Winter School on Lattice-Based Cryptography and Applications Bar-Ilan University, Israel 19/2/2012-22/2/2012

Fully Homomorphic Encryption

Craig Gentry
IBM Watson

Outline for Today

- Homomorphic Encryption Basics
- Somewhat homomorphic encryption (SWHE) schemes

Homomorphic Encryption Basics

Homomorphic Encryption Basics Bar-Ilan University Dept. of Computer Science

A way to delegate <u>processing</u> of your data, without giving away <u>access</u> to it.

Example App: Cloud computing on encrypted data

Do you really think it's safe to store your data in the cloud *unencrypted*?

"Where the sensitive information is concentrated, that is where the spies will go. This is just a fact of life." – Ken Silva, former NSA official

Fully Homomorphic Encryption

Bar-Ilan University
Dept. of Computer Science

"I want 1) the cloud to process my data 2) even though it is encrypted.

Run Evaluate[f, Enc_k(x)] = Enc_k[f(x)]

The special

sauce!

 $Enc_k(x)$

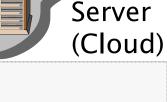
function f

This could be encrypted too.

Alice (Input: data x, key k)

f(x)

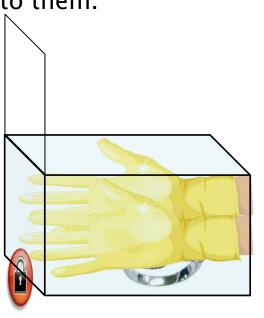
 $Enc_k[f(x)]$



An Analogy: Alice's Jewelry Store **Bar-Ilan University**

Alice wants workers to assemble raw materials into jewelry

She wants her workers to process the raw materials without having access to them.



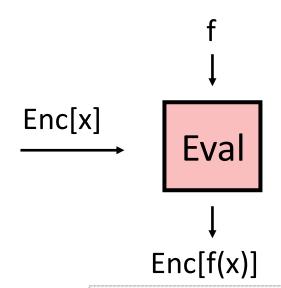
Dept. of Computer Science

- Alice puts raw materials in locked glovebox.
- Workers assemble jewelry inside glovebox, using the gloves.
- Alice unlocks box to get "results".

But Alice is worried about theft:

Homomorphic Encryption Basics Bar-Ilan University Dept. of Computer Science

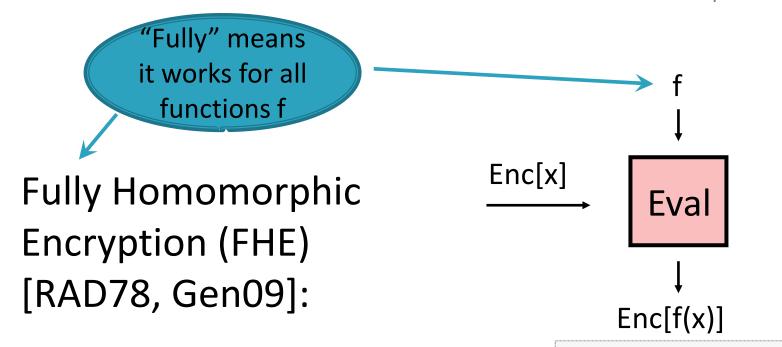
Homomorphic Encryption [RAD78]:



Compactness: Size of Eval'd ciphertext independent of f

Homomorphic Encryption Basics

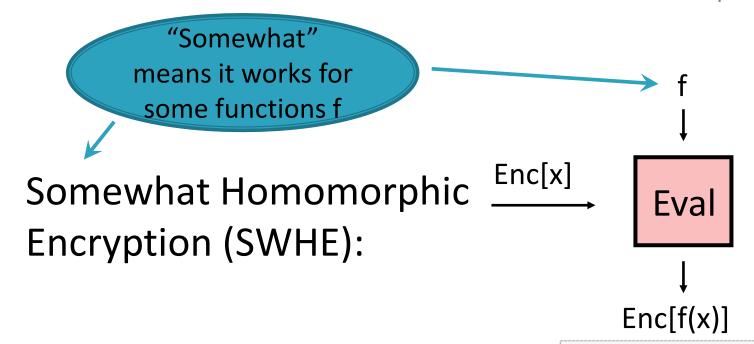
Bar-Ilan University
Dept. of Computer Science



Compactness: Size of Eval'd ciphertext independent of f

Homomorphic Encryption Basics

Bar-Ilan University
Dept. of Computer Science



Compactness: Size of Eval'd ciphertext independent of f

Homomorphic Encryption Basics Bar-Ilan University Dept. of Computer Science

A way to delegate <u>processing</u> of your data, without giving away <u>access</u> to it.

- Fully Homomorphic Encryption (FHE):
 - Arbitrary processing
 - But computationally expensive.
- Somewhat Homomorphic Encryption (SWHE):
 - Limited processing
 - Cheaper computationally.

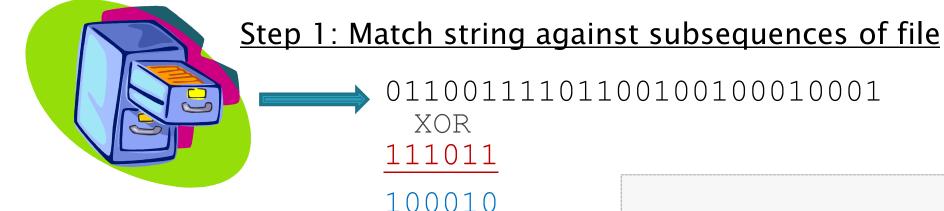
Homomorphic Encryption Basics: Functionality

Processing (Unencrypted) Data

- Forget encryption for a moment...
- How does your computer compute a function?
- Basically, by working on bits, 1's and 0's.
- And by using bit operations for example,
 - AND $(b_1, b_2) = 1$ if $b_1 = b_2 = 1$; otherwise, equals 0.
 - AND $(b_1, b_2) = b_1 \times b_2$.
 - XOR $(b_1, b_2) = 0$ if $b_1 = b_2$; equals 1 if $b_1 \neq b_2$.
 - XOR $(b_1, b_2) = b_1 + b_2$ (modulo 2)
- Any function can be computed bit-wise - with only ANDs and XORS - if it can be computed at all.

Unencrypted String Matching

- Still forget encryption for now...
- Example: How do you detect whether a string is in a file?

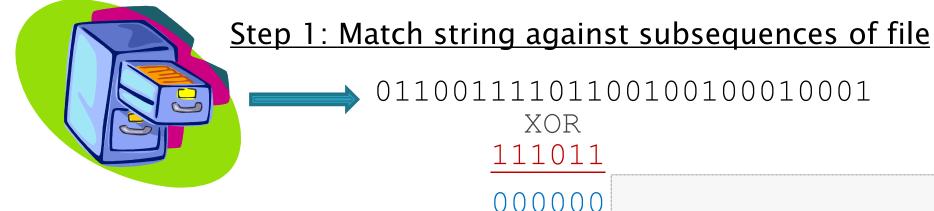


ZeroString(100010) = 0
(not the zero string! not a match!)

The ZeroString function itself can be computed from basic bit operations.

Unencrypted String Matching

- Still forget encryption for now...
- Example: How do you detect whether a string is in a file?



ZeroString(000000) = 0 (is the zero string! a match!)

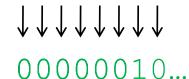
Unencrypted String Matching

- Still forget encryption for now...
- Example: How do you detect whether a string is in a file?

Step 2: Aggregate info about the subsequences

01100111101100100100010001

1110000000011



OR(0000010...) = 1 (string is in the file!)

OR also can be decomposed into ANDs and XORs.

Let's Do This Encrypted...

- Let b denote a valid encryption of bit b.
- Suppose we have a (homomorphic) encryption scheme with public functions E-ADD, E-MULT where:

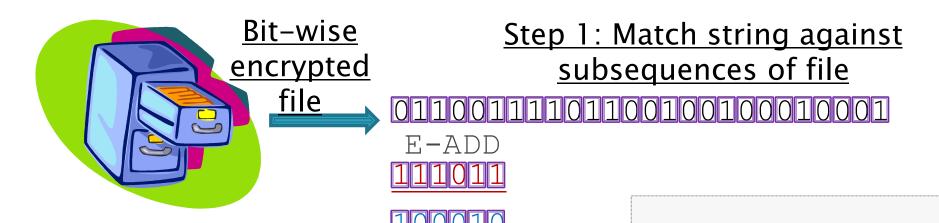
$$E-MULT(b_1,b_2) = b_1xb_2 E-ADD(b_1,b_2) = b_1+b_2$$

for any b_1 and b_2 .

- ▶ Then we can AND and XOR *encrypted* bits.
- Proceeding bit-wise, we can compute any function on encrypted data.

Encrypted String Matching

b denotes an encryption of bit b.

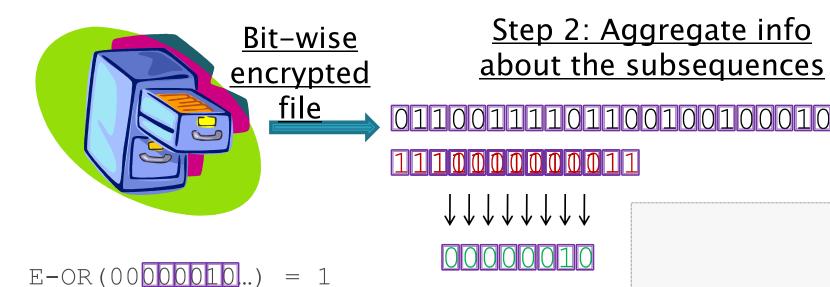


E-ZeroString(100010) = 0 (not the zero string! not a match!)

E-ZeroString function itself can be computed from basic bit operations.

Encrypted String Matching

b denotes an encryption of bit b.



E-OR can also be computed from basic bit operations.

(string is in the encrypted file!)

Computing General Functions

- Can you add and multiply (mod 2) and remember stuff?
 - Congratulations, then you can compute any efficiently computable function.
 - If you only can add and multiply mod 3, no worries.
- {ADD,MULT} are Turing-complete (over any ring).
 - Take any (classically) efficiently computable function.
 Express it as a poly-size circuit of ADD and MULT gates.
- Circuits vs. Turing machines (about the same):
 - Circuit size = O(T_f log T_f)
 T_f = time to compute f on a TM

FHE Defined

Can your cryptosystem encrypt 0 and 1, and Bar-Ilan University ADD and MULT encrypted data efficiently?

Dept. of Computer Science

Functionality: Let S_{sk} be set of "valid" ciphertexts for (any) sk.

For $c_1, c_2 \in S_{sk}$, set $c_{ADD} = ADD(c_1, c_2)$, $c_{MULT} = MULT(c_1, c_2)$. Then:

 $DEC_{sk}(c_{ADD}) = DEC_{sk}(c_1) + DEC_{sk}(c_2)$, and

 $DEC_{sk}(c_{MULT}) = DEC_{sk}(c_1) \cdot DEC_{sk}(c_2)$

Also, c_{ADD} and c_{MULT} are in S_{sk} .

In "leveled" FHE, key size may grow with depth of the circuit.

Efficiency: For security parameter k,

- All ops (KEYGEN, ENC, DEC, ADD, MULT) take poly(k) time.
- All valid ciphertexts have poly(k) size.

CPA Security: Best known attacks have complexity 2^k.

Congratulations, you have a (fully) homomorphic encryption scheme!

Homomorphic Encryption Basics: Security

Security of Homomorphic Encryption Bar-Ilan University Dept. of Computer Science

- Semantic security [GM'84]: For any $m_0 \neq m_1$, $(pk, Enc_{pk}(m_0)) \approx (pk, Enc_{pk}(m_1))$

 - pk is a public key, if there is one.
 - Any semantically secure encryption scheme must be probabilistic – i.e., many ciphertexts per plaintext.
- What about IND-CCA1 and IND-CCA2 security?
- IND-CCA2 is impossible for HE, since the adversary can homomorphically tweak the challenge ciphertext.
- ▶ IND-CCA1 FHE is open.
- ▶ [LMSV10] IND-CCA1 SWHE

Function Privacy

- Function-privacy: $c^* = \text{Eval}(f, \text{Enc}_{pk}(x))$ hides f.
 - Statistical (when Eval is randomized): c* has the same distribution as Enc(f(x)).
 - Computational: c* may not look like a "fresh" ciphertext as long as it decrypts to f(x).

HE Security: A Paradox?

- ▶ Cloud stores my encrypted files: pk, $Enc_{pk}(f_1),..., Enc_{pk}(f_n)$.
- \blacktriangleright Later, I want f_3 , but want to hide "3" from cloud.
- I send $Enc_{pk}(3)$ to the cloud.
- ▶ Cloud runs $Eval_{pk}$ (f, $Enc_{pk}(3)$, $Enc_{pk}(f_1)$,..., $Enc_{pk}(f_n)$), where f(n, {files}) is the function that outputs the nth file.
- It sends me the (encrypted) f_3 .
- Paradox?: Can't the cloud just "see" it is sending the 3rd encrypted file? By just comparing the stored value

 $Enc_{pk}(f_3)$ to the ciphertext it sends?

Resolution of paradox:

Semantic security implies:

- \triangleright Many encryptions of f_3 ,
- > Hard to tell when two ciphertexts encrypt the same thing.

Homomorphic Encryption Basics: Limitations

FHE Doesn't Do RAM

Circuits vs. RAMs:

- Circuits are powerful: For all functions, circuit-size \approx TM complexity.
- But random-access machines compute some functions much faster than a TM or circuit (Binary search)
- Can't do "random access" on encrypted data without leaking some information (not surprising)

What we can do:

- [GKKMRV11]: "Secure Computation with Sublinear Amortized Work"
- After setup cost quasi-linear in the size of the data, client and cloud run oblivious RAM on the client's encrypted data.

FHE Doesn't Do Obfuscation

- Obfuscation:
 - I give the cloud an "encrypted" program E(P).
 - For any input x, cloud can compute E(P)(x) = P(x).
 - Cloud learns "nothing" about P, except {x_i,P(x_i)}.
- [BGIRSVY01]: "On the (Im)possibility of Obfuscating Programs"
- Difference between obfuscation and FHE:
 - In FHE, cloud computes E(P(x)), and it can't decrypt to get P(x).

FHE Doesn't Do Multi-Key

- Multi-Key FHE
 - Different clients encrypt data under different FHE keys.
 - Later, cloud "combines" data encrypted under different keys: $Enc_{pk1,...,pkt}(f(m_1,...,m_t)) \leftarrow Eval(pk_1,...pk_t,f,c_1,...c_t)$.
- FHE doesn't do this "automatically".
- But, [LATV12]: "On-the-fly Multiparty Computation on the Cloud via Multikey FHE":
 - They have a scheme that does this.

That's It for Homomorphic Encryption Basics...

- Now, all we need is an encryption scheme that:
 - Given any encryptions E(b₁) and E(b₂),
 - can output encryptions $E(b_1+b_2)$ and $E(b_1x b_2)$,
 - forever,
 - without using the secret key of course.
- Pre-2009 schemes were somewhat homomorphic.
 - They could do ADD or MULT, not both, indefinitely.
 - Analogous to a glovebox with "clumsy" gloves.

Somewhat Homomorphic Encryption (SWHE)

SWHE: What's it Good For?

>>> I thought we were doing FHE...

Why Somewhat HE?

- Performance!
 - For many somewhat simple functions, the "overhead" of SWHE is much less than overhead of FHE
 - "Overhead" = (time of encrypted computation)/(time of unencrypted computation)
- Stepping-stone to FHE
 - Most FHE schemes are built "on top of" a SWHE scheme with special properties.

SWHE: Performance

FHE Implementations

- First attempt [Smart-Vercauteren 2010]
 - Implemented (a variant of) the underlying SWHE
 - But parameters too small to get bootstrapping
- Second attempt [Gentry-Halevi 2011a]
 - Implemented a similar variant
 - Many more optimizations, tradeoffs
 - Could implement the complete FHE for 1st time

Gentry-Halevi Implementation [GH11]

Bar-Ilan University
Dept. of Computer Science

- Using NTL/GMP
- Run on a "strong" 1-CPU machine
 - Xeon E5440 / 2.83 GHz (64-bit, quad-core) 24 GB memory
- Generated/tested instances in 4 dimensions:
 - Toy(2⁹), Small(2¹¹), Med(2¹³), Large(2¹⁵)
- ▶ Details at https://researcher.ibm.com/researcher/view_project.php?id=1548

Performance: SWHE

Dimension	KeyGen	Enc amortized	Mult / Dec	degree
2048 800,000-bit integers	1.25 sec	.060 sec	.023 sec	~200
8192 3,200,000- bit integers	10 sec	.7 sec	.12 sec	~200
32768 13,000,000- bit integers	95 sec	5.3 sec	.6 sec	~200

PK is 2 integers, SK one integer

Performance: FHE

Dimension	KeyGen	PK size	ReCrypt
2048	40 sec	70 MByte	31 sec
8192	8 min	285 MByte	3 min
32768	2 hours	2.3 GByte	30 minute

Can HE Be Practical? [LNV11]

- Implementation of [BV11a] SWHE scheme.
- For lattice dim. 2048, Mult takes 43 msec.
 - Comparable to 23 msec of [GH10]
 - They use Intel Core 2 Duo Processor at 2.1 GHz.
- Shows lattice-based SWHE can compute quadratic functions more efficiently than [BGN05].

SWHE: Applications

SWHE Evaluates Low Degree

Rule of Thumb: If your function f can be expressed as a low-degree polynomial, SWHE might be sufficient.

SWHE Evaluates Low Degree

- Private information retrieval
 - Client wants bit B_i of database $B_1 ... B_n$, w/o revealing i.
 - The PIR function has degree only log n.
 - Easily achievable with SWHE.

SWHE Evaluates Low Degree

- Keyword Search / String Matching
 - Client wants to know whether encrypted string $s = s_1...s_m$ is in one of its encrypted files
 - Comparison of two m-bit strings is a m-degree poly.
 - OR of n comparisons is a n-degree poly.
 - "Smolensky trick": in both cases we can reduce the degree to k, with a 2^{-k} probability of error.

SWHE: Stepping-Stone to FHE

>>> Tomorrow, we'll see how SWHE helps construct FHE...

SWHE: Older Schemes

RSA, ElGamal, Paillier, Boneh-Goh-Nissim, Ishai-Paskin, ...
I won't cover these.

SWHE: To The Constructions!!!

Polly Cracker: An Early Attempt at SWHE

And perhaps the most "natural" way to do it...

ADD and MULT, Naturally...

Most Natural Approach
Ciphertexts live in a "ring".
ADDing ciphertexts (as ring elements)
adds underlying plaintexts.
Some for MULT.

- Definition of (commutative) ring:
 - Like a field, without inverses.
 - It has +, ×, 0 and 1, additive and multiplicative closure.
- Examples: integers Z, polynomials Z[x,y,...], ...

Polly Cracker

<u>Main Idea</u>

Encryptions of 0 are polynomials that evaluate to 0 at the secret key.

- **KeyGen**: Secret = some point $(s_1, ..., s_n) \in Z_q^n$. Public key: Polys $\{f_i(x_1, ..., x_n)\}$ s.t. $f_i(s_1, ..., s_n) = 0$ mod q.
- Encrypt: From $\{f_i\}$, generate *random* polynomial g s.t. $g(s_1,...,s_n) = 0 \mod q$. Ciphertext is: $c(x_1,...,x_n) = m + g(x_1,...,x_n) \mod q$.
- Decrypt: Evaluate ciphertext at the secret: $c(s_1,...,s_n) = m \mod q$.
- ADD and MULT: Output sum or product of ciphertext polynomials.

Polly Cracker

Main Idea

Encryptions of 0 are polynomials that evaluate to 0 at the secret key.

- Semantic Security (under chosen plaintext attack): Given two ciphertexts c₀ and c₁, can you distinguish whether:
 - c₀ and c₁ encrypt same message?
 - c_0-c_1 encrypts 0?
 - c₀-c₁ evaluates to 0 at secret key?
 - Solve "Ideal Membership" Problem?

Ideals: Definition and Examples

- Ideal: Subset I of a ring R that is:
 - Additively closed: i_1 , $i_2 \in I \rightarrow i_1 + i_2 \in I$.
 - Closed under mult with R: $i \in I$, $r \in R \rightarrow i \cdot r \in I$.
- Example:
 - \circ R = Z, the integers. I = (5), multiples of 5.
 - \circ R = Z[x,y]. I = {f(x,y) \in Z[x,y]: f(7,11) = 0}.
 - I = (x-7,y-11). These "generate" the ideal.
- "Modulo"
 - 7 modulo (5) = 2, or $7 \in 2+(5)$
 - g(x,y) modulo (x-7,y-11) = g(7,11).

Back to Polly Cracker...

Main Idea

Encryptions of 0 are polynomials that evaluate to 0 at the secret key.

- Semantic Security: Ideal Membership Problem:
 - Given ciphertext polys $c_1(x_1,...,x_n)$ and $c_2(x_1,...,x_n)$,
 - Distinguish whether $c_1(x_1,...,x_n)-c_2(x_1,...,x_n)$ is in the ideal $(x_1-s_1,...,x_n-s_n)$.

Polly Cracker Cryptanalysis

- [AFFP11] Sadly, Polly Cracker is typically easy to break, using just linear algebra.
- ▶ Public key: polys $\{f_i\}$ such that $f_i(s_1,...,s_n)=0$.
- Computing Grobner bases is hard, in general.
- In practice, only a small (polynomial #) of monomials can be used in the ciphertexts.

Polly Cracker Cryptanalysis

An Attack:

- Collect lots of encryptions {c_i} of 0.
 - (These are elements of an ideal I.)
- The c_i's generate a lattice L (over the multivariate monomials). Compute Hermite Normal Form (HNF) of L.
- To break semantic security, reduce c_1-c_2 mod HNF(L): the result will be 0 if $m_1=m_2$.

Noisy Polly Cracker

Adding noise to Polly Cracker to defeat attacks...

Polly Cracker

Main Idea

Encryptions of 0 are polynomials that evaluate to 0 at the secret key.

Noisy Polly Cracker [AFFP11]

Main Idea

Encryptions of 0 are polynomials that evaluate to something small and even (smeven) 0 at the secret key.

- KeyGen: Secret = some point $(s_1, ..., s_n) \in Z_q^n$.
 - Public key: $\{f_i(x_1,...,x_n)\}\$ s.t. $f_i(s_1,...,s_n)=2e_i \ mod \ q, \ |e_i| \ll q.$
- ► Encrypt: Generate random poly g s.t. $g(s_1,...,s_n) = smeven$ from $\{f_i\}$. Ciphertext is $c(x_1,...,x_n) = m + g(x_1,...,x_n)$ mod q for message $m \in \{0,1\}$.
- Decrypt: $c(s_1,...,s_n) = m+smeven$ mod q. Reduce mod 2.
- ADD and MULT: Output sum or product of ciphertext polys.

Noisy Polly Cracker [AFFP11]

Main Idea

Encryptions of 0 are polynomials that evaluate to something small and even (smeven) 0 *modulo* a secret ideal.

- **KeyGen**: Secret ideal = $(x_1-s_1, ..., x_n-s_n)$.
 - Public key: $\{f_i(x_1,...,x_n)\}\$ s.t. $f_i(s_1,...,s_n)=2e_i\ mod\ q,\ |e_i|\ll q.$
- ► Encrypt: Generate random poly g s.t. $g(s_1,...,s_n) = smeven$ from $\{f_i\}$. Ciphertext is $c(x_1,...,x_n) = m + g(x_1,...,x_n)$ mod q for message $m \in \{0,1\}$.
- Decrypt: $c(s_1,...,s_n) = m+smeven$ mod q. Reduce mod 2.
- ADD and MULT: Output sum or product of ciphertext polys.

Noisy Polly Cracker [AFFP11]

Main Idea

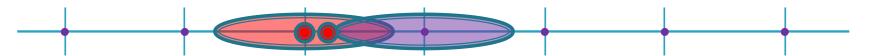
Encryptions of 0 are polynomials that evaluate to something small and even (smeven) 0 modulo a secret ideal.

- **KeyGen**: Secret ideal = $(x_1-s_1, ..., x_n-s_n)$.
 - Public key: $\{f_i(x_1,...,x_n)\}\$ s.t. $f_i(s_1,...,s_n)=2e_i \mod q, |e_i| \ll q.$
- ciphertext.

grow.

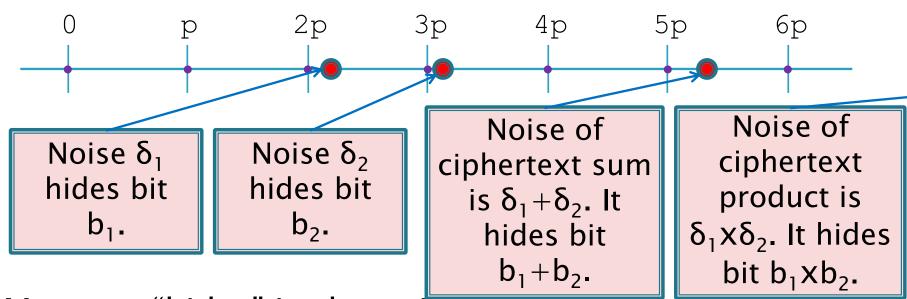
- We call $c(s_1,...,s_n)]_q$ ADDs and MULTs $g(s_1,...,s_n)=smeven$ the "noise" of the make the "noise" $m+q(x_1,...,x_n)=smeven$ make the "noise" $m + g(x_1,...,x_n)$ mod q
- Decrypt: $c(s_1,...,s_n) = m+smeven$ mod q. Reduce mod 2.
- ADD and MULT: Output sum or product of ciphertext polys.

Noisy Ciphertexts



- Each ciphertext has some <u>noise</u> that hides the message.
- ▶ Think: "hidden" error correcting codes...
- If error is small, Alice can use knowledge of "hidden" code, or a (hidden) good basis of a known code to remove the noise.
- If noise is large, decryption becomes hopeless even for Alice.

Adding and Multiplying Noise



- Message "hides" in the noise.
- Adding ciphertexts adds the noises.
- Multiplying ciphertexts multiplies the noises.
- The ciphertext noisiness grows!
 - Eventually causes a decryption error!

SWHE over the Integers [vDGHV10]

Maybe the simplest SWHE scheme you could imagine...

A Symmetric SWHE Scheme [vDGHV1

Bar-Ilan University
Dept. of Computer Science

- Shared secret key: odd number p
- ▶ To encrypt a bit m in {0,1}:
 - Choose at random small $r \ll p$, large q
 - Output c = m + 2r + pq
 - Ciphertext is close to a multiple of p
 - m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2 = [[c]_p]_2$
- ▶ ADD, MULT: Output $c \leftarrow c_1 + c_2$ or $c \leftarrow c_1 \times c_2$.

What could be Simpler?

A Symmetric SWHE Scheme [vDGHV1 (

Bar-Ilan University
Dept. of Computer Science

- Shared secret key: odd number p
- ▶ To encrypt a bit m in {0,1}:
 - \circ Choose at random small $r \ll p$, large q
 - Output c = m + 2r + pq
 - Ciphertext is close to a multiple of p
 - m = LSB of distance to nearest multiple o
- To decrypt c:
 - Output $m = (c \mod p) \mod 2 = [[c]_p]_2$
- ▶ ADD, MULT: Output $c \leftarrow c_1 + c_2$ or $c \leftarrow c_1 \times c_2$.

(p) is our secret ideal.

An encryption of 0 is small and even modulo our ideal.

To decrypt, evaluate c modulo the ideal. Then reduce mod 2.

Asymmetric SWHE [vDGHV10]

- Secret key is an odd p as before
- ▶ Public key pk has "encryptions of 0" $x_i=2r_i+q_ip$
 - Actually $x_i = [2r_i + q_i p]_{x_0}$ for i = 1, ..., n.
- $\mathbf{Enc}(pk, m) = m + subset sum(x_i's)$
 - Actually, Enc(pk, m) = $[m+subset-sum(x_i's)+2r]_{x_0}$.
- Dec(sk, c) = $[[c]_p]_2$

Making a public key out of "encryptions of 0" formalized by Rothblum ("From Private Key to Public Key", TCC'11).

Asymmetric SWHE [vDGHV10]

- Secret key is an odd p as before
- ▶ Public key pk has "encryptions of 0" $x_i=2r_i+q_ip$
 - Actually $x_i = [2r_i + q_i p]_{x_0}$ for i = 1, ..., n.
- $\mathbf{Enc}(pk, m) = m + subset sum(x_i's)$
 - Actually, Enc(pk, m) = $[m+subset-sum(x_i's)+2r]_{x_0}$.
- Dec(sk, c) = $[[c]_p]_2$

Quite similar to Regev's '03 scheme. Main difference: SWHE uses much more aggressive parameters...

Security

- Approximate GCD (approx-gcd) Problem:
 - Given many $x_i = s_i + q_i p$, output p
 - Example params: $s_i \sim 2^{O(\lambda)}$, $p \sim 2^{O(\lambda^2)}$, $q_i \sim 2^{O(\lambda^{5})}$, where λ is security parameter
 - Best known attacks (lattices) require 2^{λ} time
- Reduction:
 - If approx-gcd is hard, scheme is semantically secure

Hardness of Approximate-GCD **Bar-Ilan University**

- **Dept. of Computer Science**
- Several lattice-based approaches for solving approximate-GCD
 - Studied in [Howgrave-Graham01], more recently in [vDGV10, CH11, CN11]
 - All run out of steam when $|q_i| \gg |p|^2$, where |p| is number of bits of p
 - In our case $|p| = O(\lambda^2)$, $|q_i| = O(\lambda^5) \gg |p|^2$

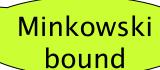
Relation to Simultaneous Diophantine Approximation

- $x_i = q_i p + r_i (r_i \cdot p \cdot q_i), i = 0,1,2,...$
 - $y_i = x_i/x_0 = (q_i+s_i)/q_0, s_i \sim r_i/p \ll 1$
 - y₁, y₂, ... is an instance of SDA
 - q₀ is a good denominator for all y_i's
- Use Lagarias's algorithm:
 - Consider the rows of this matrix:
 - Find a short vector in the lattice that they span
 - \circ <q₀,q₁,...,q_t>·L is short
 - Hopefully we will find it.

$$= \begin{pmatrix} \mathbf{R} & \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_t \\ -\mathbf{x}_0 & & & \\ & -\mathbf{x}_0 & & \\ & & & -\mathbf{x}_0 \end{pmatrix}$$

Relation to SDA (cont.)

- When will Lagarias' algorithm succeed?
 - \circ <q₀,q₁,...,q_t>-L should be shortest in lattice
 - In particular shorter than ~det(L)^{1/t+1}
 - This only holds for t > log Q/log P



- The dimension of the lattice is t+1
- Rule of thumb: takes 2^{t/k} time to get 2^k approximation of SVP/CVP in lattice of dim t.
 - $2^{|q_0|/|p| \wedge 2} = 2^{\lambda}$ time to get $2^{|p|} \gg 2^{\lambda}$ approx.
- Bottom line: no known efficient attack on approx-gcd

How Homomorphic Is It?

- Suppose $c_1 = m_1 + 2r_1 + q_1p$, ..., $c_t = m_t + 2r_t + q_tp$
- \rightarrow ADD: $c=c_1+c_2$.
 - Noise of c is $[c]_p = (m_1+m_2+2r_1+2r_2)$, sum of noises
- \rightarrow MULT: $c=c_1\times c_2$.
 - Noise of c is $[c]_p = (m_1+2r_1) \times (m_2+2r_2)$, product of noises.
- f: $c = f(c_1, ..., c_t) = f(m_1+2r_1, ..., m_t+2r_t)$, the function f applied to the noises.

How Homomorphic Is It?

- Claim: If $|f(m_1+2r_1, ..., m_t+2r_t)| < p/2$ for all possible "fresh" noises m_i+2r_i , the SWHE scheme can Eval f correctly.
- Proof:
 - Set $c = f(c_1, ..., c_t)$.
 - Then, $[c]_p = f(m_1+2r_1, ..., m_t+2r_t)$ by assumption.
 - Then, $[[c]_p]_2 = f(m_1, ..., m_t) \mod 2$.

That's what we want!

How Homomorphic Is It?

- What if $|f(m_1+2r_1, ..., m_t+2r_t)| > p/2$?
 - \circ c = f(c₁, ..., c_t) = f(m₁+2r₁, ..., m_t+2r_t) + qp
 - Nearest p-multiple to c is q'p for q' ≠ q
 - (c mod p) = $f(m_1+2r_1, ..., m_t+2r_t) + (q-q')p$
 - (c mod p) mod 2
 - \circ = f(m₁, ..., m_t) + (q-q') mod 2
 - · = ???
- We say the scheme can <u>handle</u> f if:
 - $|f(x_1, ..., x_t)| < p/4$
 - Whenever all |x_i| < B, where B is a bound on the noise of a fresh ciphertext output by Enc.

Example of a Function It Can Handle Bar-Ilan University Dept. of Computer Science

- Elementary symmetric poly of degree d:
 - $f(x_1, ..., x_t) = x_1 \cdot x_2 \cdot x_d + ... + x_{t-d+1} \cdot x_{t-d+2} \cdot x_t$
 - Has (t choose d) < t^d monomials: a lot!!
- ▶ If $|x_i| < B$, then $|f(x_1, ..., x_t)| < t^d \cdot B^d$
- E can handle f if:
 - $t^d \cdot B^d < p/4 \rightarrow basically if: d < (log p)/(log tB)$
- Example params: B $\sim 2^{\lambda}$, p $\sim 2^{\lambda/2}$
 - Eval can handle elem symm poly of degree about λ.

An Optimization

- If f has degree d, $c = f(c_1, ..., c_t)$ will have about d times as many bits as the fresh c_i 's.
- Can we reduce the ciphertext length after multiplications?

An Optimization

A heuristic:

- Suppose n is bit-length of normal ciphertext.
- Put additional "encryptions of 0" $\{y_i=2r_i+q_ip\}$ in pk.
 - Set y_i 's to increase geometrically up to square of normal ciphertext: $y_i \approx 2^{n+i}$, for i up to $\approx n$.
- Set c = c₁×c₂ subsetsum(y_i's), and c will have normal size.
 - Subtract off y_i's according to c's binary representation.

Performance

- Well, a little slow...
 - Example parameters: a ciphertext is $O(\lambda^5)$ bits.
 - Least efficient SWHE scheme, asymptotically.
- But Coron, Mandal, Naccache, Tibouchi have made impressive efficiency improvements.
 - [CMNT Crypto '11]: FHE over the Integers with Shorter Public Keys
 - [CNT Eurocrypt '12]: Public-key Compression and Modulus Switching for FHE over the Integers.
 - Asymptotics are much better now.

SWHE Based on LWE [BV11b]

The LWE Problem

- Traditional Version:
 - Let χ be an error distribution.
 - Distinguish these distributions:
 - Generate uniform $s \leftarrow Z_q^n$. For many i, generate uniform $a_i \leftarrow Z_q^n$, $e_i \leftarrow \chi$, and output $(a_i, [< a_i, s>+e_i]_q)$.
 - For many i, generate uniform $a_i \leftarrow Z_q^n$, $b_i \leftarrow Z_q$ and output (a_i, b_i) .

The LWE Problem

- Noisy Polly Cracker Version:
 - Let χ be an error distribution.
 - Distinguish these distributions:
 - Generate uniform $s \leftarrow Z_q^n$. For many i, generate $e_i \leftarrow \chi$ and a linear polynomial $f_i(x_1, ..., x_n) = f_0 + f_1 x_1 + ... + f_n x_n$ (from Z_q^{n+1}) such that $[f_i(s_1, ..., s_n)]_q = e_i$.
 - For many i, generate and output a uniformly random linear polynomial $f_i(x_1, ..., x_n)$ (from Z_q^{n+1}).

Regev LWE Encryption Revisited

Bar-Ilan University
Dept. of Computer Science

- ▶ Parameters: q such that gcd(q,2)=1.
- **KeyGen**: Secret = uniform $\mathbf{s} \in \mathbf{Z_q}^n$. Public key: linear polys $\{f_i(\mathbf{x}_1,...,\mathbf{x}_n)\}$ s.t. $[f_i(\mathbf{s})]_q = 2\mathbf{e}_i$, $|\mathbf{e}_i| \ll q$.
- Encrypt: Set $g(x_1,...,x_n)$ as a random subset sum of $\{f_i(x_1,...,x_n)\}$. Output $c(x_1,...,x_n)=m+g(x_1,...,x_n)$.
- ▶ Decrypt: $[c(s)]_q = m+smeven$. Reduce mod 2.
- Security:
 - Public key consists of an LWE instance, doubled.
 - Leftover hash lemma.

SWHE Based on LWE [BV11b]

- ▶ Parameters: q such that gcd(q,2)=1.
- **KeyGen**: Secret = uniform $\mathbf{s} \in Z_q^n$. Public key: linear polys $\{f_i(x_1,...,x_n)\}$ s.t. $[f_i(\mathbf{s})]_q = 2e_i$, $|e_i| \ll q$.
- Encrypt: Set $g(x_1,...,x_n)$ as a random subset sum of $\{f_i(x_1,...,x_n)\}$. Output $c(x_1,...,x_n)=m+g(x_1,...,x_n)$.
- **Decrypt**: $[c(s)]_q = m+smeven$. Reduce mod 2.
- ADD and MULT:
 - Output sum or product of ciphertext polynomials.

Relinearization [BV11b]

- After MULT, we have ciphertext $c(\mathbf{x}) = c_1(\mathbf{x}) \cdot c_2(\mathbf{x})$ that encrypts some m under key **s**.
 - $[c(s)]_a = m + smeven$
 - c(x) is a quadratic poly with O(n²) coefficients.
- What we want: a *linear* ciphertext d(y) that encrypts same m under some key $t \in Z_q^n$.
- Relinearization maps a long quadratic ciphertext under s to a normal linear ciphertext under t.

Relinearization: From Quadratic to Linear (A Change of Variables)

- First step: View c(x) as a *long* linear ciphertext C(X).
 - Set the variables $X_{ij} = x_i \cdot x_j$.
 - Set the values $S_{ij} = s_i \cdot s_j$.
 - Set $C(X) = \sum c_{1i}c_{2j} X_{ij}$.
 - Then, $[C(S)]_q = [c(s)]_q = m+smeven$.
 - (This is only a change of perspective.)

Second Step: Key Switching

- Input: Long linear ciphertext C(X) with N > n, where $[C(S)]_q = e = m + smeven$, and $S = (S_1, ..., S_N)$ is a long secret key.
- Output: *Normal-length* linear ciphertext d(x), where $[d(t)]_q = e+smeven = m+smeven$, and $t = (t_1, ..., t_n)$ is a normal-length secret key.
- ▶ Special case: $N \approx n^2$.

Key Switching Details

- SwitchKeyGen(S,t): Output linear polys {h_i(x)}, i ∈ {1,...,N} such that:
 - $[h_i(t)]_q = S_i + smeven_i$ (like an encryption of S_i under t)
 - Add Aux(S,t) = { $h_i(x)$ } to pk.
- SwitchKey(pk, C(X)): Set $d(x) = \sum_i C_i \cdot h_i(x)$.
- $bd(t) = \sum_{i} C_{i} \cdot (S_{i} + smeven_{i}) = C(S) + \sum_{i} C_{i} \cdot smeven_{i}$
- Oh wait, $\sum_{i} C_{i}$ smeven; is not small and even...
- ▶ Fix: Bit-decompose C first so that it has small coefficients...

Key Switching: Bit Decomposition Interlude

BitDecomp:

- Let BitDecomp(C(X)) be the bit-decomposition of <math>C(X).
- $(U_1(X),...,U_{log\ q}(X)) \leftarrow BitDecomp(C(X))$, where each $U_j(X)$ has 0/1 coefficients and $C(X) = \sum_i 2^{j} \cdot U_i(X)$.

Powerof2:

- (S, 2S, ..., $2^{\log q}$ S) \leftarrow Powersof2(S).
- Let C'=BitDecomp(C) and S' = Powerof2(S).
 - Then, $\langle C', S' \rangle = \langle C, S \rangle$.
- ightharpoonup So, $C'(S') = C(S) \mod q$.

Key Switching Details

- SwitchKeyGen(S,t): Output linear polys {h_i(x)}, i ∈ {1,...,N} such that:
 - $[h_i(t)]_q = S_i' + smeven_i$ (like an encryption of S_i' under t)
 - Add Aux(S',t) = { $h_i(x)$ } to pk.
- SwitchKey(pk, C'(X)): Set $d(x) = \sum_i C_i' \cdot h_i(x)$.
- \mathbf{b} $\mathbf{d}(\mathbf{t}) = \sum_{i} \mathbf{C}_{i}' \cdot (\mathbf{S}_{i}' + smeven_{i}) = \mathbf{C}'(\mathbf{S}') + \sum_{i} \mathbf{C}_{i}' \cdot smeven_{i}$
- Now, $\sum_{i} C_{i}$ 'smeven; is small and even...

Key Switching: Summary

- Functionality:
 - Regev ciphertext under key S → Ciphertext under t.
 - Need to put Aux(S,t) in pk.
 - Like proxy re-encryption.
 - Relinearization is only a special case.
 - · Later, we will use key switching in a different context.
- Effect on noise: SwitchKey increases noise only additively.
- For depth L circuit, use a chain of L encrypted secret keys.

SWHE from LWE [BV11b]: Summary

- Follows Noisy Polly Cracker blueprint
 - With a relinearization step.
- Relinearization / key-switching
 - Doesn't increase the noise much.
 - So noise analysis, and "homomorphic capacity" analysis, is similar to integer scheme.
 - For L depth circuit, use a chain of L encrypted secret keys.

SWHE Based on Ideal Lattices [Gen09]

I'll skip my 2009 scheme, and focus on RLWE- and NTRU- based schemes.

SWHE Based on RLWE [BV11a]

The Ring-LWE Problem

- Traditional Version:
 - Let χ be an error distribution over $R = Z_q[y]/(y^n+1)$.
 - Distinguish these distributions:
 - Generate uniform $s \leftarrow R$. For many i, generate uniform $a_i \leftarrow R$, $e_i \leftarrow \chi$, and output $(a_i, a_i \cdot s + e_i)$.
 - For many i, generate uniform $a_i \leftarrow R$, $b_i \leftarrow R$ and output (a_i, b_i) .

The Ring-LWE Problem

- Noisy Polly Cracker Version:
 - Let χ be an error distribution over $R = Z_q[y]/(y^n+1)$.
 - Distinguish these distributions:
 - Generate uniform $s \leftarrow R$. For many i, generate $e_i \leftarrow \chi$ and a linear polynomial $f_i(x) = f_0 + f_1 x$ (from R^2) such that $f_i(s) = e_i$.
 - For many i, generate and output a uniformly random linear polynomial $f_i(x)$ (from R^2).

[LPR10] RLWE-Based Encryption

Bar-Ilan University
Dept. of Computer Science

- ▶ Parameters: q with gcd(q,2)=1, $R = Z_q[y]/(y^n+1)$.
- ▶ KeyGen: Secret = uniform $s \in R$. Public key: linear polys $\{f_i(x)\}$ s.t. $f_i(s)=2e_i$, $|e_i| \ll q$.
- Encrypt: Set g(x) as a random subset sum of $\{f_i(x)\}$. Output c(x)=m+g(x).
 - m can be a "polynomial", an element of $Z_2[y]/(y^n+1)$.
- **Decrypt**: c(s) = m + smeven. Reduce mod 2.

SWHE from RLWE [BV11a]

- ▶ Parameters: q with gcd(q,2)=1,R = $Z_q[y]/(y^n+1)$.
- **KeyGen**: Secret = uniform $s \in R$. Public key: linear polys $\{f_i(x)\}$ s.t. $f_i(s)=2e_i$, $|e_i| \ll q$.
- Encrypt: Set g(x) as a random subset sum of $\{f_i(x)\}$. Output c(x)=m+g(x).
 - m can be a "polynomial", an element of $Z_2[y]/(y^n+1)$.
- **Decrypt**: c(s) = m + smeven. Reduce mod 2.
- ADD and MULT: Add or multiply the ciphertext polynomials.

Relinearization [BV11b] applied to [BV11a]

- After MULT, we have ciphertext $c(x) = c_1(x) \cdot c_2(x)$ that encrypts some m under key s.
 - \circ c(s) = m+smeven
 - c(x) is a *quadratic* poly with 3 coefficients.
- What we want: a *linear* ciphertext d(x) that encrypts same m under some key $t \in R$.
- Relinearization maps a long quadratic ciphertext under s to a normal linear ciphertext under t.

Relinearization: From Quadratic to Linear (A Change of Variables)

- First step: View c(x) as a *long* linear ciphertext C(X).
 - Set the variables $X_1 = x$ and $X_2 = x^2$.
 - Set the values $S_1 = s$ and $S_2 = s^2$.
 - Set $C(X)=(c_{11}x+c_{10})(c_{21}x+c_{20})=$ $c_{11}c_{21}X_2+(c_{11}c_{20}+c_{10}c_{21})X+c_{10}c_{20}.$
 - Then, C(S) = c(s) = m + smeven.
 - (This is only a change of perspective.)

Second Step: Key Switching

- Input: Long linear ciphertext C(X), where C(S) = e = m+smeven, and $S = (S_1, S_2)$ is a long secret key.
- Output: Normal-length linear ciphertext d(x), where d(t) = e+smeven = m+smeven, and t ∈ R.

Key Switching Details

- SwitchKeyGen(S,t): Output linear polys {h_i(x)}, i ∈ {1,...,N} such that:
 - $h_i(t) = S_i + smeven_i$ (like an encryption of S_i under t)
 - Add Aux(S,t) = { $h_i(x)$ } to pk.
- SwitchKey(pk, C(X)): Set $d(x) = \sum_i C_i \cdot h_i(x)$.
- $bd(t) = \sum_{i} C_{i} \cdot (S_{i} + smeven_{i}) = C(S) + \sum_{i} C_{i} \cdot smeven_{i}$
- Oh wait, $\sum_{i} C_{i}$ smeven; is not small and even...
- Fix: Bit-decompose C first so that it has small coefficients...

Key Switching: Bit Decomposition Interlude

- BitDecomp:
 - Let BitDecomp(C(X)) be the bit-decomposition of <math>C(X).
 - $(U_1(X),...,U_{log\ q}(X)) \leftarrow BitDecomp(C(X))$, where each $U_j(X)$ has coefficients (in R) that are 0/1 polynomials and $C(X) = \sum_i 2^{j} \cdot U_i(X)$.
- Powerof2:
 - (S, 2S, ..., $2^{\log q}$ S) \leftarrow Powersof2(S).
- Let C'=BitDecomp(C) and S' = Powerof2(S).
 - Then, $\langle C', S' \rangle = \langle C, S \rangle$.
- \triangleright So, C'(S') = C(S) in R.

Key Switching Details

- SwitchKeyGen(S,t): Output linear polys {h_i(x)}, i ∈ {1,...,N} such that:
 - $h_i(t) = S_i' + smeven_i$ (like an encryption of S_i' under t) Add Aux(S',t) = { $h_i(x)$ } to pk.
- SwitchKey(pk, C'(X)): Set $d(x) = \sum_i C_i' \cdot h_i(x)$.
- $\mathbf{d}(\mathbf{t}) = \sum_{i} \mathbf{C}_{i}' \cdot (\mathbf{S}_{i}' + \mathbf{smeven}_{i}) = \mathbf{C}'(\mathbf{S}') + \sum_{i} \mathbf{C}_{i}' \cdot \mathbf{smeven}_{i}$
- Now, $\sum_{i} C_{i}$ 'smeven; is small and even...

RLWE Key Switching: Summary

- Functionality: as in LWE.
- Effect on noise: SwitchKey increases noise only additively, as in LWE.
- Performance: Better!
 - RLWE:
 - Key switching involves O(log q) multiplications in R.
 - We can use FFT for multiplication.
 - quasi-O(n log q) work
 - LWE:
 - Relinearization is O(n³ log q) work.

NTRU-Based SWHE

NTRU-Based SWHE ([LATV12] and [GHLPSS12])

- ▶ Parameters: q with gcd(q,2)=1, $R = Z_q[y](y^n+1)$.
- **KeyGen**: Secret = uniform $s \in R$. Public key: linear polys $\{f_i(x)\}$ s.t. $f_i(s)=2e_i$, $|e_i| \ll q$. More reqs:
 - s is small and 1 mod 2 (smodd?)
 - $f_i(x)$ has no constant term i.e., $f_{i1} \cdot s = 2e_i$.
- Encrypt: Set g(x) as a random subset sum of $\{f_i(x)\}$. Output $c(x)=m\cdot x+g(x)$.
 - m can be a "polynomial", an element of $Z_2[y]/(y^n+1)$.
- **Decrypt**: $c(s) = m \cdot s + smeven$. Reduce mod 2.
- ▶ Security: NTRU Problem: Do f_{i1} 's have form $f_{i1}=2e_i/s_i$; e_i , s_i short?

NTRU-Based SWHE ([LATV12] and [GHLPSS12])

- ▶ Parameters: q with gcd(q,2)=1, $R = Z_q[y]/(y^n+1)$.
- **KeyGen**: Secret = uniform $s \in R$. Public key: linear polys $\{f_i(x)\}$ s.t. $f_i(s)=2e_i$, $|e_i| \ll q$. More reqs:
 - s is small and 1 mod 2 (smodd?)
 - $f_i(x)$ has no constant term i.e., $f_{i1} \cdot s = 2e_i$.
- Encrypt: Set g(x) as a random subset sum of $\{f_i(x)\}$. Output $c(x)=m\cdot x+g(x)$.
 - m can be a "polynomial", an element of $Z_2[y]/(y^n+1)$.
- **Decrypt**: $c(s) = m \cdot s + smeven$. Reduce mod 2.
- ADD and MULT: Add or multiply the ciphertext polynomials.

NTRU-Based SWHE: Multiplication Becomes Simpler

- Multiplicands: $c_1(x) = c_{11} \cdot x$ and $c_2(x) = c_{21} \cdot x$.
- Product: $c(x) = c_1(x) \cdot c_2(x) = c_{11} \cdot c_{21} \cdot x^2$.
- Can we forget key switching?
 - Just view $t = s^2$ as the new secret key.
 - $c(t) = m_1 \cdot m_2 \cdot t + smeven = m_1 \cdot m_2 + smeven$.
- Not quite: What if we want to add a ciphertext under key s to another ciphertext under s²?

NTRU-Based SWHE: Key Switching Becomes Simpler

- Multiplicands: $c_1(x) = c_{11} \cdot x$ and $c_2(x) = c_{21} \cdot x$.
- Product: $c(x) = c_1(x) \cdot c_2(x) = c_{11} \cdot c_{21} \cdot x^2$.
- Aux(S,t): Choose $e^* \leftarrow \chi$, and set $e_{S,t} = 2e^* + 1$. Output $a_{S,t} = S \cdot e_{S,t} \cdot t^{-1}$. ($e_{S,t} \cdot t^{-1}$ should look random.)
- SwitchKey(c,a_{S.t}):
 - Suppose $c \cdot S = e = m + smeven$.
 - New ciphertext is $c' = c \cdot a_{S,t}$.
 - Then, $c' \cdot t = (c \cdot a_{S,t})t = c(a_{S,t} \cdot t)$ = $c(S \cdot e_{S,t}) = e \cdot e_{S,t} = m + smeven$.
- Noise increases multiplicatively.

NTRU-Based SWHE: MultiKey

- Two ciphertexts under different keys:
 - $c_1(x) = c_{11} \cdot x$ and $c_2(x) = c_{21} \cdot x$.
 - $c_1(s_1) = m_1 \cdot s_1 + smeven, c_2(s_2) = m_2 \cdot s_2 + smeven.$
- Product: $c_{11}c_{21}s_1s_2 = m_1m_2s_1s_2 + smeven = m_1m_2 + smeven$.
- [LATV12]: Cloud can (noninteractively) combine data encrypted under different keys.

Other SWHE Schemes

>>> Insert your scheme here!

Thank You! Questions?

Bibliography

- [AFFP11] Martin Albrecht, Pooya Farshim, Jean-Charles Faugere, Ludovic Perret. Polly Cracker, Revisited. Asiacrypt 2011.
- ▶ [BGIRSVY01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Key Yang. On the (Im)possibility of Obfuscating Programs. Crypto 2001.
- ▶ [BGN05] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. TCC 2005.
- [BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key dependent messages. Crypto 2011.
- [BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. FOCS 2011.
- [CMNT11] Jean-Sebastien Coron, Avradip Mandal, David Naccache, and Mahdi Tibouchi. Fully Homomorphic Encryption over the Integers with Shorter Public Keys. Crypto 2011.
- [CNT12] Jean-Sebastien Coron, David Naccache, and Mahdi Tibouchi. Public-Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. Eurocrypt 2012.

Bibliography

- [vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over the integers. Eurocrypt 2010.
- [FK94] Mike Fellows and Neal Koblitz. Combinatorial cryptosystems galore! Finite Fields: Theory, Applications, and Algorithms, volume 168 of Contemporary Mathematics, pages 51-61. AMS, 1994.
- [Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009. Also, see "A fully homomorphic encryption scheme", PhD thesis, Stanford University, 2009.
- [GH11a] Craig Gentry and Shai Halevi. Implementing gentry's fully-homomorphic encryption scheme. Eurocrypt 2011.
- [GHLPSS12] Craig Gentry, Shai Halevi, Vadim Lyubashevsky, Chris Peikert, Joseph Silverman, and Nigel Smart. Unpublished observation regarding NTRU-Based FHE.
- [GKKMRV11] Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Tal Malkin, Mariana Raykov, and Yevgeniy Vahlis. Secure computation with sublinear amortized work. Cryptology ePrint Archive, Report 2011/482, 2011.

Bibliography

- [LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? ACM CCSW 2011.
- [LATV12] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly Multiparty Computation on the Cloud via Multikey FHE. STOC 2012.
- [LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. Eurocrypt 2010.
- [RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy homomorphisms. Foundations of Secure Computation, 1978.
- [Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005.
- [Rot11] Ron Rothblum. Homomorphic encryption: from privatekey to public-key. TCC 2011.
- SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. PKC 2010.