
Bar-Ilan University 
Dept. of Computer Science 

Craig Gentry 

IBM Watson 

Winter School on Lattice-Based Cryptography and Applications 
Bar-Ilan University, Israel     19/2/2012-22/2/2012 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 Homomorphic Encryption Basics 

 Somewhat homomorphic encryption (SWHE) 
schemes 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

A way to delegate processing of your 
data, without giving away access to it. 

Example App: Cloud computing on encrypted data 

“Where the sensitive information is concentrated, 
that is where the spies will go. This is just a fact 
of life.”  - Ken Silva, former NSA official 

Do you really think it’s safe to store 
your data in the cloud unencrypted? 
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Alice 

Server 
(Cloud) 

(Input: data x, key k) 

“I want 1) the cloud to process my data 
2) even though it is encrypted. 

Enck[f(x)] 

Enck(x)  

function f 

f(x) 

This could be 
encrypted too. 

Run 
Evaluate[ f, Enck(x) ]    

=  Enck[f(x)] 
 

The special 
sauce! 
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 Alice wants workers to assemble raw materials into jewelry 

 But Alice is worried about theft: 

 She wants her workers to process the raw materials 
without having access to them. 

 Alice puts raw materials in locked glovebox. 

 Workers assemble jewelry inside glovebox, 
using the gloves. 

 Alice unlocks box to get “results”. 
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Enc[f(x)] 

Enc[x]  

f 

Eval Homomorphic 
Encryption [RAD78]: 

Compactness: Size of Eval’d ciphertext 
independent of f 
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Fully Homomorphic 
Encryption (FHE) 
[RAD78, Gen09]:  

“Fully” means 
it works for all 

functions f 

Enc[f(x)] 

Enc[x]  

f 

Eval 

Compactness: Size of Eval’d ciphertext 
independent of f 
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Somewhat Homomorphic 
Encryption (SWHE): 

“Somewhat” 
means it works for 
some functions f 

Enc[f(x)] 

Enc[x]  

f 

Eval 

Compactness: Size of Eval’d ciphertext 
independent of f 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

A way to delegate processing of your 
data, without giving away access to it. 

 Fully Homomorphic Encryption (FHE):  
◦ Arbitrary processing 

◦ But computationally expensive. 

 Somewhat Homomorphic Encryption (SWHE): 
◦ Limited processing 

◦ Cheaper computationally. 
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 Forget encryption for a moment… 
 How does your computer compute a function? 
 Basically, by working on bits, 1’s and 0’s.  
 And by using bit operations – for example, 
◦ AND(b1,b2)=1 if b1=b2=1; otherwise, equals 0. 
 AND(b1,b2)= b1×b2. 

◦ XOR(b1,b2)=0 if b1=b2;  equals 1 if b1≠b2. 
 XOR(b1,b2)= b1+b2 (modulo 2)

 Any function can be computed 
bit-wise – with only ANDs and 
XORs – if it can be computed at all.
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 Still forget encryption for now… 

 Example: How do you detect whether a 
string is in a file? 

 

01100111101100100100010001 

111011 
XOR 

100010 

ZeroString(100010) = 0  

(not the zero string! not a match!) 

111011 

The ZeroString function itself can be 
computed from basic bit operations. 

Step 1: Match string against subsequences of file 
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 Still forget encryption for now… 

 Example: How do you detect whether a 
string is in a file? 

 

01100111101100100100010001 

ZeroString(000000) = 0  

(is the zero string! a match!) 

111011 
XOR 

000000 

Step 1: Match string against subsequences of file 
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 Still forget encryption for now… 

 Example: How do you detect whether a 
string is in a file? 

 

01100111101100100100010001 

111011 

0 00 000 0000 00000 000000 

 111011   111011    111011     111011      111011 

0000001 

      111011 

00000010… 

       111011 

OR(00000010…) = 1 (string is in the file!) 

Step 2: Aggregate info about the subsequences 

OR also can be decomposed  
into ANDs and XORs. 
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 for any b1 and b2. 
 Then we can AND and XOR encrypted bits. 
 Proceeding bit-wise, we can  
 compute any function on  
 encrypted data. 

 Let b denote a valid encryption of bit b. 
 Suppose we have a (homomorphic) encryption 

scheme with public functions E-ADD, E-MULT 
where: 

E-MULT( b1,b2 ) = b1x b2   E-ADD(b1,b2) = b1+b2   
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111011 
E-ADD 

100010 

111011 

01100111101100100100010001 

 b denotes an encryption of bit b. 

Step 1: Match string against 
subsequences of file 

Bit-wise 
encrypted 

file 

E-ZeroString(100010) = 0  

(not the zero string! not a match!) 

E-ZeroString function itself can be 
computed from basic bit operations. 
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Bit-wise 
encrypted 

file 01100111101100100100010001 

111011 111011 111011 111011 111011 111011 111011 111011 

0 0 0 0 0 0 1 0 
E-OR(00000010…) = 1 

(string is in the encrypted file!) 

 b denotes an encryption of bit b. 

Step 2: Aggregate info 
about the subsequences 

E-OR can also be computed 
from basic bit operations. 
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 Can you add and multiply (mod 2) and    
remember stuff? 
◦ Congratulations, then you can compute any efficiently    

computable function. 
◦ If you only can add and multiply mod 3, no worries. 

 {ADD,MULT} are Turing-complete (over any ring). 
◦ Take any (classically) efficiently computable function. 

Express it as a poly-size circuit of ADD and MULT gates. 

 Circuits vs. Turing machines (about the same): 
◦ Circuit size = O(Tf log Tf) 
 Tf = time to compute f on a TM 
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Efficiency: For security parameter k, 
 All ops (KEYGEN,ENC,DEC,ADD,MULT) take poly(k) time. 

 All valid ciphertexts have poly(k) size. 

Congratulations, you have a (fully) 
homomorphic encryption scheme! 

CPA Security: Best known attacks 
have complexity 2k. 

Can your cryptosystem encrypt 0 and 1, and              
ADD and MULT encrypted data efficiently? 
 Functionality: Let Ssk be set of “valid” ciphertexts for (any) sk.   

 For c1,c2 2 Ssk, set cADD = ADD(c1,c2), cMULT = MULT(c1,c2).  Then: 

  DECsk(cADD) =     DECsk(c1) + DECsk(c2), and 

  DECsk(cMULT) =     DECsk(c1) ∙ DECsk(c2) 

 Also, cADD and cMULT are in Ssk. 
Independent of the circuit 
being homomorphically 

evaluated. 

In “leveled” FHE, key size 
may grow with depth of 

the circuit. 
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 Semantic security [GM’84]: For any m0 ≠ m1, 
     (pk, Encpk(m0))    (pk, Encpk(m1)) 
◦  means indistinguishable by efficient algorithms. 
◦ pk is a public key, if there is one. 
◦ Any semantically secure encryption scheme must be 

probabilistic – i.e., many ciphertexts per plaintext. 

 What about IND-CCA1 and IND-CCA2 security? 

 IND-CCA2 is impossible for HE, since the 
adversary can homomorphically tweak the 
challenge ciphertext. 

 IND-CCA1 FHE is open. 

 [LMSV10] IND-CCA1 SWHE 
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 Function-privacy: c* = Eval(f, Encpk(x)) hides f. 

◦ Statistical (when Eval is randomized): c* has the 
same distribution as Enc(f(x)). 

◦ Computational: c* may not look like a “fresh” 
ciphertext as long as it decrypts to f(x). 
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 Cloud stores my encrypted files: pk, Encpk(f1),…, Encpk(fn). 

 Later, I want f3, but want to hide “3” from cloud. 

 I send Encpk(3) to the cloud. 

 Cloud runs Evalpk (f, Encpk(3), Encpk(f1),…, Encpk(fn)),  
where f(n, {files}) is the function that outputs the nth file. 

 It sends me the (encrypted) f3.  

 Paradox?: Can’t the cloud just “see” it is sending the 3rd 
encrypted file?  By just comparing the stored value 
Encpk(f3) to the ciphertext it sends? 

 Resolution of paradox:  
Semantic security implies: 
 Many encryptions of f3,  
 Hard to tell when two ciphertexts 
encrypt the same thing. 
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 Circuits vs. RAMs: 
◦ Circuits are powerful: For all functions, circuit-size ≈ TM complexity. 

◦ But random-access machines compute some functions much faster 
than a TM or circuit (Binary search) 

◦ Can’t do “random access” on encrypted data without leaking some 
information (not surprising) 

 What we can do: 
◦ [GKKMRV11]: “Secure Computation with 

Sublinear Amortized Work” 

◦ After setup cost quasi-linear in the size of 
the data, client and cloud run oblivious 
RAM on the client’s encrypted data. 
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 Obfuscation:  
◦ I give the cloud an “encrypted” program E(P). 
◦ For any input x, cloud can compute E(P)(x) = P(x). 
◦ Cloud learns “nothing” about P, except {xi,P(xi)}.  

 [BGIRSVY01]: “On the (Im)possibility of 
Obfuscating Programs” 

 Difference between obfuscation and FHE: 
◦ In FHE, cloud computes E(P(x)), and it can’t decrypt 

to get P(x). 
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 Multi-Key FHE 
◦ Different clients encrypt data under different FHE keys. 

◦ Later, cloud “combines” data encrypted under different 
keys: Encpk1,…,pkt(f(m1,…,mt)) ← Eval(pk1,…pkt,f,c1,…ct). 

 FHE doesn’t do this “automatically”. 

 But, [LATV12]: “On-the-fly Multiparty 
Computation on the Cloud via Multikey FHE”: 
◦ They have a scheme that does this. 
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 Now, all we need is an encryption scheme that: 
◦ Given any encryptions E(b1) and E(b2), 

◦ can output encryptions E(b1+b2) and E(b1x b2), 

◦ forever, 

◦ without using the secret key of course. 

 Pre-2009 schemes were somewhat homomorphic.  
◦ They could do ADD or MULT, not both, indefinitely. 

◦ Analogous to a glovebox with 

  “clumsy” gloves. 
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I thought we were doing FHE… 
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 Performance! 
◦ For many somewhat simple functions, the “overhead” of 

SWHE is much less than overhead of FHE 

◦ “Overhead” = (time of encrypted computation)/(time of 
unencrypted computation) 

 Stepping-stone to FHE 
◦ Most FHE schemes are built “on top of” a SWHE scheme 

with special properties. 
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 First attempt [Smart-Vercauteren 2010] 
◦ Implemented (a variant of) the underlying SWHE 

◦ But parameters too small to get bootstrapping 

 Second attempt [Gentry-Halevi 2011a] 
◦ Implemented a similar variant 

◦ Many more optimizations, tradeoffs 

◦ Could implement the complete FHE for 1st time 
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 Using NTL/GMP 

 Run on a “strong” 1-CPU machine 
◦ Xeon E5440 / 2.83 GHz (64-bit, quad-core) 24 

GB memory 

 Generated/tested instances in 4 
dimensions: 
◦ Toy(29), Small(211), Med(213), Large(215) 

 Details at https://researcher.ibm.com/researcher/view_project.php?id=1548 

 

https://researcher.ibm.com/researcher/view_project.php?id=1548
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Dimension KeyGen 
Enc 

amortized 
Mult / Dec degree 

2048 
800,000-bit  

integers 
1.25 sec .060 sec .023 sec ~200 

8192 
3,200,000-
bit integers 

10 sec .7 sec .12 sec ~200 

32768 
13,000,000-
bit integers 

95 sec 5.3 sec .6 sec ~200 

PK is 2 integers, SK one integer 
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Dimension KeyGen PK size ReCrypt 

2048 40 sec 70 MByte 31 sec 

8192 8 min 285 MByte 3 min 

32768 2 hours 2.3 GByte 30 minute 
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 Implementation of [BV11a] SWHE scheme. 

 For lattice dim. 2048, Mult takes 43 msec. 
◦ Comparable to 23 msec of [GH10] 

◦ They use Intel Core 2 Duo Processor at 2.1 GHz. 

 Shows lattice-based SWHE can compute 
quadratic functions more efficiently than 
[BGN05]. 
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 Rule of Thumb: If your function f can be 
expressed as a low-degree polynomial, SWHE 
might be sufficient. 
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 Private information retrieval 
◦ Client wants bit Bi of database B1…Bn, w/o revealing i. 

◦ The PIR function has degree only log n. 

◦ Easily achievable with SWHE. 
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 Keyword Search / String Matching 
◦ Client wants to know whether encrypted string s = 

s1…sm is in one of its encrypted files 

◦ Comparison of two m-bit strings is a m-degree poly. 

◦ OR of n comparisons is a n-degree poly. 

◦ “Smolensky trick”: in both cases we can reduce the 
degree to k, with a 2-k probability of error. 
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Tomorrow, we’ll see how 
SWHE helps construct FHE… 
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RSA, ElGamal, Paillier, Boneh-
Goh-Nissim, Ishai-Paskin, … 

I won’t cover these. 
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And perhaps the most 
“natural” way to do it… 
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 Definition of (commutative) ring: 
◦ Like a field, without inverses. 

◦ It has +, ×, 0 and 1,  

 additive and multiplicative closure. 

 Examples: integers Z, 
polynomials Z[x,y,…], …  

Most Natural Approach 
Ciphertexts live in a “ring”. 

ADDing ciphertexts (as ring elements) 
adds underlying plaintexts. 

Some for MULT. 
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 KeyGen: Secret = some point (s1, …,sn) 2 Zq
n. 

 Public key: Polys {fi(x1,…,xn)} s.t. fi(s1,…,sn)=0 mod q. 
 

 Encrypt: From {fi}, generate random polynomial g s.t. 
g(s1,…,sn) = 0 mod q.  Ciphertext is:                      
c(x1,…,xn) = m + g(x1,…,xn) mod q. 

Main Idea 
Encryptions of 0 are polynomials that 

evaluate to 0 at the secret key. 

 Decrypt: Evaluate ciphertext at the 
secret: c(s1,…,sn) = m mod q. 
 

 ADD and MULT: Output sum or 
product of ciphertext polynomials. 
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 Semantic Security (under chosen plaintext 
attack): Given two ciphertexts c0 and c1, can 
you distinguish whether: 
◦ c0 and c1 encrypt same message? 

◦ c0-c1 encrypts 0? 

◦ c0-c1 evaluates to 0 at secret key? 

◦ Solve “Ideal Membership” Problem? 

 

Main Idea 
Encryptions of 0 are polynomials that 

evaluate to 0 at the secret key. 
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 Ideal: Subset I of a ring R that is: 
◦ Additively closed: i1, i2 2 I → i1+i2 2 I. 

◦ Closed under mult with R: i 2 I, r 2 R → i∙r 2 I. 

 Example:  
◦ R = Z, the integers. I = (5), multiples of 5. 

◦ R = Z[x,y]. I = {f(x,y) 2 Z[x,y]: f(7,11) = 0}. 

 I = (x-7,y-11).  These “generate” the ideal. 

 “Modulo”  
◦ 7 modulo (5) = 2, or 7 2 2+(5) 

◦ g(x,y) modulo (x-7,y-11) = g(7,11). 
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 Semantic Security: Ideal Membership Problem: 
◦ Given ciphertext polys c1(x1,…,xn) and c2(x1,…,xn),  

◦ Distinguish whether c1(x1,…,xn)-c2(x1,…,xn) is in the 
ideal (x1-s1, …, xn-sn). 

Main Idea 
Encryptions of 0 are polynomials that 

evaluate to 0 at the secret key. 
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 [AFFP11] Sadly, Polly Cracker is typically easy 
to break, using just linear algebra. 

 Public key: polys {fi} such that fi(s1,…,sn)=0. 

 Computing Grobner bases is hard, in general. 

 In practice, only a small (polynomial #) of 
monomials can be used in the ciphertexts. 
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 An Attack: 

◦ Collect lots of encryptions {ci} of 0. 

 (These are elements of an ideal I.) 

◦ The ci’s generate a lattice L (over the multivariate 
monomials).  Compute Hermite Normal Form (HNF) of L. 

◦ To break semantic security, reduce c1-c2 mod HNF(L): 
the result will be 0 if m1 = m2. 
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Adding noise to Polly Cracker 
to defeat attacks… 
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Main Idea 
Encryptions of 0 are polynomials that 

evaluate to 0 at the secret key. 
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Main Idea 
Encryptions of 0 are polynomials that 
evaluate to something small and even 

(smeven) 0 at the secret key. 

 KeyGen: Secret = some point (s1, …,sn) 2 Zq
n. 

 Public key: {fi(x1,…,xn)} s.t. fi(s1,…,sn)=2ei mod q, |ei| ¿ q. 

 Encrypt: Generate random poly g s.t. g(s1,…,sn)= smeven 
from {fi}. Ciphertext is c(x1,…,xn) = m + g(x1,…,xn) mod q 
for message m 2 {0,1}.  

 Decrypt: c(s1,…,sn) = m+smeven 
mod q.  Reduce mod 2. 

 ADD and MULT: Output sum or 
product of ciphertext polys. 
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Main Idea 
Encryptions of 0 are polynomials that 
evaluate to something small and even 

(smeven) 0 modulo a secret ideal. 

 KeyGen: Secret ideal = (x1-s1, …,xn-sn). 

 Public key: {fi(x1,…,xn)} s.t. fi(s1,…,sn)=2ei mod q, |ei| ¿ q. 

 Encrypt: Generate random poly g s.t. g(s1,…,sn)= smeven 
from {fi}. Ciphertext is c(x1,…,xn) = m + g(x1,…,xn) mod q 
for message m 2 {0,1}.  

 Decrypt: c(s1,…,sn) = m+smeven 
mod q.  Reduce mod 2. 

 ADD and MULT: Output sum or 
product of ciphertext polys. 
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Main Idea 
Encryptions of 0 are polynomials that 
evaluate to something small and even 

(smeven) 0 modulo a secret ideal. 

 KeyGen: Secret ideal = (x1-s1, …,xn-sn). 

 Public key: {fi(x1,…,xn)} s.t. fi(s1,…,sn)=2ei mod q, |ei| ¿ q. 

 Encrypt: Generate random poly g s.t. g(s1,…,sn)=smeven 
from {fi}. Ciphertext is c(x1,…,xn) = m + g(x1,…,xn) mod q 
for message m 2 {0,1}.  

 Decrypt: c(s1,…,sn) = m+smeven 
mod q.  Reduce mod 2. 

 ADD and MULT: Output sum or 
product of ciphertext polys. 

We call c(s1,…,sn)]q 
the “noise” of the 

ciphertext. 

ADDs and MULTs 
make the “noise” 

grow. 
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 Each ciphertext has some noise that hides the 
message. 

 Think: “hidden” error correcting codes… 

 If error is small, Alice can use knowledge of 
“hidden” code, or a (hidden) good basis of a 
known code to remove the noise. 

  If noise is large, decryption 
becomes hopeless even for 
Alice. 
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 Message “hides” in the noise. 

 Adding ciphertexts adds the 
noises. 

 Multiplying ciphertexts 
multiplies the noises. 

 The ciphertext noisiness grows! 
◦ Eventually causes a decryption error! 

Noise of 
ciphertext sum 

is δ1+δ2. It 
hides bit 
b1+b2. 

Noise of 
ciphertext 
product is 

δ1xδ2. It hides 

bit b1xb2. 

0 p 2p 3p 4p 5p 6p 

Noise δ1 
hides bit 

b1. 

Noise δ2 
hides bit 

b2. 
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Maybe the simplest SWHE 
scheme you could imagine… 
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 Shared secret key: odd number p 

 To encrypt a bit m in {0,1}: 
◦ Choose at random small r ¿ p , large q  

◦ Output c = m + 2r + pq 

 Ciphertext is close to a multiple of p 

 m = LSB of distance to nearest multiple of p  

 To decrypt c: 
◦ Output m = (c mod p) mod 2 = [[c]p]2 

 ADD, MULT: Output c ← c1 + c2                          
or c ← c1 × c2. 

 

What 
could 

be 
Simpler? 
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 Shared secret key: odd number p 

 To encrypt a bit m in {0,1}: 
◦ Choose at random small r ¿ p , large q  

◦ Output c = m + 2r + pq 

 Ciphertext is close to a multiple of p 

 m = LSB of distance to nearest multiple of p  

 To decrypt c: 
◦ Output m = (c mod p) mod 2 = [[c]p]2 

 ADD, MULT: Output c ← c1 + c2                          
or c ← c1 × c2. 

 

(p) is our 
secret ideal. 

An encryption of 0 is 
small and even 

modulo our ideal. 

To decrypt, evaluate 
c modulo the ideal.  
Then reduce mod 2. 
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 Secret key is an odd p as before 

 Public key pk has “encryptions of 0” xi=2ri+qip 
◦ Actually xi = [2ri+qip]x0 for i = 1, …, n. 

 Enc(pk, m) = m+subset-sum(xi’s) 
◦ Actually, Enc(pk, m) = [m+subset-sum(xi’s)+2r]x0. 

 Dec(sk, c) = [[c]p]2 

Making a public key out of 
“encryptions of 0” 

formalized by Rothblum 
(“From Private Key to 
Public Key”, TCC’11). 
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 Secret key is an odd p as before 

 Public key pk has “encryptions of 0” xi=2ri+qip 
◦ Actually xi = [2ri+qip]x0 for i = 1, …, n. 

 Enc(pk, m) = m+subset-sum(xi’s) 
◦ Actually, Enc(pk, m) = [m+subset-sum(xi’s)+2r]x0. 

 Dec(sk, c) = [[c]p]2 

Quite similar to Regev’s 
’03 scheme. Main 

difference: SWHE uses 
much more aggressive 

parameters… 
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 Approximate GCD (approx-gcd) Problem: 
◦ Given many xi = si + qip, output p 

◦ Example params: si ~ 2O(λ), p ~ 2O(λ^2), qi ~ 2O(λ^5), where 
λ is security parameter 

 Best known attacks (lattices) require 2λ time 

 Reduction:  
◦ If approx-gcd is hard, scheme is semantically secure 
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 Several lattice-based approaches for solving 
approximate-GCD 
◦ Studied in [Howgrave-Graham01], more recently in 

[vDGV10, CH11, CN11] 

◦ All run out of steam when |qi| » |p|2, where |p| is 
number of bits of p 

◦ In our case |p| =O(λ2), |qi| = O(λ5) » |p|2 
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 xi = qip + ri (ri « p « qi), i = 0,1,2,… 
◦ yi = xi/x0 = (qi+si)/q0, si ~ ri/p « 1 

◦ y1, y2, … is an instance of SDA 

 q0 is a good denominator for all yi’s 

 Use Lagarias’s algorithm: 
◦ Consider the rows of this matrix: 

◦ Find a short vector in the 
lattice that they span 

◦ <q0,q1,…,qt>·L is short 

◦ Hopefully we will find it. 

R x1 x2 … xt 
  -x0 
      -x0 
        … 
   -x0 

L= 
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 When will Lagarias’ algorithm succeed? 
◦ <q0,q1,…,qt>·L should be shortest in lattice 

 In particular shorter than ~det(L)1/t+1 

◦ This only holds for t > log Q/log P 

◦ The dimension of the lattice is t+1 

◦ Rule of thumb: takes 2t/k time to get 2k approximation 
of SVP/CVP in lattice of dim t. 

 2|q
0
|/|p|^2 = 2λ time to get 2|p| » 2λ  approx. 

 

 Bottom line: no known efficient                             
attack on approx-gcd 

 

Minkowski 
bound 
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 Suppose c1=m1+2r1+q1p, …, ct=mt+2rt+qtp 

 ADD: c=c1+c2.   
◦ Noise of c is [c]p = (m1+m2+2r1+2r2), sum of noises 

 MULT: c=c1×c2.   
◦ Noise of c is [c]p = (m1+2r1) ×(m2+2r2), product of 

noises. 

 f: c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt), the 
function f applied to the noises. 
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 Claim: If |f(m1+2r1, …, mt+2rt )| < p/2 for all 
possible “fresh” noises mi+2ri, the SWHE 
scheme can Eval f correctly. 

 Proof:  
◦ Set c = f(c1, …, ct).   

◦ Then, [c]p = f(m1+2r1, …, mt+2rt) by assumption. 

◦ Then, [[c]p]2 = f(m1, …, mt) mod 2.   

That’s what we want! 
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 What if |f(m1+2r1, …, mt+2rt)| > p/2? 
◦ c = f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp 
 Nearest p-multiple to c is q’p for q’ ≠ q 

◦ (c mod p) = f(m1+2r1, …, mt+2rt) + (q-q’)p 
◦ (c mod p) mod 2   
◦  =   f(m1, …, mt) + (q-q’) mod 2 
◦  =   ??? 

 We say the scheme can handle f if: 
 

 
 

◦ |f(x1, …, xt)| < p/4 
◦ Whenever all |xi| < B, where B is a 

bound on the noise of a fresh 
ciphertext output by Enc. 
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 Elementary symmetric poly of degree d: 
◦ f(x1, …, xt) = x1·x2·xd + … + xt-d+1·xt-d+2·xt 

◦ Has (t choose d) < td monomials: a lot!! 

 If |xi|<B, then |f(x1, …, xt)|<td·Bd 

 E can handle f if: 
◦ td·Bd < p/4  →  basically if:  d < (log p)/(log tB) 

 Example params: B ~ 2λ, p ~ 2λ^2 

◦ Eval can handle elem symm                    
poly of degree about λ. 
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 If f has degree d, c = f(c1, …, ct) will have 
about d times as many bits as the fresh ci’s. 

 Can we reduce the ciphertext length after 
multiplications? 
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 A heuristic:  
◦ Suppose n is bit-length of normal ciphertext. 

◦ Put additional “encryptions of 0” {yi=2ri+qip}  in pk. 

 Set yi’s to increase geometrically up to square of 
normal ciphertext: yi ≈ 2n+i, for i up to ≈ n.  

◦ Set c = c1×c2 – subsetsum(yi’s), and c will have 
normal size. 

 Subtract off yi’s according to c’s binary representation. 
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 Well, a little slow… 
◦ Example parameters: a ciphertext is O(λ5) bits. 

◦ Least efficient SWHE scheme, asymptotically. 

 But Coron, Mandal, Naccache, Tibouchi have 
made impressive efficiency improvements. 
◦ [CMNT Crypto ‘11]: FHE over the Integers with 

Shorter Public Keys 

◦ [CNT Eurocrypt ‘12]: Public-key Compression and 
Modulus Switching for FHE over the                   
Integers. 

◦ Asymptotics are much better now. 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 Traditional Version: 
◦ Let χ be an error distribution. 

◦ Distinguish these distributions: 

 Generate uniform s ← Zq
n.  For many i, generate 

uniform ai ← Zq
n , ei ← χ, and output (ai, [<ai, s>+ei]q). 

 For many i, generate uniform ai ← Zq
n , bi ← Zq and 

output (ai, bi). 
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 Noisy Polly Cracker Version: 
◦ Let χ be an error distribution. 

◦ Distinguish these distributions: 

 Generate uniform s ← Zq
n.  For many i, generate ei ← χ 

and a linear polynomial fi(x1, …, xn) = f0+f1x1+…+fnxn 
(from Zq

n+1) such that [fi(s1, …, sn)]q = ei.  

 For many i, generate and output a uniformly random 
linear polynomial fi(x1, …, xn) (from Zq

n+1). 
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 Parameters: q such that gcd(q,2)=1. 

 KeyGen: Secret = uniform s 2 Zq
n.  Public key: 

linear polys {fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q. 

 Encrypt: Set g(x1,…,xn) as a random subset sum of 
{fi(x1,…,xn)}.  Output c(x1,…,xn)=m+g(x1,…,xn). 

 Decrypt: [c(s)]q = m+smeven.  Reduce mod 2. 

 
 Security:  

 Public key consists of an LWE 
instance, doubled. 

 Leftover hash lemma. 
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 ADD and MULT:  

 Output sum or product of 
ciphertext polynomials. 

 Parameters: q such that gcd(q,2)=1. 

 KeyGen: Secret = uniform s 2 Zq
n.  Public key: 

linear polys {fi(x1,…,xn)} s.t. [fi(s)]q=2ei, |ei| ¿ q. 

 Encrypt: Set g(x1,…,xn) as a random subset sum of 
{fi(x1,…,xn)}.  Output c(x1,…,xn)=m+g(x1,…,xn). 

 Decrypt: [c(s)]q = m+smeven.  Reduce mod 2. 
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 After MULT, we have ciphertext c(x) = c1(x)∙c2(x) 
that encrypts some m under key s.  
◦ [c(s)]q = m+smeven 
◦ c(x) is a quadratic poly with O(n2) coefficients. 

 What we want: a linear ciphertext d(y) that 
encrypts same m under some key t 2 Zq

n. 

 Relinearization maps a long quadratic 
ciphertext under s to a normal linear ciphertext 
under t. 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 First step: View c(x) as a long linear ciphertext C(X). 
◦ Set the variables Xij = xi∙xj. 

◦ Set the values Sij = si∙sj. 

◦ Set C(X) =  c1ic2j Xij. 

◦ Then, [C(S)]q = [c(s)]q = m+smeven. 

◦ (This is only a change of perspective.) 
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 Input: Long linear ciphertext C(X) with N > n, 
where [C(S)]q = e = m+smeven, and S = 
(S1,…, SN) is a long secret key. 

 Output: Normal-length linear ciphertext d(x), 
where [d(t)]q = e+smeven = m+smeven, and 
t = (t1,…, tn) is a normal-length secret key. 

 Special case: N ≈ n2. 
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 SwitchKeyGen(S,t): Output linear polys {hi(x)},         
i 2 {1,…,N} such that: 

  [hi(t)]q = Si+smeveni   
  (like an encryption of Si under t)  
 Add Aux(S,t) = {hi(x)} to pk. 

 SwitchKey(pk, C(X)): Set d(x) = i Ci∙hi(x). 
 d(t) = i Ci∙(Si+smeveni) = C(S) + i Ci∙smeveni  
 Oh wait, i Ci∙smeveni is not small and even… 
 Fix: Bit-decompose C first so                            

that it has small coefficients… 
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 BitDecomp: 
◦ Let BitDecomp(C(X)) be the bit-decomposition of C(X). 

◦ (U1(X),…, Ulog q(X)) ← BitDecomp(C(X)), where each Uj(X) 
has 0/1 coefficients and C(X) = j 2

j∙Uj(X). 

 Powerof2: 
◦ (S, 2S, …, 2log q S) ← Powersof2(S). 

 Let C’=BitDecomp(C) and S’ = Powerof2(S).  
Then, <C’,S’> = <C,S>. 

 So, C’(S’) = C(S) mod q. 
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 SwitchKeyGen(S,t): Output linear polys {hi(x)},         
i 2 {1,…,N} such that: 

  [hi(t)]q = Si’+smeveni   
  (like an encryption of Si’ under t)  
 Add Aux(S’,t) = {hi(x)} to pk. 

 SwitchKey(pk, C’(X)): Set d(x) = i Ci’∙hi(x). 
 d(t) = i Ci’∙(Si’+smeveni) = C’(S’) + i Ci’∙smeveni  

 

 Now, i Ci’∙smeveni is small                                      
and even… 
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 Functionality: 
◦ Regev ciphertext under key S → Ciphertext under t. 

◦ Need to put Aux(S,t) in pk. 

◦ Like proxy re-encryption. 

◦ Relinearization is only a special case. 

 Later, we will use key switching in a different context. 

 Effect on noise: SwitchKey increases noise only 
additively. 

 For depth L circuit, use a chain                              
of L encrypted secret keys. 
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 Follows Noisy Polly Cracker blueprint 
◦ With a relinearization step. 

 Relinearization / key-switching  
◦ Doesn’t increase the noise much. 

◦ So noise analysis, and “homomorphic capacity” 
analysis, is similar to integer scheme.  

◦ For L depth circuit, use a chain of L encrypted 
secret keys. 
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I’ll skip my 2009 scheme, and 
focus on RLWE- and NTRU-
based schemes. 
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 Traditional Version: 
◦ Let χ be an error distribution over R = Zq[y]/(yn+1). 

◦ Distinguish these distributions: 

 Generate uniform s ← R.  For many i, generate uniform 
ai ← R , ei ← χ, and output (ai, ai∙s+ei). 

 For many i, generate uniform ai ← R , bi ← R and 
output (ai, bi). 
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 Noisy Polly Cracker Version: 
◦ Let χ be an error distribution over R = Zq[y]/(yn+1). 

◦ Distinguish these distributions: 

 Generate uniform s ← R.  For many i, generate ei ← χ 
and a linear polynomial fi(x) = f0+f1x (from R2) such 
that fi(s) = ei.  

 For many i, generate and output a uniformly random 
linear polynomial fi(x) (from R2). 
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 Parameters: q with gcd(q,2)=1, R = Zq[y]/(yn+1). 

 KeyGen: Secret = uniform s 2 R.  Public key: linear 
polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q. 

 Encrypt: Set g(x) as a random subset sum of {fi(x)}.  
Output c(x)=m+g(x). 
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1). 

 Decrypt: c(s) = m+smeven.  Reduce mod 2. 
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 Parameters: q with gcd(q,2)=1,R = Zq[y]/(yn+1). 

 KeyGen: Secret = uniform s 2 R.  Public key: 
linear polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q. 

 Encrypt: Set g(x) as a random subset sum of 
{fi(x)}.  Output c(x)=m+g(x). 
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1). 

 Decrypt: c(s) = m+smeven.  Reduce mod 2. 
 

 ADD and MULT: Add or                          
multiply the ciphertext                         
polynomials. 
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 After MULT, we have ciphertext c(x) = c1(x)∙c2(x) 
that encrypts some m under key s.  
◦ c(s) = m+smeven  
◦ c(x) is a quadratic poly with 3 coefficients. 

 What we want: a linear ciphertext d(x) that 
encrypts same m under some key t 2 R. 

 Relinearization maps a long quadratic 
ciphertext under s to a normal linear ciphertext 
under t. 
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 First step: View c(x) as a long linear ciphertext C(X). 
◦ Set the variables X1 = x and X2 = x2. 

◦ Set the values S1 = s and S2 = s2. 

◦ Set C(X)=(c11x+c10)(c21x+c20)= 
c11c21X2+(c11c20+c10c21)X+c10c20. 

◦ Then, C(S) = c(s) = m+smeven. 

◦ (This is only a change of perspective.) 
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 Input: Long linear ciphertext C(X), where C(S) 
= e = m+smeven, and S = (S1,S2) is a long 
secret key. 

 Output: Normal-length linear ciphertext d(x), 
where d(t) = e+smeven = m+smeven, and t 

2 R. 
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 SwitchKeyGen(S,t): Output linear polys {hi(x)},         
i 2 {1,…,N} such that: 

  hi(t) = Si+smeveni   
  (like an encryption of Si under t)  
 Add Aux(S,t) = {hi(x)} to pk. 

 SwitchKey(pk, C(X)): Set d(x) = i Ci∙hi(x). 
 d(t) = i Ci∙(Si+smeveni) = C(S) + i Ci∙smeveni  
 Oh wait, i Ci∙smeveni is not small and even… 
 Fix: Bit-decompose C first so                            

that it has small coefficients… 
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 BitDecomp: 
◦ Let BitDecomp(C(X)) be the bit-decomposition of C(X). 

◦ (U1(X),…, Ulog q(X)) ← BitDecomp(C(X)), where each Uj(X) 
has coefficients (in R) that are 0/1 polynomials and 
C(X) = j 2

j∙Uj(X). 

 Powerof2: 
◦ (S, 2S, …, 2log q S) ← Powersof2(S). 

 Let C’=BitDecomp(C) and S’ = Powerof2(S).  
Then, <C’,S’> = <C,S>. 

 So, C’(S’) = C(S) in R. 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

 SwitchKeyGen(S,t): Output linear polys {hi(x)},         
i 2 {1,…,N} such that: 

  hi(t) = Si’+smeveni   
  (like an encryption of Si’ under t)  
 Add Aux(S’,t) = {hi(x)} to pk. 

 SwitchKey(pk, C’(X)): Set d(x) = i Ci’∙hi(x). 
 d(t) = i Ci’∙(Si’+smeveni) = C’(S’) + i Ci’∙smeveni  

 

 Now, i Ci’∙smeveni is small                                      
and even… 
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 Functionality: as in LWE. 

 Effect on noise: SwitchKey increases noise only 
additively, as in LWE. 

 Performance: Better! 
◦ RLWE:  

 Key switching involves O(log q) multiplications in R.   

 We can use FFT for multiplication. 

 quasi-O(n log q) work 

◦ LWE: 

 Relinearization is O(n3 log q) work.  
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 Parameters: q with gcd(q,2)=1, R = Zq[y](yn+1). 
 KeyGen: Secret = uniform s 2 R.  Public key: linear 

polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q.  More reqs: 
◦ s is small and 1 mod 2 (smodd?) 
◦ fi(x) has no constant term – i.e., fi1∙s = 2ei. 

 Encrypt: Set g(x) as a random subset sum of {fi(x)}.  
Output c(x)=m∙x+g(x). 
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1). 

 Decrypt: c(s) = m∙s+smeven.  Reduce mod 2. 
 

 Security: NTRU Problem: Do fi1’s                      
have form fi1=2ei/si;  ei, si short? 
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 Parameters: q with gcd(q,2)=1, R = Zq[y]/(yn+1). 
 KeyGen: Secret = uniform s 2 R.  Public key: linear 

polys {fi(x)} s.t. fi(s)=2ei, |ei| ¿ q.  More reqs: 
◦ s is small and 1 mod 2 (smodd?) 
◦ fi(x) has no constant term – i.e., fi1∙s = 2ei. 

 Encrypt: Set g(x) as a random subset sum of {fi(x)}.  
Output c(x)=m∙x+g(x). 
◦ m can be a “polynomial”, an element of Z2[y]/(yn+1). 

 Decrypt: c(s) = m∙s+smeven.  Reduce mod 2. 
 

 ADD and MULT: Add or                                  
multiply the ciphertext                         
polynomials. 
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 Multiplicands: c1(x) = c11∙x and c2(x) = c21∙x. 

 Product: c(x) = c1(x)∙c2(x) = c11∙c21∙x2. 

 Can we forget key switching? 
◦ Just view t = s2 as the new secret key. 

◦ c(t) = m1∙m2∙t+smeven = m1∙m2+smeven.  

 Not quite: What if we want to add a ciphertext 
under key s to another ciphertext under s2? 
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 Multiplicands: c1(x) = c11∙x and c2(x) = c21∙x. 

 Product: c(x) = c1(x)∙c2(x) = c11∙c21∙x2. 

 Aux(S,t): Choose e*← χ, and set eS,t = 2e*+1. 
Output aS,t = S∙eS,t∙t

-1. (eS,t∙t
-1 should look random.) 

 SwitchKey(c,aS,t):  
◦ Suppose c∙S = e = m+smeven. 

◦ New ciphertext is c’ = c ∙aS,t. 

◦ Then, c’∙t = (c ∙aS,t)t = c(aS,t∙t)                                    
= c(S∙eS,t) = e ∙eS,t = m+smeven. 

 Noise increases multiplicatively. 
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 Two ciphertexts under different keys:  
◦ c1(x) = c11∙x and c2(x) = c21∙x.   

◦ c1(s1) = m1∙s1+smeven, c2(s2) = m2∙s2+smeven. 

 Product: c11c21s1s2 = m1m2s1s2+smeven = 
m1m2+smeven. 

 [LATV12]: Cloud can (noninteractively) 
combine data encrypted under different keys. 



Bar-Ilan University 
Dept. of Computer Science 

Lattice-Based Crypto & Applications  
Bar-Ilan University, Israel        2012 

Insert your scheme here! 
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