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Basis:  
     v1,…,vn vectors in Rn 

 
The lattice L is     
 
   L={a1v1+…+anvn| ai integers} 
    
The dual lattice of L is 
 
 L*={x | 8 y2L, hx,yi 2 Z}  
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• SIVP: Given a lattice, find a ‘short’ set of n linearly 
independent lattice vectors (say within factor n of shortest) 

 

 

Shortest Independent Vectors Problem 
(SIVP) 
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• Best known algorithm runs in time 2n 

[AjtaiKumarSivakumar01,…] 

• No better quantum algorithm known! 

 

• On the other hand, not believed to be NP-hard 
[GoldreichGoldwasser00, AharonovR04] 

 

SIVP Seems Hard 



 

 

 

 

 
 

 

 

 

 

 

 

 
 
• BDDd: Given a lattice and a target vector within distance 

d, find the closest lattice point 

 

Bounded Distance Decoding 
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Main Theorem 

 

Hardness of LWE 



LWE  
• Fix some  p < poly(n)  
• Let s2Zp

n be a secret 
• We have random equations modulo p with error: 

2s1+0s2+2s3+1s4+2s5+4s6+…+4sn   2 

0s1+1s2+5s3+0s4+6s5+6s6+…+2sn   4 

6s1+5s2+2s3+0s4+5s5+2s6+…+0sn   2 

6s1+4s2+4s3+4s4+3s5+3s6+…+1sn   5 
   . 
   . 
   . 



LWE 
• More formally, we need to learn s from samples of the 

form (t,st+e) where t is chosen uniformly from Zp
n  and e is 

chosen from Zp 
• Easy algorithms need 2O(nlogn) equations/time  
• Best algorithm needs 2O(n) equations/time 

[BlumKalaiWasserman’00] 
• Subexponential algorithm if noise < n [AroraGe’11] 
  



Main Theorem  
LWE is as hard as worst-case lattice problems  

using a quantum reduction 
 

• In other words: solving LWE implies an efficient 
quantum algorithm for lattices 

 



Why Quantum? 
 
• As part of the reduction, we need to perform a 

certain algorithmic task on lattices 
• We do not know how to do it classically, only 

quantumly!  



Why Quantum?  

• We are given an oracle that solves BDDd for some small d 

• As far as I can see, the only way to generate inputs to this oracle is: 

• Somehow choose xL 

• Let y be some random vector within dist d of x 

• Call the oracle with y 

• The answer is x. But we already know the answer !! 

• Quantumly, being able to compute x from y is very useful: it allows 
us to transform the state |y,x> to the state |y,0> reversibly (and then 
we can apply the quantum Fourier transform) 

x 
y 



Proof of the Main Theorem 

 

Overview 



Gaussian Distribution  
• Recall the discrete Gaussian distribution on a 

lattice (normalization omitted):  
 
 

• We can efficiently sample from Dr for large r=2n  



The Reduction  
• Assume the existence of an algorithm for LWE for p=2n 

 
• Our lattice algorithm: 

• r=2n 

• Take poly(n) samples from Dr 

• Repeat: 
• Given poly(n) samples from Dr compute poly(n) 

samples from Dr/2 

• Set r ← r/2  
• When r is small, output a short  
    vector 



Dr 



Dr/2 



Obtaining Dr/2 from Dr  
• Lemma 1:  
 Given poly(n) samples from Dr, and an LWE 

oracle, we can solve BDDp/r in L* 
• Classical 

• Lemma 2: 
 Given a solution to BDDd in L*, we can obtain 

samples from Dn/d 

• Quantum 
• Based on the quantum  
 Fourier transform 

p=2n 



Samples from Dr in L 

Solution to BDDp/r in L* 

Samples from Dr/2 in L 

Solution to BDD2p/r  in L* 

Samples from Dr/4 in L 

Solution to BDD4p/r in L* 

Classical, uses LWE oracle 
 

Quantum 



Dual world (L*) Primal world (L) 



Fourier Transform 

• The Fourier transform of Dr is given by 
 
 
• Its value is 

• 1 for x in L*, 
• e-1 at points of distance 1/r from L*, 
•  ¼0 at points far away from L*. 

 
 
 
 
 
 
 



Proof of the Main Theorem 

 

Lemma 2: Obtaining D√n/d from BDDd 



From BDDd to Dn/d 

• Assume we can solve BDDd; we’ll show how to 
obtain samples from Dn/d 

 
• Step 1: 
 Create the quantum state  

 
 
by adding a Gaussian to each  
lattice point and uncomputing  
the lattice point using the  
BDD algorithm 



• Step 2: 
 Compute the quantum 

Fourier transform of 
 

 

 It is exactly Dn/d !! 
• Step 3: 
 Measure and obtain one 

sample from Dn/d 

 

• By repeating this process, we 
can obtain poly(n) samples 

From BDDd to Dn/d 



Proof of the Main Theorem 

 

Lemma 1: Solving BDDp/r given  

samples from Dr and an LWE oracle 



It’s enough to approximate fp/r  
• Lemma: being able to approximate fp/r implies a 

solution to BDDp/r 

• Proof Idea – walk uphill: 
• fp/r(x)>¼ for points x of distance < p/r  
• Keep making small modifications to x as long as 

fp/r(x) increases 
• Stop when fp/r(x)=1 (then we are on a lattice 

point) 



What’s ahead in this part 
 

• For warm-up, we show how to approximate f1/r 
given samples from Dr 

• No need for the LWE oracle 
• This is main idea in [AharonovR’04] 

• Then we show how to approximate f2/r given 
samples from Dr and an LWE oracle (for p=2) 

• Approximating fp/r is similar 



Warm-up: approximating f1/r 

• Let’s write f1/r in its Fourier representation: 
 
 
 
 
 

• Using samples from Dr, we  
 can compute a good  
 approximation to f1/r  
 (this is the main idea in  
 [AharonovR’04]) 

 
 





Fourier Transform 

• Consider the Fourier representation again: 
 
 

 
• For x2L*, hw,xi is integer for all w in L and therefore we 

get f1/r(x)=1 
• For x that is close to L*, hw,xi is distributed around an 

integer. Its standard deviation can be (say) 1. 



Approximating f2/r 

  

 
• Main idea: partition Dr into 2n distributions 
• For t(Z2)n, denote the translate t by Dt

r 

• Given a lattice point we can compute its t 
• The probability on (Z2)n obtained by sampling 

from Dr and outputting t is close to uniform 

0,0 
0,1 
1,0 
1,1 



 
• Hence, by using samples from Dr we can produce 

samples from the following distribution on pairs 
(t,w): 
• Sample t(Z2)n uniformly at random 
• Sample w from Dt

r 

 

• Consider the Fourier transform of Dt
r 

Approximating f2/r 







• The functions ft
2/r look almost like f2/r 

• Only difference is that some Gaussians have their sign 
flipped 

• Approximating ft
2/r is enough: we can easily take the 

absolute value and obtain f2/r 

• For this, however, we need to obtain several pairs (t,w) for 
the same t 
 

• The problem is that each sample  
 (t,w) has a different t ! 

Approximating f2/r 



 
• Fix x close to L* 

• The sign of its Gaussian is ±1 depending on hs,ti mod 2 for 
s(Z2)n that depends only on x 

• The distribution of x,w mod 2 when w is sampled from Dt
r 

is centred around s,t mod 2 

• Hence, we obtain equations modulo 2 with error:  

hs,t1i ¼dhx,w1ic mod 2 
hs,t2i ¼dhx,w2ic mod 2 
hs,t3i ¼dhx,w3ic mod 2 
 . 
 . 
 . 
 

Approximating f2/r 



• Using the LWE oracle, we solve these equations 
and obtain s 

• Knowing s, we can cancel the sign 
• Averaging over enough samples gives us an 

approximation to f2/r 

Approximating f2/r 



Open Problems 
 

1. What happens for small moduli, say p=2 (learning parity 
with noise (LPN))? 

2. Dequantize the reduction: 
• This would immediately improve the security of all 

LWE-based crypto 
• Main obstacle: what can one do classically with a 

solution  to BDDd?  (see [Peikert09]) 
3. Use quantum hardness assumptions to prove security of 

other cryptosystems 
 



More Recent Work 
 

• [Peikert09] classical reduction, but exponential modulus 
and based on GapSVP only 

• [StehléSteinfeldTanakaXagawa09] direct quantum 
reduction from SIS to LWE using the quantum part (but 
gives weaker hardness of LWE), as well as a ring version of 
LWE 

• [LyubashevskyPeikertR09] Ring-LWE  
 



Thanks !! 


