fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q. 
 Encrypt (m ∈ Z2): Set g(x1,…,xn) as a random subset          

sum of {fi(x1,…,xn)}.  Output c(x1,…,xn)=m+g(x1,…,xn). 

 Decrypt: [c(s)]q = m+smeven. Reduce mod 2. 
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 ADD and MULT:  

 Output sum or product of 
ciphertext polynomials. 

 By CRT, ADD and MULT operate 
separately on {m mod pi}. 

 Parameters: q and small p1,p2,p3 s.t. gcd(q,p1p2p3)=1. 

 KeyGen: Secret = uniform s 2 Zq
n.  Public key: linear polys 

{fi(x1,…,xn)} s.t. [fi(s)]q=p1p2p3ei, |ei| ¿ q. 
 Encrypt (m ∈ Zp1p2p3): Set g(x1,…,xn) as a random subset 

sum of {fi(x1,…,xn)}.  Output c(x1,…,xn)=m+g(x1,…,xn). 

 Decrypt: [c(s)]q = m+(mult of p1p2p3). Reduce mod p1p2p3. 
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 Motivation: Better efficiency: 
◦ RLWE more efficient than LWE even in non-batched 

setting. 

◦ Batching works very well in RLWE-based SWHE. 
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 Let R = Z[y]/h(y), p prime, Rp = Zp[y]/h(y). 

 Suppose h(y) =  hi(y) mod p. 

 Then Rp ≡ Direct product of {Zp[y]/hi(y)}. 

 Example: 
◦ R = Z[y]/(y4+1), p=17. 

◦ (y4+1) = (y-2)(y-8)(y-15)(y-9) mod 17 

 2, 8=23, 15=25, 9=27 are the primitive 8-th roots of unity mod 17. 

◦ Z17[y]/(y4+1) ≡ Direct product of Z17[y]/(y-2), Z17[y]/(y-8), … 

◦ m(y) ∈ Z17[y]/(y4+1) is determined by its                                   
evaluations at 2, 8, 15, 9. 
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 Parameters: q with gcd(q,2)=1, R = Z[y]/(yn+1), 
R2 = Z2[y]/(yn+1), Rq = Zq[y]/(yn+1). 

 KeyGen: Secret = uniform s 2 R.  Public key: 
linear polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q. 

 Encrypt(m ∈ R2): : Set g(x) as a random subset 
sum of {fi(x)}.  Output c(x)=m+g(x). 

 Decrypt: c(s) = m+smeven.  Reduce mod 2. 
 

 ADD and MULT: Add or                              
multiply the ciphertext                         
polynomials. 
 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 Parameters: p, q with gcd(q,p)=1,R = Z[y]/(yn+1), 
Rp = Zp[y]/(yn+1), Rq = Zq[y]/(yn+1). 

 KeyGen: Secret = uniform s 2 R.  Public key: 
linear polys {fi(x)} s.t. fi(s)= pei, |ei| ¿ q. 

 Encrypt(m ∈ Rp): : Set g(x) as a random subset 
sum of {fi(x)}.  Output c(x)=m+g(x). 

 Decrypt: c(s) = m+(p multiple).  Reduce mod p. 
 

 ADD and MULT: Add or                              
multiply the ciphertext                         
polynomials. 
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 Parameters: p, q with gcd(q,p)=1,R = Z[y]/(yn+1), 
Rp = Zp[y]/(yn+1), Rq = Zq[y]/(yn+1). 

 KeyGen: Secret = uniform s 2 R.  Public key: 
linear polys {fi(x)} s.t. fi(s)= pei, |ei| ¿ q. 

 Encrypt(m ∈ Rp): : Set g(x) as a random subset 
sum of {fi(x)}.  Output c(x)=m+g(x). 

 Decrypt: c(s) = m+(p multiple).  Reduce mod p. 
 

 ADD and MULT: Add or                              
multiply the ciphertext                         
polynomials. 
 

Set p = 1 mod 2n, 
so p has n primitive 
2n-th roots of unity.  

Then, Rp splits. 

Message m(y) in Rp 
has n “plaintext slots” 
for m’s evaluations at 
primitive n-th roots of 

unity mod p. 
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 Plaintexts are m(y) ∈ Rp = Zp[y]/(yn+1), represented 
by evaluations m(αi), where αi’s are primitive n-th 
roots of unity mod p. 

 m1(y)+m2(y) → m1(α1)+m2(α1),…, m1(αn)+m2(αn). 
 m1(y)×m2(y) → m1(α1)×m2(α1),…, m1(αn)×m2(αn). 
 F(m1(y),…,mt(y))  
  → F(m1(α1),…,mt(α1)), …, F(m1(αn),…,mt(αn)). 
 Compute F on n inputs {(a1i, …, ati) : i 2 [n]} in 

parallel by setting {mi(y)} so that                                   
mi(αj) = aij. 
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8 2 0 9 3 8 0 1 … 4 4 

2 1 9 5 0 7 3 6 … 1 2 

n-ADD 

Array of length n 

10 3 9 14 3 15 3 7 … 5 6 
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16 2 0 45 0 56 0 6 … 4 8 

8 2 0 9 3 8 0 1 … 4 4 

2 1 9 5 0 7 3 6 … 1 2 

n-MULT 

Array of length n 
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% % % % % % % % … % % 

 Great for computing same function F 
on n different input strings.  

 We can do SIMD homomorphically. 

8 2 0 9 3 8 0 1 … 4 4 

2 1 9 5 0 7 3 6 … 1 2 

Function F 

Array of length n 

3 6 3 3 4 1 7 8 … 8 5 

…
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1 

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 

ADD  and MULT are a 
complete set of operations. 
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0 1 

1 

1 

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 

x8 x9 x10 x11 x12 x14 x1 x2 x3 x4 x5 x7 

n-ADD  and n-MULT are NOT 
a complete set of operations. 
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x1 x2 x3 x4 x5 x7 x1 x2 x3 x4 x5 x7 

1 0 1 0 0 0 0 
n-MULT 

x1 0 x3 0 0 0 0 

0 1 0 1 0 0 0 

0 x2 0 x4 0 0 0 

x1 x3 0 0 0 0 0 x2 x4 0 0 0 0 0 

n-PERMUTE(π) 

+
 

+
 

x1 x2 x3 x4 

n-ADD 
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How do we Evaluate n-Permute(π) 
homomorphically, without 

“decompressing” the packed 
ciphertexts? 

Ring 
Automorphisms! 
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a(α1) a(α2)  a(αn-1) a(αn) 

Map a(y)   →   b(y) = a(yi) mod (yn+1),                    
where i 2 Z2n

*. 

a(x) = 

a(α1
i) a(α2

i)  a(αn-1
i) a(αn

i) b(x) = 

a(απ(1)) a(απ(2))  a(απ(n-1)) a(απ(n)) = 

b(y) has the same evaluations 
as a(y), but permuted! 
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 Given ciphertext c1(y)∙x + c0(y) with 

  c1(y)∙s(y)+c0(y) = m(y)+p∙e(y) (mod q, yn+1) 

 c1(y
i)∙s(yi)+c0(y

i) = m(yi)+p∙e(yi) (mod q, yin+1), i 2 Z2n*. 

 c1(y
i)∙s(yi)+c0(y

i) = m(yi)+p∙e(yi) (mod q, yn+1), i 2 Z2n*. 

 c1(y
i)∙x + c0(y

i) is an encryption of m(yi) under key s(yi). 

 Key switch s(y)→s(yi) to get encryption of m(yi) under 
“normal” key s(y). 
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 The “Basic” Permutations (b(y) = a(yi)): 

◦ Only n (out of n!) of the possible permutations. 

◦ Automorphism group Gal(Q(α)/Q) ≡ Z2n*. 

◦ Think of the automorphisms as n-ROTATE(i), which 
rotates the n items i steps clockwise, like a dial. 

 Claim: For any permutation π, we can build 
n-PERMUTE(π) “efficiently” from n-ADD,       
n-MULT, and n-ROTATE(i). 
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 Butterfly network: assume n = 2k. 
◦ n-PERMUTE(π) can be realized by a butterfly network of 

2k-1 levels of n-SWAP(i,s) ops, i2{1,…,2k-1}, s2{0,1}n/2. 

◦ At level i, the 2k items are partitioned into n/2 pairs, 
each pair with k-bit indices differing only in |i-k|-th bit. 

◦ n-SWAP(i,s) swaps the j-th pair iff sj=1. 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 8-SWAP(2,0110) 

1 2 3 4 5 6 7 8 Potential Swaps 
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 8-SWAP(2,0110) 

1 2 3 4 5 6 7 8 Actual Swaps 

1 2 3 4 5 6 7 8 8-ROTATE(2) 

1 2 3 4 5 6 7 8 8-ROTATE(-2) 
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 8-SWAP(2,0110) 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

Actual Swaps 

8-ROTATE(2) 

8-ROTATE(-2) 
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 8-SWAP(2,0110) 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

1 0 1 0 0 1 0 1 
n-MULT 
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 8-SWAP(2,0110) 

1 0 3 0 0 6 0 8 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 8-SWAP(2,0110) 

1 0 3 0 0 6 0 8 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

0 0 0 1 0 0 1 0 
n-MULT 
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 8-SWAP(2,0110) 

1 0 3 0 0 6 0 8 

0 2 0 0 5 0 0 0 

1 2 3 4 5 6 7 8 
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 8-SWAP(2,0110) 

1 0 3 0 0 6 0 8 

0 2 0 0 5 0 0 0 

1 2 3 4 5 6 7 8 
0 1 0 0 1 0 0 0 

n-MULT 
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 8-SWAP(2,0110) 

1 0 3 0 0 6 0 8 

0 2 0 0 5 0 0 0 

0 0 0 4 0 0 7 0 
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 8-SWAP(2,0110) 

1 0 3 0 0 6 0 8 

0 2 0 0 5 0 0 0 

0 0 0 4 0 0 7 0 

n-ADD 

5 8 1 4 3 2 7 6 
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 Overhead of batched RLWE-based BGV12 SWHE 
for security parameter k: 
= (encrypted comp. time)/(unencrypted comp. time) 

= poly(log qL, log w) = poly(L, log k, log w), where w is 
the maximum width of circuit being evaluated. 
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and the bootstrapping step… 
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61 

F(x1, x2 ,…, xt) 

x1 

… 

x2 

xt 

F 

 So far, we can evaluate bounded depth F: 
 

 We have a noisy evaluated ciphertext c. 
 We want to get a less noisy c’ that encrypts the 

same value, but with less noise. 
 Bootstrapping refreshes                           

ciphertexts, using the                                     
encrypted secret key. 
◦   

c  
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 For ciphertext c, consider Dc(sk) = Decryptsk(c) 
◦ Suppose Dc(∙) is a low-depth polynomial in sk. 

 Include in the public key also Encpk(sk). 
 
 
 
 

 
 

62 

Dc 

y 

sk1 

sk2 

skn 

… 

c  

Dc(sk) = Decryptsk(c)  =  y c’ 

New encryption 
of y, with less 

noise. sk1 

sk2 

skn 

… 

Homomorphic computation 
applied only to the “fresh” 

encryption of sk. 
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 Recall: Complexity of BGV12 (and BV11b) 
decryption is independent of L, the depth it 
can evaluate. 

 Set L > 1+depth needed to evaluate DC. 

 Then, homomorphic decryption reduces the 
noise level.  (Use recursively.) 
◦ We now have FHE (modulo a circular security issue). 
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 Decryption function computable in depth O(log k). 
◦ Our “somewhat homomorphic” scheme only needs to 

compute circuits of depth O(log k). 

 BGV12 performance with bootstrapping: 
◦ Ciphertext size can be quasi-linear in k. 
◦ ADD and MULT take Ō(k) time. 
◦ Bootstrapping takes Ō(k2) time. 
 Actually, with batching, we can reduce it to Ō(k) amortized. 

◦ Overhead is poly(L, log k, log w) = poly(log k, log w), where 
w is the maximum width of circuit being evaluated.  

 Security can be based on                                      
quasi-polynomial factors:                                              
2Ō(log2 k) versus 2kc

 (R)LWE. 
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A hybrid FHE scheme that combines lattices 
and Elgamal… 
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Goal: Construct a bootstrappable SWHE scheme. 

Problem Solution? 
SWHE schemes don’t handle 

multiplication well, it amplifies 
the “noisiness” of ciphertexts. 

Elgamal handles 
multiplication well! 

Maybe Elgamal can help! 

But Elgamal cannot alternate 
between additions and 

multiplications… 

Suppose the decryption function 
puts all of the mults together, 

without alternation?  Can Elgamal 
help with the “product part”?  
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 SWHE: Use a lattice-based SWHE scheme, as before. 

 Express SWHE decryption as a ciphertext-dependent 
depth-3 (ΣΠΣ) arithmetic circuit applied secret key. 

+ 

X X X X 

+ + + 

fan-in 

x1 xn 

ck c1 

a1 an 

1 

a0 

... 

P1 

Pk 

L1,1 

L1,d1 

Li,j = a0 + Σt=1…n at∙xt  

Pi = Πj = 1…di
 Li,j 

C(x) = Σi=1…k ci∙Pi = Σi ci∙ΠjLi,j 
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 Bootstrapping: Evaluate depth-3 circuit 
homomorphically by combining a SWHE scheme 
with a “helper” MHE (multiplicative 
homomorphic enc.) scheme, like Elgamal: 
◦ Bottom Sums: Get MHE encryptions of the bottom 

sums. 
(Can put all needed MHE ciphertexts in public key.) 

◦ Products: Evaluate them homomorphically using MHE 
scheme. 

◦ Translation: Translate each ciphertext EncMHE(m) to 
EncSWHE(m) by evaluating MHE decryption 
homomorphically. 

◦ Top Sum: Evaluate top sum under                                            
the SWHE scheme. 
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 Main high-level idea: The SWHE scheme 
only needs enough “homomorphic capacity” 
to evaluate the MHE scheme’s decryption, 
not its own decryption. 
◦ Breaks the “self-referentiality” of bootstrapping. 
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Chimera (mythology):  
1) A monstrous fire-breathing female 

creature composed of the parts of 
multiple animals: upon the body of a 
lioness with a tail that ended in a 
snake’s head, the head of a goat arose 
on her back. 

2) The term chimera has also come to 
mean, more generally, an impossible or 
foolish fantasy, hard to believe. 

SWHE Scheme 

MHE Scheme 
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 Typically, they can be computed using 
“restricted” depth-3 circuits. 

 Proven already for Regev’s cryptosystem by 
Klivans and Sherstov. 
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 Elementary symmetric polynomial ek(x1, …, xn): sum of all 
monomials that are products of exactly k distinct variables. 

 Cool fact: ek(x) mod p can be computed by a depth-3 
arithmetic circuit (for large enough p) 

 How? If P(z) = Pi(z+x1), then ek(x) is the coefficient of zn-k 
 Computing P(z): evaluate P(z) in n+1 points, interpolate 
◦ Let A = {a1, …, an+1} be some subset of Zp 

◦ Bottom Sums: Compute aj+xi for all xi’s and aj’s. 

◦ Products: Compute λj∙P(aj) = Πi (aj+xi) for all j. 

◦ Top Sum: Interpolate j λj∙P(aj) to get desired coefficient of P(z). 
 

Observe: the bottom 
sums are “restricted”. 
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 Multilinear symmetric polynomials (MSPs): 

◦ MSPs are symmetric, and each variable has degree 1 

◦ MSPs are linear combinations of elementary symmetric 

polynomials (ESPs) 

◦ MSPs can be computed by restricted depth-3 circuits. 

 Lattice-based decryption functions can be 

expressed as “restricted” MSPs. 
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 MHE scheme: Elgamal over QR(p) 
◦ p = 2q+1 be a safe prime 

 SWHE scheme: Plaintext space = Zp. 
Decryption is a restricted depth-3 arithmetic 
circuit over Zp. 
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 FHE.KeyGen:  
◦ Generate Elgamal key (eL, g

eL), SWHE key ({siL}, pki), 
for every level L in the circuit 

◦ Encrypt individual bits of eL under kL+1. 

◦ Encrypt values aj+si (in Zp) under Elgamal for aj in A. 
 Note: A is our set of “interpolation points” in our MSP. 

 Technicality: the aj’s must be chosen so that aj and 
aj+1 are both in QR(p), the plaintext space of Elgamal. 

◦ Publish the public keys and encrypted secret keys. 
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 To “refresh” a level-i ciphertext c: 
◦ First, express SWHE.Dec(c,s) as a c-dependent 

restricted depth-3 circuit taking key s as input. 
 

+ 

X X X X 

+ + + 

s3 a4 s2 a4 s1 a4 

c1 c2 
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 Refresh.BottomSums: 
◦ Pick up the Elgamal encryptions of aj+si from PK. 
◦ The bottom sums have been “precomputed”. 

 Refresh.Products: 
◦ Compute cj∙P(aj) = cj∙Πi(aj+si) mod p 

homomorphically using Elgamal. 
 Refresh.Translation: + 

X X X X 

+ + + 

s3 a4 s2 a4 s1 a4 

c1 c2 

Elgamal.Enc(aj+si) 
in the public key 

Uses Elgamal.Mult 
for products 

Translate to SWHE 
for the addition 
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 Refresh.Translation: 
◦ Goal: Convert (y, z) = (gr, mg 

-er) to a SWHE 
ciphertext. 

◦ Precompute yi = y2i mod p for all i up to log q. 

◦ “Inside” SWHE, compute ye[i]2i = e[i]∙y2i + (1-e[i])y0 
mod p. 

◦ Inside SWHE, compute product of ye[i]2i’s to get ye. 
 The degree of this product is log q. 

◦ Inside SWHE, compute product of ye and z to get m. 

 Refresh.TopSum: 
◦ Just do it inside the SWHE scheme. 
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 Required homomorphic capacity of SWHE 
scheme:  
◦ Evaluate Elgamal decryption, plus an ADD or MULT. 

◦ Overall degree = 2 log q. 

◦ Set SWHE parameters large to evaluate polynomials 
of degree 2 log q.   

◦ Done! 
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 We can “compress” the entire FHE ciphertext down 
to a single MHE (e.g., Elgamal) ciphertext 

 Choose aj’s cleverly so that all products P(aj) can be 
computed just from P(a1) 
◦ Recall: P(z) = Πi (z+si) where si is a secret key bit. 
◦ We only “store” P(a1) – e.g., a single Elgamal ciphertext! 

 Note: P(aj) can be computed homomorphically from 
P(a1) within the MHE scheme. 

 Set aj such that we know (wj, ej) such that 

◦ aj     =   wj∙a1
ej   mod p,   and 

◦ aj+1 =   wj∙(a1+1)ej   mod p 

◦ How? Choose ej and set                                                                   
aj = a1

ej/((a1+1)ej – a1
ej) and wj = aj/a1

ej. 

 Then, P(aj) = wj
d∙P(a1)

ej mod p 
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Lemma: Let p be a prime.  Let 
  S = {(u,v): u ≠ 0, v ≠ 0, u2-v2 = 1 mod p} 
 Then, |S| = p-3 or p-5, depending on whether p = 3 or 1 mod 4. 

Proof: For each pair (u,v) in S, let auv = u+v. Then auv
-1 = u-v, and we 

have: 
 

  u = (auv + auv
-1)/2 and v = (auv - auv

-1)/2 
 

implying that auv determines u and v uniquely.  So, for 
 

  T = {a ≠ 0 : a+a-1 ≠ 0, a-a-1 ≠ 0}, 
 

we have |S| = |T|. 
 
We have that a is in T unless a = 0, a2 = -1, or a2 = ±1. 
If p = 1 mod 4, then -1 in QR(p), and there are 5 prohibited values. 
If p = 3 mod 4, then -1 is not a residue, and there are  3 prohibited 
values. 


