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Homomorphic Encryption Basics =
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A way to delegate processing of your

data, without giving away access to it.

Example App: Cloud computing on encrypted data

Do you really think it’s safe to store
your data in the cloud unencrypted?

“Where the sensitive information is concentrated,
that is where the spies will go. This is just a fact
of life.” - Ken Silva, former NSA official
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Fully Homomorphic Encryption )

Bar-llan University
The special
sauce!
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An Analogy: Alice’s Jewelry Store "=
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» Alice wants workers to assemble raw materials into jewelry
» But Alice is worried about theft:

She wants her workers to process the raw materials
without having access to them.

e

» Alice puts raw materials in locked glovebox.

» Workers assemble jewelry inside glovebox,
using the gloves.

» Alice unlocks box to get “results”.




Homomorphic Encryption Basics '-‘ |
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H : Enc[x]
omomorphic . | Eval
Encryption [RAD78]: |
Enc[f(x)]

Compactness: Size of Eval’d ciphertext
independent of f




Homomorphic Encryption Basics ‘=
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Fully Homomorphic Enclx] .| Eval
Encryption (FHE)
[RAD78, Gen09]: Enc[]{(x)]

Compactness: Size of Eval’d ciphertext
independent of f

Lattice-Based Crypto-_‘& Applications
Bar-llan University, Israel 2012



Homomorphic Encryption Basics ™=
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Somewhat Homomorphic E"™) Eval
Encryption (SWHE): 1
Enc[f(x)]

Compactness: Size of Eval’d ciphertext
independent of f
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Homomorphic Encryption Basics =
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» Fully Homomorphic Encryption (FHE):
- Arbitrary processing
- But computationally expensive.

» Somewhat Homomorphic Encryption (SWHE):

> Limited processing
- Cheaper computationally.

A\ PRGN
Nto & J .? |
\& N
21 AN




Qr_,\gzllen.:e
‘Na
& \A
SNy
&
T
¥ r 4
. F 4

Bar-llan University
Dept. of Computer Science

Homomorphic Encryption

Basics: Functionality
2
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Processing (Unencrypted) Data M

Bar-llan University
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» Forget encryption for a moment...
» How does your computer compute a function?
» Basically, by working on bits, 1’s and O’s.

» And by using bit operations - for example,
° AND (b,,b,) =1 if b,=b,=1; otherwise, equals 0.
* AND (b,, b,) = b,xb,.
° XOR (b,,b,)=0 if b,=b,; equals 1 if b,#b..

* XOR (by,b,)= b;+b, (modulo 2)
» Any function can be computed
bit-wise - with only ANDs and

AN
Lattice-Based Crypto &
Bar-llan University,
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Unencrypted String Matching

» Still forget encryption for now...

» Example: How do you detect whether a
string is in a file?

Step 1: Match string against subsequences of file

) 01100111101100100100010001
XOR
111011

100010

ZeroString (100010) = 0
(not the zero string! not a match!)

The ZeroString function itself can be
computed from basic bit operations.
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Unencrypted String Matching

» Still forget encryption for now...

» Example: How do you detect whether a
string is in a file?

Step 1: Match string against subsequences of file

) 01100111101100100100010001
XOR
111011

000000

ZeroString (000000) = 0
(is the zero string! a match!)
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Unencrypted String Matching

» Still forget encryption for now...

» Example: How do you detect whether a
string is in a file?

>

Step 2: Aggregate info about the subsequences

% sy 01100111101100100100010001
1110000000011

2221122

00000010...
OR(00000010..) = 1 (string is in the file!)

OR also can be decomposed
into ANDs and XORS.
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Let’s Do This Encrypted...

= |Let|bjdenote a valid encryption of bit b.

= Suppose we have a (homomorphic) encryption
scheme with public functions E-ADD, E-MULT

where:

E-MULT ([by b, |) = E-ADD (b,|b,)) = |b;+b,

for any|b,|and b\
» Then we can AND and XOR encrypted bits.

» Proceeding bit-wise, we can
compute any function on
encrypted data.

Lattice—-Based C .
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Encrypted String Matching ™M

Bar-llan University
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bldenotes an encryption of bit b.

Bit-wise Step 1: Match string against
encrypted subseqguences of file

oFL1E oy, OO OO0
E-ADD
IO

ieeene

E-ZeroString (LOLLID) =
(not the zero string! not a match!)

E-ZeroString function itself can be
~computed from basic bit operations.

lications



Encrypted String Matching

e

E-OR (0O0RDLbDIDl..) = 1
(string is in the encrypted file!)

Lattice—-Based Crypt¢
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denotes an encryption of bit b.

Bit—wise Step 2: Aggregate info
encrypted about the subsequences
o£L1€ ey OIMOOAIIOIIOOMO0IO0OO000
Lo/ [0 [0/ o [0 [0/ o [0 W

R

WAL
Weeeeeno

E-OR can also be computed
from basic bit operations.
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Computing General Functions

» Can you add and multiply (mod 2) and
remember stuff?

- Congratulations, then you can compute any efficiently
computable function.

> |f you only can add and multiply mod 3, no worries.
» {ADD,MULT} are Turing-complete (over any ring).
- Take any (classically) efficiently computable function.
Express it as a poly-size circuit of ADD and MULT gates.

» Circuits vs. Turing machines (about the same):

> Circuit size = O(T; log T)
T; = time to compute fona TM

Lattice-Based C
Bar-llan Univers



FHE Defined Ny
Can your cryptosystem encrypt O and 1, and
ADD and MULT encrypted data efficiently?
Functionality: Let S, be set of “valid” ciphertexts for (any) sk.
For ¢,,c, € S, set C,pp = ADD(c,,C5), Cyur = MULT(c,,C,). Then:
DEC,, (cxpp) =  DEC,(c,) + DEC,,(c,), and
DEC (cyur) = DECg(qy) - DEC,(cy) ’
Also, cppp and ¢y 1 are in S,.
Efficiency: For security parameter k,
All ops (KEYGENENT,DEC,ADD,MULT) takepoly(k) time.
All valid ciphertexts have poly(k)size.

CPA Security: Best known attacks
have complexity 2k.

Congratulations, you have a (fully)
homomorphic encryption scheme!
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Homomorphic Encryption
Basics: Security
2
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Security of Homomorphic Encryptlong"\
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» Semantic security [GM’84]: For any my #= m,,
(pk, Enc,(my)) = (pk, Enc,(m;))
- ~ means indistinguishable by efficient algorithms.
- pkis a public key, if there is one.

> Any semantically secure encryption scheme must be
probabilistic - i.e., many ciphertexts per plaintext.

» What about IND-CCA1 and IND-CCAZ2 security?

» IND-CCAZ2 is impossible for HE, since the
adversary can homomorphically tweak the

challenge ciphertext.
» IND-CCA1 FHE is open.
» [LMSV10] IND-CCAT SWHE

AL
Lattice-Based a{x\ ‘
Bar-llan University, Is



Function Privacy R

Bar-llan University
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» Function-privacy: ¢* = Eval(f, Enc,,(x)) hides f.

o Statistical (when Eval is randomized): c* has the
same distribution as Enc(f(x)).

- Computational: ¢* may not look like a “fresh”
ciphertext as long as it decrypts to f(x).

Lattice-Based Cryp
Bar-llan Universit y
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HE Security: A Paradox? e

Bar-llan University
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Cloud stores my encrypted files: pk, Enc,,(f;),..., Enc,,(f,).
Later, | want f;, but want to hide “3” from cloud.

| send Enc,,(3) to the cloud.

Cloud runs Eval,, (f, Enc,,(3), Enc,(f;),..., Enc,(f,)),
where f(n, {files}) is the function that outputs the nth file.
It sends me the (encrypted) f;.

Paradox?: Can’t the cloud just “see” it is sending the 3rd
encrypted file? By just comparing the stored value

Enc,,(f5) to the ciphertext it sends?
esolution of paradox:

Semantic security implies:

» Many encryptions of f;,

» Hard to tell when two ciphertexts
encrypt the same thing.
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Homomorphic Encryption
Basics: Limitations
2
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FHE Doesn’t Do RAM o

Bar-llan University
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» Circuits vs. RAMs:

> Circuits are powerful: For all functions, circuit-size ~ TM complexity.

o But random-access machines compute some functions much faster
than a TM or circuit (Binary search)

> Can’t do “random access” on encrypted data without leaking some
information (not surprising)

» What we can do:
> [GKKMRV11]: “Secure Computation with

Sublinear Amortized Work”

- After setup cost quasi-linear in the size of
the data, client and cloud run oblivious
RAM on the client’s encrypted data.

Lattice-Based Cryp
Bar-llan University,



FHE Doesn’t Do Obfuscation M

Bar-llan University
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» Obfuscation:
> | give the cloud an “encrypted” program E(P).
> For any input x, cloud can compute E(P)(x) = P(x).
> Cloud learns “nothing” about P, except {x;,P(x)}.
» [BGIRSVYO1]: “On the (Im)possibility of
Obfuscating Programs”
» Difference between obfuscation and FHE:
> In FHE, cloud computes E(P(x)), and it can’t decrypt

to get P(x).

SO \
Lattice-Based C”:;' & Ap
Bar-llan University, Is



FHE Doesn’t Do Multi-Key R

Bar-llan University
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» Multi-Key FHE

- Different clients encrypt data under different FHE keys.

- Later, cloud “combines” data encrypted under different
keys: Encpy;. pi(f(my,...,mY)) — Eval(pk;,...pk,f,c;,...C)).

» FHE doesn’t do this “automatically”.

» But, [LATV12]: “On-the-fly Multiparty
Computation on the Cloud via Multikey FHE":

- They have a scheme that does this.

AL
Lattice-Based C”::' ‘
Bar-llan University, Is



That’s It for Homomorphic Ny
Encryption BaSiCS___ Bar-llan University

Dept. of Computer Science

» Now, all we need is an encryption scheme that:
> Given any encryptions E(b,) and E(b,),
> can output encryptions E(b,+b,) and E(b,X b,),
- forever,
- without using the secret key of course.

» Pre-2009 schemes were somewhat homomorphic.
> They could do ADD or MULT, not both, indefinitely.

- Analogous to a glovebox with
“clumsy” gloves.

Lattice-Based Crypto & Ap
Bar-llan University,
TALANRY



Dept. of Computer Science

Somewhat Homomorphic
Encryption (SWHE)
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SWHE: What's it Good For?

22 | thought we were doing FHE...

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012



Why Somewhat HE? N

Bar-llan University
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» Performance!

- For many somewhat simple functions, the “overhead” of
SWHE is much less than overhead of FHE

- “Overhead” = (time of encrypted computation)/(time of
unencrypted computation)

» Stepping-stone to FHE

- Most FHE schemes are built “on top of” a SWHE scheme
with special properties.

Lattice-Based C A'ibx\\ ¢
Bar-llan Univerg
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SWHE: Performance
2
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FHE Implementations e
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» First attempt [Smart-Vercauteren 2010]
- Implemented (a variant of) the underlying SWHE
> But parameters too small to get bootstrapping
» Second attempt [Gentry-Halevi 2011a]
> Implemented a similar variant
- Many more optimizations, tradeoffs
- Could implement the complete FHE for 15t time

Lattice-Based C A'ibx\\ ¢
Bar-llan Univerg



Gentry-Halevi Implementation [GH1 Ffa?

Bar-llan University
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» Using NTL/GMP
» Run on a “strong” 1-CPU machine

- Xeon E5440 / 2.83 GHz (64-bit, quad-core) 24
GB memory

» Generated/tested instances in 4
dimensions:
> Toy(2?), Small(2'"), Med(2'3), Large(2'°)
» Details at



https://researcher.ibm.com/researcher/view_project.php?id=1548

Performance: SWHE '\5

Bar- IIan UnlverS|ty
NDent of Comnuter Scjence

1.25 sec .060 sec .023 sec ~200

- 10 sec ./ secC .12 sec ~200
- 95 sec 5.3 sec .6 sec ~200

PK is 2 integers, SK one integer

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012
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- 40 sec /0 MByte 31 sec
- 8 min 285 MByte 3 min
- 2 hours 2.3 GByte 30 minute

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012



Can HE Be Practical? [LNV11] w

Bar-llan University
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» Implementation of [BV11a] SWHE scheme.

» For lattice dim. 2048, Mult takes 43 msec.
- Comparable to 23 msec of [GH10]
> They use Intel Core 2 Duo Processor at 2.1 GHz.
» Shows lattice-based SWHE can compute

quadratic functions more efficiently than
[BGNOS].

Lattice-Based C &
Bar-llan Univergg S
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SWHE: Applications
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» Rule of Thumb: If your function f can be
expressed as a low-degree polynomial, SWHE
might be sufficient.

SWHE Evaluates Low Degree

Lattice-Based Cryp
Bar-llan University
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Bar-llan University
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SWHE Evaluates Low Degree

» Private information retrieval
> Client wants bit B; of database B,...B,, w/o0 revealing i.

- The PIR function has degree only log n.
- Easily achievable with SWHE.

Lattice-Based Crypto
Bar-llan University
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Bar-llan University
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SWHE Evaluates Low Degree

» Keyword Search / String Matching

> Client wants to know whether encrypted string s =
S;...S,, 1S in one of its encrypted files

- Comparison of two m-bit strings is a m-degree poly.
- OR of n comparisons is a n-degree poly.

> “Smolensky trick”: in both cases we can reduce the
degree to k, with a 27k probability of error.

Lattice-Based Crypte
Bar-llan Univers'
>ILY, 151
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SWHE: Stepping-Stone to
FHE

22> Tomorrow, we’ll see how
SWHE helps construct FHE...

Lattice-Based Crypto:.}ég'Applications
Bar-llan University, Israel 2012
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SWHE: Older Schemes

22 RSA, ElGamal, Paillier, Boneh-
Goh-Nissim, Ishai-Paskin, ...

| won’t cover these.

cations
2012
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SWHE: To The

Constructions!!!
2
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Polly Cracker: An Early
Attempt at SWHE

22> And perhaps the most
“natural” way to do it...

Lattice-Based Crypto:.}ég'Applications
Bar-llan University, Israel



ADD and MULT, Naturally... N

Bar-llan University
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Most Natural Approach
Ciphertexts live in a “ring".

ADDing ciphertexts (as ring elements)

adds underlying plaintexts.
Some for MULT.

» Definition of (commutative) ring:

- Like a field, without inverses.
> It has +, x, 0 and 1,
additive and multiplicative closure.
» Examples: integers Z,
polynomials Z[x,y,...], ...
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Polly Cracker '\-‘

Bar- IIan UnlverS|ty
Dept. of Computer Science

Main Idea
Encryptions of O are polynomials that

evaluate to 0 at the secret key.

» KeyGen: Secret = some point (s, ...,s.) € Z,".
Public key: Polys {f.(x;,...,X,)} s.t. f(s], S ) 0 mod q.
» Encrypt: From {f.}, C_c[Jenerate random polynomial g s.t.

g(sq,...,S,) = gq. Ciphertextis:
C(Xq,...,Xp) = m + g(Xy,...,X,) mod g.

» Decrypt: Evaluate ciphertext at the
secret: c(sq,...,5,) = m mod q.

» ADD and MULT: Output sum or
oroduct of ciphertext polynomials.

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012
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Bar-llan University
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Main Idea
Encryptions of O are polynomials that

evaluate to 0 at the secret key.

» Semantic Security (under chosen plaintext
attack): Given two ciphertexts ¢, and ¢,, can
you distinguish whether:

° Cp and ¢, encrypt same message?

° Cy—C; encrypts 07

° Cp—C; evaluates to O at secret key?
> Solve “ldeal Membership” Problem?

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012




Ideals: Definition and Examples ™=

Dept. of Computer Science

» Ideal: Subset | of a ring R that is:

- Additively closed: i, i, € | - i;+i, € I.

> Closed under multwithR:iel,reR —irel.
» Example:

- R =27, the integers. | = (5), multiples of 5.
- R =Z[x,y]. | = {f(x,y) € Z[x,y]: f(7,11) = 0}.
- | = (x-7,y-11). These “generate” the ideal.

» “Modulo”

- 7 modulo (5) = 2, or 7 € 2+(5)
> g(x,y) modulo (x-7,y-11) = g(7,11).
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Back to Polly Cracker...

Main Idea
Encryptions of O are polynomials that

evaluate to 0 at the secret key.

» Semantic Security: ldeal Membership Problem:
- Given ciphertext polys ¢,(x;,...,X,) and ¢,(X;,...,X,),
> Distinguish whether c,(x,,...,X,)-C(X;,...,X,) is in the
ideal (X;-S¢, ..., X,=S,)-

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012
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» [AFFP11] Sadly, Polly Cracker is typically easy
to break, using just linear algebra.

» Public key: polys {f.} such that f,(s,,...,s,)=0.
» Computing Grobner bases is hard, /in general.

» In practice, only a small (polynomial #) of
monomials can be used in the ciphertexts.

Polly Cracker Cryptanalysis
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Polly Cracker Cryptanalysis

» An Attack:

> Collect lots of encryptions {c.} of O.
+ (These are elements of an ideal I.)

- The ¢;’s generate a lattice L (over the multivariate
monomials). Compute Hermite Normal Form (HNF) of L.

- To break semantic security, reduce ¢,-¢c, mod HNF(L):
the result will be 0 if m; = m,.
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Noisy Polly Cracker

22> Adding noise to Polly Cracker
to defeat attacks...

Lattice-Based Crypto-_‘& Applications
Bar-llan University, Israel 2012



Polly Cracker N

Bar-llan University
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Main Idea
Encryptions of O are polynomials that
evaluate to O at the secret key.

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012



Noisy Polly Cracker [AFFP11] &

Bar-llan University
Main Idea gputer Science
Encryptions of O are polynomials that

evaluate to something small and even
(smeven) O at the secret key.

» KeyGen: Secret = some point (sy, ...,s,) € Z,".
Public key: {f.(x,,...,x,)} s.t. f.(s;,...,5,,)=2e, mod q, |e;| < q.
» Encrypt: Generate random poly g s.t. g(s,...,5,)= smeven
from {f.}. Ciphertext is c(x,,...,x,,) = m + g(x,,...,X,) mod @
for message m < {0,1}. ‘
» Decrypt: c(s;4,...,S,) = m+smeven
mod g. Reduce mod 2.

» ADD and MULT: Output sum or
product of ciphertext polys.




Noisy Polly Cracker [AFFP11] &

Bar-llan University
Main Idea gputer Science
Encryptions of O are polynomials that

evaluate to something small and even
(smeven) 0 modulo a secret ideal.

» KeyGen: Secret ideal = (X;-s¢, ...,X,=S,)-
Public key: {f.(x;,...,x,))} s.t. f.(sq,...,5,)=2¢€, mod q, |e;| < q.
» Encrypt: Generate random poly g s.t. g(s,...,5,)= smeven
from {f.}. Ciphertext is c(x,,...,x,,) = m + g(x,,...,X,) mod @
for message m < {0,1}. ‘
» Decrypt: c(s;4,...,S,) = m+smeven
mod g. Reduce mod 2.

» ADD and MULT: Output sum or
product of ciphertext polys.




Noisy Polly Cracker [AFFP11]
Main Idea T
Encryptions of O are polynomials that
evaluate to something small and even
(smeven) O modulo a secret ideal.

» KeyGen: Secret ideal = (X;-s¢, ...,X,=S,)-
Public key: {f.(x;,...,x)} s.t. f.(s,,...,5,)=2e. mod g, |e:| < .
ADDs and MULTs ||. g(s,...,S,)=Smeven

make the "noise” |m + g(x.,...,X,) mod q
grow. ‘

» Decrypt: cs],...,sn) = m+4smeven
mod g. Reduce mod

» ADD and MULT: Output sum or
product of ciphertext polys.




Noisy Ciphertexts M

Bar-llan University
Dept. of Computer Science

EEERE e e

» Each ciphertext has some noise that hides the
message.

» Think: “hidden” error correcting codes...

» If error is small, Alice can use knowledge of
“hidden” code, or a (hidden) good basis of a

Kknown code to remove the noise.

» If noise is large, decryption
pecomes hopeless even for
Alice.

Lattice-Based Cry‘
Bar-llan University,
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0 P 2p 3p 4p op op

R G & +

Noise of
ciphertext
product is

Adding and Multiplying Noise

Noise of

Noise o, Noise 0, | | ciphertext sum

hides bit hides bit is §,+,. It

b . b, . hides bit
b,+b,.

0,X0,. It hides
bit b, Xb,.

» Message “hides” in the noise.

» Adding ciphertexts adds the
noises.

» Multiplying ciphertexts
multiplies the noises.

» The ciphertext noisiness grows!
- Eventually causes a decryption error!
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SWHE over the Integers
[VDGHV10]

22> Maybe the simplest SWHE
scheme you could imagine...




A Symmetric SWHE Scheme [VDGHV1 6}3

Bar-llan University
Dept. of Computer Science

» Shared secret key: odd number p
» To encrypt a bit m in {0,1}:
- Choose at random small r < p, large q

o Qutput c = m + 2r + pg What
- Ciphertext is close to a multiple of p could

- m = LSB of distance to nearest multiple of p be

» To decrypt c: Simpler?
> Output m = (c mod p) mod 2 = [[c] ],

» ADD, MULT: Output c «— ¢, + G,
OF C «— Cq X C,.

t \\:i:cations

Lattice-Based Crypte )
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A Symmetric SWHE Scheme [vDGHV10

Bar-llan University
Dept. of Computer Science

» Shared secret key: odd number p _
» To encrypt a bit m in {0,1}:
- Choose at random small r < p, large q
o Qutput c = m + 2r + pq <

- Ciphertext is close to a multiple of p
m = LSB of distance to nearest multiple o

» To decrypt c:

> Output m = (c mod p) mod 2 = [[c] ],

» ADD, MULT: Output c «— ¢, + G,
OF C «— Cq X C,.




Asymmetric SWHE [vDGHV10] -

Bar-llan University
Dept. of Computer Science

» Secret key is an odd p as before

» Public key pk has “encryptions of 0" x;=2r,+q.p
o Actually x; = [2r,+q;plx, fori =1, ..., n.

» Enc(pk, m) = m+subset-sum(x;’s)
> Actually, Enc(pk, m) = [m+subset-sum(x;’s)+2r]x,.

» Dec(sk, o) = [[c],],

Making a public key out o
“encryptions of 0”
formalized by Rothblum
(“From Private Key to
ublic Key”, TCC’'11).

Lattice-Based Crypto & Appu.--~ns

BN A\ \
Bar-llan University, Is



Asymmetric SWHE [vDGHV10]

» Secret key is an odd p as before
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Bar-llan University

Dept. of Computer Science

» Public key pk has “encryptions of 0" x;=2r,+q.p

o Actually x; = [2r,+q;plx, fori =1, ..., n.
» Enc(pk, m) = m+subset-sum(x;’s)

> Actually, Enc(pk, m) = [m+subset-sum(x;’s)+2r]x,.

» Dec(sk, c) = [[c],],

Quite similar to Regev’s
'’03 scheme. Main
difference: SWHE uses
much more aggressive

narameters...

Lattice-Based C \ &
. AT
Bar-llan _{a\\\\ S
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Security e

Bar-llan University
Dept. of Computer Science

» Approximate GCD (approx-gcd) Problem:
- Given many x; = s; + q;p, output p
- Example params: s, ~ 20W p ~ 2002) " q. ~ 2005) “where
A\ is security parameter
- Best known attacks (lattices) require 2* time
» Reduction:
o If approx-gcd is hard, scheme is semantically secure




Ny
Hardness of Approximate-GCD - '

Dept. of Computer Science

» Several lattice-based approaches for solving
approximate-GCD

> Studied in [Howgrave-GrahamO1], more recently in
[vDGV10, CH11, CN11]

> All run out of steam when |q;| » |p|%, where |p]| is
number of bits of p

> In our case |p| =O\2), |g;| = OA5) » |p|?

Lattice-Based [\ k
Bar-llan Unlvers.« AE A



Relation to Simultaneous Ny
Diophantine Approximation

» Xi=qip+r,(rn«p«qy),i=0,1,2,...
° ¥, = Xi/Xo = (Q;+5))/dg, S; ~ ri/p « 1

° Y1, Yo, ... IS @an instance of SDA @x] X ... Xt\
* (o is a good denominator for all y;’s “Xg
» Use Lagarias’s algorithm: L= X,
> Consider the rows of this matrix:
> Find a short vector in the _ X

lattice that they span

° <Qgp,d1,---,q¢>-L is short
- Hopefully we will find it.

t \\:i:cations

Lattice-Based Crypte )
Bar-llan Univers'{ N\
1LY, 1S XA
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Relation to SDA (cont.)

» When will Lagarias’ algorithm succeed?
° <dg,d1,---,9¢>-L should be shortest in lattice
. I ~ 1/t+1
Ir.1 particular shorter than ~det(L)'/t+ Minkowski
> This only holds for t > log Q/log P SO
- The dimension of the lattice is t+1

- Rule of thumb: takes 2tk time to get 2k approximation
of SVP/CVP in lattice of dim t.

- 2l9,l/IpI*2 = 2N time to get 2/Pl » 2X approx.

» Bottom line: no known efficient
attack on approx-gcd

Lattice-Based Cryf
Bar-llan Unive



How Homomorphic Is It? e

Bar-llan University
Dept. of Computer Science

» Suppose ¢,=m,+2r,+q,p, ..., (=M +2r+q,p
» ADD: c=c, +C,.

> Noise of cis [c], = (m;+m,+2r,+2r,), sum of noises
» MULT: c=¢,xC,.

> Noise of cis [c], = (m;+2r;) x(m,+2r,), product of
noises.

» . c = f(cy, ..., ¢) = f(m,+2r,, ..., m+2r), the

function f applied to the noises.

Lattice-Based Crypto & App
Bar-llan Unlvers_“« AR



How Homomorphic Is It? e

Bar-llan University
Dept. of Computer Science

» Claim: If [f(m,+2r,, ..., m+2r.)| < p/2 for all
possible “fresh” noises m+2r;, the SWHE
scheme can Eval f correctly.

» Proof:
> Set ¢ = f(cy, ..., C.
> Then, [c], = f(m;+2r,, ..., m+2r,) by assumption.
> Then, [[c] ], = f(m,, ..., m) mod 2.

That’s what we want!

Lattice-Based Crypto & App
; ATV N
Bar-llan University, Israel




How Homomorphic Is It? e

Bar-llan University
Dept. of Computer Science

» What if |f(m,+2r,, ..., m+2r)| > p/27?
- ¢ = f(¢y, ..., ¢) = f(m;+2r;, ..., mA+2r) + qp
- Nearest p-multiple to cis g’'p for g’ #q
> (c mod p) = f(m;+2r,, ..., m~+2r) + (q-9°)p
> (c mod p) mod 2

= f(m,, ..., m) + (q-q’) mod 2
_ M

» We say./.;che scheme can handle f if:
o [f(Xq, ..y X < p/4

- Whenever all |x;| < B, where B is a
bound on the noise of a fresh
ciphertext output by Enc.

Lattice-Based Cr_y’ to &

Bar-llan Universi ty,



Example of a Function It Can Handle*

Bar-llan University
Dept. of Computer Science

» Elementary symmetric poly of degree d:
o f(Xqy ooy X)) = X7 Xy Xy + oot F Xega t Xeedaa - Xy
- Has (t choose d) < t9 monomials: a lot!!

v If |x;|<B, then |f(x;, ..., x| <td-Bd

» E can handle f if:
- t9.Bd < p/4 — basically if: d < (log p)/(log tB)

» Example params: B ~ 2*, p ~ 2A"2

- Eval can handle elem symm
poly of degree about A.

Lattice-Based C :
Bar-llan University, Is
2 SRS



An Optimization e

Bar-llan University
Dept. of Computer Science

» If f has degree d, c = f(c,, ..., ¢) will have
about d times as many bits as the fresh ¢’s.

» Can we reduce the ciphertext length after
multiplications?

Lattice-Based .



An Optimization e

Bar-llan University
Dept. of Computer Science

» A heuristic:
- Suppose n is bit-length of normal ciphertext.
> Put additional “encryptions of 0" {y;=2r,+q;p} in pk.

- Set y,’s to increase geometrically up to square of
normal ciphertext: y, = 2", for i up to = n.

> Set € = ¢;xC, - subsetsum(y;’s), and c will have
normal size.

- Subtract off y’s according to c’s binary representation.

A\ W\
Lattice-Based Crypto & App
Bar-llan University,



Performance M

Bar-llan University
Dept. of Computer Science

» Well, a little slow...
- Example parameters: a ciphertext is O(N>) bits.
- Least efficient SWHE scheme, asymptotically.

» But Coron, Mandal, Naccache, Tibouchi have

made impressive efficiency improvements.

> [CMNT Crypto ‘11]: FHE over the Integers with
Shorter Public Keys
> [CNT Eurocrypt ‘12]: Public-key Compression and

Modulus Switching for FHE over the
Integers.

- Asymptotics are much better now.

Lattice-Based Q\\{\-\

Bar-llan University,
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SWHE Based on LWE
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The LWE Problem M

Bar-llan University
Dept. of Computer Science

» Traditional Version:

> Let y be an error distribution.
> Distinguish these distributions:
- Generate uniform s «— Z,". For many i, generate
uniform a; < Z," , e; <y, and output (a;, [<a;, s>+e],).

- For many i, generate uniform a; — Z,", b; < Z, and
output (a;, b)).

Lattice-Based Cryptc
; VAT
Bar-llan Unlvers;;




The LWE Problem M

Bar-llan University
Dept. of Computer Science

» Noisy Polly Cracker Version:

> Let y be an error distribution.
> Distinguish these distributions:

- Generate uniform s < Z,". For many i, generate e; <y
and a linear polynomial fi(x,, ..., x,)) = fo+f;x;+...+f X,
(from Z,"*1) such that [fi(s,, ..., s))]; = e

- For many i, generate and output a uniformly random
linear polynomial fi(x,, ..., Xx,) (from Zq”+‘).

Lattice-Based Cryp 0
Bar-llan Univergf' s




Regev LWE Encryption Revisited N

Bar-llan University
Dept. of Computer Science

» Parameters: g such that gcd(q,2)=1.

» KeyGen: Secret = uniform s € Z,". Public key:

inear polys {fi(x;,...,.x))} s.t. [fi(s)];=2¢e;, l&;] < q.

» Encrypt: Set g(x,,...,X,) as a random subset sum of
{f.(Xq,...,X,)}. Output c(X,,...,X,.)=m+g(X;,...,X,).

» Decrypt: [c(s)], = m+smeven. Reduce mod 2.

» Security:

» Public key consists of an LWE
instance, doubled.

» Leftover hash lemma.




SWHE Based on LWE [BV11Db] V

Bar-llan University
Dept. of Computer Science

» Parameters: g such that gcd(q,2)=1.

» KeyGen: Secret = uniform s € Z,". Public key:

inear polys {fi(x;,...,.x))} s.t. [fi(s)];=2¢e;, l&;] < q.

» Encrypt: Set g(x,,...,X,) as a random subset sum of
{f.(Xq,...,X,)}. Output c(X,,...,X,.)=m+g(X;,...,X,).

» Decrypt: [c(s)], = m+smeven. Reduce mod 2.

» ADD and MULT:;

» Output sum or product of
ciphertext polynomials.




Relinearization [BV11b] R

Bar-llan University
Dept. of Computer Science

» After MULT, we have ciphertext c(x) = ¢;(X)-¢,(X)
that encrypts some m under key s.
> [c(s)]y = m+smeven
- ¢(X) is a guadratic poly with O(n?) coefficients.

» What we want: a /inear ciphertext d(y) that
encrypts same m under some key t € Z.".

» Relinearization maps a long quadratic
ciphertext under s to a normal linear ciphertext

under t.

Lattice-Based Crypto &
Bar-llan University, Israe



Relinearization: From Quadraticto Ny
Linear (A Change of Variables)

Dept. of Computer Science

» First step: View c(X) as a /ong linear ciphertext C(X).
> Set the variables X;; = x;X;.
> Set the values S = s;'s;.
> Set C(X) = X ¢y;¢y; X
> Then, [CS)], = [c(s)]; = m+smeven.
> (This is only a change of perspective.)




Second Step: Key Switching N

Bar-llan University
Dept. of Computer Science

» Input: Long linear ciphertext C(X) with N > n,
where [C(S)], = e = m+smeven, and S =
(S,,..., Sp) is a long secret key.

» Output: Normal-length linear ciphertext d(x),
where [d(t)], = e+smeven = m+smeven, and
t = (ty,..., t)) is a normal-length secret key.

» Special case: N = n?,




Key Switching Details *

Bar-llan University

Dept. of Computer Science

» SwitchKeyGen(S,t): Output linear polys {h(x)},
i € {1,...,N} such that:
[h,(©)], = S;+smeven,
(like an encryption of S; under t)
Add Aux(S,t) = {h(x)} to pk.
» SwitchKey(pk, C(X)): Set d(x) = >, C-h.(X).
» d(t) = 2 C(S;+smeven,) = C(S) + 2; C.-smeven.
» Oh wait, >, C-smeven; is not small and even...

» Fix: Bit—-decompose C first so
that it has small coefficients...




Key Switching: Bit Decomposition /Ny

Interlude

» BitDecomp:

Bar-llan University
Dept. of Computer Science

- Let BitDecomp(C(X)) be the bit-decomposition of C(X).
> (Uy(X),..., Ujog (X)) < BitDecomp(C(X)), where each U;(X)

has 0/1 coefficients and C(X) = %

» Powerof2:
o (S, 28, ..., 21094 S) — Powersof2(S).
» Let C’=BitDecomp(C) and S’ =
Then, <C',S’> = <C,S>.
» So, C’(S’) = C(S) mod ¢.

25-U,(X).

Powerof2(S).




Key Switching Details *

Bar-llan University
Dept. of Computer Science

» SwitchKeyGen(S,t): Output linear polys {h(x)},
i € {1,...,N} such that:
[h,(D], = S’ +smeven,
(like an encryption of S;” under t)
Add Aux(S’,t) = {h.(x)} to pk.
» SwitchKey(pk, C'(X)): Set d(x) = > C.’-h.(X).
» dt) = 2 C+(S”+smeven) = C'(S’) + 2. C’-smeven,

» Now, 2. C.’-smeven; is small
and even...




Key Switching: Summary e

Bar-llan University
Dept. of Computer Science

» Functionality:
- Regev ciphertext under key S — Ciphertext under t.
- Need to put Aux(S,t) in pk.
> Like proxy re-encryption.
> Relinearization is only a special case.
- Later, we will use key switching in a different context.
» Effect on noise: SwitchKey increases noise only

additively.

» For depth L circuit, use a chain
of L encrypted secret keys.

AL \
Lattice-Based Crypto & Ap
Bar-llan University



SWHE from LWE [BV11b]: Summary 2/

Dept. of Computer Science

» Follows Noisy Polly Cracker blueprint
- With a relinearization step.

» Relinearization / key-switching
- Doesn’t increase the noise much.

> So noise analysis, and “homomorphic capacity”
analysis, is similar to integer scheme.

> For L depth circuit, use a chain of L encrypted
secret keys.

Lattice-Based Crypte
Bar-llan Univers'
>ILY, 151
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SWHE Based on ldeal
Lattices [Gen(Q9]

22> I'll skip my 2009 scheme, and
focus on RLWE- and NTRU-
based schemes.
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SWHE Based on RLWE
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The Ring-LWE Problem ™M

Bar-llan University
Dept. of Computer Science

» Traditional Version:

- Let y be an error distribution over R = Zq[y]/(y”+1 ).
> Distinguish these distributions:

- Generate uniform s < R. For many i, generate uniform
a; — R, e, — y, and output (a;,, a,;s+e).

- For many i, generate uniform a, — R, b, — Rand
output (a;, b).

Lattice-Based Crypte
Bar-llan University,



The Ring-LWE Problem ™M

Bar-llan University
Dept. of Computer Science

» Noisy Polly Cracker Version:

- Let y be an error distribution over R = Zq[y]/(y”+1 ).
> Distinguish these distributions:
- Generate uniform s < R. For many i, generate e, « y

and a linear polynomial f,(x) = f,+f,x (from R?) such
that f(s) = e..

- For many i, generate and output a uniformly random
linear polynomial f,(x) (from R?).




[LPR10] RLWE-Based Encryption "2

Bar-llan University

Dept. of Computer Science

» Parameters: g with gcd(q,2)=1, R = Zq[y]/(y“+1).
» KeyGen: Secret = uniform s € R. Public key: linear
nolys {f(x)} s.t. f.(s)=2e, |e;| <« q.
» Encrypt: Set g(x) as a random subset sum of {f.(x)}.
Output c(X)=m+g(x).
> m can be a “polynomial”, an element of Z,[y]/(y"+1).
» Decrypt: c(s) = m+smeven. Reduce mod 2.




SWHE from RLWE [BV11a] :

Bar-llan University

Dept. of Computer Science

» Parameters: q with gcd(q,2)=1,R = Z,[y]/(y"+1).
» KeyGen: Secret = uniform s € R. Public key:
inear polys {f(x)} s.t. f.(s)=2e¢,, |&;| <« q.
» Encrypt: Set g(x) as a random subset sum of
{f.(x)}. Output c(x)=m+g(x).
> m can be a “polynomial”, an element of Z,[y]/(y"+1).
» Decrypt: c(s) = m+smeven. Reduce mod 2.

» ADD and MULT: Add or
multiply the ciphertext
polynomials.




Relinearization [BV11b] applied to /A%
[V] ] a] Bar-llan University

Dept. of Computer Science

» After MULT, we have ciphertext c(x) = ¢;(x)-C5(x)
that encrypts some m under key s.
> ¢(s) = m+smeven
- ¢(x) is a guadratic poly with 3 coefficients.

» What we want: a /inear ciphertext d(x) that
encrypts same m under some key t € R.

» Relinearization maps a long quadratic
ciphertext under s to a normal linear ciphertext

under t.

AL
Lattice-Based a{x\ ‘
Bar-llan University, Is



Relinearization: From Quadratic to Ny
Linear (A Change Of VariabIeS) Bar-llan University

Dept. of Computer Science

» First step: View c(x) as a /ong linear ciphertext C(X).
> Set the variables X; = x and X, = x°.
> Set the values S; = s and S, = s~.
> Set CX)=(c; 1 X+Cio)(Co1 X+Cy0)=
C11C21 X, +(C11Co0+Cy0C21)X+CqCo0.
> Then, C(S) = c(s) = m+smeven.
> (This is only a change of perspective.)

Lattice-Based Crypto & Applicati
MR\ VR
Bar-llan University, Is



Second Step: Key Switching =g

Dept. of Computer Science

» Input: Long linear ciphertext C(X), where C(S)
= e = m+smeven, and S = (5,,S,) is a long
secret key.

» Output: Normal-length linear ciphertext d(x),
where d(t) = e+smeven = m+smeven, and t

c R.

Lattice-Based C ohe \\\\\ NS tions
Bar-llan Univers A
1LY, 151




Key Switching Details *

Bar-llan University

Dept. of Computer Science

» SwitchKeyGen(S,t): Output linear polys {h:(x)},
i € {1,...,N} such that:
h.(t) = S;+smeven,
(like an encryption of S; under t)
Add Aux(S,t) = {h.(x)} to pk.
» SwitchKey(pk, C(X)): Set d(x) = 2. Ci-h.(x).
» d(t) = 2 C(S,+smeven,) = C(S) + 2, C.-smeven.
» Oh wait, >, C-smeven; is not small and even...

» Fix: Bit—-decompose C first so
that it has small coefficients...




Key Switching: Bit Decomposition /Ny
I n te rI u d e Bar-llan University

Dept. of Computer Science

» BitDecomp:
- Let BitDecomp(C(X)) be the bit-decomposition of C(X).
° (Uy(X),..., Ujog ¢(X)) < BitDecomp(C(X)), where each U;(X)
has coefficients (in R) that are 0/1 polynomials and
CX) = 2; 2-U;(X).
» Powerof2:
- (S, 2S, ..., 2l09a S) — Powersof2(S).

» Let C’=BitDecomp(C) and S’ = Powerof2(S).

Then, <C’,S’> = <C,S>.
» So, C’(S’) = C(S) in R.




Key Switching Details *

Bar-llan University
Dept. of Computer Science

» SwitchKeyGen(S,t): Output linear polys {h(x)},
i € {1,...,N} such that:
h.(t) = S;’+smeven,
(like an encryption of S;” under t)
Add Aux(S’,t) = {h.(x)} to pk.
» SwitchKey(pk, C'(X)): Set d(x) = 2., C/’-hi(x).
» d(t) = 2 C+(S”+smeven) = C'(S’) + 2. C’-smeven,

» Now, 2. C.’-smeven; is small
and even...




RLWE Key Switching: Summary

Bar-llan University
Dept. of Computer Science

» Functionality: as in LWE.

» Effect on noise: SwitchKey increases noise only
additively, as in LWE.

» Performance: Better!
o RLWE:

- Key switching involves O(log ) multiplications in R.
- We can use FFT for multiplication.

- quasi-O(n log ) work
o LWE:

- Relinearization is O(n3 log g) work.
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NTRU-Based SWHE
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NTRU-Based SWHE ([LATV12]and /My
[GHLPSS] 2]) Bar-llan University

Dept. of Computer Science

» Parameters: q with gcd(q,2)=1, R = Z [yl(y"+1).
» <eYGen: Secret = uniform s € R. Public key: linear
nolys {f.(x)} s.t. f.(s)=2e,, |e,] < q. More reqs:
> s is small and 1 mod 2 (smodd?)
> f.(x) has no constant term - i.e., f;'s = 2e..
» Encrypt: Set g(x) as a random subset sum of {f.(x)}.
Output c(X)=m-x+g(x).
> m can be a “polynomial”, an element of Z,[y]/(y"+1).
» Decrypt: ¢(s) = m-s+smeven. Reduce mod 2.

» Security: NTRU Problem: Do f;;’s
have form f,=2e./s:; e, s; short?




NTRU-Based SWHE ([LATV12]and /My
[GHLPSS] 2]) Bar-llan University

Dept. of Computer Science

» Parameters: q with gcd(q,2)=1, R = Z,[y]/(y"+1).
» <eYGen: Secret = uniform s € R. Public key: linear
nolys {f.(x)} s.t. f.(s)=2e,, |e,] < q. More reqs:
> s is small and 1 mod 2 (smodd?)
> f.(x) has no constant term - i.e., f;'s = 2e..
» Encrypt: Set g(x) as a random subset sum of {f.(x)}.
Output c(X)=m-x+g(x).
> m can be a “polynomial”, an element of Z,[y]/(y"+1).
» Decrypt: ¢(s) = m-s+smeven. Reduce mod 2.

» ADD and MULT: Add or
multiply the ciphertext
polynomials.

ications



NTRU-Based SWHE: Multiplication /Ny
Becomes Simpler

» Multiplicands: ¢;(x) = ¢;;-x and ¢,(x) = C5¢°X.

» Product: c(x) = ¢;(X)C(X) = Cy7°Coq°X2.

» Can we forget key switching?
> Just view t = s? as the new secret key.
> ¢(t) = m;-m,-t+smeven = m;-m,+smeven.

» Not quite: What if we want to add a ciphertext
under key s to another ciphertext under s2?

Lattice-Based Crypto & \‘
Bar-llan University



NTRU-Based SWHE: Key Switching /Ny
Becomes Simpler

» Multiplicands: ¢;(x) = ¢;;-x and ¢,(x) = C5¢°X.
» Product: c¢(Xx) = ¢;(X):C,(X) = Cy7°C5q-X2.
» Aux(S,t): Choose e*«—y, and set g, = 2e*+1.
Output as, = S-e5 t7!. (et should look random.)
» SwitchKey(c,as ,):
> Suppose ¢S = e = m+smeven.
- New ciphertext is ¢’ = C -ag,.

> Then, c’t = (c a5 )t = c(ag )
= ¢(S-e5,) = e -eg, = M+smeven.
» Noise increases multiplicatively.
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» Two ciphertexts under different keys:
° C1(X) = ¢y x and ¢, (X) = ¢y X,
° Cy(s7) = my-s;+smeven, ¢,(s,) = m,S,+smeven.

» Product: ¢;;,¢,;5;5, = m;m,Ss;S,+smeven =
m,m,+smeven.

» [LATV12]: Cloud can (noninteractively)
combine data encrypted under different keys.

NTRU-Based SWHE: MultiKey
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Other SWHE Schemes

22 Insert your scheme here!

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012



Thank You! Questions? IN)
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