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Outline for Today M
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» Optimizations of Somewhat Homomorphic
Encryption (SWHE)

» Constructions of Fully Homomorphic
Encryption (FHE)

Lattice-Based Cryp
Bar-llan University



” yeellenc,
S
5 \
= )
¥ 4 )
< J
- 4
S //

Bar-llan University
Dept. of Computer Science

SWHE for Bounded Depth
Circuits [BGV12]

And Better Management of Ciphertext
Noise...
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Bar-llan University
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Review of [BV11Db]:
SWHE Based on LWE

2> Focusing on the “noise
problem”...

Lattice-Based Crypto-_‘& Applications
Bar-llan University, Israel 2012



The LWE Problem M

Bar-llan University
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» Noisy Polly Cracker Version:

> Let y be an error distribution.
> Distinguish these distributions:

- Generate uniform s < Z,". For many i, generate e; <y
and a linear polynomial fi(x,, ..., x,)) = fo+f;x;+...+f X,
(from Z,"*1) such that [fi(s,, ..., s))]; = e

- For many i, generate and output a uniformly random
linear polynomial fi(x,, ..., Xx,) (from Zq”+‘).

Lattice-Based Cryp 0
Bar-llan Univergf' s




SWHE Based on LWE [BV11Db] V
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» Parameters: g such that gcd(q,2)=1.

» KeyGen: Secret = uniform s € Z,". Public key:

inear polys {fi(x;,...,.x))} s.t. [fi(s)];=2¢e;, l&;] < q.

» Encrypt: Set g(x,,...,X,) as a random subset sum of
{f.(Xq,...,X,)}. Output c(X,,...,X,.)=m+g(X;,...,X,).

» Decrypt: [c(s)], = m+smeven. Reduce mod 2.

» ADD and MULT:;

» Output sum or product of
ciphertext polynomials.

» Relinearize / Key-Switch




The Noise Problem M

Bar-llan University
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» ADD: c(X) = ¢;(X)+C,(X).

> Noise of c(x) - namely, [c(s)], - is sum of noises.
» MULT: c(X) = ¢;(X)-C5(X).

> Noise [c(s)], is product of noises.

- Sort of... After MULT, there is “relinearization” step that
adds a small amount to the noise.

» Function F: c(x) = F(c;(X),...,c/(X)).
> Noise [c(s)], = f(cy(s),...,c,(s)) - i.e., F applied to noises.

- Rough approximation:

- If F has degree d and fresh noises are
bounded by B, c(x) has noise B9,

- Noise magnitude increases
exponentially with degree.

Lattice-Based Crypto & Ap
Bar-llan University, Is



The Noise Problem Hurts Efficiency. /Ny
W h y? Bar-llan University

Dept. of Computer Science

» SWHE ciphertexts must be large to let noise
‘room to grow”.

» “Noise” grows exponentially with degree. To
successfully evaluate degree-d poly, noise
B ~~ B4 without “wrapping”.

» So, coefficients of lattice vectors have > d bits.

» For security, we need it to be hard to
Bd-1 > 2d-approximate lattice problems in 2k

time.

- Requires lattice dim > d-k.
- Total ciphertext length > d?-k bits.

Lattice-Based Crypto &
Bar-llan University, Israe



SWHE for Bounded Degree R
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» Since total ciphertext length = d2-k bits, we
have SWHE for bounded degree:

» SWHE for bounded degree: A family of schemes
ED, d e Z, that for security parameter k,

- B can homomorphically evaluate functions of degree d.
- KeyGen, Enc, Dec, ADD, MULT are all poly(k,d).
- Eval has complexity polynomial in k, d, and circuit size.

This is the best we can hope for
when noise grows exponentially
with degree.

Lattice-Based C
Bar-llan Univer
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SWHE for Bounded
Depth...
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SWHE for Bounded Depth CII‘CUItS M
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» “Leveled FHE” [Gen09]: Relaxation of FHE... A
family of schemes EL, L € Z, is “leveled fully
homomorphic” if, for security parameter k,

- E® can homomorphically evaluate circuits of depth L,
- The Dec (decrypt) function is the same for all L,

- KeyGen, Enc, Dec, ADD, MULT are all poly(k,L).

> Eval has complexity polyomial in k, L, and circuit size.

» Humbler name for it: “SWHE
for bounded depth circuits”.




Better Noise Management? M

Bar-llan University
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» Our fantasy:
- Noise doesn’t grow exponentially with degree.

- There is some simple trick to reduce noise after
MULTSs.

- We get better noise management, hence shorter
ciphertexts and SWHE for bounded depth.

Lattice-Based Crypto & App
Bar-llan University



Better Noise Management? M

Bar-llan University
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» Crazy ldea [BV11b, BGV12]:

> Suppose c encrypts m - that is, m = [[c(s)]q]>.
> Let’s pick p<qg and set c*(X) = (p/q)-c(X), rounded.
- Maybe it is true that:
© €*(x) encrypts m: m = [[c*(s)],], (hew inner modulus).
« [[c*(S)]pl = (p/q) - |[c(S)]ql (noise is smaller).
> This really shouldn’t work...

Lattice-Based Crypto & App
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Modulus Reduction Trick M

Bar-llan University
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» Scaling lemma: Let p < q be odd moduli.

> Given ¢ with m = [[<c,s>]4],. Set €’ = (p/q)c.
Set ¢” to be
- the integer vector closest to €’
- such that ¢ = ¢ mod 2.

o If |[<ec,s>]ql < q/2 -(q/p)- 4(s), then €” is a valid
encryption of m with possibly much less noise!
- m = [<c,s>] L.

- |I<ds>],| < (p/a) - [I<c,s>]q| + 4(s),
where (,(s) is t;—norm of s.




Modulus Reduction Trick M

Bar-llan University
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Annotated Proof
1. For some k, [<c,s>],=<c,s>-kq.| 1. Imagine <c,s> is close to kq.
2. (p/a)l<c,s>]q = <c’,s>-kp. 2. Then <c’,s> is close to kp.

3. [<c’-c’,s>| <q(s). 3. <c”,s> close to kp if s is small.
4. Thus, |<c”,s>-kpl< (p/q) l[<c,s>14] + ¢(s) < p/2.

5. So, [<c”,s>], = <c”,s> - kp.
6. Since ¢’ = cand p = g mod 2, we have [<c”,s>]],=[<c,s>]4],.

Scaling lemma:lLet p<qg be odd moduli.
> Given ¢ with m = [[<c,s>].],. Set €’

= (p/g)c. Set c” to be

- the integer (rindg) vector closest to ¢’ such
that ¢” = ¢ mod 2.

o If |[[<e,s>1ql < a/2 - (a/p)- 1(s), then:
- ¢”is a valid encryption of m with possibly
much less noise!
- m=[<c’,s>]],, and
[[<c”,s>],1 <(p/q) - [[<c,s>]1] + 1(s).
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Modulus Reduction Example
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» Example: q=127, p=29, ¢=(175,212), s=(2,3)
» <¢,5> mod g = 986-8-127 = -30
» ¢ =(p/q)-c =1(39.9,48.4)

- To get ¢”, we round down both values (39,48).
» <¢’,s> mod p = 222-829 =-10
» k=8 in both cases, and -30=-10 mod 2.
» The noise magnitude decreases from 30 to 10.

- But relative magnitude increases:
10/29 > 30/127.




Small Secret Key a

Bar-llan University
Dept. of Computer Science

» Recall [[<c”,s>])| < (p/q) - [[<c,s>],| + 4(s).
» Luckily [ACPS 2009] proved that LWE is hard

even when s is small

> chosen from the error distribution y.
- So we use this distribution for the secret keys.

Lattice-Based Crypto &
Bar-llan Univers@, AN



Modulus Reduction in RLWE-Based Ny
SW H E Bar-llan University

Dept. of Computer Science

» Scaling lemma also holds for LPR10, BV11a.

» [LPR10]: Ring-LWE encryption scheme can
can also have small secret keys, from the
error distribution y.




How Does Modulus Switching Help? * 2
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To evaluate a circuit of depth L...

» Start with a large modulus g, and noise n « q,.

» After first MULT, noise grows to n-.

» Switch the modulus to q,_; = q,/n.
- Noise reduced to n?/n = n.

» After next MULT, noise again grows to n4. Switch
to q,.>, = g,_;/n to reduce the noise to n.

» Keep switching moduli after each layer.

- Setting q;,_; = q;/n. (“Ladder” of decreasing moduli.)
> Until the last modulus just barely

satisfies q; > n.

Lattice-Based Crypto & Ap
Bar-llan University,.



How Does Modulus Switching Help? - =

Bar-llan University
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» Example: qq = n? with modulus reduction.

Noise  Modulus

Fresh ciphertexts n dy = N°
Level-1, Degree=2 n gs = n8
Level-2, Degree=4 n q; =n’
Level-3, Degree=8 n dg = n°
Level-4, Degree=16 1 ds = n°
Level-5, Degree=32 n g, = n*
Level-6, Degree=64 n q; = n3
Level-7, Degree=128 n d, = n?
Level-8, Degree=256 n d;, =N




How Does Modulus Switching Help? - '\ |

Dept. of Computer Science

» Example: qq = n? with no modulus reduction.

Noise  Modulus
Fresh ciphertexts n dy = N°
Level-1, Degree=2 n? dy = n°

Level-2, Degree=4 n* do = n°

Level-3, Degree=8 né

Level-4, Degree=16 n'e

Level-5, Degree=32 n32
Level-6, Degree=64 né4

Level-7, Degree=128 n'28

Level-8, Degree=256 N2>




Performance M
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» To evaluate circuit of depth L;
- Largest modulus is q, = q;-=n".

- Largest ciphertext is O(k-poly(L)) bits, where k is the
security parameter.

» Compare: without modulus reduction:

- ciphertext was O(k-d?) bits, where d was the degree
(not the depth) of the circuit.

» Depth is logarithmic in degree.

» Exponential improvement.

Lattice-Based Crypto & Ap
Bar-llan University



The Final Ciphertext i
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» Final ciphertext (at output level) is small
° ¢, is small.

- Use key-switching to reduce dimension of the
ciphertext if needed (“dimension reduction” [BV11Db]).

> Final ciphertext can be as small as a normal (non-
homomorphic) Regev’05 ciphertext.

» We have SWHE for bounded depth circuits.

Lattice-Based C \ & Ap
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Security e

Bar-llan University
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» Based on (R)LWE, but for what approx factor?

» Approx factor = modulus/|noise| = (poly(k))derth,
> Previously, modulus/|noise| = (poly(k))degree,

Lattice-Based Cryp
Bar-llan University



SWHE over the Integers for Bounded . A’
Depth Circuits

Dept. of Computer Science

» [CNT12] extends the modulus reduction trick
to the integer scheme.

Lattice-Based Cr.
Bar-llan Universi
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Batched Computation on
Encrypted Data [SV11]

Each ciphertext is “packed” with an array of
plaintexts...




The Setting e

Bar-llan University
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» Ciphertexts are long, plaintexts are often short.
» Wasteful!

» Overhead of homomorphic encryption
= (encrypted comp. time)/(unencrypted comp. time)
> (ciphertext length)/(plaintext length)




Batching / Packing Ciphertexts ™M

Bar-llan University
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» Each ciphertext has an array of “plaintext slots”.

» An operation (+,x) on a ciphertext acts separately, in
parallel, on each “plaintext slot” (each index in array).
> Suppose two ciphertexts c and ¢’ have (b,,b,,bs) and

(b,’,b5’,b3’) respectively in their “slots”
> 3-ADD(c,c’) — (b;+b,’, b,+b,’, bs+bys’).
> 3-MULT(c,c’) — (by-by’, by-b,’, bsy-by’).
- 3-ADD, 3-MULT cost same as ADD, MULT.

» Think Chinese Remainder Theorem.

Lattice-Based Crypto & Ap
Bar-llan University,.



LWE-Based SWHE [BV11Db] :

Bar-llan University
Dept. of Computer Science

» Parameters: g such that gcd(q,2)=1.

» KeyGen: Secret = uniform s € Z.". Public key: linear polys
{ti(xq,...,xp)} s.t. [fi(s)],=2e;, |gl << o}

» Encrypt (m € Z,): Set g(x1, ,X,) as a random subset
sum of {f.(xq,...,x)} Output c(x],...,xn)=m+g(x],...,xn).

» Decrypt: [c(s)], = m+smeven. Reduce mod 2.

» ADD and MULT:

» Output sum or product of
ciphertext polynomials.

Lattice-Based Cry* % Appl
Bar-llan UnlverSL \)



LWE-Based SWHE [BV11Db] :

Bar-llan University
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» Parameters: q and small p,,p,,p5 s.t. gcd(q,p,p,p3)=1.

» KeyGen: Secret = uniform s € Z.,". Public key: linear polys
{ti(xq,...,xp)} s.t. [fi(s)],=p p2pse;, le < .

» Encrypt (m e Z,;,,,3): Set g(x;,...,X,) as a random subset
sum of {f.(x,,...,x,)}. Output c(X;,...,X,)=m+g(X;,...,X,).

» Decrypt: [c(s)], = m+(mult of p,p,ps3). Reduce mod p,p,ps.

» ADD and MULT:

» Output sum or product of
ciphertext polynomials.

» By CRT, ADD and MULT operate
separately on {m mod p}.

-

Lattice-Based Cryptc
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Batching in RLWE-Based SWHE *
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» Motivation: Better efficiency:

- RLWE more efficient than LWE even in non-batched
setting.
- Batching works very well in RLWE-based SWHE.

Lattice-Based Cryp _\ plications
Bar-llan University,



CRT over Polynomial Rings R

Bar-llan University
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» Let R = Z[y]/h(y), p prime, R, = Z,[y]/h(y).
» Suppose h(y) = I1 h;(y) mod p.
» Then R, = Direct product of {Z [y]/h;(y)}.

» Example:

° R =Z[yl/(y*+1), p=17.
o (y*+1) = (y=-2)(y-8)(y-15)(y-9) mod 17

- 2,8=23,15=2>,9=27 are the primitive 8-th roots of unity mod 17.
> Zy,lyl/(y*+1) = Direct product of Z,,[yl/(y-2), Z;;lyl/(y-8), ...

> m(y) € Z,5[yl/(y*+1) is determined by its
evaluations at 2, 8, 15, 9.




>

Recall SWHE from RLWE [BV11a]

Parameters: q with gcd(qg,2)=1, R
Ry = Llyl/(y"+1), Ry = Zlyl/(y"+
KeyGen: Secret = uniform s € R.

inear polys {f.(x)} s.t. f.(s)=2e, |e

Ny

Bar-llan University
Dept. of Computer Science

= Zlyl/(y"+1),

).
Public key:

< Q.

» Encrypt(m € R,): : Set g(x) as a random subset
sum of {f,(x)}. Output c(x)=m+g(x).
» Decrypt: c(s) = m+smeven. Reduce mod 2.

>

ADD and MULT: Add or
multiply the ciphertext
polynomials.
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Recall SWHE from RLWE [BV11a]

Parameters: p, g with gcd(q,p)=1,R = Z[y]/(y"+1),
Ry, = Zplyl/(y"+1), Ry = Z,lyl/(y"+1).
KeyGen: Secret = uniform s € R. Public key:
inear polys {f.(x)} s.t. f.(s)= pe,, |e| < q.
Encrypt(m € R)): : Set g(x) as a random subset
sum of {f,(x)}. Output c(X)=m+g(x).

Decrypt: ¢(s) = m+(p multiple). Reduce mod p.

ity
Dept. of Computer Science

ADD and MULT: Add or
multiply the ciphertext
polynomials.




SWHE from RLWE [BV11a] V

Bar-llan University
Dept. of Computer Science

» Parameters: p, q with gcd(q,p)=1,R = Z[y]/(y"+1),

Ry = Zolyl/ (" +1), Ry = Z,lyl/(y"+1).

» KeyGen: Sécret = uniform s € R. Public key:

inear polys {f.(x)} s.t. f.(s)= pe, |e| <« q.

» Encrypt R)): : Set g(x) as a random subset
sum of Af,(x)[>~Qutput c(x)=m+g(x).

» Decrypt: c(s) = m3™p multiple). Reduce mod p.

Set p = 1 mod 2n,

so p has n primitive |§

2n-th roots of unity.

Then, R, splits.

Lattice-Based C" ?Eéations

76N

Bar-llan University, Israel 2012

Message m(y) in R,
| has n “plaintext slots”
for m’s evaluations at
primitive n-th roots of

unity mod p.




Forget Encryption for a Moment.. =

Bar-llan University
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» Plaintexts are m(y) € R, = Zp[y]/(y”+1), represented
by evaluations m(a), where o, S are primitive n-th
roots of unity mod p.

» my(y)+my(y) — my(oy)+my(ay),..., my(a,)+my(ap).
» my(y)xmy(y) — my(a)xmsy(ay),..., my(a,)xms(a,).
» F(my(y),...,m(y))
— F(m(a,),...,mda,)), ..., F(m,(ay),...,mya,)).
» Compute F on n inputs {(@;;, ..., ) : i € [n]} /n
parallel by setting {m.(y)} so that

m;(o) = a;;.




SIMD (Single Instruction Multiple :\:/_}\
Data): Working on Data Arrays

Dept. of Computer Science

Array 01; length n

| |
2 1119 (5 1017 3 /6 .01 2
8 1210 (9 13 18 0 [1 .14 4

n-ADD

1013 19 1413 [15/3 |7 |..[5 |6

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012



SIMD (Single Instruction Multiple :\:/_}\
Data): Working on Data Arrays

Dept. of Computer Science

Array 01; length n

| |
2 1119 (5 1017 3 /6 .01 2
8 1210 (9 13 18 0 [1 .14 4

n-MULT

1612 [0 145]0 15610 [6 .14 18

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012



SIMD (Single Instruction Multiple :\5

Data): Working on Data Arrays

Dept. of Computer Science
Array of length n
A

|
9 |5 [0 7 13 16 .11 2
3 13 4 |1 7 (8 .. 185

NN

Function F

0 19 3 18 10 1 [..14 4

5% 1% 1% [% % % | 1% %

» Great for computing same function F
on n different input strings.

» We can do SIMD homomorphically.

- —Dd d U
Bar-llan University, Israel 2012 \ 77777777777777777777777777777777777777777 |
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More Complex Computation
on Encrypted Arrays [GHS12]

) )

Lattice-Based Crypto & Applications
Bar-llan University, Israel



So you want to compute some Ny

function... Not Using SIMD

Dept. of Computer Science

Xl X2 X3 X4 X5 X7 X8X9 XlO X171 X5 X1y X15X16X17 X18 X19

ADD and MULT are a
complete set of operations.

Lattice-Based Crypto & Appiica
Bar-llan University, Israel 2012




So you want to compute some Ny
function... Using SIMD... salan ety

Dept. of Computer Science

X, X, X3 X, X

X7 X8X9 XlO Xll Xl2 Xl4 X15X16X17 Xl8 Xl9

1 [, x5 % x5 | s [ [ ffafx] [l
n-ADD and n-MULT are NOT
- a complete set of operations.




n-ADD, n-MULT, n-PERMUTE: a (¥,
complete set of SIMD ops

Dept. of Computer Science

s AN o, o [ b |
n —_—
O O O O S O S

x, [0 x,10 0 o o
<, [0 10 [0 o Jo DRgetelaglc, <, o o o o o

0 1,0 Jx, 0 [0 o

n-PERM UTE(n)C

ata

X Xy X3 Xy

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012
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Ring Automorphisms a

Bar-llan University
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Map aly) — b(y) = a(y’) mod (y"+1),
where i € Z,*.

b(y) has the same evaluations
as a(y), but permuted!

Lattice-Based Crypto & Ap
Bar-llan Universit



Can We Evaluate These Ny
Automorphisms Homomorphically? sumes

Dept. of Computer Science

» Given ciphertext ¢, (y)-x + c,(y) with

C;(y)-s(y)+coly) = m(y)+p-e(y) (mod q, y"+1)
C;(y)-s(y)+coly) = my)+p-ey’) (mod q, y"+1), i € Z,,*.
C,(y)-s(y)+co(y) = m(y)+p-e(y) (mod q, y"+1), i € Z,,*.
C; ()X + ¢y(y) is an encryption of m(y') under key s(y').
Key switch s(y)—s(y') to get encryption of m(y') under

v v VvV Vv

“‘normal” key s(y).




Which Permutations Do the Ny
Automorphisms Give Us?

Dept. of Computer Science

» The “Basic” Permutations (b(y) = a(y!)):
> Only n (out of n!) of the possible permutations.
> Automorphism group Gal(Q(a)/Q) = Z,,*.
> Think of the automorphisms as n—-ROTATE(i), which
rotates the n items i steps clockwise, like a dial.
» Claim: For any permutation =, we can build
n-PERMUTE(n) “efficiently” from n-ADD,

n-MULT, and n—-ROTATE(i).

Lattice-Based {\ :
Bar-llan University, Is
2 SRS



n-PERMUTE(n) from n-ADD, n-MULT;AA
and n-ROTATE(i). (Sketch) _—

Dept. of Computer Science

» Butterfly network: assume n = 2k,

- n—-PERMUTE(n) can be realized by a butterfly network of
2k-1 levels of n-SWAP(i,s) ops, ic{1,...,2k-1}, s€{0,1}"/2,
- At level i, the 2% items are partitioned into n/2 pairs,
each pair with k-bit indices differing only in |i-k|-th bit.
- n-SWAP(i,s) swaps the j-th pair iff si=1.

Lattice-Based Cryptc
— RN
Bar-llan Unlvers_“« s \




n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)

» 8-SWAP(2,0110)

1&2&3 4

5&6&7 8

Lattice-Based Crypto-_‘& Applications
Bar-llan University, Israel 2012

BIIU

Dept. of Computer Science

Potential Swaps

sity




n-PERMUTE(x) from n-ADD, n-MULT;, ,\'_\
and n-ROTATE(i). (Sketch) s lon Unersity

Dept. of Computer Science

» 8-SWAP(2,0110)

11213145678 Actual Swaps
/8|12 3/4/5 6 8-ROTATE(2)
314 5|6 78|12 8-ROTATE(-2)




n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)

» 8-SWAP(2,0110)

i U
1/21|3//4|5 6 8
7181112134 6
3/4/5 /6|7 8 2

Bar-llan Uni

Dept. of Computer Science

Actual Swaps

8-ROTATE(2)

8-ROTATE(-2)

sity




n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)

» 8-SWAP(2,0110)

1000 1THOLOOTHO T
1|2l o0| 0 Le]
/781|112 3 4 6
314|567 8 2

Bar-llan Uni

Dept. of Computer Science

n-MULT

sity




n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)

» 8-SWAP(2,0110)

Sy NN —
1/0/3/0/0 6 8
/181 2|3 4 6
3/4|/5|6| 78 2

Lattice-Based Crypto:.}ég'Applications
Bar-llan University, Israel 2012
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n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)

» 8-SWAP(2,0110)

] 8
:/ojojojwojoj]jo

o] | |l D4 0] 0
34 /5671812

Bar-llan University
Dept. of Computer Sc ience

n-MULT




n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)

» 8-SWAP(2,0110)

x4 T x4
1/0/3/0/0 6 8
O 0[]0/ 2/0 0 0
3/4/5/6 7|38 2

Lattice-Based Crypto:.}ég'Applications
Bar-llan University, Israel 2012
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n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)
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» 8-SWAP(2,0110)
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n-PERMUTE(n) from n-ADD, n-MULT, ,\'_\
and n-ROTATE(i). (Sketch)

» 8-SWAP(2,0110)

x4 T x4
1/0/3/0/0 6 8
O 0[]0/ 2/0 0 0
04/ 0 0 7|0 0
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n-PERMUTE(x) from n-ADD, n-MULT;, ,\'_\
and n-ROTATE(i). (Sketch) s lon Unersity
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» 8-SWAP(2,0110)
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Batching Summary e
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» Overhead of batched RLWE-based BGV12 SWHE
for security parameter k:
= (encrypted comp. time)/(unencrypted comp. time)
= poly(log q,, log w) = poly(L, log k, log w), where w is
the maximum width of circuit being evaluated.




Fully Homomorphic
Encryption [Gen(Q9]

and the bootstrapping step...




Bootstrapping: What Is It? "

Bar-llan University
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» So far, we can evaluate bounded depth F:

\1 —a—

» We have a noisy evaluated ciphertext c.

» We want to get a less noisy ¢’ that encrypts the
same value, but with less noise.

» Bootstrapping refreshes
ciphertexts, using the
encrypted secret key.

(@]
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Bootstrapping: What Is It?

» For ciphertext ¢, consider D_(sk) = Decrypt,,(c)
> Suppose D (-) is a low-depth polynomial in sk.
» Include in the public key also Encp(sk).

c v}
New encryption
/\ of y, with less

noise.

¢’ | D(sk) = Decrypt,(c) = vy

applied only to the “fresh”
encryption of sk.

\j'\{ Homomorphic computation J

62




Bootstrapping in [BV11b,BGV12]  AA
(LWE-Based Scheme)

Dept. of Computer Science

» Recall: Complexity of BGV12 (and BV11b)
decryption is independent of L, the depth it
can evaluate.

» Set L > T+depth needed to evaluate D¢.

» Then, homomorphic decryption reduces the
noise level. (Use recursively.)
- We now have FHE (modulo a circular security issue).
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» Decryption function computable in depth O(log k).
> OQur “somewhat homomorphic” scheme only needs to
compute circuits of depth O(log k).
» BGV12 performance with bootstrapping:
- Ciphertext size can be quasi-linear in k.
- ADD and MULT take O(k) time.
- Bootstrapping takes O(k?) time.
- Actually, with batching, we can reduce it to O(k) amortized.
- Overhead is poly(L, log k, log w) = poly(log k, log w), where
w is the maximum width of circuit being evaluated.

» Security can be based on

Bootstrapping BGV12

quasi-poly nomlal factors:
20008k yersus 2k (R)LWE.




Chimeric FHE [GH11Db]

A hybrid FHE scheme that combines lattices
and Elgamal...




Main Idea M

Bar-llan University
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Goal: Construct a bootstrappable SWHE scheme.

Problem Solution?
SWHE schemes don’t handle Elgamal handles
multiplication well, it amplifies multiplication well!
the “noisiness” of ciphertexts. Maybe Elgamal can help!

Suppose the decryption function
puts all of the mults together,
without alternation? Can Elgamal
help with the “product part™

But Elgamal cannot alternate
between additions and
multiplications...

Lattice-Based Cryptc
RN\ \
Bar-llan Unlvers;; S



Chimeric FHE ~
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» SWHE: Use a lattice-based SWHE scheme, as before.

» Express SWHE decryption as a ciphertext-dependent
depth-3 (ZI1X) arithmetic circuit applied secret key.

Cr fan-in
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Chimeric FHE ~

» Bootstrapping: Evaluate depth-3 circuit
homomorphically by combining a SWHE scheme
with a “helper” MHE (multiplicative
homomorphic enc.) scheme, like Elgamal:

- Bottom Sums: Get MHE encryptions of the bottom
sums.
(Can put all needed MHE ciphertexts in public key.)

> Products: Evaluate them homomorphically using MHE
scheme.

- Translation: Translate each ciphertext Encyyg(m) to
Enceyye(m) by evaluating MHE decryption

Bar-llan University
Dept. of Computer Science

homomorphically.

- Top Sum: Evaluate top sum under
the SWHE scheme.

Lattice-Based Crypto & Ap
Bar-llan University



Chimeric FHE ~

Bar-llan University
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» Main high-level idea: The SWHE scheme
only needs enough "homomorphic capacity”
to evaluate the MHE scheme’s decryption,
not its own decryption.

- Breaks the “self-referentiality” of bootstrapping.




SN
“Chimeric” FHE? i

Bar-llan University
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Chimera (mythology):

1) A monstrous fire-breathing female
creature composed of the parts of
multiple animals: upon the body of a
lioness with a tail that ended in a
snake’s head, the head of a goat arose
on her back.

2) The term chimera has also come to
mean, more generally, an impossible or
foolish fantasy, hard to believe.

| .SWHE Scheme

Lattice-Based Crypto-_‘& Applications
Bar-llan University, Israel 2012
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Lattice-Based Decryption
As a Depth-3 Circuit

) )

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012



Lattice-Based Decryption Functions ° '\ |
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» Typically, they can be computed using
“restricted” depth-3 circuits.

» Proven already for Regev’s cryptosystem by
Klivans and Sherstov.




Elementary Symmetric Polynomials '\ |

Dept. of Computer Science

» Elementary symmetric polynomial e, (x;, ..., x,): sum of all
monomials that are products of exactly k distinct variables.

» Cool fact: e, (x) mod p can be computed by a depth-3
arithmetic circuit (for large enough p)

» How? If P(z) = IT.(z+X,), then e (X) is the iCi n-k
» Computing P(z): evaluate P(z) in n+1 [FLEEATERLIEEIel)
- Let A ={a, ..., a,,} be some subsetofiEEEES R fla e

>¢ all x;'s and a;’s.
> Products: Compute 2-P(a)) =TI, (a;+x;) for all j.
- Top Sum: Interpolate 2 4;P(a)) to get desired coefficient of P(z).




Multilinear Symmetric Polynomials -

Bar-llan University
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» Multilinear symmetric polynomials (MSPs):

- MSPs are symmetric, and each variable has degree 1

- MSPs are linear combinations of elementary symmetric
polynomials (ESPs)

- MSPs can be computed by restricted depth-3 circuits.
» Lattice-based decryption functions can be

expressed as “restricted” MSPs.

Lattice-Based Crypto & Ap
Bar-llan University,
TALANRY
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An Elgamal Instantiation
2

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012




Elgamal Example i

Bar-llan University
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» MHE scheme: Elgamal over QR(p)
- p =2q+1 be a safe prime

» SWHE scheme: Plaintext space = Z,,.
Decryption is a restricted depth-3 arithmetic
circuit over Zp,

Lattice-Based Cry" % App
Bar-llan University



Elgamal Example M

Bar-llan University
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» FHE.KeyGen:
- Generate Elgamal key (e;, g®), SWHE key ({s; }, pk)),
for every level L in the circuit
> Encrypt individual bits of e, under k, ;.

0 Encrypt values a;+s; (in Z,) under Elgamal for a; in A.
- Note: A is our set of “interpolation points” in our MSP.

- Technicality: the a;’'s must be chosen so that a; and
a;+1 are both in QR(p) the plaintext space of iEIgamaI.

0 Publlsh the public keys and encrypted secret keys.




Elgamal Example: Refreshing a Ny
C i p h e rte Xt Bar-ll.:sm University
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» To “refresh” a level-i ciphertext c:

> First, express SWHE.Dec(c,s) as a c-dependent
restricted depth-3 circuit taking key s as input.

Lattice-Based Crypto:.}ég'Applications
Bar-llan University, Israel 2012



Elgamal Example: Refreshing a Ny
C i p h e rte Xt Bar-ll;n Uﬁiversity

» Refresh.BottomSumes:
> Pick up the Elgamal encryptlons of a;+s; from PK.
> The bottom sums have been precomputed
» Refresh.Products:
> Compute ¢;-P(q;) = ¢;I1,(a;+s;)) mod p
homomorphlcally usmg Elgamal
» Refresh.Translation:

Lattice-Based Crypto-_‘& Applications
Bar-llan University, Israel 2012
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Elgamal Example (continued)

» Refresh.Translation:

- Goal: Convert (y, z) = (g", mg~¢") to a SWHE
ciphertext.

o Precompute Yi = v2 mod p for all i up to log q.

“Inside” SWHE, compute yel12l = g[i]-y2! + (1-e][i])y°

mod p. |

- Inside SWHE, compute product of yelil2"’s to get ye.
- The degree of this product is log q.

> Inside SWHE, compute product of y¢ and z to get m.

» Refresh.TopSum:
> Just do it inside the SWHE scheme.




Elgamal Example (continued)

Bar-llan University
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» Required homomorphic capacity of SWHE
scheme:
- Evaluate Elgamal decryption, plus an ADD or MULT.
> Overall degree = 2 log g.

- Set SWHE parameters large to evaluate polynomials
of degree 2 log q.

> Done!

Lattice-Based al,f\x % Appl
Bar-llan Univers@, WA



Thank You! Questions? IN)
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An Optimization e
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» We can “compress” the entire FHE ciphertext down
to a smgle MHE (e.g., Elgamal) ciphertext

» Choose a;’s cleverly so that all products P(a;) can be
computed just from P(a,)

- Recall: P(z) IT; (z+s;) where s; is a secret key bit.
> We only “store” P(a ) - e.g., a single Elgamal ciphertext!

» Note: P(a)) can be computed homomorphically from
P(a, ) within the MHE scheme.

» Set a; such that we know (w;, €;) such that
° 3 = wya;% modp, and

© aJ+] — Wj(a.]‘i‘-l)eJ mOd p
- How? Choose e and set

a; = a]eJ/((a]H)ej - ;%) and w; = a;/a;9.
Then P(a) = w;%-P(a;)® mod p

Lattice-Based C x't




Twin Quadratic Residues M
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Lemma: Let p be a prime. Let
S={(u,v):uz0,v+£0, u?-vZ =1 mod p}

Then, |S| = p-3 or p-5, depending on whether p = 3 or 1 mod 4.

Proof: For each pair (u,v) in S, let a,, = u+v. Then a,,”' = u-v, and we
have:

u=-(@y, +a,"/2andv=1_(@Q, -a,")/2
implying that a,, determines u and v uniquely. So, for
T={a#0:a+a'#0,a-a'+#0}
we have |S| = |T].

We have that ais in T unlessa =0, a2 = -1, or a2 = +1.
If p =1 mod 4, then -1 in QR(p), and there are 5 prohibited values.
If p = 3 mod 4, then -1 is not a residue, and there are 3 prohibited




