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Outline 

• Ideal Lattices 

 

• Ring-SIS 

 

• Ring-LWE and a search-decision reduction 
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IDEAL LATTICES 
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Ideal Lattice FAQs 

Q: What are ideal lattices? 

A: They are lattices with some additional algebraic structure.   

Lattices are groups   

Ideal Lattices are ideals 

Q: Why do we need ideal lattices? 

A:  To build efficient cryptographic primitives 
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Cyclic Lattices 

 A set L in Zn is a cyclic lattice if: 

1.)  For all v,w in L, v+w is also in L 

2.)  For all v in L, -v is also in L 

3.)  For all v in L, a cyclic shift of v is also in L 

3 2 -1 -4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 

-4 3 2 -1 -4 3 2 -1 2 -1 -4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2 

-4 3 2 -1 4 -3 -2 1 

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8 
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Cyclic Lattices = Ideals in Z[x]/(xn-1) 

 A set L in Zn is a cyclic lattice if L is an ideal in Z[x]/(xn-1) 

1.)  For all v,w in L, v+w is also in L 

2.)  For all v in L, -v is also in L 

3.)  For all v in L, a cyclic shift of v is also in L vx is also in L 

3 2 -1 -4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 

-4 3 2 -1 -4 3 2 -1 2 -1 -4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2 

(-1+2x+3x2-4x3) +  (-7-2x+3x2+6x3)=  (-8+0x+6x2+2x3) 

(-1+2x+3x2-4x3)       (1-2x-3x2+4x3) 

-1+2x+3x2-4x3 

(-1+2x+3x2-4x3)x=-4-x+2x2+3x3 

(-1+2x+3x2-4x3)x2 =3-4x-x2+2x3 

(-1+2x+3x2-4x3)x3 =2+3x-4x2-x3 

-4 3 2 -1 4 -3 -2 1 

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8 
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Why Cyclic Lattices? 

 Succinct representations 
 Can represent an n-dimensional lattice with 1 vector 

 
 Algebraic structure 

 Allows for fast arithmetic (using FFT) 
 Makes proofs possible 

 
 NTRU cryptosystem   
 One-way functions based on  
    worst-case hardness of SVP in  
    ideal lattices [Mic02] 
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Is SVPpoly(n) Hard for Cyclic Lattices? 

Short answer: we don't know but conjecture it is. 

What's wrong with the following argument that SVPn is easy? 

  

 

 

 

 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 4 3 2 1 v is a shortest vector in L  

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 3 2 1 4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 2 1 4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 1 4 3 2 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 10 10 10 10 

+ 
Also in L 

Length at most n||v|| 

Algorithm for solving SVPn(L) for a cyclic lattice L: 
1.  Construct 1-dimensional lattice L'=L ∩ {1n} 
2.  Find and output the shortest vector in L' 
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The Hard Cyclic Lattice Instances 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 v is a shortest vector in L  

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 3 2 -1 -4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 2 -1 -4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 0 0 0 0 

+ 
Also in 
L 

Length at most n||v|| 

1n 

The “hard” instances of cyclic lattices lie on plane P perpendicular to the 1n vector 

In algebra language: 
 
If R=Z[x]/(xn-1), then  
    1n = (xn-1+xn-2+...+1) ≈  Z[x]/(x-1)  
    P = (x-1) ≈ Z[x]/(xn-1+xn-2+...+1) 
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f-Ideal Lattices = Ideals in Z[x]/(f) 

Want f to have 3 properties: 

1)Monic (i.e. coefficient of largest exponent is 1) 

2)Irreducible over Z 

3)For all polynomials g,h ||gh mod f||<poly(n)||g||∙||h|| 

Conjecture: For all f that satisfy the above 3 properties, solving 
SVPpoly(n) for ideals in Z[x]/(f) takes time 2Ω(n). 

 

Some “good” f to use: 

f=xn-1+xn-2+...+1  where n is prime 

f=xn+1 where n is a power of 2 
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(xn+1)-Ideal Lattices = Ideals in Z[x]/(xn+1) 

 A set L in Zn is a (xn+1)-ideal lattice if L is an ideal in Z[x]/(xn+1) 

1.)  For all v,w in L, v+w is also in L 

2.)  For all v in L, -v is also in L 

3.)  For all v in L, vx is also in L 

3 2 -1 4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 

-4 3 2 -1 -4 3 2 -1 2 -1 4 -3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 4 -3 -2 

(-1+2x+3x2-4x3) +  (-7-2x+3x2+6x3)=  (-8+0x+6x2+2x3) 

(-1+2x+3x2-4x3)       (1-2x-3x2+4x3) 

-1+2x+3x2-4x3 

(-1+2x+3x2-4x3)x=4-x+2x2+3x3 

(-1+2x+3x2-4x3)x2 =-3+4x-x2+2x3 

(-1+2x+3x2-4x3)x3 =-2-3x+4x2-x3 

-4 3 2 -1 4 -3 -2 1 

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8 
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Hardness of Problems for General and 
(xn+1)-Ideal Lattices 

SVP 

SIVP 

GapSVP 

uSVP 

BDD 

General (xn+1)-ideal 

NP-hard 

NP-hard 

NP-hard 

NP-hard 

NP-hard 

? 

? 

? 

N/A 

? 

SVP 

SIVP 

GapSVP 

uSVP 

BDD 

General (xn+1)-ideal 

? 

? 

? 

? 

? 

? 

? 

Easy 

N/A 

? 

Legend: 
?:  No hardness proofs nor sub-exponential time  
     algorithms are known. 
Colored boxes: Problems are equivalent  

Exact Versions Poly(n)-approximate Versions 
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SVP = SIVP 

Lemma: If v is a vector in Z[x]/(f) where f is a monic, 

irreducible polynomial of degree n, then   

v, vx, vx2, ... vxn-1  

are linearly independent. 

3 2 1 -4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 4 3 2 1 

-4 3 2 -1 -4 3 2 -1 2 1 -4 -3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 1 -4 -3 -2 

Shortest vector v 

vx 

vx2 

vx3 

||v|| = ||vx|| = ||vx2|| = ||vx3|| 

Corollary: A (xn+1)-ideal lattice cannot have  
a unique shortest vector. 
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GapSVP√n  is easy 
Fact:  For all (xn+1)-ideal lattices L,  

det(L)1/n ≤ λ1(L) ≤ √n det(L)1/n  

So det(L)1/n is a √n – approximation of λ1(L) 

Proof of fact: 

    1.  λ1(L) ≤ √n det(L)1/n is Minkowski's theorem. 

    2.  Let v be the shortest vector of L.  Define L'=(v).   

        (i.e.  L' is generated by vectors  v, vx, vx2, ... vxn-1) 

        L' is a sublattice of L, so we have 

               det(L) ≤ det(L') ≤ ||v||n = ( λ1(L) )n 
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RING-SIS AND HASH FUNCTIONS 

[Mic ‘02, PeiRos ‘06, LyuMic ‘06] 
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SIS Source of Inefficiency 

4 

7 
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14 
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5 

11 

14 

0 

9 

1 
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m 

A z 

0 

1 

1 

0 

1 

0 

0 

1 

= h(z) 

Requires O(nm) storage 

Computing the function takes O(nm) time 
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A More Efficient Idea 

4 

7 

2 

1 

-1 

4 

7 

2 

-2 

-1 

4 

7 

-7 

-2 

-1 

4 

10 

13 

1 

7 

-7 

10 

13 

1 

-1 

-7 

10 

13 

-13 

-1 

-7 

10 

n 

m 

Now A only requires O(m) storage 

Az can be computed faster as well 

0 

1 

1 

0 

1 

0 

0 

1 

A z 

= h(z) 
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A More Efficient Idea 

A 

(4+7x+2x2+x3)(1+x3) +(10+13x+x2+7x3)(x+x2)   

in Zp[x]/(xn+1) 

z 
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Ring-SIS 

 

 

Given k random polynomials a1, … ,ak in Zp[x]/(xn+1), 

  find “small” polynomials z1, … ,zk such that 

a1z1+ … +akzk = 0 
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Approximate SVP in 
(xn+1)-ideal Lattices 

Ring-SIS 

One-Way Functions 

Collision-Resistant Hash Functions 

Digital Signatures 

Identification Schemes 

 

(Minicrypt) 

Worst-Case 

Average-Case 
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RING-LWE 

[LyuPeiReg ‘10] 
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Source of Inefficiency in  
LWE Constructions 

m 

n 
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Use the Same “Efficient Idea”?  

4 

7 

2 

1 

-1 

4 

7 
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-7 

-2 

-1 
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Approximate SVP in 
(xn+1)-ideal Lattices 

Learning With Errors 
Problem  (LWE) 

Public Key Encryption … 

(Cryptomania) 

Worst-Case 

Average-Case 

(quantum reduction) 
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Ring-LWE 

Ring R=Zq[x]/(xn+1) 

Given:  

a1, a1s+e1 

a2, a2s+e2 

 …  

ak, aks+ek 

Find: s 

s is random in R 

ei are “small” (distribution symmetric around 0) 
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Ring R=Zq[x]/(xn+1) 

Given:  

a1, b1 

a2, b2 

 …  

ak, bk 

Question: Does there exist an s and “small”  

                      e1, … , ek such that bi=ais+ei  

                   or are all bi uniformly random in R?  

Decision Ring-LWE 
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Decision Ring-LWE Problem  
World 1: 

s in R 

ai random in R 

ei random and “small” 

(a1,b1 = a1s+e1) 

(a2,b2= a2s+e2) 

     … 

(ak,bk = aks+ek) 

World 2: 

ai,bi random in R 

 

(a1,b1) 

(a2,b2) 

     … 

(ak,bk) 

Decision Ring-LWE  

Oracle I am in World 1 (or 2) 
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What We Want to Construct 
s in ring R 

ai uniformly random  

        in ring R 

ei random and “small” 

(a1,b1 = a1s+e1) 

(a2,b2= a2s+e2) 

     … 

(ak,bk = aks+ek) 

Search 

Ring-LWE 

Solver 

s 

Decision  

Ring-LWE  

Oracle 

I am in World 1 (or 2) 
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The Ring R=Z17[x]/(x4+1) 

x4+1 =  (x-2)(x-8)(x+2)(x+8) mod 17 

         =  (x-2)(x-23)(x-25)(x-27) mod 17 

 

Every polynomial z in R has a unique “Chinese Remainder” 

representation  (z(2), z(8), z(-2), z(-8)) 

 

For any c in Z17, and two polynomials z, z' 

 z(c)+z'(c) = (z+z')(c) 

 z(c)∙z'(c) = (z∙z')(c) 
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Example 

8 5 -1 -8 

(1 + x + 7x2 - 5x3)  ∙  (5 - 3x + 4x2 + 3x3)  +  (1 + x - x2  + x3)  =   (-6 +2x - x2 - 4x3) 

   
  

5 5 3 7 7 -2 4 -5 -4 6 1 7 ∙ + = 
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Representation of Elements in 

R=Z17[x]/(x4+1) 

(x4+1) = (x-2)(x-23)(x-25)(x-27) mod 17 

          = (x-2)(x-8)(x+2)(x+8) 

Represent polynomials z(x) as (z(2), z(8), z(-2), z(-8)) 

a(2) a(8) a(-2) a(-8) , b(2) b(8) b(-2) b(-8) ( ) (a(x),b(x))   = 

Notation: 

 

b(-2) b(-8) means that the coefficients  

that should be b(2) and b(8)  

are instead uniformly random  
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a(2) a(8) a(-2) a(-8) , b(2) b(8) b(-2) b(-8) ( ) 
Decision 

Ring-LWE 

Oracle 
“I am in World 1” 

a(2) a(8) a(-2) a(-8) , b(8) b(-2) b(-8) ( ) 
Decision 

Ring-LWE 

Oracle 
“I am in World 1” 

a(2) a(8) a(-2) a(-8) , b(-2) b(-8) ( ) 
Decision 

Ring-LWE 

Oracle 
“I am in World 2” 

a(2) a(8) a(-2) a(-8) , b(-8) ( ) 
Decision 

Ring-LWE 

Oracle 
“I am in World 2” 

a(2) a(8) a(-2) a(-8) , ( ) 
Decision 

Ring-LWE 

Oracle 
“I am in World 2” 

Learning One Position of the Secret 
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Learning One Position of the Secret 

a(2) a(8) a(-2) a(-8) , b(8) b(-2) b(-8) ( ) 
Decision 

Ring-LWE 

Oracle 
“I am in World 1” 

a(2) a(8) a(-2) a(-8) , b(-2) b(-8) ( ) 
Decision 

Ring-LWE 

Oracle 
“I am in World 2” 

Can learn whether this position is random or b(8)=a(8)∙s(8)+e(8)  

 

This can be used to learn s(8) 



Lattice-Based Crypto & Applications 
Bar-Ilan University, Israel 2012  

34 

a(2) a(8) a(-2) a(-8) b(2) b(8) b(-2) b(-8) ( ) , 

Let g in Z17 be our guess for s(8)   (there are 17 possibilities) 

We will use the decision Ring-LWE oracle to test the guess  

Pick random r in Z17 

a(2) a(8) a(-2) a(-8) b(8) b(-2) b(-8) ( ) , 

Make the first position of f(b) uniformly random in Z17 

a(2) a(8)+r a(-2) a(-8) b(8)+gr b(-2) b(-8) ( ) , 

Send to the decision oracle 

If g=s(8), then (a(8)+r)∙s(8)+e(8)=b(8)+gr    (Oracle says “W. 1”) 

If g≠s(8), then b(8)+gr is uniformly random in Z17  (Oracle says “W. 2”) 

Learning One Position of the Secret 
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Learning the Other Positions 

 We can use the decision oracle to learn s(8) 

 How do we learn s(2),s(-2), and s(-8)? 

 Idea: Permute the input to the oracle 

   Make the oracle give us s'(8) for a different, but  

     related, secret s'.  

                 From s'(8) we can recover s(2)  

                          (and s(-2) and s(-8)) 
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A Possible Swap 

a(2) a(8) a(-2) a(-8) 

b(2) b(8) b(-2) b(-8) 

s(2) s(8) s(-2) s(-8) 

e(2) e(8) e(-2) e(-8) 

+ 

= 

a(2) a(-2) a(8) a(-8) 

b(2) b(-2) b(8) b(-8) 

s(2) s(-2) s(8) s(-8) 

e(2) e(-2) e(8) e(-8) 

+ 

= 

a(2) a(-2) a(8) a(-8) b(2) b(-2) b(8) b(-8) ( , ) 
Send to the decision oracle 

Is this a valid distribution?? 
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A Possible Swap 

5 5 3 7 

-4 6 1 7 

8 5 -1 -8 

7 -2 4 -5 

5 3 5 7 -4 1 6 7 ( , ) 
Send to the decision oracle 

Is this a valid distribution?? 

5 3 5 7 

-4 1 6 7 

8 -1 5 -8 

7 4 -2 -5 

+ 

= 

+ 

= 

5 - 3x + 4x2 + 3x3 

1 + x + 7x2 - 5x3 

1 + x - x2  + x3 

-6 +2x - x2 - 4x3 

5 + x + 8x3 

1 - x - 5x2 - 7x3 

1 + 3x - 6x2 + 3x3 

-6 +6x + 6x2 

WRONG DISTRIBUTION !! 
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Automorphisms of R 

 

 

x4+1 = (x-2)(x-23)(x-25)(x-27) mod 17 

2 23 25 27 

z(x) z(2) z(23) z(25) z(27) 

z(x3) z(23) z(2) z(27) z(25) 

z(x5) z(25) z(27) z(2) z(23) 

z(x7) z(27) z(25) z(23) z(2) 

roots of x4+1  

z(x) 
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Automorphisms of R 

z(x) = z0 + z1x + z2x2 + z3x3 

z(x3) = z0 + z1x3 + z2x6 + z3x9  = z0 + z3x - z2x2 + z1x3 

z(x5) = z0 + z1x5 + z2x10 + z3x15  = z0 - z1x + z2x2 - z3x3 

z(x7) = z0 + z1x7 + z2x14 + z3x21  = z0 - z3x - z2x2 - z1x3 

 

If coefficients of z(x) have distribution D symmetric around 0, then so do 

the coefficients of z(x3), z(x5), z(x7) !! 
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A Correct Swap 

5 5 3 7 

-4 6 1 7 

8 5 -1 -8 

7 -2 4 -5 

5 5 7 3 6 -4 7 1 ( , ) 
Send to the decision oracle 

5 5 7 3 

6 -4 7 1 

5 8 -8 -1 

-2 7 -5 4 

+ 

= 

+ 

= 

5 - 3x + 4x2 + 3x3 

1 + x + 7x2 - 5x3 

1 + x - x2  + x3 

-6 + 2x - x2 - 4x3 

5 + 3x - 4x2 - 3x3 

1 - 5x - 7x2 + x3 

1 + x + x2 + x3 

-6 -4x + x2 +2x3 

This will recover s(2).   
Repeat the analogous procedure to recover s(-2), s(-8) 
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A Caveat …  

“If coefficients of z(x) have distribution D symmetric around 0, then so do 

the coefficients of z(x3), z(x5), z(x7) !! ” 

 

This only holds true for Z[x]/(xn+1) 

 

The correct error distribution is somewhat different for other polynomials. 

 

Can work with all cyclotomic polynomials. 
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