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Lattices

Basis:
V,,...,v, vectors in R" P
The lattice L is e © ©

L={av+...+a v | a.integers}

The dual lattice of L is ! /v,

L'={x | V yeL, (xy) € Z} 0



Shortest Independent Vectors Problem
(SIVP)

o SIVP: Given a lattice, find a ‘short’ set of n linearly
independent lattice vectors (say within factor n of shortest)




SIVP Seems Hard

e Best known algorithm runs in time 2"
[AjtaiKumarSivakumaroi,...]

e No better quantum algorithm known!

e On the other hand, not believed to be NP-hard
[GoldreichGoldwasserO0O0, AharonovR04]



Bounded Distance Decoding

o« BDD_: Given a lattice and a target vector within distance
d, find the closest lattice point

v o°



Main Theorem



LWE
* Fix some p < poly(n)
* Let s€Z," be a secret
* We have random equations modulo p with error:

25,+0s,+2S,+1S,+2S.+4S+...+4S_ ~ 2
0s;+1s,+55,+0s,+6S:+06S.+...+2S, ~ 4
0S,+5S,+2S5+0s,+5S:+2S+...+0S, ~ 2

0S,+4S,+48,+4S,+35:+3S;+...+1S_ = D



LWE

®* More formally, we need to learn s from samples of the
form (t,st+e) where t is chosen uniformly from Z " and e is

chosen from Z
® Easy algorithms need 2°Mloam equations/time

* Best algorithm needs 2°M equations/time
[ BlumKalaiWasserman’00]

* Subexponential algorithm if noise < Vn [AroraGe'11]




Main Theorem

LWE is as hard as worst-case lattice problems
using a quantum reduction

® |In other words: solving LWE implies an efficient
quantum algorithm for lattices

?

N



Why Quantum?

* As part of the reduction, we need to perform a
certain algorithmic task on lattices

®* We do not know how to do it classically, only
quantumliy!



Why Quantum?

We are given an oracle that solves BDD 4 for some small d
As far as | can see, the only way to generate inputs to this oracle is:

®* Somehow choose x<L
* |ety be some random vector within dist d of x
® Call the oracle with y

The answer is x. But we already know the answer !

Quantumly, being able to compute x from y is very useful: it allows
us to transform the state |y, x> to the state |y,0> reversibly (and then
we can apply the quantum Fourier transform)



Proof of the Main Theorem

Overview



Gaussian Distribution

® Recall the discrete Gaussian distribution on a
lattice (hormalization omitted):

Ve € L, Dr(z) = e~ llz/7II°

® We can efficiently sample from D, for large r=2"




The Reduction

® Assume the existence of an algorithm for LWE for p=2Vn

® Our lattice algorithm:
® r=2"
® Take poly(n) samples from D,
® Repeat:

® Given poly(n) samples from D, compute poly(n)
samples from D,

® Setr«r/2
® When r is small, output a short

vector










Obtaining D,,, from D,  [p=2Vn

® Lemmat:

Given poly(n) samples from D,, and an LWE
oracle, we can solve BDD; in L’

® Classical
® Lemma 2:

Given a solution to BDD in L', we can obtain
samples from D, 4

® Quantum
® Based on the quantum
Fourier transform
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\ Solution to BDD, in L’
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Fourier Transform

® The Fourier transform of D, is given by
fl/fr‘(m) % e—||?"-diS1Z(:U,,L*)||2
® [ts value is
®1forxinlL,
® ¢! at points of distance 1/r from L,
® ~O at points far away from L.




Proof of the Main Theorem

Lemma 2: Obtaining D, , from BDD,



® Assume we can solve BDD; we'll show how to
obtain samples from D, 4

® Step 1
Create the quantum state
> faym@z)
relR™
by adding a Gaussian to each
lattice point and uncomputing

the lattice point using the
BDD algorithm




® Step 2:

Compute the quantum
Fourier transform of

> faym(@)z)
reR"™
It is exactly D, 4"

® Step 3:

Measure and obtain one
sample from D, 4

® By repeating this process, we
can obtain poly(n) samples




Proof of the Main Theorem

Lemma 1: Solving BDD, , given
samples from D, and an LWE oracle



It's enough to approximate f
® Lemma: being able to approximate f, implies a
solution to BDD,
® Proof Idea — walk uphill:
® f . (x)>¥a for points x of distance < p/r

® Keep making small modifications to x as long as
f(X) increases

® Stop when f_, (x)=1 (then we are on a lattice
point)

p/r



What's ahead in this part

® For warm-up, we show how to approximate f,;
given samples from D,

® No need for the LWE oracle
® This is main idea in [AharonovR’04]

® Then we show how to approximate f,, given
samples from D, and an LWE oracle (for p=2)

® Approximating f, is similar



Warm-up: approximating f,,_

® |et’s write f,;, in its Fourier representation:

fl/,r(::r:) = Z fl/?,,(w) cos(2m(w, x))

we L

= » Dr(w)cos(2m(w,z))

we L
— Ly~ Dy, [cos(2m{w, ))]

® Using samples from D, we
can compute a good
approximation to f,,
(this is the main idea in

[AharonovR’04])







Fourier Transform

® Consider the Fourier representation again:

fl/r(m) = EwwDr [COS(Q’?T(@U, ZB))]

® For xcL’, (w,x) is integer for all w in L and therefore we
get f,, (x)=1

® For x that is close to L', (w,x) is distributed around an
integer. Its standard deviation can be (say) 1.




Approximating f,,

® Main idea: partition D, into 2" distributions
® For te(Z,)", denote the translate t by Dt
® Given a lattice point we can compute its t

® The probability on (Z,)" obtained by sampling
from D, and outputting t is close to uniform

o

o

|
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Approximating f,,

® Hence, by using samples from D, we can produce
samples from the following distribution on pairs

(t,w):
® Sample te(Z,)" uniformly at random
® Sample w from D¢,

® Consider the Fourier transform of Dt

fé/r(f”) = E,,..pt [cos(m(w, z))]










Approximating f,,

® The functions f*,, look almost like £,

® Only difference is that some Gaussians have their sign
flipped

® Approximating f',, is enough: we can easily take the
absolute value and obtain f,,

® For this, however, we need to obtain several pairs (t,w) for
the same t

® The problem is that each sample
(t,w) has a different t !




Approximating f,,

® Fix x closeto L
® The sign of its Gaussian is =1 depending on (s,t) mod 2 for

se(Z,)" that depends only on x

® The distribution of (x,w) mod 2 when w is sampled from Dt
is centred around ¢s,t) mod 2

® Hence, we obtain equations modulo 2 with error:

(s,t;)
(s.t5)
(s:t3)

€

U

(x,w,) | mod 2
[ (x,w,) | mod 2

(x,w;) | mod 2




Approximating f,,

® Using the LWE oracle, we solve these equations
and obtain s

® Knowing s, we can cancel the sign

® Averaging over enough samples gives us an
approximation to f,,




Open Problems

What happens for small moduli, say p=2 (learning parity
with noise (LPN))?

. Dequantize the reduction:

e This would immediately improve the security of all
LWE-based crypto

e Main obstacle: what can one do classically with a
solution to BDD_? (see [Peikert09])

. Use quantum hardness assumptions to prove security of
other cryptosystems




More Recent Work

* [Peikert09] classical reduction, but exponential modulus
and based on GapSVP only

® [StehléSteinfeldTanakaXagawa09] direct quantum
reduction from SIS to LWE using the quantum part (but

gives weaker hardness of LWE), as well as a ring version of
LWE

* [LyubashevskyPeikertRO9] Ring-LWE




Thanks !




