Ideal Lattices and Applications

Vadim Lyubashevsky INRIA / ENS, Paris

Outline

Ideal Lattices

• Ring-SIS

Ring-LWE and a search-decision reduction

IDEAL LATTICES

Ideal Lattice FAQs

Q: What are ideal lattices?

A: They are lattices with some additional algebraic structure.

Lattices are groups

Ideal Lattices are ideals

Q: Why do we need ideal lattices?

A: To build **efficient** cryptographic primitives

Cyclic Lattices

A set L in **Z**ⁿ is a *cyclic lattice* if:

1.) For all v,w in L, v+w is also in L

2.) For all v in L, -v is also in L

3.) For all v in L, a cyclic shift of v is also in L

-1	2	3	-4
	_	_	•

Cyclic Lattices = Ideals in $\mathbf{Z}[x]/(x^n-1)$

A set L in \mathbb{Z}^n is a cyclic lattice if L is an ideal in $\mathbb{Z}[x]/(x^n-1)$

1.) For all v,w in L, v+w is also in L

$$\begin{bmatrix} -1 & 2 & 3 & -4 \\ + & -7 & -2 & 3 & 6 \end{bmatrix} = \begin{bmatrix} -8 & 0 & 6 & 2 \\ -8 & 0 & 6 & 2 \end{bmatrix}$$

 $(-1+2x+3x^2-4x^3) + (-7-2x+3x^2+6x^3) = (-8+0x+6x^2+2x^3)$

2.) For all v in L, -v is also in L

$$\begin{bmatrix} -1 & 2 & 3 & -4 \\ 1 & -2 & -3 & 4 \end{bmatrix}$$
 $\begin{bmatrix} (-1+2x+3x^2-4x^3) & (1-2x-3x^2+4x^3) \end{bmatrix}$

3.) For all v in L, a cyclic shift of v is also in L vx is also in L

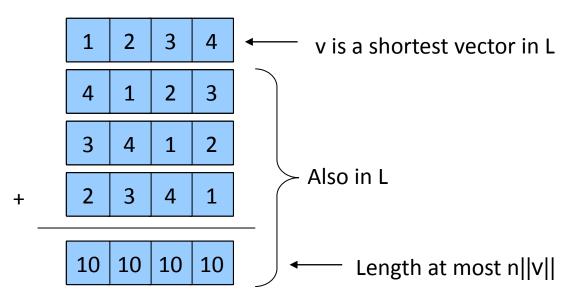
Why Cyclic Lattices?

- Succinct representations
 - Can represent an n-dimensional lattice with 1 vector
- Algebraic structure
 - Allows for fast arithmetic (using FFT)
 - Makes proofs possible
- NTRU cryptosystem
- One-way functions based on worst-case hardness of SVP in ideal lattices [MicO2]

Is SVP_{poly(n)} Hard for Cyclic Lattices?

Short answer: we don't know but conjecture it is.

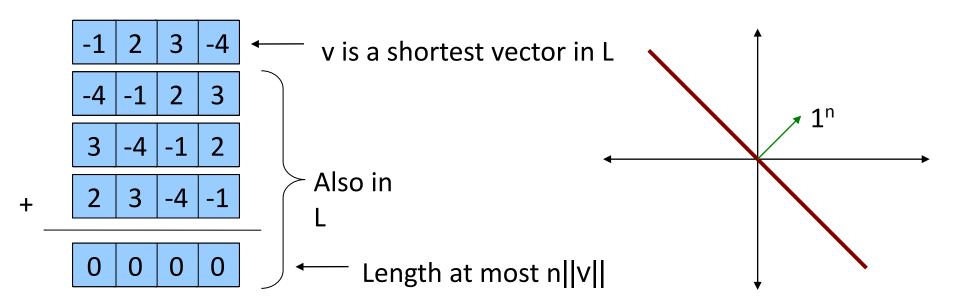
What's wrong with the following argument that SVP_n is easy?



Algorithm for solving SVP_n(L) for a cyclic lattice L:

- 1. Construct 1-dimensional lattice $L'=L \cap \{1^n\}$
- 2. Find and output the shortest vector in L'

The Hard Cyclic Lattice Instances



The "hard" instances of cyclic lattices lie on plane P perpendicular to the 1ⁿ vector In algebra language:

If R=**Z**[x]/(xⁿ-1), then

$$1^{n} = (x^{n-1}+x^{n-2}+...+1) \approx \mathbf{Z}[x]/(x-1)$$

$$P = (x-1) \approx \mathbf{Z}[x]/(x^{n-1}+x^{n-2}+...+1)$$

f-Ideal Lattices = Ideals in $\mathbf{Z}[x]/(f)$

Want f to have 3 properties:

- 1) Monic (i.e. coefficient of largest exponent is 1)
- 2)Irreducible over **Z**
- 3) For all polynomials g,h ||gh mod f||<poly(n)||g||·||h||

Conjecture: For all f that satisfy the above 3 properties, solving $SVP_{poly(n)}$ for ideals in $\mathbf{Z}[x]/(f)$ takes time $2^{\Omega(n)}$.

Some "good" f to use:

 $f=x^{n-1}+x^{n-2}+...+1$ where n is prime

f=xⁿ+1 where n is a power of 2

(x^n+1) -Ideal Lattices = Ideals in $\mathbb{Z}[x]/(x^n+1)$

A set L in \mathbb{Z}^n is a (x^n+1) -ideal lattice if L is an ideal in $\mathbb{Z}[x]/(x^n+1)$

1.) For all v,w in L, v+w is also in L

$$\begin{bmatrix} -1 & 2 & 3 & -4 \\ + & -7 & -2 & 3 & 6 \end{bmatrix} = \begin{bmatrix} -8 & 0 & 6 & 2 \\ -8 & 0 & 6 & 2 \end{bmatrix}$$

 $(-1+2x+3x^2-4x^3) + (-7-2x+3x^2+6x^3) = (-8+0x+6x^2+2x^3)$

2.) For all v in L, -v is also in L

$$\begin{bmatrix} -1 & 2 & 3 & -4 \\ 1 & -2 & -3 & 4 \end{bmatrix}$$
 $(-1+2x+3x^2-4x^3)$ $(1-2x-3x^2+4x^3)$

3.) For all v in L, vx is also in L

Hardness of Problems for General and (xⁿ+1)-Ideal Lattices

Exact Versions

	General	(x ⁿ +1)-ideal
SVP	NP-hard	?
SIVP	NP-hard	?
GapSVP	NP-hard	?
uSVP	NP-hard	N/A
BDD	NP-hard	?

Poly(n)-approximate Versions

	General	(x ⁿ +1)-ideal
SVP	?	?
SIVP	?	?
GapSVP	?	Easy
uSVP	?	N/A
BDD	?	?

Legend:

?: No hardness proofs nor sub-exponential time algorithms are known.

Colored boxes: *Problems are equivalent*

SVP = SIVP

Lemma: If v is a vector in $\mathbf{Z}[x]/(f)$ where f is a monic, irreducible polynomial of degree n, then

$$V, VX, VX^2, ... VX^{n-1}$$

are linearly independent.

Corollary: A (xⁿ+1)-ideal lattice cannot have a unique shortest vector.

GapSVP_{vn} is easy

Fact: For all (x^n+1) -ideal lattices L, $\det(L)^{1/n} \le \lambda_1(L) \le \forall n \det(L)^{1/n}$

So $det(L)^{1/n}$ is a $\forall n$ – approximation of $\lambda_1(L)$

Proof of fact:

- 1. $\lambda_1(L) \le \forall n \det(L)^{1/n}$ is Minkowski's theorem.
- 2. Let v be the shortest vector of L. Define L'=(v).

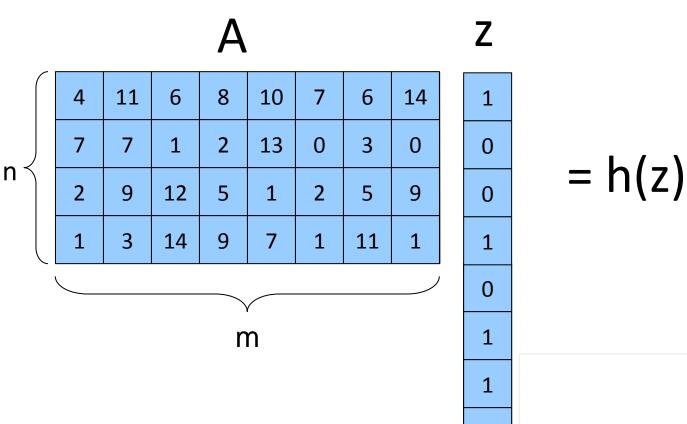
(i.e. L' is generated by vectors v, vx, vx^2 , ... vx^{n-1})

L' is a sublattice of L, so we have $\det(L) \le \det(L') \le ||v||^n = (\lambda_1(L))^n$

RING-SIS AND HASH FUNCTIONS

[Mic '02, PeiRos '06, LyuMic '06]

SIS Source of Inefficiency

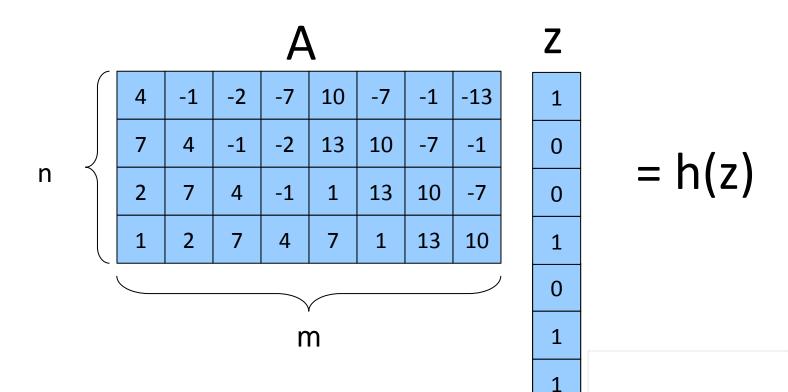


Requires O(nm) storage

Computing the function takes O(nm) time

0

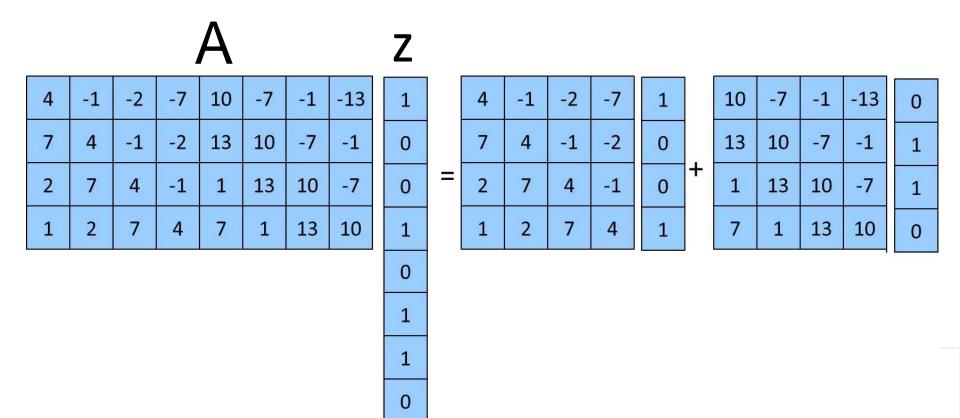
A More Efficient Idea



Now A only requires O(m) storage Az can be computed faster as well

0

A More Efficient Idea



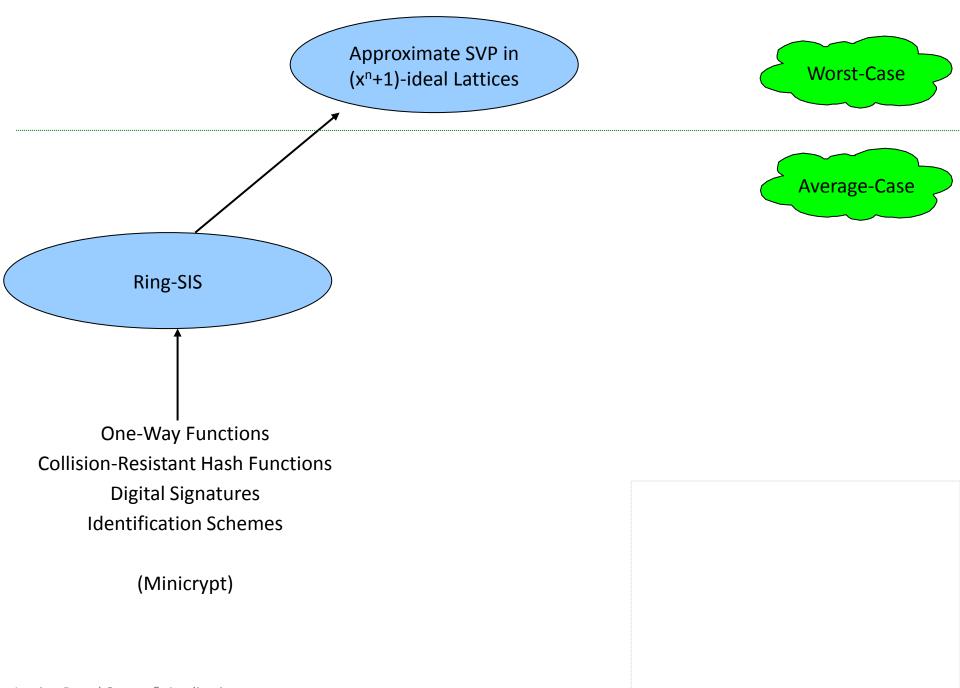
18

$$(4+7x+2x^2+x^3)(1+x^3)+(10+13x+x^2+7x^3)(x+x^2)$$

 $\inf_{\text{Lattice-Based Crypto \& Applications}} p[x]/(x^n+1)$

Ring-SIS

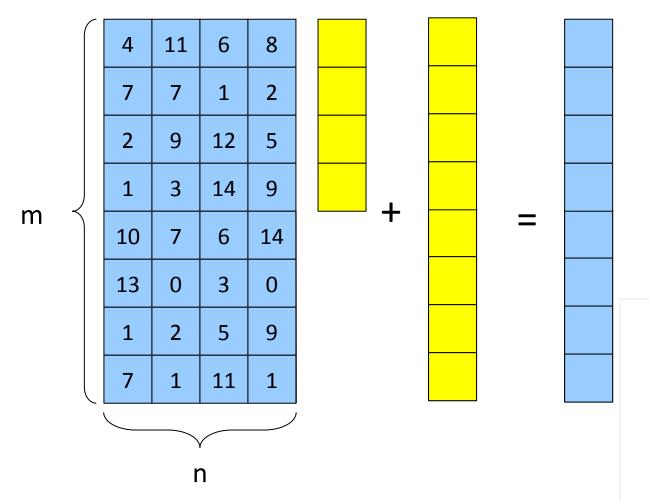
Given k random polynomials
$$a_1, ..., a_k$$
 in $\mathbf{Z}_p[x]/(x^n+1)$, find "small" polynomials $z_1, ..., z_k$ such that
$$a_1 z_1 + ... + a_k z_k = 0$$



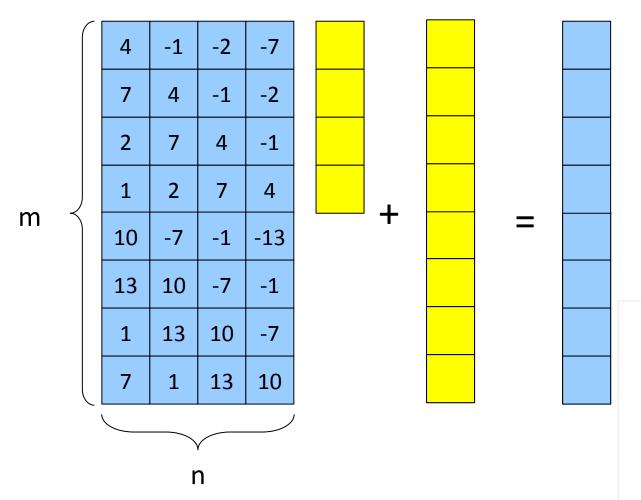
RING-LWE

[LyuPeiReg '10]

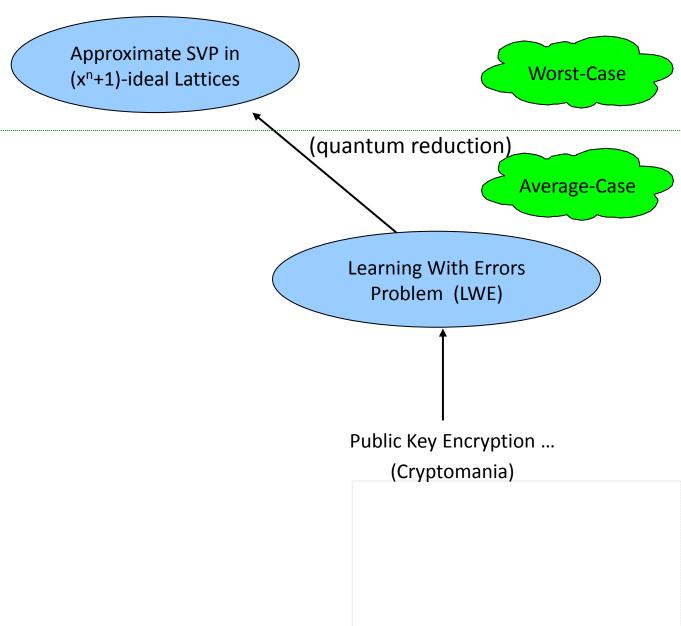
Source of Inefficiency in LWE Constructions



Use the Same "Efficient Idea"?



Lattice-Based Crypto & Applications Bar-Ilan University, Israel 2012



Ring-LWE

Ring R=
$$Z_q[x]/(x^n+1)$$

Given:
 a_1, a_1s+e_1

 a_2 , a_2 s+ e_2

• • •

 $a_{k'}$ a_{k} s+ e_{k}

Find: s

s is random in R

e, are "small" (distribution symmetric around 0)

Decision Ring-LWE

Ring
$$R=Z_q[x]/(x^n+1)$$

Given:

a₁, b₁

a₂, b₂

...

 a_k, b_k

Question: Does there exist an s and "small"

 e_1, \dots, e_k such that $b_i = a_i s + e_i$

or are all b_i uniformly random in R?

Decision Ring-LWE Problem

World 1: s in R

a_i random in R

e_i random and "small"

$$(a_1,b_1 = a_1s+e_1)$$

 $(a_2,b_2 = a_2s+e_2)$
...
 $(a_k,b_k = a_ks+e_k)$

Decision Ring-LWE
Oracle

▶ I am in World 1 (or 2)

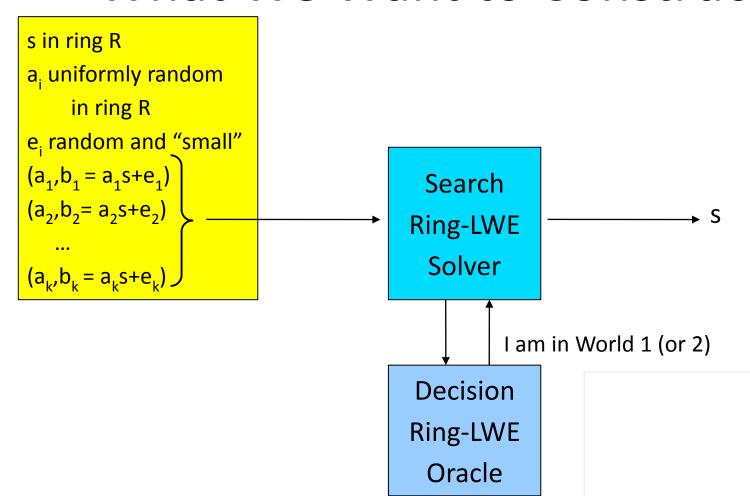
World 2:

a_i,b_i random in R

$$(a_1,b_1)$$

 (a_2,b_2)
...
 (a_k,b_k)

What We Want to Construct



The Ring $R=Z_{17}[x]/(x^4+1)$

$$x^4+1 = (x-2)(x-8)(x+2)(x+8) \mod 17$$

= $(x-2)(x-2^3)(x-2^5)(x-2^7) \mod 17$

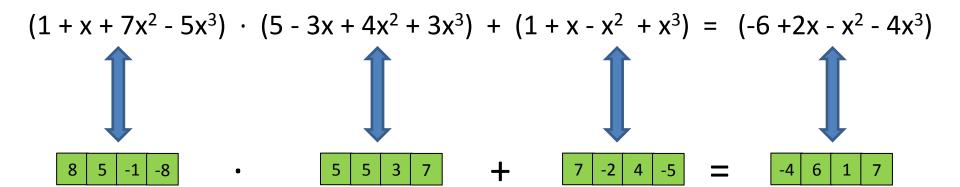
Every polynomial z in R has a unique "Chinese Remainder" representation (z(2), z(8), z(-2), z(-8))

For any c in Z_{17} , and two polynomials z, z'

$$z(c)+z'(c) = (z+z')(c)$$

$$- z(c) \cdot z'(c) = (z \cdot z')(c)$$

Example



Representation of Elements in $R=Z_{17}[x]/(x^4+1)$

$$(x^4+1) = (x-2)(x-2^3)(x-2^5)(x-2^7) \mod 17$$

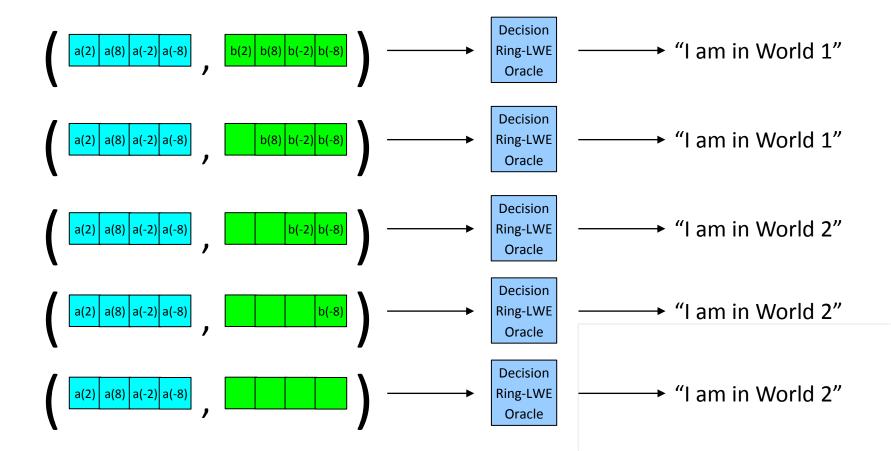
= $(x-2)(x-8)(x+2)(x+8)$

Represent polynomials z(x) as (z(2), z(8), z(-2), z(-8))

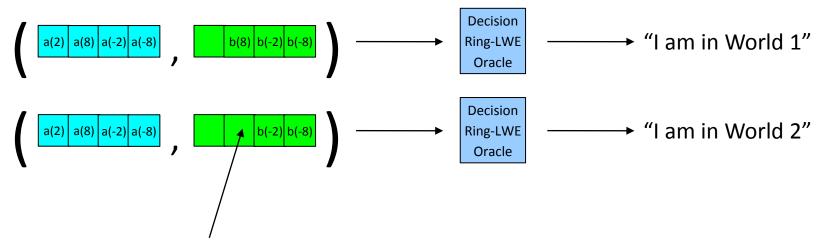
$$= (a(x),b(x)) = \underbrace{|a(2)|a(8)|a(-2)|a(-8)}_{a(2)|a(8)|a(-2)|a(-8)}, \underbrace{|b(2)|b(8)|b(-2)|b(-8)}_{b(-2)|b(-8)}$$

Notation: means that the coefficients
that should be b(2) and b(8)
are instead uniformly random

Learning One Position of the Secret



Learning One Position of the Secret



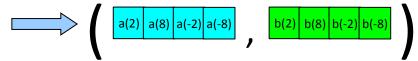
Can learn whether this position is random or $b(8)=a(8)\cdot s(8)+e(8)$

This can be used to learn s(8)

Learning One Position of the Secret

Let g in Z_{17} be our guess for s(8) (there are 17 possibilities)

We will use the decision Ring-LWE oracle to test the guess



Make the first position of f(b) uniformly random in Z_{17}

Pick random r in Z₁₇

Send to the decision oracle

If g=s(8), then (a(8)+r)·s(8)+e(8)=b(8)+gr (Oracle says "W. 1") If g \neq s(8), then b(8)+gr is uniformly random in Z₁₇ (Oracle says "W. 2")

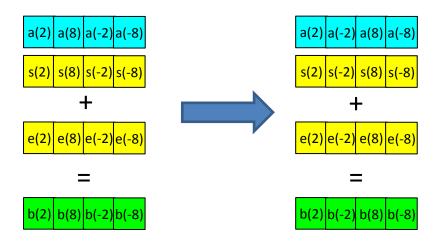
Learning the Other Positions

- We can use the decision oracle to learn s(8)
- How do we learn s(2),s(-2), and s(-8)?
- Idea: Permute the input to the oracle

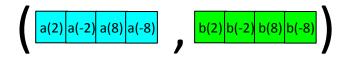
Make the oracle give us s'(8) for a different, but related, secret s'.

From s'(8) we can recover s(2) (and s(-2) and s(-8))

A Possible Swap



Send to the decision oracle



Is this a valid distribution??

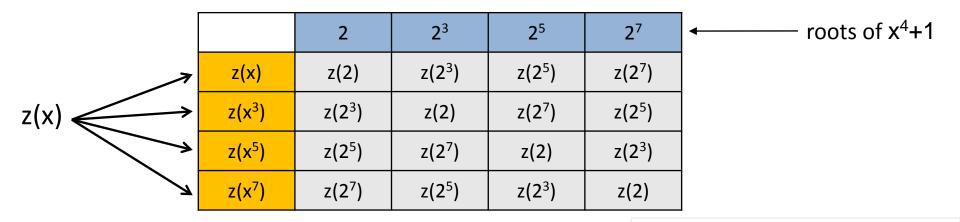
A Possible Swap

Send to the decision oracle

Is this a valid distribution??

Automorphisms of R

$$x^4+1 = (x-2)(x-2^3)(x-2^5)(x-2^7) \mod 17$$



Automorphisms of R

$$z(x) = z_0 + z_1 x + z_2 x^2 + z_3 x^3$$

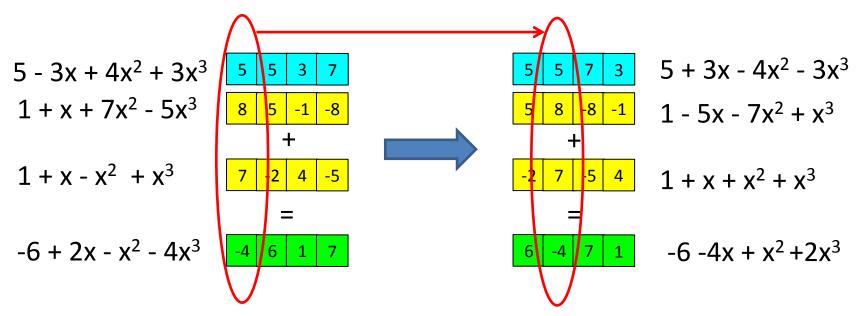
$$z(x^3) = z_0 + z_1 x^3 + z_2 x^6 + z_3 x^9 = z_0 + z_3 x - z_2 x^2 + z_1 x^3$$

$$z(x^5) = z_0 + z_1 x^5 + z_2 x^{10} + z_3 x^{15} = z_0 - z_1 x + z_2 x^2 - z_3 x^3$$

$$z(x^7) = z_0 + z_1 x^7 + z_2 x^{14} + z_3 x^{21} = z_0 - z_3 x - z_2 x^2 - z_1 x^3$$

If coefficients of z(x) have distribution D symmetric around 0, then so do the coefficients of $z(x^3)$, $z(x^5)$, $z(x^7)$!!

A Correct Swap



Send to the decision oracle

This will recover s(2).

Repeat the analogous procedure to recover s(-2), s(-8)

A Caveat ...

"If coefficients of z(x) have distribution D symmetric around 0, then so do the coefficients of $z(x^3)$, $z(x^5)$, $z(x^7)$!!"

This only holds true for $Z[x]/(x^n+1)$

The correct error distribution is somewhat different for other polynomials.

Can work with all cyclotomic polynomials.

References

- Daniele Micciancio (2002): Generalized Compact Knapsacks,
 Cyclic Lattices, and Efficient One-Way Functions
- Chris Peikert, Alon Rosen (2006): Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices.
- Vadim Lyubashevsky, Daniele Micciancio (2006): Generalized Compact Knapsacks Are Collision Resistant
- Vadim Lyubashevsky, Chris Peikert, Oded Regev (2010): On Ideal Lattices and Learning with Errors over Rings.