
Bar-Ilan University
Dept. of Computer Science

Craig Gentry

IBM Watson

Winter School on Lattice-Based Cryptography and Applications
Bar-Ilan University, Israel 19/2/2012-22/2/2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Optimizations of Somewhat Homomorphic
Encryption (SWHE)

 Constructions of Fully Homomorphic
Encryption (FHE)

Bar-Ilan University
Dept. of Computer Science

And Better Management of Ciphertext
Noise…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Focusing on the “noise
problem”…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Noisy Polly Cracker Version:
◦ Let χ be an error distribution.

◦ Distinguish these distributions:

 Generate uniform s ← Zq
n. For many i, generate ei ← χ

and a linear polynomial fi(x1, …, xn) = f0+f1x1+…+fnxn
(from Zq

n+1) such that [fi(s1, …, sn)]q = ei.

 For many i, generate and output a uniformly random
linear polynomial fi(x1, …, xn) (from Zq

n+1).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 ADD and MULT:

 Output sum or product of
ciphertext polynomials.

 Relinearize / Key-Switch

 Parameters: q such that gcd(q,2)=1.

 KeyGen: Secret = uniform s 2 Zq
n. Public key:

linear polys {fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q.

 Encrypt: Set g(x1,…,xn) as a random subset sum of
{fi(x1,…,xn)}. Output c(x1,…,xn)=m+g(x1,…,xn).

 Decrypt: [c(s)]q = m+smeven. Reduce mod 2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 ADD: c(x) = c1(x)+c2(x).
◦ Noise of c(x) – namely, [c(s)]q – is sum of noises.

 MULT: c(x) = c1(x)∙c2(x).
◦ Noise [c(s)]q is product of noises.

◦ Sort of… After MULT, there is “relinearization” step that
adds a small amount to the noise.

 Function F: c(x) ≈ F(c1(x),…,ct(x)).
◦ Noise [c(s)]q ≈ f(c1(s),…,ct(s)) – i.e., F applied to noises.

◦ Rough approximation:

 If F has degree d and fresh noises are
bounded by B, c(x) has noise Bd.

 Noise magnitude increases
exponentially with degree.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 SWHE ciphertexts must be large to let noise
“room to grow”.

 “Noise” grows exponentially with degree. To
successfully evaluate degree-d poly, noise
B Ã Bd without “wrapping”.

 So, coefficients of lattice vectors have > d bits.

 For security, we need it to be hard to
Bd-1 > 2d-approximate lattice problems in 2k
time.
 Requires lattice dim > d∙k.
 Total ciphertext length > d2∙k bits.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Since total ciphertext length ≈ d2∙k bits, we
have SWHE for bounded degree:

 SWHE for bounded degree: A family of schemes
E(d), d ∈ Z, that for security parameter k,
◦ E(d) can homomorphically evaluate functions of degree d.

◦ KeyGen, Enc, Dec, ADD, MULT are all poly(k,d).

◦ Eval has complexity polynomial in k, d, and circuit size.

 This is the best we can hope for
when noise grows exponentially

with degree.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 “Leveled FHE” [Gen09]: Relaxation of FHE… A
family of schemes E(L), L ∈ Z, is “leveled fully
homomorphic” if, for security parameter k,
◦ E(L) can homomorphically evaluate circuits of depth L,

◦ The Dec (decrypt) function is the same for all L,

◦ KeyGen, Enc, Dec, ADD, MULT are all poly(k,L).

◦ Eval has complexity polyomial in k, L, and circuit size.

 Humbler name for it: “SWHE
for bounded depth circuits”.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Our fantasy:
◦ Noise doesn’t grow exponentially with degree.

◦ There is some simple trick to reduce noise after
MULTs.

◦ We get better noise management, hence shorter
ciphertexts and SWHE for bounded depth.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Crazy Idea [BV11b, BGV12]:
◦ Suppose c encrypts m – that is, m = [[c(s)]q]2.

◦ Let’s pick p<q and set c*(x) = (p/q)¢c(x), rounded.

◦ Maybe it is true that:

 c*(x) encrypts m: m = [[c*(s)]p]2 (new inner modulus).

 |[c*(s)]p| ≈ (p/q) ¢ |[c(s)]q| (noise is smaller).

◦ This really shouldn’t work…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Scaling lemma: Let p < q be odd moduli.

◦ Given c with m = [[<c,s>]q]2. Set c’ = (p/q)c.
Set c” to be
 the integer vector closest to c’

 such that c” = c mod 2.

◦ If |[<c,s>]q| < q/2 - (q/p)¢ l1(s), then c” is a valid
encryption of m with possibly much less noise!

 m = [<c”,s>]p]2.

 |[<c”,s>]p| < (p/q) ¢ |[<c,s>]q| + l1(s),
where l1(s) is l1-norm of s.

Bar-Ilan University
Dept. of Computer Science

Annotated Proof

1. For some k, [<c,s>]q=<c,s>-kq.

2. (p/q)[<c,s>]q = <c’,s>-kp.

3. |<c”-c’,s>| < l1(s).

4. Thus, |<c”,s>-kp|< (p/q) |[<c,s>]q| + l1(s) < p/2.

5. So, [<c”,s>]p = <c”,s> – kp.

6. Since c’ = c and p = q mod 2, we have [<c”,s>]p]2=[<c,s>]q]2.

1. Imagine <c,s> is close to kq.

2. Then <c’,s> is close to kp.

3. <c”,s> close to kp if s is small.

Scaling lemma:Let p<q be odd moduli.
◦ Given c with m = [[<c,s>]q]2. Set c’

= (p/q)c. Set c” to be
 the integer (ring) vector closest to c’ such

that c” = c mod 2.
◦ If |[<c,s>]q| < q/2 - (q/p)¢ l1(s), then:
 c” is a valid encryption of m with possibly

much less noise!
 m = [<c”,s>]p]2, and

|[<c”,s>]p| < (p/q) ¢ |[<c,s>]q| + l1(s).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Example: q=127, p=29, c=(175,212), s=(2,3)

 <c,s> mod q = 986-8∙127 = -30

 c’ = (p/q) ∙ c = (39.9,48.4)
◦ To get c”, we round down both values (39,48).

 <c”,s> mod p = 222-8∙29 = -10

 k=8 in both cases, and -30=-10 mod 2.

 The noise magnitude decreases from 30 to 10.
◦ But relative magnitude increases:

10/29 > 30/127.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Recall |[<c”,s>]p| < (p/q) ¢ |[<c,s>]q| + l1(s).

 Luckily [ACPS 2009] proved that LWE is hard
even when s is small
◦ chosen from the error distribution χ.

◦ So we use this distribution for the secret keys.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Scaling lemma also holds for LPR10, BV11a.

 [LPR10]: Ring-LWE encryption scheme can
can also have small secret keys, from the
error distribution χ.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

To evaluate a circuit of depth L…
 Start with a large modulus qL and noise η « qL.
 After first MULT, noise grows to η2.
 Switch the modulus to qL-1 ≈ qL/η.
◦ Noise reduced to η2/η ≈ η.

 After next MULT, noise again grows to η2. Switch
to qL-2 ≈ qL-1/η to reduce the noise to η.

 Keep switching moduli after each layer.
◦ Setting qi-1 ≈ qi/η. (“Ladder” of decreasing moduli.)
◦ Until the last modulus just barely

satisfies q1 > η.

Bar-Ilan University
Dept. of Computer Science

 Example: q9 ≈ n9 with modulus reduction.

2/29/2012

Noise Modulus

Fresh ciphertexts η q9 = η9

Level-1, Degree=2 η q8 = η8

Level-2, Degree=4 η q7 = η7

Level-3, Degree=8 η q6 = η6

Level-4, Degree=16 η q5 = η5

Level-5, Degree=32 η q4 = η4

Level-6, Degree=64 η q3 = η3

Level-7, Degree=128 η q2 = η2

Level-8, Degree=256 η q1 = η

Bar-Ilan University
Dept. of Computer Science

 Example: q9 ≈ n9 with no modulus reduction.

2/29/2012

Noise Modulus

Fresh ciphertexts η q9 = η9

Level-1, Degree=2 η2 q9 = η9

Level-2, Degree=4 η4 q9 = η9

Level-3, Degree=8 η8 q9 = η9

Level-4, Degree=16 η16 q9 = η9

Level-5, Degree=32 η32

Level-6, Degree=64 η64

Level-7, Degree=128 η128

Level-8, Degree=256 η256

Decryption

error

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 To evaluate circuit of depth L;
◦ Largest modulus is qL ≈ q1

L ≈ ηL.

◦ Largest ciphertext is O(k∙poly(L)) bits, where k is the
security parameter.

 Compare: without modulus reduction:
◦ ciphertext was O(k∙d2) bits, where d was the degree

(not the depth) of the circuit.

 Depth is logarithmic in degree.

 Exponential improvement.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Final ciphertext (at output level) is small
◦ q1 is small.

◦ Use key-switching to reduce dimension of the
ciphertext if needed (“dimension reduction” [BV11b]).

◦ Final ciphertext can be as small as a normal (non-
homomorphic) Regev’05 ciphertext.

 We have SWHE for bounded depth circuits.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Based on (R)LWE, but for what approx factor?

 Approx factor = modulus/|noise| = (poly(k))depth.
◦ Previously, modulus/|noise| = (poly(k))degree.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 [CNT12] extends the modulus reduction trick
to the integer scheme.

Bar-Ilan University
Dept. of Computer Science

Each ciphertext is “packed” with an array of
plaintexts…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Ciphertexts are long, plaintexts are often short.

 Wasteful!

 Overhead of homomorphic encryption
 = (encrypted comp. time)/(unencrypted comp. time)

 > (ciphertext length)/(plaintext length)

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Each ciphertext has an array of “plaintext slots”.

 An operation (+,x) on a ciphertext acts separately, in
parallel, on each “plaintext slot” (each index in array).
◦ Suppose two ciphertexts c and c’ have (b1,b2,b3) and

(b1’,b2’,b3’) respectively in their “slots”

◦ 3-ADD(c,c’) → (b1+b1’, b2+b2’, b3+b3’).

◦ 3-MULT(c,c’) → (b1∙b1’, b2∙b2’, b3∙b3’).

◦ 3-ADD, 3-MULT cost same as ADD, MULT.

 Think Chinese Remainder Theorem.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 ADD and MULT:

 Output sum or product of
ciphertext polynomials.

 Parameters: q such that gcd(q,2)=1.

 KeyGen: Secret = uniform s 2 Zq
n. Public key: linear polys

{fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q.
 Encrypt (m ∈ Z2): Set g(x1,…,xn) as a random subset

sum of {fi(x1,…,xn)}. Output c(x1,…,xn)=m+g(x1,…,xn).

 Decrypt: [c(s)]q = m+smeven. Reduce mod 2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 ADD and MULT:

 Output sum or product of
ciphertext polynomials.

 By CRT, ADD and MULT operate
separately on {m mod pi}.

 Parameters: q and small p1,p2,p3 s.t. gcd(q,p1p2p3)=1.

 KeyGen: Secret = uniform s 2 Zq
n. Public key: linear polys

{fi(x1,…,xn)} s.t. [fi(s)]q=p1p2p3ei, |ei| ¿ q.
 Encrypt (m ∈ Zp1p2p3): Set g(x1,…,xn) as a random subset

sum of {fi(x1,…,xn)}. Output c(x1,…,xn)=m+g(x1,…,xn).

 Decrypt: [c(s)]q = m+(mult of p1p2p3). Reduce mod p1p2p3.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Motivation: Better efficiency:
◦ RLWE more efficient than LWE even in non-batched

setting.

◦ Batching works very well in RLWE-based SWHE.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Let R = Z[y]/h(y), p prime, Rp = Zp[y]/h(y).

 Suppose h(y) =  hi(y) mod p.

 Then Rp ≡ Direct product of {Zp[y]/hi(y)}.

 Example:
◦ R = Z[y]/(y4+1), p=17.

◦ (y4+1) = (y-2)(y-8)(y-15)(y-9) mod 17

 2, 8=23, 15=25, 9=27 are the primitive 8-th roots of unity mod 17.

◦ Z17[y]/(y4+1) ≡ Direct product of Z17[y]/(y-2), Z17[y]/(y-8), …

◦ m(y) ∈ Z17[y]/(y4+1) is determined by its
evaluations at 2, 8, 15, 9.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: q with gcd(q,2)=1, R = Z[y]/(yn+1),
R2 = Z2[y]/(yn+1), Rq = Zq[y]/(yn+1).

 KeyGen: Secret = uniform s 2 R. Public key:
linear polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q.

 Encrypt(m ∈ R2): : Set g(x) as a random subset
sum of {fi(x)}. Output c(x)=m+g(x).

 Decrypt: c(s) = m+smeven. Reduce mod 2.

 ADD and MULT: Add or
multiply the ciphertext
polynomials.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: p, q with gcd(q,p)=1,R = Z[y]/(yn+1),
Rp = Zp[y]/(yn+1), Rq = Zq[y]/(yn+1).

 KeyGen: Secret = uniform s 2 R. Public key:
linear polys {fi(x)} s.t. fi(s)= pei, |ei| ¿ q.

 Encrypt(m ∈ Rp): : Set g(x) as a random subset
sum of {fi(x)}. Output c(x)=m+g(x).

 Decrypt: c(s) = m+(p multiple). Reduce mod p.

 ADD and MULT: Add or
multiply the ciphertext
polynomials.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: p, q with gcd(q,p)=1,R = Z[y]/(yn+1),
Rp = Zp[y]/(yn+1), Rq = Zq[y]/(yn+1).

 KeyGen: Secret = uniform s 2 R. Public key:
linear polys {fi(x)} s.t. fi(s)= pei, |ei| ¿ q.

 Encrypt(m ∈ Rp): : Set g(x) as a random subset
sum of {fi(x)}. Output c(x)=m+g(x).

 Decrypt: c(s) = m+(p multiple). Reduce mod p.

 ADD and MULT: Add or
multiply the ciphertext
polynomials.

Set p = 1 mod 2n,
so p has n primitive
2n-th roots of unity.

Then, Rp splits.

Message m(y) in Rp
has n “plaintext slots”
for m’s evaluations at
primitive n-th roots of

unity mod p.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Plaintexts are m(y) ∈ Rp = Zp[y]/(yn+1), represented
by evaluations m(αi), where αi’s are primitive n-th
roots of unity mod p.

 m1(y)+m2(y) → m1(α1)+m2(α1),…, m1(αn)+m2(αn).
 m1(y)×m2(y) → m1(α1)×m2(α1),…, m1(αn)×m2(αn).
 F(m1(y),…,mt(y))
 → F(m1(α1),…,mt(α1)), …, F(m1(αn),…,mt(αn)).
 Compute F on n inputs {(a1i, …, ati) : i 2 [n]} in

parallel by setting {mi(y)} so that
mi(αj) = aij.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

8 2 0 9 3 8 0 1 … 4 4

2 1 9 5 0 7 3 6 … 1 2

n-ADD

Array of length n

10 3 9 14 3 15 3 7 … 5 6

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

16 2 0 45 0 56 0 6 … 4 8

8 2 0 9 3 8 0 1 … 4 4

2 1 9 5 0 7 3 6 … 1 2

n-MULT

Array of length n

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

% % % % % % % % … % %

 Great for computing same function F
on n different input strings.

 We can do SIMD homomorphically.

8 2 0 9 3 8 0 1 … 4 4

2 1 9 5 0 7 3 6 … 1 2

Function F

Array of length n

3 6 3 3 4 1 7 8 … 8 5

…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

+

+

+

+

+

+

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

×

×

×

+

+

+

+

+

+

+

+

+

0 1

1

1

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19

ADD and MULT are a
complete set of operations.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

+

+

+

+

+

+

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

×

×

×

+

+

+

+

+

+

+

+

+

0 1

1

1

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19

x8 x9 x10 x11 x12 x14 x1 x2 x3 x4 x5 x7

n-ADD and n-MULT are NOT
a complete set of operations.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

x1 x2 x3 x4 x5 x7 x1 x2 x3 x4 x5 x7

1 0 1 0 0 0 0
n-MULT

x1 0 x3 0 0 0 0

0 1 0 1 0 0 0

0 x2 0 x4 0 0 0

x1 x3 0 0 0 0 0 x2 x4 0 0 0 0 0

n-PERMUTE(π)

+

+

x1 x2 x3 x4

n-ADD

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

How do we Evaluate n-Permute(π)
homomorphically, without

“decompressing” the packed
ciphertexts?

Ring
Automorphisms!

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

a(α1) a(α2)  a(αn-1) a(αn)

Map a(y) → b(y) = a(yi) mod (yn+1),
where i 2 Z2n

*.

a(x) =

a(α1
i) a(α2

i)  a(αn-1
i) a(αn

i) b(x) =

a(απ(1)) a(απ(2))  a(απ(n-1)) a(απ(n)) =

b(y) has the same evaluations
as a(y), but permuted!

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Given ciphertext c1(y)∙x + c0(y) with

 c1(y)∙s(y)+c0(y) = m(y)+p∙e(y) (mod q, yn+1)

 c1(y
i)∙s(yi)+c0(y

i) = m(yi)+p∙e(yi) (mod q, yin+1), i 2 Z2n*.

 c1(y
i)∙s(yi)+c0(y

i) = m(yi)+p∙e(yi) (mod q, yn+1), i 2 Z2n*.

 c1(y
i)∙x + c0(y

i) is an encryption of m(yi) under key s(yi).

 Key switch s(y)→s(yi) to get encryption of m(yi) under
“normal” key s(y).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 The “Basic” Permutations (b(y) = a(yi)):

◦ Only n (out of n!) of the possible permutations.

◦ Automorphism group Gal(Q(α)/Q) ≡ Z2n*.

◦ Think of the automorphisms as n-ROTATE(i), which
rotates the n items i steps clockwise, like a dial.

 Claim: For any permutation π, we can build
n-PERMUTE(π) “efficiently” from n-ADD,
n-MULT, and n-ROTATE(i).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Butterfly network: assume n = 2k.
◦ n-PERMUTE(π) can be realized by a butterfly network of

2k-1 levels of n-SWAP(i,s) ops, i2{1,…,2k-1}, s2{0,1}n/2.

◦ At level i, the 2k items are partitioned into n/2 pairs,
each pair with k-bit indices differing only in |i-k|-th bit.

◦ n-SWAP(i,s) swaps the j-th pair iff sj=1.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 2 3 4 5 6 7 8 Potential Swaps

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 2 3 4 5 6 7 8 Actual Swaps

1 2 3 4 5 6 7 8 8-ROTATE(2)

1 2 3 4 5 6 7 8 8-ROTATE(-2)

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Actual Swaps

8-ROTATE(2)

8-ROTATE(-2)

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 0 1 0 0 1 0 1
n-MULT

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 0 3 0 0 6 0 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 0 3 0 0 6 0 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

0 0 0 1 0 0 1 0
n-MULT

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 0 3 0 0 6 0 8

0 2 0 0 5 0 0 0

1 2 3 4 5 6 7 8

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 0 3 0 0 6 0 8

0 2 0 0 5 0 0 0

1 2 3 4 5 6 7 8
0 1 0 0 1 0 0 0

n-MULT

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 0 3 0 0 6 0 8

0 2 0 0 5 0 0 0

0 0 0 4 0 0 7 0

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 8-SWAP(2,0110)

1 0 3 0 0 6 0 8

0 2 0 0 5 0 0 0

0 0 0 4 0 0 7 0

n-ADD

5 8 1 4 3 2 7 6

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Overhead of batched RLWE-based BGV12 SWHE
for security parameter k:
= (encrypted comp. time)/(unencrypted comp. time)

= poly(log qL, log w) = poly(L, log k, log w), where w is
the maximum width of circuit being evaluated.

Bar-Ilan University
Dept. of Computer Science

and the bootstrapping step…

Bar-Ilan University
Dept. of Computer Science

61

F(x1, x2 ,…, xt)

x1

…

x2

xt

F

 So far, we can evaluate bounded depth F:

 We have a noisy evaluated ciphertext c.
 We want to get a less noisy c’ that encrypts the

same value, but with less noise.
 Bootstrapping refreshes

ciphertexts, using the
encrypted secret key.
◦

c

Bar-Ilan University
Dept. of Computer Science

 For ciphertext c, consider Dc(sk) = Decryptsk(c)
◦ Suppose Dc(∙) is a low-depth polynomial in sk.

 Include in the public key also Encpk(sk).

62

Dc

y

sk1

sk2

skn

…

c

Dc(sk) = Decryptsk(c) = y c’

New encryption
of y, with less

noise. sk1

sk2

skn

…

Homomorphic computation
applied only to the “fresh”

encryption of sk.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Recall: Complexity of BGV12 (and BV11b)
decryption is independent of L, the depth it
can evaluate.

 Set L > 1+depth needed to evaluate DC.

 Then, homomorphic decryption reduces the
noise level. (Use recursively.)
◦ We now have FHE (modulo a circular security issue).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Decryption function computable in depth O(log k).
◦ Our “somewhat homomorphic” scheme only needs to

compute circuits of depth O(log k).

 BGV12 performance with bootstrapping:
◦ Ciphertext size can be quasi-linear in k.
◦ ADD and MULT take Ō(k) time.
◦ Bootstrapping takes Ō(k2) time.
 Actually, with batching, we can reduce it to Ō(k) amortized.

◦ Overhead is poly(L, log k, log w) = poly(log k, log w), where
w is the maximum width of circuit being evaluated.

 Security can be based on
quasi-polynomial factors:
2Ō(log2 k) versus 2kc

 (R)LWE.

Bar-Ilan University
Dept. of Computer Science

A hybrid FHE scheme that combines lattices
and Elgamal…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Goal: Construct a bootstrappable SWHE scheme.

Problem Solution?
SWHE schemes don’t handle

multiplication well, it amplifies
the “noisiness” of ciphertexts.

Elgamal handles
multiplication well!

Maybe Elgamal can help!

But Elgamal cannot alternate
between additions and

multiplications…

Suppose the decryption function
puts all of the mults together,

without alternation? Can Elgamal
help with the “product part”?

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 SWHE: Use a lattice-based SWHE scheme, as before.

 Express SWHE decryption as a ciphertext-dependent
depth-3 (ΣΠΣ) arithmetic circuit applied secret key.

+

X X X X

+ + +

fan-in

x1 xn

ck c1

a1 an

1

a0

...

P1

Pk

L1,1

L1,d1

Li,j = a0 + Σt=1…n at∙xt

Pi = Πj = 1…di
 Li,j

C(x) = Σi=1…k ci∙Pi = Σi ci∙ΠjLi,j

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Bootstrapping: Evaluate depth-3 circuit
homomorphically by combining a SWHE scheme
with a “helper” MHE (multiplicative
homomorphic enc.) scheme, like Elgamal:
◦ Bottom Sums: Get MHE encryptions of the bottom

sums.
(Can put all needed MHE ciphertexts in public key.)

◦ Products: Evaluate them homomorphically using MHE
scheme.

◦ Translation: Translate each ciphertext EncMHE(m) to
EncSWHE(m) by evaluating MHE decryption
homomorphically.

◦ Top Sum: Evaluate top sum under
the SWHE scheme.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Main high-level idea: The SWHE scheme
only needs enough “homomorphic capacity”
to evaluate the MHE scheme’s decryption,
not its own decryption.
◦ Breaks the “self-referentiality” of bootstrapping.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Chimera (mythology):
1) A monstrous fire-breathing female

creature composed of the parts of
multiple animals: upon the body of a
lioness with a tail that ended in a
snake’s head, the head of a goat arose
on her back.

2) The term chimera has also come to
mean, more generally, an impossible or
foolish fantasy, hard to believe.

SWHE Scheme

MHE Scheme

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Typically, they can be computed using
“restricted” depth-3 circuits.

 Proven already for Regev’s cryptosystem by
Klivans and Sherstov.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Elementary symmetric polynomial ek(x1, …, xn): sum of all
monomials that are products of exactly k distinct variables.

 Cool fact: ek(x) mod p can be computed by a depth-3
arithmetic circuit (for large enough p)

 How? If P(z) = Pi(z+x1), then ek(x) is the coefficient of zn-k
 Computing P(z): evaluate P(z) in n+1 points, interpolate
◦ Let A = {a1, …, an+1} be some subset of Zp

◦ Bottom Sums: Compute aj+xi for all xi’s and aj’s.

◦ Products: Compute λj∙P(aj) = Πi (aj+xi) for all j.

◦ Top Sum: Interpolate j λj∙P(aj) to get desired coefficient of P(z).

Observe: the bottom
sums are “restricted”.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Multilinear symmetric polynomials (MSPs):

◦ MSPs are symmetric, and each variable has degree 1

◦ MSPs are linear combinations of elementary symmetric

polynomials (ESPs)

◦ MSPs can be computed by restricted depth-3 circuits.

 Lattice-based decryption functions can be

expressed as “restricted” MSPs.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 MHE scheme: Elgamal over QR(p)
◦ p = 2q+1 be a safe prime

 SWHE scheme: Plaintext space = Zp.
Decryption is a restricted depth-3 arithmetic
circuit over Zp.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 FHE.KeyGen:
◦ Generate Elgamal key (eL, g

eL), SWHE key ({siL}, pki),
for every level L in the circuit

◦ Encrypt individual bits of eL under kL+1.

◦ Encrypt values aj+si (in Zp) under Elgamal for aj in A.
 Note: A is our set of “interpolation points” in our MSP.

 Technicality: the aj’s must be chosen so that aj and
aj+1 are both in QR(p), the plaintext space of Elgamal.

◦ Publish the public keys and encrypted secret keys.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 To “refresh” a level-i ciphertext c:
◦ First, express SWHE.Dec(c,s) as a c-dependent

restricted depth-3 circuit taking key s as input.

+

X X X X

+ + +

s3 a4 s2 a4 s1 a4

c1 c2

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Refresh.BottomSums:
◦ Pick up the Elgamal encryptions of aj+si from PK.
◦ The bottom sums have been “precomputed”.

 Refresh.Products:
◦ Compute cj∙P(aj) = cj∙Πi(aj+si) mod p

homomorphically using Elgamal.
 Refresh.Translation: +

X X X X

+ + +

s3 a4 s2 a4 s1 a4

c1 c2

Elgamal.Enc(aj+si)
in the public key

Uses Elgamal.Mult
for products

Translate to SWHE
for the addition

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Refresh.Translation:
◦ Goal: Convert (y, z) = (gr, mg

-er) to a SWHE
ciphertext.

◦ Precompute yi = y2i mod p for all i up to log q.

◦ “Inside” SWHE, compute ye[i]2i = e[i]∙y2i + (1-e[i])y0
mod p.

◦ Inside SWHE, compute product of ye[i]2i’s to get ye.
 The degree of this product is log q.

◦ Inside SWHE, compute product of ye and z to get m.

 Refresh.TopSum:
◦ Just do it inside the SWHE scheme.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Required homomorphic capacity of SWHE
scheme:
◦ Evaluate Elgamal decryption, plus an ADD or MULT.

◦ Overall degree = 2 log q.

◦ Set SWHE parameters large to evaluate polynomials
of degree 2 log q.

◦ Done!

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 [ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai.
Fast cryptographic primitives and circular-secure encryption based on
hard learning problems. Crypto 2009.

 [BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully
homomorphic encryption without bootstrapping. ITCS 2012.

 [BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic
encryption from ring-LWE and security for key dependent messages.
Crypto 2011.

 [BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully
homomorphic encryption from (standard) LWE. FOCS 2011.

 [CNT12] Jean-Sebastien Coron, David Naccache, and Mahdi Tibouchi.
Public-Key Compression and Modulus Switching for Fully Homomorphic
Encryption over the Integers. Eurocrypt 2012.

 [GH11b] Craig Gentry and Shai Halevi. Fully Homomorphic Encryption
without Squashing Using Depth-3 Arithmetic Circuits. FOCS 2011.

 [GHS12] Craig Gentry, Shai Halevi, and Nigel Smart. Fully Homomorphic
Encryption with Polylog Overhead. Eurocrypt 2012.

 [SV11] Nigel P. Smart, Frederik Vercauteren. Fully Homomorphic SIMD
Operations. eprint.iacr.org/2011/133.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 We can “compress” the entire FHE ciphertext down
to a single MHE (e.g., Elgamal) ciphertext

 Choose aj’s cleverly so that all products P(aj) can be
computed just from P(a1)
◦ Recall: P(z) = Πi (z+si) where si is a secret key bit.
◦ We only “store” P(a1) – e.g., a single Elgamal ciphertext!

 Note: P(aj) can be computed homomorphically from
P(a1) within the MHE scheme.

 Set aj such that we know (wj, ej) such that

◦ aj = wj∙a1
ej mod p, and

◦ aj+1 = wj∙(a1+1)ej mod p

◦ How? Choose ej and set
aj = a1

ej/((a1+1)ej – a1
ej) and wj = aj/a1

ej.

 Then, P(aj) = wj
d∙P(a1)

ej mod p

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Lemma: Let p be a prime. Let
 S = {(u,v): u ≠ 0, v ≠ 0, u2-v2 = 1 mod p}
 Then, |S| = p-3 or p-5, depending on whether p = 3 or 1 mod 4.

Proof: For each pair (u,v) in S, let auv = u+v. Then auv
-1 = u-v, and we

have:

 u = (auv + auv
-1)/2 and v = (auv - auv

-1)/2

implying that auv determines u and v uniquely. So, for

 T = {a ≠ 0 : a+a-1 ≠ 0, a-a-1 ≠ 0},

we have |S| = |T|.

We have that a is in T unless a = 0, a2 = -1, or a2 = ±1.
If p = 1 mod 4, then -1 in QR(p), and there are 5 prohibited values.
If p = 3 mod 4, then -1 is not a residue, and there are 3 prohibited
values.

