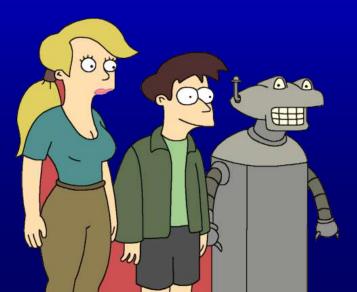


Proving Hardness of LWE

(based on [RO5, J. of the ACM])

Oded Regev
Tel Aviv University, CNRS, ENS-Paris



Outline

- Introduction to lattices
- Main theorem: hardness of LWE
- Proof of main theorem
 - Overview
 - Part I: Quantum
 - Part II: Classical

Lattices

Basis:

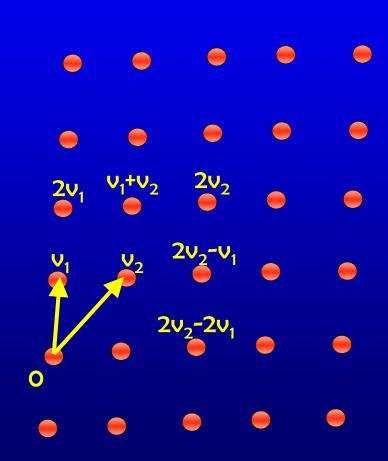
v₁,...,v_n vectors in Rⁿ

The lattice L is

 $L=\{a_1v_1+...+a_nv_n|a_i \text{ integers}\}$

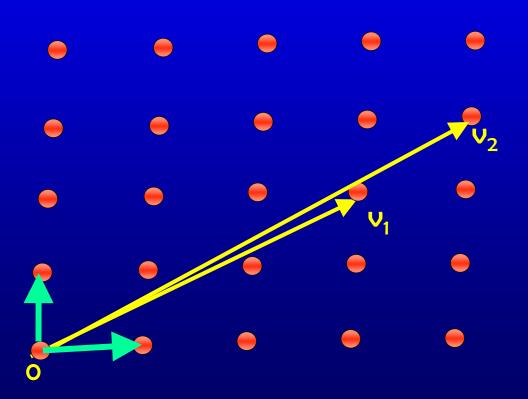
The dual lattice of L is

$$L^*=\{x\mid\forall\ y{\in}L,\ \langle x{,}y\rangle\in Z\}$$



Shortest Independent Vectors Problem (SIVP)

 SIVP: Given a lattice, find a 'short' set of n linearly independent lattice vectors (say within factor n of shortest)



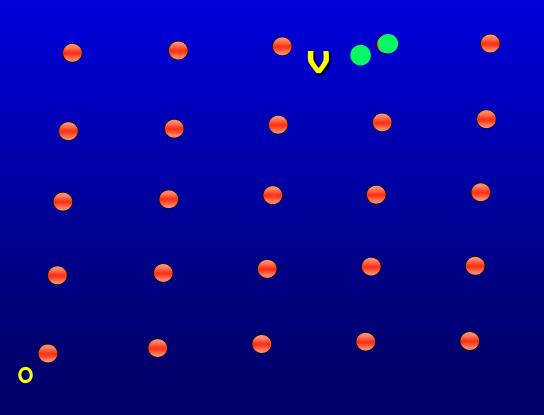
SIVP Seems Hard

- Best known algorithm runs in time 2ⁿ
 [AjtaiKumarSivakumarO1,...]
- No better quantum algorithm known!

 On the other hand, not believed to be NP-hard [GoldreichGoldwasser00, AharonovR04]

Bounded Distance Decoding

 BDD_d: Given a lattice and a target vector within distance d, find the closest lattice point



Main Theorem

Hardness of LWE

LWE

- Fix some p < poly(n)
- Let $s \in \mathbb{Z}_p^{-n}$ be a secret
- We have random equations modulo p with error:

$$2s_1 + 0s_2 + 2s_3 + 1s_4 + 2s_5 + 4s_6 + \dots + 4s_n \approx 2$$

$$0s_1 + 1s_2 + 5s_3 + 0s_4 + 6s_5 + 6s_6 + \dots + 2s_n \approx 4$$

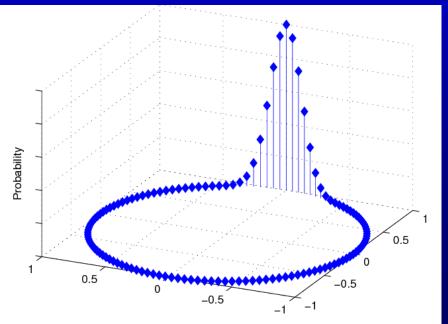
$$6s_1 + 5s_2 + 2s_3 + 0s_4 + 5s_5 + 2s_6 + \dots + 0s_n \approx 2$$

$$6s_1 + 4s_2 + 4s_3 + 4s_4 + 3s_5 + 3s_6 + \dots + 1s_n \approx 5$$

$$\vdots$$

LWE

- More formally, we need to learn s from samples of the form (t,st+e) where t is chosen uniformly from $Z_p^{\ n}$ and e is chosen from Z_p
- Easy algorithms need 2^{O(nlogn)} equations/time
- Best algorithm needs 2^{O(n)} equations/time
 [BlumKalaiWasserman'00]
- Subexponential algorithm if noise < √n [AroraGe'11]



Main Theorem

LWE is as hard as worst-case lattice problems using a quantum reduction

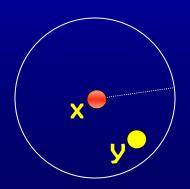
 In other words: solving LWE implies an efficient quantum algorithm for lattices

Why Quantum?

- As part of the reduction, we need to perform a certain algorithmic task on lattices
- We do not know how to do it classically, only quantumly!

Why Quantum?

- We are given an oracle that solves BDD_d for some small d
- As far as I can see, the only way to generate inputs to this oracle is:
 - Somehow choose x∈L
 - Let y be some random vector within dist d of x
 - Call the oracle with y
- The answer is x. But we already know the answer !!
- Quantumly, being able to compute x from y is very useful: it allows us to transform the state |y,x> to the state |y,0> reversibly (and then we can apply the quantum Fourier transform)



Proof of the Main Theorem

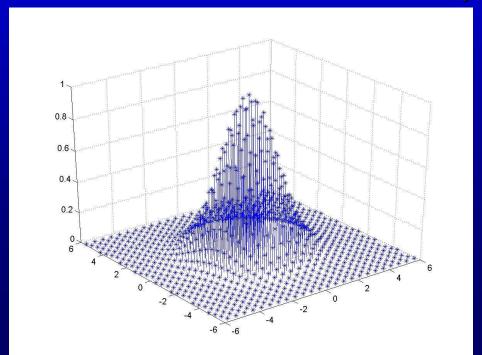
Overview

Gaussian Distribution

 Recall the discrete Gaussian distribution on a lattice (normalization omitted):

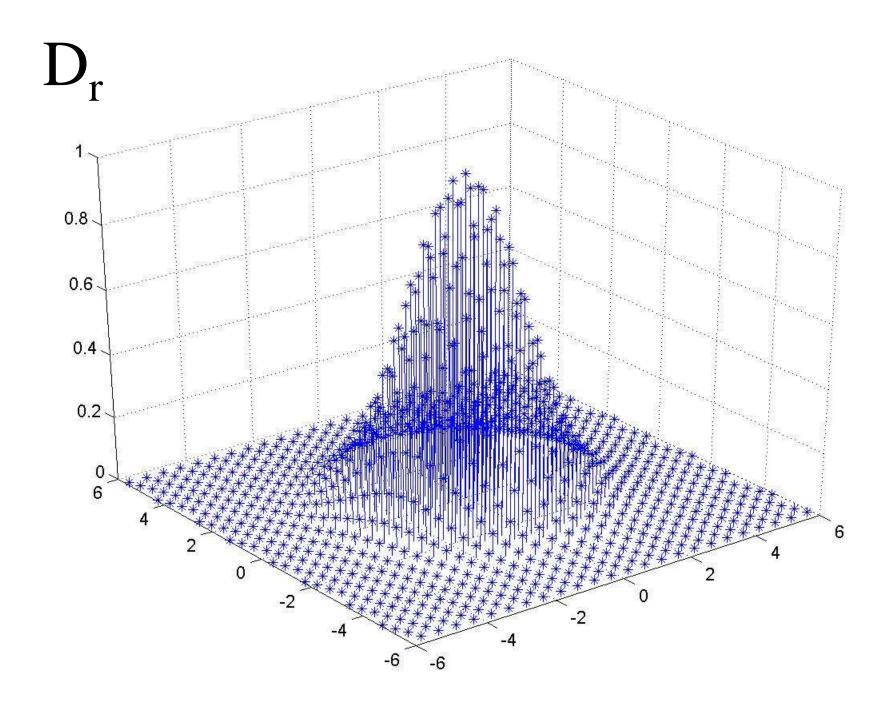
$$\forall x \in L, \ D_r(x) = e^{-\|x/r\|^2}$$

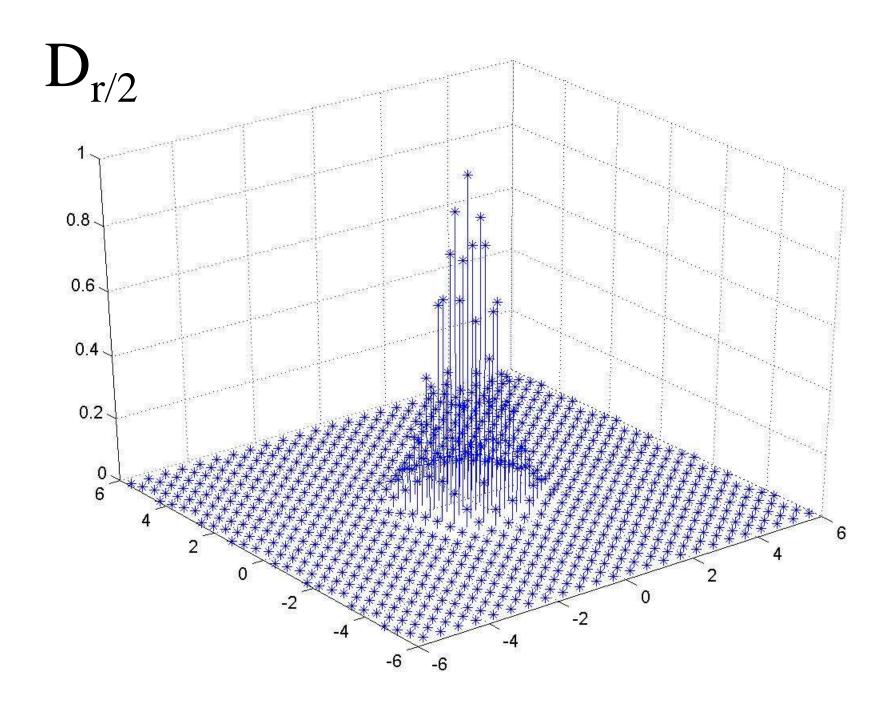
We can efficiently sample from D_r for large r=2ⁿ



The Reduction

- Assume the existence of an algorithm for LWE for $p=2\sqrt{n}$
- Our lattice algorithm:
 - r=2ⁿ
 - Take poly(n) samples from D_r
 - Repeat:
 - Given poly(n) samples from D_r compute poly(n) samples from D_{r/2}
 - Set r ← r/2
 - When r is small, output a short vector

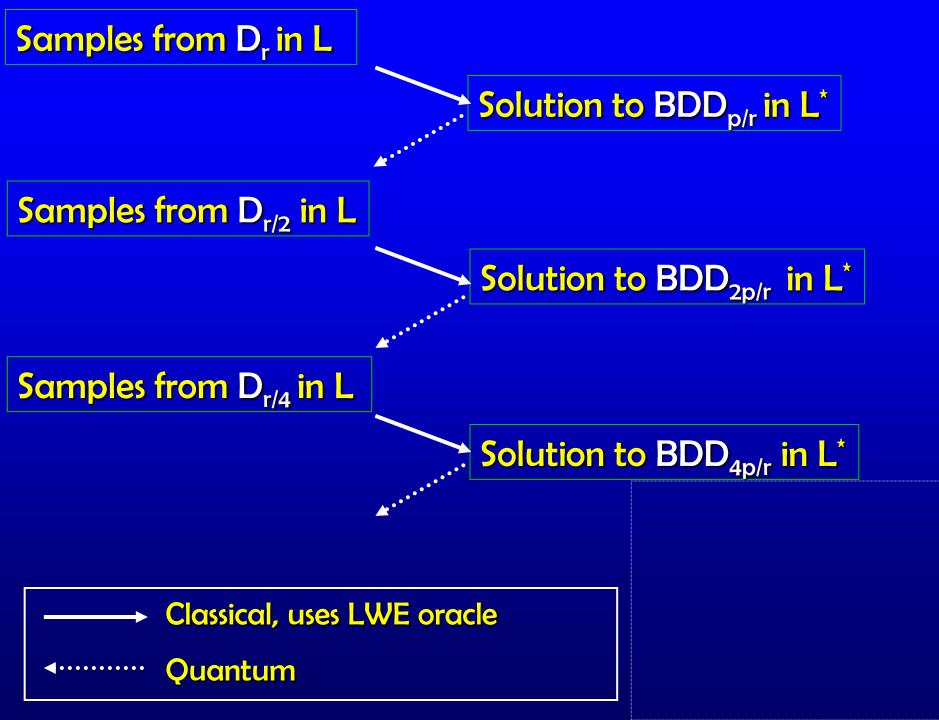


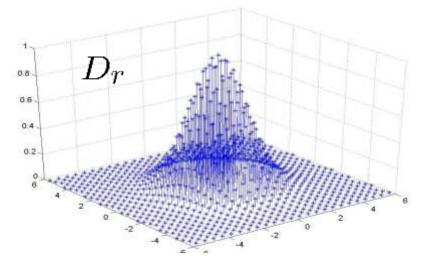


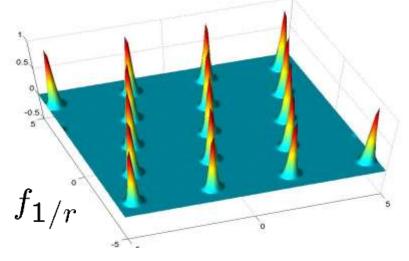
Obtaining D_{r/2} from D_r

p=2√n

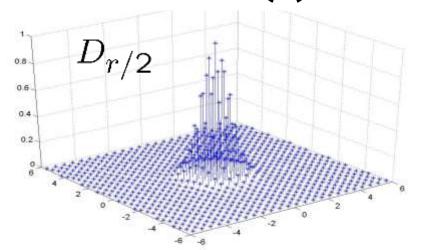
- Lemma 1:
 - Given poly(n) samples from D_r, and an LWE oracle, we can solve BDD_{p/r} in L^{*}
 - Classical
- Lemma 2:
 - Given a solution to BDD_d in L^* , we can obtain samples from $D_{\sqrt{n/d}}$
 - Quantum
 - Based on the quantum
 Fourier transform



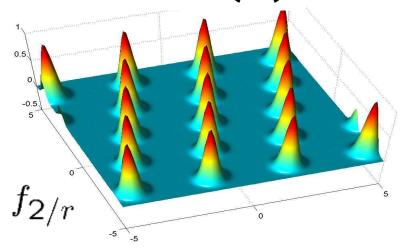




Primal world (L)



Dual world (L*)



Fourier Transform

The Fourier transform of D_r is given by

$$f_{1/r}(x) pprox e^{-\|r\cdot \mathsf{dist}(x,L^*)\|^2}$$

- Its value is
 - 1 for x in L*,
 - e⁻¹ at points of distance 1/r from L^{*},
 - ullet pprox oat points far away from L*.

Proof of the Main Theorem

Lemma 2: Obtaining D $_{\sqrt{n/d}}$ from BDD_d

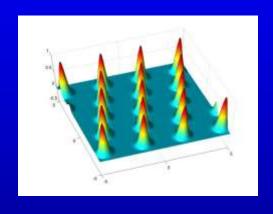
From BDD_d to D_{\/n/d}

• Assume we can solve BDD_{d} ; we'll show how to obtain samples from $D_{\sqrt{n/d}}$

Step 1: Create the quantum state

$$\sum_{x \in \mathbb{R}^n} f_{d/\sqrt{n}}(x) |x
angle$$

by adding a Gaussian to each lattice point and uncomputing the lattice point using the BDD algorithm



From BDD_d to D_{\/n/d}

Step 2:

Compute the quantum Fourier transform of

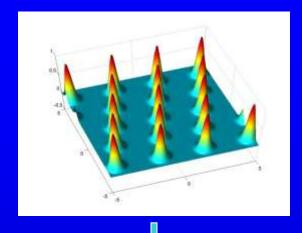
$$\sum_{x\in\mathbb{R}^n}f_{d/\sqrt{n}}(x)|x
angle$$

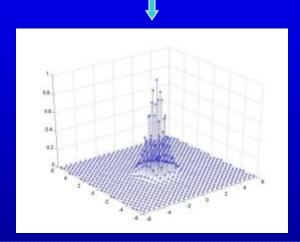
It is exactly $D_{\sqrt{n/d}}$!!

Step 3:

Measure and obtain one sample from $D_{\sqrt{n/d}}$

 By repeating this process, we can obtain poly(n) samples





Proof of the Main Theorem

Lemma 1: Solving $BDD_{p/r}$ given samples from D_r and an LWE oracle

It's enough to approximate fp/r

- Lemma: being able to approximate f_{p/r} implies a solution to BDD_{p/r}
- Proof Idea walk uphill:
 - f_{p/r}(x)>1/4 for points x of distance < p/r</p>
 - Keep making small modifications to x as long as f_{p/r}(x) increases
 - Stop when $f_{p/r}(x)=1$ (then we are on a lattice point)

What's ahead in this part

- For warm-up, we show how to approximate f_{1/r} given samples from D_r
 - No need for the LWE oracle
 - This is main idea in [AharonovR'04]
- Then we show how to approximate $f_{2/r}$ given samples from D_r and an LWE oracle (for p=2)
- Approximating f_{p/r} is similar

Warm-up: approximating f_{1/r}

Let's write f_{1/r} in its Fourier representation:

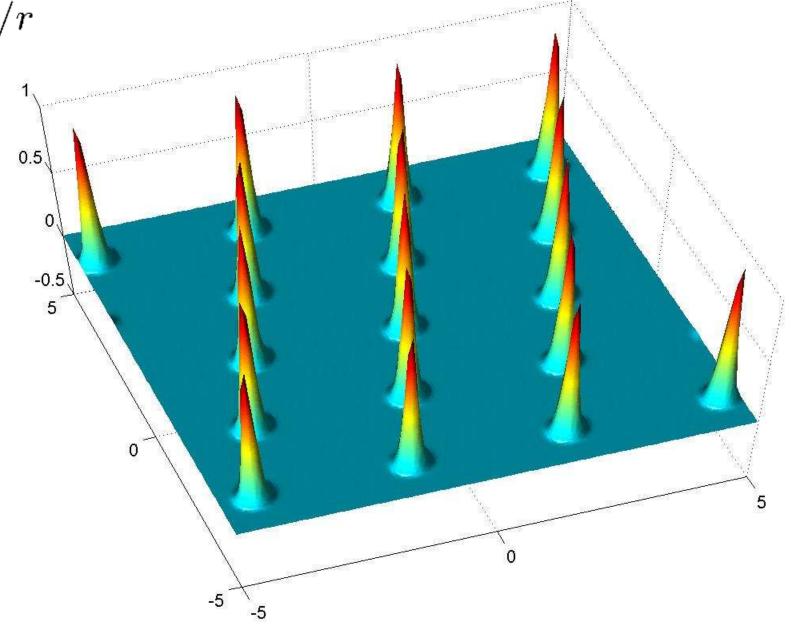
$$f_{1/r}(x) = \sum_{w \in L} \widehat{f_{1/r}}(w) \cos(2\pi \langle w, x \rangle)$$

$$= \sum_{w \in L} D_r(w) \cos(2\pi \langle w, x \rangle)$$

$$= E_{w \sim D_r} [\cos(2\pi \langle w, x \rangle)]$$

Using samples from D_r, we can compute a good approximation to f_{1/r}
 (this is the main idea in [AharonovR'O4])

 $f_{1/r}$



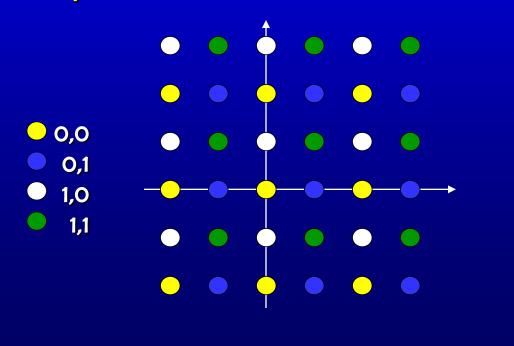
Fourier Transform

Consider the Fourier representation again:

$$f_{1/r}(x) = E_{w \sim D_r} \left[\cos(2\pi \langle w, x \rangle) \right]$$

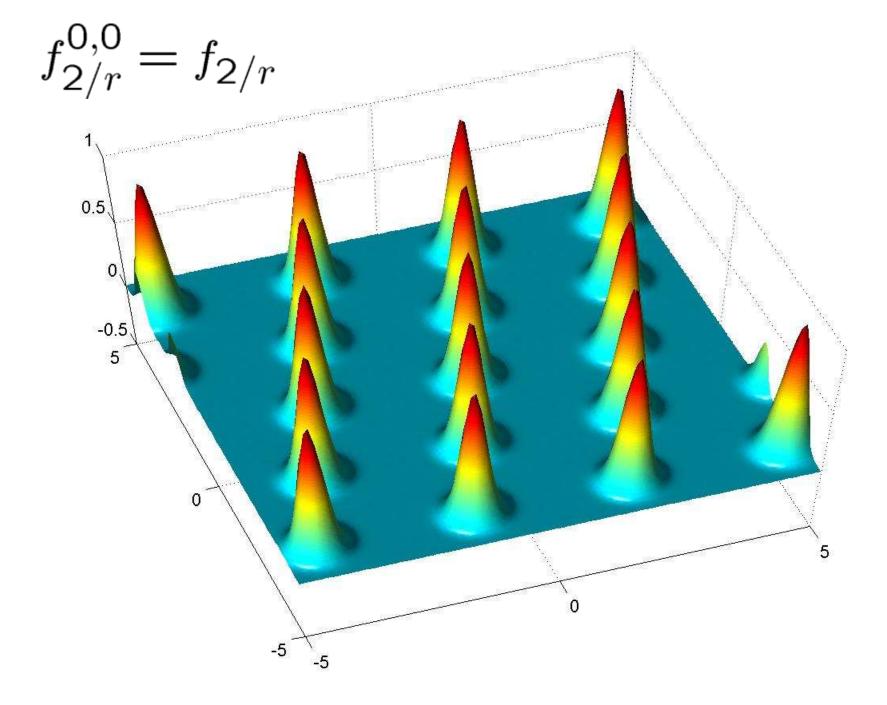
- For $x \in L^*$, $\langle w, x \rangle$ is integer for all w in L and therefore we get $f_{1/r}(x)=1$
- For x that is close to L*, \(\psi_w, x \rangle \) is distributed around an integer. Its standard deviation can be (say) 1.

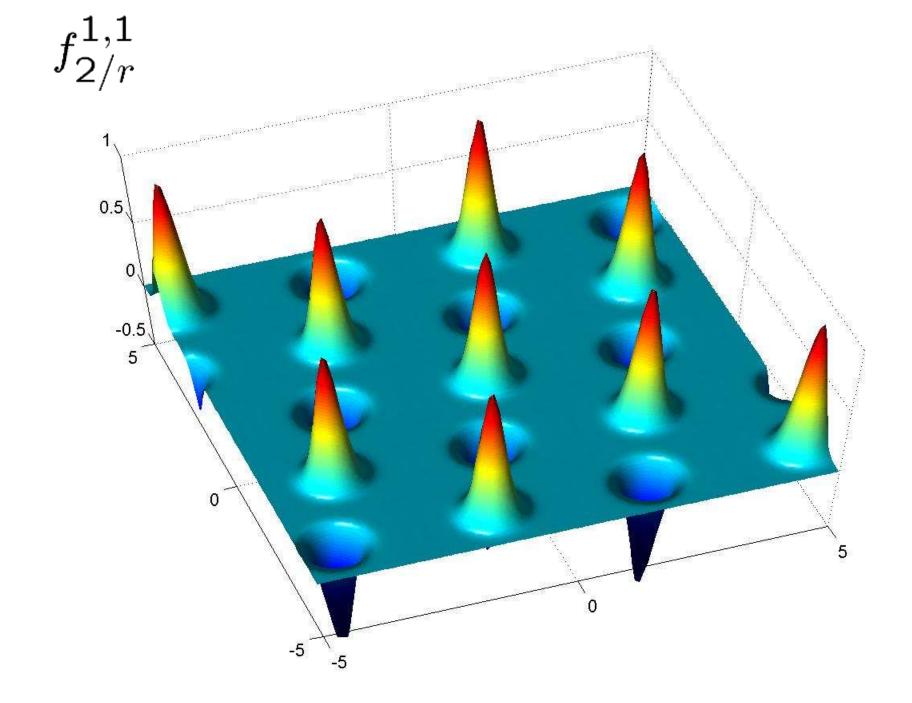
- Main idea: partition D_r into 2ⁿ distributions
- For $t \in (\mathbb{Z}_2)^n$, denote the translate t by D_r^t
- Given a lattice point we can compute its t
- The probability on (Z₂)ⁿ obtained by sampling from D_r and outputting t is close to uniform



- Hence, by using samples from D_r we can produce samples from the following distribution on pairs (t,w):
 - Sample $t \in (Z_2)^n$ uniformly at random
 - Sample w from D^t_r
- Consider the Fourier transform of D^t_r

$$f_{2/r}^t(x) = E_{w \sim D_r^t} \left[\cos(\pi \langle w, x \rangle) \right]$$





- The functions ft_{2/r} look almost like f_{2/r}
- Only difference is that some Gaussians have their sign flipped
- Approximating f^t_{2/r} is enough: we can easily take the absolute value and obtain f_{2/r}
- For this, however, we need to obtain several pairs (t,w) for the same t
- The problem is that each sample (t,w) has a different t!

- Fix x close to L*
- The sign of its Gaussian is ± 1 depending on $\langle s,t \rangle$ mod 2 for $s \in (\mathbb{Z}_2)^n$ that depends only on x
- The distribution of (x,w) mod 2 when w is sampled from D^t_r is centred around (s,t) mod 2
- Hence, we obtain equations modulo 2 with error:

```
\begin{array}{ll} \langle \textbf{s},\textbf{t}_1 \rangle & \approx \lceil \langle \textbf{x},\textbf{w}_1 \rangle \rfloor \; \text{mod} \; 2 \\ \langle \textbf{s},\textbf{t}_2 \rangle & \approx \lceil \langle \textbf{x},\textbf{w}_2 \rangle \rfloor \; \text{mod} \; 2 \\ \langle \textbf{s},\textbf{t}_3 \rangle & \approx \lceil \langle \textbf{x},\textbf{w}_3 \rangle \rfloor \; \text{mod} \; 2 \\ & \vdots \\ & \vdots \end{array}
```

- Using the LWE oracle, we solve these equations and obtain s
- Knowing s, we can cancel the sign
- Averaging over enough samples gives us an approximation to f_{2/r}

Open Problems

- 1. What happens for small moduli, say p=2 (learning parity with noise (LPN))?
- 2. Dequantize the reduction:
 - This would immediately improve the security of all LWE-based crypto
 - Main obstacle: what can one do classically with a solution to BDD_d? (see [Peikert09])
- 3. Use quantum hardness assumptions to prove security of other cryptosystems

More Recent Work

- [Peikert09] classical reduction, but exponential modulus and based on GapSVP only
- [StehléSteinfeldTanakaXagawa09] direct quantum reduction from SIS to LWE using the quantum part (but gives weaker hardness of LWE), as well as a ring version of LWE
- [LyubashevskyPeikertR09] Ring-LWE

Thanks !!

