
Bar-Ilan University
Dept. of Computer Science

Craig Gentry

IBM Watson

Winter School on Lattice-Based Cryptography and Applications
Bar-Ilan University, Israel 19/2/2012-22/2/2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Homomorphic Encryption Basics

 Somewhat homomorphic encryption (SWHE)
schemes

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

A way to delegate processing of your
data, without giving away access to it.

Example App: Cloud computing on encrypted data

“Where the sensitive information is concentrated,
that is where the spies will go. This is just a fact
of life.” - Ken Silva, former NSA official

Do you really think it’s safe to store
your data in the cloud unencrypted?

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Alice

Server
(Cloud)

(Input: data x, key k)

“I want 1) the cloud to process my data
2) even though it is encrypted.

Enck[f(x)]

Enck(x)

function f

f(x)

This could be
encrypted too.

Run
Evaluate[f, Enck(x)]

= Enck[f(x)]

The special
sauce!

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Alice wants workers to assemble raw materials into jewelry

 But Alice is worried about theft:

 She wants her workers to process the raw materials
without having access to them.

 Alice puts raw materials in locked glovebox.

 Workers assemble jewelry inside glovebox,
using the gloves.

 Alice unlocks box to get “results”.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Enc[f(x)]

Enc[x]

f

Eval Homomorphic
Encryption [RAD78]:

Compactness: Size of Eval’d ciphertext
independent of f

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Fully Homomorphic
Encryption (FHE)
[RAD78, Gen09]:

“Fully” means
it works for all

functions f

Enc[f(x)]

Enc[x]

f

Eval

Compactness: Size of Eval’d ciphertext
independent of f

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Somewhat Homomorphic
Encryption (SWHE):

“Somewhat”
means it works for
some functions f

Enc[f(x)]

Enc[x]

f

Eval

Compactness: Size of Eval’d ciphertext
independent of f

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

A way to delegate processing of your
data, without giving away access to it.

 Fully Homomorphic Encryption (FHE):
◦ Arbitrary processing

◦ But computationally expensive.

 Somewhat Homomorphic Encryption (SWHE):
◦ Limited processing

◦ Cheaper computationally.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Forget encryption for a moment…
 How does your computer compute a function?
 Basically, by working on bits, 1’s and 0’s.
 And by using bit operations – for example,
◦ AND(b1,b2)=1 if b1=b2=1; otherwise, equals 0.
 AND(b1,b2)= b1×b2.

◦ XOR(b1,b2)=0 if b1=b2; equals 1 if b1≠b2.
 XOR(b1,b2)= b1+b2 (modulo 2)

 Any function can be computed
bit-wise – with only ANDs and
XORs – if it can be computed at all.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Still forget encryption for now…

 Example: How do you detect whether a
string is in a file?

01100111101100100100010001

111011
XOR

100010

ZeroString(100010) = 0

(not the zero string! not a match!)

111011

The ZeroString function itself can be
computed from basic bit operations.

Step 1: Match string against subsequences of file

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Still forget encryption for now…

 Example: How do you detect whether a
string is in a file?

01100111101100100100010001

ZeroString(000000) = 0

(is the zero string! a match!)

111011
XOR

000000

Step 1: Match string against subsequences of file

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Still forget encryption for now…

 Example: How do you detect whether a
string is in a file?

01100111101100100100010001

111011

0 00 000 0000 00000 000000

 111011 111011 111011 111011 111011

0000001

 111011

00000010…

 111011

OR(00000010…) = 1 (string is in the file!)

Step 2: Aggregate info about the subsequences

OR also can be decomposed
into ANDs and XORs.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 for any b1 and b2.
 Then we can AND and XOR encrypted bits.
 Proceeding bit-wise, we can
 compute any function on
 encrypted data.

 Let b denote a valid encryption of bit b.
 Suppose we have a (homomorphic) encryption

scheme with public functions E-ADD, E-MULT
where:

E-MULT(b1,b2) = b1x b2 E-ADD(b1,b2) = b1+b2

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

111011
E-ADD

100010

111011

01100111101100100100010001

 b denotes an encryption of bit b.

Step 1: Match string against
subsequences of file

Bit-wise
encrypted

file

E-ZeroString(100010) = 0

(not the zero string! not a match!)

E-ZeroString function itself can be
computed from basic bit operations.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bit-wise
encrypted

file 01100111101100100100010001

111011 111011 111011 111011 111011 111011 111011 111011

0 0 0 0 0 0 1 0
E-OR(00000010…) = 1

(string is in the encrypted file!)

 b denotes an encryption of bit b.

Step 2: Aggregate info
about the subsequences

E-OR can also be computed
from basic bit operations.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Can you add and multiply (mod 2) and
remember stuff?
◦ Congratulations, then you can compute any efficiently

computable function.
◦ If you only can add and multiply mod 3, no worries.

 {ADD,MULT} are Turing-complete (over any ring).
◦ Take any (classically) efficiently computable function.

Express it as a poly-size circuit of ADD and MULT gates.

 Circuits vs. Turing machines (about the same):
◦ Circuit size = O(Tf log Tf)
 Tf = time to compute f on a TM

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Efficiency: For security parameter k,
 All ops (KEYGEN,ENC,DEC,ADD,MULT) take poly(k) time.

 All valid ciphertexts have poly(k) size.

Congratulations, you have a (fully)
homomorphic encryption scheme!

CPA Security: Best known attacks
have complexity 2k.

Can your cryptosystem encrypt 0 and 1, and
ADD and MULT encrypted data efficiently?
 Functionality: Let Ssk be set of “valid” ciphertexts for (any) sk.

 For c1,c2 2 Ssk, set cADD = ADD(c1,c2), cMULT = MULT(c1,c2). Then:

 DECsk(cADD) = DECsk(c1) + DECsk(c2), and

 DECsk(cMULT) = DECsk(c1) ∙ DECsk(c2)

 Also, cADD and cMULT are in Ssk.
Independent of the circuit
being homomorphically

evaluated.

In “leveled” FHE, key size
may grow with depth of

the circuit.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Semantic security [GM’84]: For any m0 ≠ m1,
 (pk, Encpk(m0))  (pk, Encpk(m1))
◦  means indistinguishable by efficient algorithms.
◦ pk is a public key, if there is one.
◦ Any semantically secure encryption scheme must be

probabilistic – i.e., many ciphertexts per plaintext.

 What about IND-CCA1 and IND-CCA2 security?

 IND-CCA2 is impossible for HE, since the
adversary can homomorphically tweak the
challenge ciphertext.

 IND-CCA1 FHE is open.

 [LMSV10] IND-CCA1 SWHE

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Function-privacy: c* = Eval(f, Encpk(x)) hides f.

◦ Statistical (when Eval is randomized): c* has the
same distribution as Enc(f(x)).

◦ Computational: c* may not look like a “fresh”
ciphertext as long as it decrypts to f(x).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Cloud stores my encrypted files: pk, Encpk(f1),…, Encpk(fn).

 Later, I want f3, but want to hide “3” from cloud.

 I send Encpk(3) to the cloud.

 Cloud runs Evalpk (f, Encpk(3), Encpk(f1),…, Encpk(fn)),
where f(n, {files}) is the function that outputs the nth file.

 It sends me the (encrypted) f3.

 Paradox?: Can’t the cloud just “see” it is sending the 3rd
encrypted file? By just comparing the stored value
Encpk(f3) to the ciphertext it sends?

 Resolution of paradox:
Semantic security implies:
 Many encryptions of f3,
 Hard to tell when two ciphertexts
encrypt the same thing.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Circuits vs. RAMs:
◦ Circuits are powerful: For all functions, circuit-size ≈ TM complexity.

◦ But random-access machines compute some functions much faster
than a TM or circuit (Binary search)

◦ Can’t do “random access” on encrypted data without leaking some
information (not surprising)

 What we can do:
◦ [GKKMRV11]: “Secure Computation with

Sublinear Amortized Work”

◦ After setup cost quasi-linear in the size of
the data, client and cloud run oblivious
RAM on the client’s encrypted data.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Obfuscation:
◦ I give the cloud an “encrypted” program E(P).
◦ For any input x, cloud can compute E(P)(x) = P(x).
◦ Cloud learns “nothing” about P, except {xi,P(xi)}.

 [BGIRSVY01]: “On the (Im)possibility of
Obfuscating Programs”

 Difference between obfuscation and FHE:
◦ In FHE, cloud computes E(P(x)), and it can’t decrypt

to get P(x).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Multi-Key FHE
◦ Different clients encrypt data under different FHE keys.

◦ Later, cloud “combines” data encrypted under different
keys: Encpk1,…,pkt(f(m1,…,mt)) ← Eval(pk1,…pkt,f,c1,…ct).

 FHE doesn’t do this “automatically”.

 But, [LATV12]: “On-the-fly Multiparty
Computation on the Cloud via Multikey FHE”:
◦ They have a scheme that does this.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Now, all we need is an encryption scheme that:
◦ Given any encryptions E(b1) and E(b2),

◦ can output encryptions E(b1+b2) and E(b1x b2),

◦ forever,

◦ without using the secret key of course.

 Pre-2009 schemes were somewhat homomorphic.
◦ They could do ADD or MULT, not both, indefinitely.

◦ Analogous to a glovebox with

 “clumsy” gloves.

Bar-Ilan University
Dept. of Computer Science

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

I thought we were doing FHE…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Performance!
◦ For many somewhat simple functions, the “overhead” of

SWHE is much less than overhead of FHE

◦ “Overhead” = (time of encrypted computation)/(time of
unencrypted computation)

 Stepping-stone to FHE
◦ Most FHE schemes are built “on top of” a SWHE scheme

with special properties.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 First attempt [Smart-Vercauteren 2010]
◦ Implemented (a variant of) the underlying SWHE

◦ But parameters too small to get bootstrapping

 Second attempt [Gentry-Halevi 2011a]
◦ Implemented a similar variant

◦ Many more optimizations, tradeoffs

◦ Could implement the complete FHE for 1st time

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Using NTL/GMP

 Run on a “strong” 1-CPU machine
◦ Xeon E5440 / 2.83 GHz (64-bit, quad-core) 24

GB memory

 Generated/tested instances in 4
dimensions:
◦ Toy(29), Small(211), Med(213), Large(215)

 Details at https://researcher.ibm.com/researcher/view_project.php?id=1548

https://researcher.ibm.com/researcher/view_project.php?id=1548

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Dimension KeyGen
Enc

amortized
Mult / Dec degree

2048
800,000-bit

integers
1.25 sec .060 sec .023 sec ~200

8192
3,200,000-
bit integers

10 sec .7 sec .12 sec ~200

32768
13,000,000-
bit integers

95 sec 5.3 sec .6 sec ~200

PK is 2 integers, SK one integer

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Dimension KeyGen PK size ReCrypt

2048 40 sec 70 MByte 31 sec

8192 8 min 285 MByte 3 min

32768 2 hours 2.3 GByte 30 minute

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Implementation of [BV11a] SWHE scheme.

 For lattice dim. 2048, Mult takes 43 msec.
◦ Comparable to 23 msec of [GH10]

◦ They use Intel Core 2 Duo Processor at 2.1 GHz.

 Shows lattice-based SWHE can compute
quadratic functions more efficiently than
[BGN05].

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Rule of Thumb: If your function f can be
expressed as a low-degree polynomial, SWHE
might be sufficient.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Private information retrieval
◦ Client wants bit Bi of database B1…Bn, w/o revealing i.

◦ The PIR function has degree only log n.

◦ Easily achievable with SWHE.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Keyword Search / String Matching
◦ Client wants to know whether encrypted string s =

s1…sm is in one of its encrypted files

◦ Comparison of two m-bit strings is a m-degree poly.

◦ OR of n comparisons is a n-degree poly.

◦ “Smolensky trick”: in both cases we can reduce the
degree to k, with a 2-k probability of error.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Tomorrow, we’ll see how
SWHE helps construct FHE…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

RSA, ElGamal, Paillier, Boneh-
Goh-Nissim, Ishai-Paskin, …

I won’t cover these.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

And perhaps the most
“natural” way to do it…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Definition of (commutative) ring:
◦ Like a field, without inverses.

◦ It has +, ×, 0 and 1,

 additive and multiplicative closure.

 Examples: integers Z,
polynomials Z[x,y,…], …

Most Natural Approach
Ciphertexts live in a “ring”.

ADDing ciphertexts (as ring elements)
adds underlying plaintexts.

Some for MULT.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 KeyGen: Secret = some point (s1, …,sn) 2 Zq
n.

 Public key: Polys {fi(x1,…,xn)} s.t. fi(s1,…,sn)=0 mod q.

 Encrypt: From {fi}, generate random polynomial g s.t.
g(s1,…,sn) = 0 mod q. Ciphertext is:
c(x1,…,xn) = m + g(x1,…,xn) mod q.

Main Idea
Encryptions of 0 are polynomials that

evaluate to 0 at the secret key.

 Decrypt: Evaluate ciphertext at the
secret: c(s1,…,sn) = m mod q.

 ADD and MULT: Output sum or
product of ciphertext polynomials.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Semantic Security (under chosen plaintext
attack): Given two ciphertexts c0 and c1, can
you distinguish whether:
◦ c0 and c1 encrypt same message?

◦ c0-c1 encrypts 0?

◦ c0-c1 evaluates to 0 at secret key?

◦ Solve “Ideal Membership” Problem?

Main Idea
Encryptions of 0 are polynomials that

evaluate to 0 at the secret key.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Ideal: Subset I of a ring R that is:
◦ Additively closed: i1, i2 2 I → i1+i2 2 I.

◦ Closed under mult with R: i 2 I, r 2 R → i∙r 2 I.

 Example:
◦ R = Z, the integers. I = (5), multiples of 5.

◦ R = Z[x,y]. I = {f(x,y) 2 Z[x,y]: f(7,11) = 0}.

 I = (x-7,y-11). These “generate” the ideal.

 “Modulo”
◦ 7 modulo (5) = 2, or 7 2 2+(5)

◦ g(x,y) modulo (x-7,y-11) = g(7,11).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Semantic Security: Ideal Membership Problem:
◦ Given ciphertext polys c1(x1,…,xn) and c2(x1,…,xn),

◦ Distinguish whether c1(x1,…,xn)-c2(x1,…,xn) is in the
ideal (x1-s1, …, xn-sn).

Main Idea
Encryptions of 0 are polynomials that

evaluate to 0 at the secret key.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 [AFFP11] Sadly, Polly Cracker is typically easy
to break, using just linear algebra.

 Public key: polys {fi} such that fi(s1,…,sn)=0.

 Computing Grobner bases is hard, in general.

 In practice, only a small (polynomial #) of
monomials can be used in the ciphertexts.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 An Attack:

◦ Collect lots of encryptions {ci} of 0.

 (These are elements of an ideal I.)

◦ The ci’s generate a lattice L (over the multivariate
monomials). Compute Hermite Normal Form (HNF) of L.

◦ To break semantic security, reduce c1-c2 mod HNF(L):
the result will be 0 if m1 = m2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Adding noise to Polly Cracker
to defeat attacks…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Main Idea
Encryptions of 0 are polynomials that

evaluate to 0 at the secret key.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Main Idea
Encryptions of 0 are polynomials that
evaluate to something small and even

(smeven) 0 at the secret key.

 KeyGen: Secret = some point (s1, …,sn) 2 Zq
n.

 Public key: {fi(x1,…,xn)} s.t. fi(s1,…,sn)=2ei mod q, |ei| ¿ q.

 Encrypt: Generate random poly g s.t. g(s1,…,sn)= smeven
from {fi}. Ciphertext is c(x1,…,xn) = m + g(x1,…,xn) mod q
for message m 2 {0,1}.

 Decrypt: c(s1,…,sn) = m+smeven
mod q. Reduce mod 2.

 ADD and MULT: Output sum or
product of ciphertext polys.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Main Idea
Encryptions of 0 are polynomials that
evaluate to something small and even

(smeven) 0 modulo a secret ideal.

 KeyGen: Secret ideal = (x1-s1, …,xn-sn).

 Public key: {fi(x1,…,xn)} s.t. fi(s1,…,sn)=2ei mod q, |ei| ¿ q.

 Encrypt: Generate random poly g s.t. g(s1,…,sn)= smeven
from {fi}. Ciphertext is c(x1,…,xn) = m + g(x1,…,xn) mod q
for message m 2 {0,1}.

 Decrypt: c(s1,…,sn) = m+smeven
mod q. Reduce mod 2.

 ADD and MULT: Output sum or
product of ciphertext polys.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Main Idea
Encryptions of 0 are polynomials that
evaluate to something small and even

(smeven) 0 modulo a secret ideal.

 KeyGen: Secret ideal = (x1-s1, …,xn-sn).

 Public key: {fi(x1,…,xn)} s.t. fi(s1,…,sn)=2ei mod q, |ei| ¿ q.

 Encrypt: Generate random poly g s.t. g(s1,…,sn)=smeven
from {fi}. Ciphertext is c(x1,…,xn) = m + g(x1,…,xn) mod q
for message m 2 {0,1}.

 Decrypt: c(s1,…,sn) = m+smeven
mod q. Reduce mod 2.

 ADD and MULT: Output sum or
product of ciphertext polys.

We call c(s1,…,sn)]q
the “noise” of the

ciphertext.

ADDs and MULTs
make the “noise”

grow.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Each ciphertext has some noise that hides the
message.

 Think: “hidden” error correcting codes…

 If error is small, Alice can use knowledge of
“hidden” code, or a (hidden) good basis of a
known code to remove the noise.

  If noise is large, decryption
becomes hopeless even for
Alice.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Message “hides” in the noise.

 Adding ciphertexts adds the
noises.

 Multiplying ciphertexts
multiplies the noises.

 The ciphertext noisiness grows!
◦ Eventually causes a decryption error!

Noise of
ciphertext sum

is δ1+δ2. It
hides bit
b1+b2.

Noise of
ciphertext
product is

δ1xδ2. It hides

bit b1xb2.

0 p 2p 3p 4p 5p 6p

Noise δ1
hides bit

b1.

Noise δ2
hides bit

b2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Maybe the simplest SWHE
scheme you could imagine…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Shared secret key: odd number p

 To encrypt a bit m in {0,1}:
◦ Choose at random small r ¿ p , large q

◦ Output c = m + 2r + pq

 Ciphertext is close to a multiple of p

 m = LSB of distance to nearest multiple of p

 To decrypt c:
◦ Output m = (c mod p) mod 2 = [[c]p]2

 ADD, MULT: Output c ← c1 + c2
or c ← c1 × c2.

What
could

be
Simpler?

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Shared secret key: odd number p

 To encrypt a bit m in {0,1}:
◦ Choose at random small r ¿ p , large q

◦ Output c = m + 2r + pq

 Ciphertext is close to a multiple of p

 m = LSB of distance to nearest multiple of p

 To decrypt c:
◦ Output m = (c mod p) mod 2 = [[c]p]2

 ADD, MULT: Output c ← c1 + c2
or c ← c1 × c2.

(p) is our
secret ideal.

An encryption of 0 is
small and even

modulo our ideal.

To decrypt, evaluate
c modulo the ideal.
Then reduce mod 2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Secret key is an odd p as before

 Public key pk has “encryptions of 0” xi=2ri+qip
◦ Actually xi = [2ri+qip]x0 for i = 1, …, n.

 Enc(pk, m) = m+subset-sum(xi’s)
◦ Actually, Enc(pk, m) = [m+subset-sum(xi’s)+2r]x0.

 Dec(sk, c) = [[c]p]2

Making a public key out of
“encryptions of 0”

formalized by Rothblum
(“From Private Key to
Public Key”, TCC’11).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Secret key is an odd p as before

 Public key pk has “encryptions of 0” xi=2ri+qip
◦ Actually xi = [2ri+qip]x0 for i = 1, …, n.

 Enc(pk, m) = m+subset-sum(xi’s)
◦ Actually, Enc(pk, m) = [m+subset-sum(xi’s)+2r]x0.

 Dec(sk, c) = [[c]p]2

Quite similar to Regev’s
’03 scheme. Main

difference: SWHE uses
much more aggressive

parameters…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Approximate GCD (approx-gcd) Problem:
◦ Given many xi = si + qip, output p

◦ Example params: si ~ 2O(λ), p ~ 2O(λ^2), qi ~ 2O(λ^5), where
λ is security parameter

 Best known attacks (lattices) require 2λ time

 Reduction:
◦ If approx-gcd is hard, scheme is semantically secure

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Several lattice-based approaches for solving
approximate-GCD
◦ Studied in [Howgrave-Graham01], more recently in

[vDGV10, CH11, CN11]

◦ All run out of steam when |qi| » |p|2, where |p| is
number of bits of p

◦ In our case |p| =O(λ2), |qi| = O(λ5) » |p|2

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 xi = qip + ri (ri « p « qi), i = 0,1,2,…
◦ yi = xi/x0 = (qi+si)/q0, si ~ ri/p « 1

◦ y1, y2, … is an instance of SDA

 q0 is a good denominator for all yi’s

 Use Lagarias’s algorithm:
◦ Consider the rows of this matrix:

◦ Find a short vector in the
lattice that they span

◦ <q0,q1,…,qt>·L is short

◦ Hopefully we will find it.

R x1 x2 … xt
 -x0
 -x0
 …
 -x0

L=

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 When will Lagarias’ algorithm succeed?
◦ <q0,q1,…,qt>·L should be shortest in lattice

 In particular shorter than ~det(L)1/t+1

◦ This only holds for t > log Q/log P

◦ The dimension of the lattice is t+1

◦ Rule of thumb: takes 2t/k time to get 2k approximation
of SVP/CVP in lattice of dim t.

 2|q
0
|/|p|^2 = 2λ time to get 2|p| » 2λ approx.

 Bottom line: no known efficient
attack on approx-gcd

Minkowski
bound

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Suppose c1=m1+2r1+q1p, …, ct=mt+2rt+qtp

 ADD: c=c1+c2.
◦ Noise of c is [c]p = (m1+m2+2r1+2r2), sum of noises

 MULT: c=c1×c2.
◦ Noise of c is [c]p = (m1+2r1) ×(m2+2r2), product of

noises.

 f: c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt), the
function f applied to the noises.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Claim: If |f(m1+2r1, …, mt+2rt)| < p/2 for all
possible “fresh” noises mi+2ri, the SWHE
scheme can Eval f correctly.

 Proof:
◦ Set c = f(c1, …, ct).

◦ Then, [c]p = f(m1+2r1, …, mt+2rt) by assumption.

◦ Then, [[c]p]2 = f(m1, …, mt) mod 2.

That’s what we want!

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 What if |f(m1+2r1, …, mt+2rt)| > p/2?
◦ c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp
 Nearest p-multiple to c is q’p for q’ ≠ q

◦ (c mod p) = f(m1+2r1, …, mt+2rt) + (q-q’)p
◦ (c mod p) mod 2
◦ = f(m1, …, mt) + (q-q’) mod 2
◦ = ???

 We say the scheme can handle f if:

◦ |f(x1, …, xt)| < p/4
◦ Whenever all |xi| < B, where B is a

bound on the noise of a fresh
ciphertext output by Enc.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Elementary symmetric poly of degree d:
◦ f(x1, …, xt) = x1·x2·xd + … + xt-d+1·xt-d+2·xt

◦ Has (t choose d) < td monomials: a lot!!

 If |xi|<B, then |f(x1, …, xt)|<td·Bd

 E can handle f if:
◦ td·Bd < p/4 → basically if: d < (log p)/(log tB)

 Example params: B ~ 2λ, p ~ 2λ^2

◦ Eval can handle elem symm
poly of degree about λ.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 If f has degree d, c = f(c1, …, ct) will have
about d times as many bits as the fresh ci’s.

 Can we reduce the ciphertext length after
multiplications?

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 A heuristic:
◦ Suppose n is bit-length of normal ciphertext.

◦ Put additional “encryptions of 0” {yi=2ri+qip} in pk.

 Set yi’s to increase geometrically up to square of
normal ciphertext: yi ≈ 2n+i, for i up to ≈ n.

◦ Set c = c1×c2 – subsetsum(yi’s), and c will have
normal size.

 Subtract off yi’s according to c’s binary representation.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Well, a little slow…
◦ Example parameters: a ciphertext is O(λ5) bits.

◦ Least efficient SWHE scheme, asymptotically.

 But Coron, Mandal, Naccache, Tibouchi have
made impressive efficiency improvements.
◦ [CMNT Crypto ‘11]: FHE over the Integers with

Shorter Public Keys

◦ [CNT Eurocrypt ‘12]: Public-key Compression and
Modulus Switching for FHE over the
Integers.

◦ Asymptotics are much better now.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Traditional Version:
◦ Let χ be an error distribution.

◦ Distinguish these distributions:

 Generate uniform s ← Zq
n. For many i, generate

uniform ai ← Zq
n , ei ← χ, and output (ai, [<ai, s>+ei]q).

 For many i, generate uniform ai ← Zq
n , bi ← Zq and

output (ai, bi).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Noisy Polly Cracker Version:
◦ Let χ be an error distribution.

◦ Distinguish these distributions:

 Generate uniform s ← Zq
n. For many i, generate ei ← χ

and a linear polynomial fi(x1, …, xn) = f0+f1x1+…+fnxn
(from Zq

n+1) such that [fi(s1, …, sn)]q = ei.

 For many i, generate and output a uniformly random
linear polynomial fi(x1, …, xn) (from Zq

n+1).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: q such that gcd(q,2)=1.

 KeyGen: Secret = uniform s 2 Zq
n. Public key:

linear polys {fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q.

 Encrypt: Set g(x1,…,xn) as a random subset sum of
{fi(x1,…,xn)}. Output c(x1,…,xn)=m+g(x1,…,xn).

 Decrypt: [c(s)]q = m+smeven. Reduce mod 2.

 Security:

 Public key consists of an LWE
instance, doubled.

 Leftover hash lemma.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 ADD and MULT:

 Output sum or product of
ciphertext polynomials.

 Parameters: q such that gcd(q,2)=1.

 KeyGen: Secret = uniform s 2 Zq
n. Public key:

linear polys {fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q.

 Encrypt: Set g(x1,…,xn) as a random subset sum of
{fi(x1,…,xn)}. Output c(x1,…,xn)=m+g(x1,…,xn).

 Decrypt: [c(s)]q = m+smeven. Reduce mod 2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 After MULT, we have ciphertext c(x) = c1(x)∙c2(x)
that encrypts some m under key s.
◦ [c(s)]q = m+smeven
◦ c(x) is a quadratic poly with O(n2) coefficients.

 What we want: a linear ciphertext d(y) that
encrypts same m under some key t 2 Zq

n.

 Relinearization maps a long quadratic
ciphertext under s to a normal linear ciphertext
under t.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 First step: View c(x) as a long linear ciphertext C(X).
◦ Set the variables Xij = xi∙xj.

◦ Set the values Sij = si∙sj.

◦ Set C(X) =  c1ic2j Xij.

◦ Then, [C(S)]q = [c(s)]q = m+smeven.

◦ (This is only a change of perspective.)

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Input: Long linear ciphertext C(X) with N > n,
where [C(S)]q = e = m+smeven, and S =
(S1,…, SN) is a long secret key.

 Output: Normal-length linear ciphertext d(x),
where [d(t)]q = e+smeven = m+smeven, and
t = (t1,…, tn) is a normal-length secret key.

 Special case: N ≈ n2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 SwitchKeyGen(S,t): Output linear polys {hi(x)},
i 2 {1,…,N} such that:

 [hi(t)]q = Si+smeveni
 (like an encryption of Si under t)
 Add Aux(S,t) = {hi(x)} to pk.

 SwitchKey(pk, C(X)): Set d(x) = i Ci∙hi(x).
 d(t) = i Ci∙(Si+smeveni) = C(S) + i Ci∙smeveni
 Oh wait, i Ci∙smeveni is not small and even…
 Fix: Bit-decompose C first so

that it has small coefficients…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 BitDecomp:
◦ Let BitDecomp(C(X)) be the bit-decomposition of C(X).

◦ (U1(X),…, Ulog q(X)) ← BitDecomp(C(X)), where each Uj(X)
has 0/1 coefficients and C(X) = j 2

j∙Uj(X).

 Powerof2:
◦ (S, 2S, …, 2log q S) ← Powersof2(S).

 Let C’=BitDecomp(C) and S’ = Powerof2(S).
Then, <C’,S’> = <C,S>.

 So, C’(S’) = C(S) mod q.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 SwitchKeyGen(S,t): Output linear polys {hi(x)},
i 2 {1,…,N} such that:

 [hi(t)]q = Si’+smeveni
 (like an encryption of Si’ under t)
 Add Aux(S’,t) = {hi(x)} to pk.

 SwitchKey(pk, C’(X)): Set d(x) = i Ci’∙hi(x).
 d(t) = i Ci’∙(Si’+smeveni) = C’(S’) + i Ci’∙smeveni

 Now, i Ci’∙smeveni is small
and even…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Functionality:
◦ Regev ciphertext under key S → Ciphertext under t.

◦ Need to put Aux(S,t) in pk.

◦ Like proxy re-encryption.

◦ Relinearization is only a special case.

 Later, we will use key switching in a different context.

 Effect on noise: SwitchKey increases noise only
additively.

 For depth L circuit, use a chain
of L encrypted secret keys.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Follows Noisy Polly Cracker blueprint
◦ With a relinearization step.

 Relinearization / key-switching
◦ Doesn’t increase the noise much.

◦ So noise analysis, and “homomorphic capacity”
analysis, is similar to integer scheme.

◦ For L depth circuit, use a chain of L encrypted
secret keys.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

I’ll skip my 2009 scheme, and
focus on RLWE- and NTRU-
based schemes.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Traditional Version:
◦ Let χ be an error distribution over R = Zq[y]/(yn+1).

◦ Distinguish these distributions:

 Generate uniform s ← R. For many i, generate uniform
ai ← R , ei ← χ, and output (ai, ai∙s+ei).

 For many i, generate uniform ai ← R , bi ← R and
output (ai, bi).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Noisy Polly Cracker Version:
◦ Let χ be an error distribution over R = Zq[y]/(yn+1).

◦ Distinguish these distributions:

 Generate uniform s ← R. For many i, generate ei ← χ
and a linear polynomial fi(x) = f0+f1x (from R2) such
that fi(s) = ei.

 For many i, generate and output a uniformly random
linear polynomial fi(x) (from R2).

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: q with gcd(q,2)=1, R = Zq[y]/(yn+1).

 KeyGen: Secret = uniform s 2 R. Public key: linear
polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q.

 Encrypt: Set g(x) as a random subset sum of {fi(x)}.
Output c(x)=m+g(x).
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1).

 Decrypt: c(s) = m+smeven. Reduce mod 2.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: q with gcd(q,2)=1,R = Zq[y]/(yn+1).

 KeyGen: Secret = uniform s 2 R. Public key:
linear polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q.

 Encrypt: Set g(x) as a random subset sum of
{fi(x)}. Output c(x)=m+g(x).
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1).

 Decrypt: c(s) = m+smeven. Reduce mod 2.

 ADD and MULT: Add or
multiply the ciphertext
polynomials.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 After MULT, we have ciphertext c(x) = c1(x)∙c2(x)
that encrypts some m under key s.
◦ c(s) = m+smeven
◦ c(x) is a quadratic poly with 3 coefficients.

 What we want: a linear ciphertext d(x) that
encrypts same m under some key t 2 R.

 Relinearization maps a long quadratic
ciphertext under s to a normal linear ciphertext
under t.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 First step: View c(x) as a long linear ciphertext C(X).
◦ Set the variables X1 = x and X2 = x2.

◦ Set the values S1 = s and S2 = s2.

◦ Set C(X)=(c11x+c10)(c21x+c20)=
c11c21X2+(c11c20+c10c21)X+c10c20.

◦ Then, C(S) = c(s) = m+smeven.

◦ (This is only a change of perspective.)

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Input: Long linear ciphertext C(X), where C(S)
= e = m+smeven, and S = (S1,S2) is a long
secret key.

 Output: Normal-length linear ciphertext d(x),
where d(t) = e+smeven = m+smeven, and t

2 R.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 SwitchKeyGen(S,t): Output linear polys {hi(x)},
i 2 {1,…,N} such that:

 hi(t) = Si+smeveni
 (like an encryption of Si under t)
 Add Aux(S,t) = {hi(x)} to pk.

 SwitchKey(pk, C(X)): Set d(x) = i Ci∙hi(x).
 d(t) = i Ci∙(Si+smeveni) = C(S) + i Ci∙smeveni
 Oh wait, i Ci∙smeveni is not small and even…
 Fix: Bit-decompose C first so

that it has small coefficients…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 BitDecomp:
◦ Let BitDecomp(C(X)) be the bit-decomposition of C(X).

◦ (U1(X),…, Ulog q(X)) ← BitDecomp(C(X)), where each Uj(X)
has coefficients (in R) that are 0/1 polynomials and
C(X) = j 2

j∙Uj(X).

 Powerof2:
◦ (S, 2S, …, 2log q S) ← Powersof2(S).

 Let C’=BitDecomp(C) and S’ = Powerof2(S).
Then, <C’,S’> = <C,S>.

 So, C’(S’) = C(S) in R.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 SwitchKeyGen(S,t): Output linear polys {hi(x)},
i 2 {1,…,N} such that:

 hi(t) = Si’+smeveni
 (like an encryption of Si’ under t)
 Add Aux(S’,t) = {hi(x)} to pk.

 SwitchKey(pk, C’(X)): Set d(x) = i Ci’∙hi(x).
 d(t) = i Ci’∙(Si’+smeveni) = C’(S’) + i Ci’∙smeveni

 Now, i Ci’∙smeveni is small
and even…

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Functionality: as in LWE.

 Effect on noise: SwitchKey increases noise only
additively, as in LWE.

 Performance: Better!
◦ RLWE:

 Key switching involves O(log q) multiplications in R.

 We can use FFT for multiplication.

 quasi-O(n log q) work

◦ LWE:

 Relinearization is O(n3 log q) work.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: q with gcd(q,2)=1, R = Zq[y](yn+1).
 KeyGen: Secret = uniform s 2 R. Public key: linear

polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q. More reqs:
◦ s is small and 1 mod 2 (smodd?)
◦ fi(x) has no constant term – i.e., fi1∙s = 2ei.

 Encrypt: Set g(x) as a random subset sum of {fi(x)}.
Output c(x)=m∙x+g(x).
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1).

 Decrypt: c(s) = m∙s+smeven. Reduce mod 2.

 Security: NTRU Problem: Do fi1’s
have form fi1=2ei/si; ei, si short?

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Parameters: q with gcd(q,2)=1, R = Zq[y]/(yn+1).
 KeyGen: Secret = uniform s 2 R. Public key: linear

polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q. More reqs:
◦ s is small and 1 mod 2 (smodd?)
◦ fi(x) has no constant term – i.e., fi1∙s = 2ei.

 Encrypt: Set g(x) as a random subset sum of {fi(x)}.
Output c(x)=m∙x+g(x).
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1).

 Decrypt: c(s) = m∙s+smeven. Reduce mod 2.

 ADD and MULT: Add or
multiply the ciphertext
polynomials.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Multiplicands: c1(x) = c11∙x and c2(x) = c21∙x.

 Product: c(x) = c1(x)∙c2(x) = c11∙c21∙x2.

 Can we forget key switching?
◦ Just view t = s2 as the new secret key.

◦ c(t) = m1∙m2∙t+smeven = m1∙m2+smeven.

 Not quite: What if we want to add a ciphertext
under key s to another ciphertext under s2?

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Multiplicands: c1(x) = c11∙x and c2(x) = c21∙x.

 Product: c(x) = c1(x)∙c2(x) = c11∙c21∙x2.

 Aux(S,t): Choose e*← χ, and set eS,t = 2e*+1.
Output aS,t = S∙eS,t∙t

-1. (eS,t∙t
-1 should look random.)

 SwitchKey(c,aS,t):
◦ Suppose c∙S = e = m+smeven.

◦ New ciphertext is c’ = c ∙aS,t.

◦ Then, c’∙t = (c ∙aS,t)t = c(aS,t∙t)
= c(S∙eS,t) = e ∙eS,t = m+smeven.

 Noise increases multiplicatively.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 Two ciphertexts under different keys:
◦ c1(x) = c11∙x and c2(x) = c21∙x.

◦ c1(s1) = m1∙s1+smeven, c2(s2) = m2∙s2+smeven.

 Product: c11c21s1s2 = m1m2s1s2+smeven =
m1m2+smeven.

 [LATV12]: Cloud can (noninteractively)
combine data encrypted under different keys.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Insert your scheme here!

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 [AFFP11] Martin Albrecht, Pooya Farshim, Jean-Charles Faugere,
Ludovic Perret. Polly Cracker, Revisited. Asiacrypt 2011.

 [BGIRSVY01] Boaz Barak, Oded Goldreich, Russell Impagliazzo,
Steven Rudich, Amit Sahai, Salil Vadhan, and Key Yang. On the
(Im)possibility of Obfuscating Programs. Crypto 2001.

 [BGN05] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF
formulas on ciphertexts. TCC 2005.

 [BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully
homomorphic encryption from ring-LWE and security for key
dependent messages. Crypto 2011.

 [BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully
homomorphic encryption from (standard) LWE. FOCS 2011.

 [CMNT11] Jean-Sebastien Coron, Avradip Mandal, David
Naccache, and Mahdi Tibouchi. Fully Homomorphic Encryption
over the Integers with Shorter Public Keys. Crypto 2011.

 [CNT12] Jean-Sebastien Coron, David Naccache, and Mahdi
Tibouchi. Public-Key Compression and Modulus Switching for
Fully Homomorphic Encryption over the Integers. Eurocrypt
2012.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 [vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully homomorphic encryption over the
integers. Eurocrypt 2010.

 [FK94] Mike Fellows and Neal Koblitz. Combinatorial
cryptosystems galore! Finite Fields: Theory, Applications, and
Algorithms, volume 168 of Contemporary Mathematics, pages
51–61. AMS, 1994.

 [Gen09] Craig Gentry. Fully homomorphic encryption using ideal
lattices. STOC 2009. Also, see “A fully homomorphic encryption
scheme”, PhD thesis, Stanford University, 2009.

 [GH11a] Craig Gentry and Shai Halevi. Implementing gentry’s
fully-homomorphic encryption scheme. Eurocrypt 2011.

 [GHLPSS12] Craig Gentry, Shai Halevi, Vadim Lyubashevsky, Chris
Peikert, Joseph Silverman, and Nigel Smart. Unpublished
observation regarding NTRU-Based FHE.

 [GKKMRV11] Dov Gordon, Jonathan Katz, Vladimir Kolesnikov,
Tal Malkin, Mariana Raykov, and Yevgeniy Vahlis. Secure
computation with sublinear amortized work. Cryptology ePrint
Archive, Report 2011/482, 2011.

Bar-Ilan University
Dept. of Computer Science

Lattice-Based Crypto & Applications
Bar-Ilan University, Israel 2012

 [LNV11] Kristin Lauter, Michael Naehrig, and Vinod
Vaikuntanathan. Can homomorphic encryption be practical? ACM
CCSW 2011.

 [LATV12] Adriana Lopez-Alt, Eran Tromer, and Vinod
Vaikuntanathan. On-the-fly Multiparty Computation on the
Cloud via Multikey FHE. STOC 2012.

 [LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
ideal lattices and learning with errors over rings. Eurocrypt 2010.

 [RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos.
On data banks and privacy homomorphisms. Foundations of
Secure Computation, 1978.

 [Reg05] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. STOC 2005.

 [Rot11] Ron Rothblum. Homomorphic encryption: from private-
key to public-key. TCC 2011.

 [SV10] Nigel P. Smart and Frederik Vercauteren. Fully
homomorphic encryption with relatively small key and ciphertext
sizes. PKC 2010.

