
Bar-Ilan University
Dept. of Computer Science

Shai Halevi – IBM Research

Based Mostly on [van-Dijk, Gentry, Halevi,

Vaikuntanathan, EC 2010]

1

Winter School on Secure Computation and Efficiency
Bar-Ilan University, Israel 30/1/2011-1/2/2011

Bar-Ilan University
Dept. of Computer Science

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Part I

2

Bar-Ilan University
Dept. of Computer Science

 Storing an encrypted file F on a remote server

 Later send keyword w to server, get answer,
determine whether F contains w

◦ Trivially: server returns the entire encrypted file

◦ We want: answer length independent of |F|

Claim: to do this, sufficient to evaluate
low-degree polynomials on encrypted data

◦ degree ~ security parameter

3
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 File is encrypted bit by bit, E(F1) E(F2) … E(Ft)

 Word has s bits w1w2…ws

 For i=1,2,…,t-s+1, server computes the bit
ci =

◦ ci=1 if w appears at position i, else ci=0

◦ Each ci is a degree-s polynomial in the Fi‟s

 Trick from [Smolansky‟93] to get degree-n polynomials,
error-probability 2-n

 Return n random subset-sums
of the ci‟s (mod 2) to client
◦ Still degree-n, another 2-n error

4

2 mod)1(
1

1



s

j

jij Fw

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 Want an encryption scheme (Gen, Enc, Dec)
◦ Say, symmetric bit-by-bit encryption

◦ Semantically secure, E(0)E(1)

 Another procedure: Eval(f, C1,…Ct)
◦ f is a binary polynomial in t variables, degreen

 Represented as arithmetic circuit

◦ The Ci‟s are ciphertexts

 For any such f, and any Ci=Enc(xi) it holds that
Dec(Eval(f, C1,…Ct)) = f(x1,…,xt)
◦ Also |Eval(f,…)| does not depend

on the “size” of f (i.e., # of vars
or # of monomials, circuit-size)

◦ That‟s called “compactness”

5
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 Shared secret key: odd number p

 To encrypt a bit m:

◦ Choose at random small r, large q

◦ Output c = pq + 2r + m

 Ciphertext is close to a multiple of p

 m = LSB of distance to nearest multiple of p

 To decrypt c:
◦ Output m = (c mod p) mod 2

 = c – p • [[c/p]] mod 2
 = c – [[c/p]] mod 2
 = LSB(c) XOR LSB([[c/p]])

6

[[c/p]] is rounding
of the rational c/p
to nearest integer

Noise much
smaller than p

The “noise”

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 Basically because:

◦ If you add or multiply two near-multiples
of p, you get another near multiple of p…

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 c1=q1p+2r1+m1, c2=q2p+2r2+m2

 c1+c2 = (q1+q2)p + 2(r1+r2) + (m1+m2)

◦ 2(r1+r2)+(m1+m2) still much smaller than p

c1+c2 mod p = 2(r1+r2) + (m1+m2)

 c1 x c2 = (c1q2+q1c2q1q2)p
 + 2(2r1r2+r1m2+m1r2) + m1m2

◦ 2(2r1r2+…) still smaller than p

c1xc2 mod p = 2(2r1r2+…)+m1m2

Distance to nearest multiple of p

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

 c1=q1p+2r1+m1, …, ct=qtp+2rt+mt

 Let f be a multivariate poly with integer
coefficients (sequence of +‟s and x‟s)

 Let c = Eval(f, c1, …, ct) = f(c1, …, ct)

◦ f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp
 = f(m1, …, mt) + 2r + qp

 (c mod p) mod 2 = f(m1, …, mt)

Suppose this noise is much smaller than p

That‟s what we want!

Bar-Ilan University
Dept. of Computer Science

 Can keep adding and multiplying until the
“noise term” grows larger than p/2

◦ Noise doubles on addition, squares on multiplication

◦ Multiplying d ciphertexts  noise of size ~2dn

 We choose r ~ 2n, p ~ 2n (and q ~ 2n)

◦ Can compute polynomials of degree ~n before
the noise grows too large

2 5

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 Ciphertext size grows with degree of f

◦ Also (slowly) with # of terms

 Publish one “noiseless integer”, N = pq

◦ In the symmetric setting, include N with the
secret key and with every ciphertext

◦ For technical reasons: q is odd, the qi‟s for
encryption are chosen from [q] rather than [2n]

 Ciphertext arithmetic mod N

 Ciphertext-size remains
 always the same

11
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

5

Bar-Ilan University
Dept. of Computer Science

Rothblum‟11: Any homomorphic and compact
symmetric encryption (wrt class C including
linear functions), can be turned into public key
◦ Still homomorphic and compact wrt essentially the

same class of functions C

 Public key: N random bits r=(r1…rN) and their
symmetric encryption ci=Encsk(ri)
◦ N larger than size of evaluated ciphertext

 NewEncpk (b): Choose random s
s.t. <s,r>=b, use Eval to get
c*=Encsk (<s,r>)
◦ Note that s  c* is shrinking

12
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 The approximate-GCD problem:

◦ Input: integers w0, w1,…, wt,

 Chosen as w0=q0p, wi=qip + ri (p and q0 are odd)

 p$[0,P], qi$[0,Q], ri$[0,R] (with R << P << Q)

◦ Task: find p

 Thm: If we can distinguish Enc(0)/Enc(1) for
some p, then we can find that p

◦ Roughly: the LSB of ri is a “hard core bit”

 If approx-GCD is hard then
scheme is secure

 (Later: Is approx-GCD hard?)

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

13

Bar-Ilan University
Dept. of Computer Science

A. The approximate-GCD problem:

◦ Input: w0=q0p, {wi=qip+ri}

 p$[0,P], qi$[0,Q], ri$[0,R] (with R << P << Q)

◦ Task: find p

B. The cryptosystem

◦ Input: : N=q0p, {cj=qjp+rj, LSB(rj)}, c=qp+2r+m

 p$[0,P], qi$[0,Q], ri$[0,R‟] (with R‟ << P << Q)

◦ Task: distinguish m=0 from m=1

Thm: Solving B  solving A

◦ small caveat: R smaller than R‟

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

14

Bar-Ilan University
Dept. of Computer Science

 Input: w0=q0p, {wi = qip + ri}

 Use the wi‟s to form the cj‟s and c

◦ This is where we need R‟>R

 Amplify the distinguishing advantage

◦ From any noticeable e to almost 1

 Use reliable distinguisher to learn q0

◦ Using the binary GCD procedure

 Finally p = w0/q0

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

15

Bar-Ilan University
Dept. of Computer Science

 We have wi=qip+ri, need xj=qj‟p+2rj‟

◦ Then we can add the LSBs to get cj = xj + mj

 Set N=w0, xj=2(subsetSum{wi }+rj) mod N

◦ The rj‟s are random < R‟

 Correctness:

◦ SubsetSum{ri}+rj distributed almost identically to rj

 Since R‟>R by a super-polynomial factor

◦ 2SubsetSum{qi} mod q0 is
almost random in [q0]

Secure Computation and Efficiency
Bar-Ilan University, Israel 2011

16

Bar-Ilan University
Dept. of Computer Science

 Given any integer z=qp+r, with r<R:
Set c = [z+ m+2(r + subsetSum{wi})] mod N

◦ For random r<R‟, random bit m

 c is nearly a random ciphertext for m+LSB(r)
◦ Same reason as for the cj‟s

 c mod p mod 2 = r+m mod 2

◦ A guess for c mod p mod 2  vote for r mod 2

 Choose many random c‟s,

take majority

Noticeable advantage 
Reliably computing r mod 2

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

17

Bar-Ilan University
Dept. of Computer Science

z = (2s)p + r
 z/2=sp+r/2
 floor(z/2) =
 sp+floor(r/2)

 From any z=qp+r (r<R‟) can get r mod 2

◦ Note: z = q+r mod 2 (since p is odd)

◦ So (q mod 2) = (r mod 2)  (z mod 2)

 Given z1, z2, both near multiples of p

◦ Get bi := qi mod 2, if z1<z2 swap them

◦ If b1=b2=1, set z1:=z1z2, b1:=b1b2

 At least one of the bi‟s must be zero now

◦ For any bi=0 set zi := floor(zi/2)

 new-qi = old-qi/2

◦ Repeat until one zi is zero,
output the other

B
in

a
ry

-
G

C
D

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

18

Bar-Ilan University
Dept. of Computer Science

The odd part
of the GCD

 zi=qip+ri, i=1,2, z‟:=OurBinaryGCD(z1,z2)

◦ Then z‟ = GCD*(q1,q2)·p + r‟

◦ For random q,q‟, Pr[GCD(q,q‟)=1] ~ 0.6

 Try (say) z‟:= OurBinaryGCD(w0,w1)

◦ Hope that z‟=1·p+r

 Else try again with OurBinaryGCD(z‟,w2), etc.

 Then run OurBinaryGCD(w0,z‟)

◦ The b1 bits spell out the bits of q0

 Once you learn q0, p=w0/q0

Secure Computation and Efficiency
Bar-Ilan University, Israel 2011

19

Bar-Ilan University
Dept. of Computer Science

 Several lattice-based approaches for solving
approximate-GCD

◦ Approximate-GCD is related to Simultaneous
Diophantine Approximation (SDA)

◦ Studied in [Hawgrave-Graham01]

 We considered some extensions of his attacks

 All run out of steam when |qi|>|p|2

◦ In our case |p|~n2, |qi|~n5 >> |p|2

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

20

Bar-Ilan University
Dept. of Computer Science

 w0 = q0p, wi = qip + ri (ri << p << qi)

◦ yi = wi/w0 = (qip + ri)/q0p = (qi+ei)/q0

 ei = ri/p << 1

◦ y1, y2, … is an instance of SDA

 q0 is a denominator that approximates all yi‟s

 Try to use Lagarias‟es algorithm to solve

◦ Find q0, then p=w0/q0

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

21

Bar-Ilan University
Dept. of Computer Science

 Consider the rows of this matrix B:

◦ They span dim-(t+1) lattice

 (q0,q1,…,qt)  B is short

◦ 1st entry: q0R < Q·R

◦ ith entry (i>1): q0(qip+ri)-qi(q0p)=q0ri

 Less than Q·R in absolute value

 Total size less than Q·R·t

 vs. size ~Q·P (or more) for basis vectors

 Hopefully we can find it with
a lattice-reduction algorithm
(LLL or variants)

R w1 w2 … wt
 -w0
 -w0
 …
 -w0

B=

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

22

Bar-Ilan University
Dept. of Computer Science

 Is (q0,q1,…,qt)  B the shortest in the lattice?

◦ Is it shorter than t·det(B)1/t+1 ?

 det(B) is small-ish (due to R in the corner)

◦ Need ((QP)tR)1/t+1 > QR

 t+1 > (log Q + log P – log R) / (log P – log R)
 ~ log Q/log P

 log Q = w(log2P)  need t=w(log P)

 Quality of LLL & co. degrades with t

◦ Find vectors of size ~ 2et·shortest

◦ t=w(log P)  2et·QR > det(B)1/t+1

◦ Contemporary lattice reduction
 not strong enough

Minkowski bound

R w1 w2…wt
 -w0
 -w0
 …
 -w0

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

23

Bar-Ilan University
Dept. of Computer Science

t

logQ/logP

s
iz

e
 (

lo
g
 s

c
a
le

)

the solution we
are seeking

auxiliary solutions
(Minkowski‟s bound)
converges to ~ logQ+logP

What LLL can find
min(blue,purple)+et

blue line
remains above
purple line

log Q

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

24

Bar-Ilan University
Dept. of Computer Science

 A Simple Scheme that supports computing
low-degree polynomials on encrypted data

◦ Any fixed polynomial degree can be done

◦ To get degree-d, ciphertext size must be w(nd2)

 Already can be used in applications

◦ E.g., the keyword-match example

 Next we turn it into a
fully-homomorphic scheme

25
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Part II

26

Bar-Ilan University
Dept. of Computer Science

 So far, can evaluate low-degree polynomials

f(x1, x2 ,…, xt)

f

…

x2

xt

x1

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

27

Bar-Ilan University
Dept. of Computer Science

 So far, can evaluate low-degree polynomials

 Can eval y=f(x1,x2…,xn) when xi‟s are “fresh”

 But y is “evaluated ciphertext”

◦ Can still be decrypted

◦ But eval Q(y) has too much noise

f

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

…

x2

xt

x1

f(x1, x2 ,…, xt)

28

Bar-Ilan University
Dept. of Computer Science

 So far, can evaluate low-degree polynomials

 Bootstrapping to handle higher degrees:

 For a ciphertext c, consider Dc(sk) = Decsk(c)
◦ Hope: Dc(*) has a low degree in sk

◦ Then so are
 Ac1,c2(sk) = Decsk(c1) + Decsk(c2)
and Mc1,c2(sk) = Decsk(c1) x Decsk(c2)

f

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

f(x1, x2 ,…, xt)

29

…

x2

xt

x1

Bar-Ilan University
Dept. of Computer Science

Mc1,c2 sk1

sk2

skn

…

 Include in the public key also Encpk(sk)

 Homomorphic computation
applied only to the “fresh”
 encryption of sk

sk1

sk2

skn

…

x1 x2

c1 c2

Mc1,c2(sk)

= Decsk(c1) x Decsk(c2) = x1 x x2

c

Requires

“circular
security”

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

30

Bar-Ilan University
Dept. of Computer Science

 Fix a scheme (Gen, Enc, Dec, Eval)

 For a class F of functions , denote
◦ CF = { Eval(f, c1,…,ct) : f  F, ci  Enc(0/1) }

◦ Encrypt some t bits and evaluate on them some fF

 Scheme bootstrappable if exists F for which:
◦ Eval “works” for F

  f  F, ci  Enc(xi), Dec(Eval(f,c1,…,ct)) = f(x1,…,xt)

◦ Decryption + add/mult in F

  c1,c2CF , Ac1,c2(sk), Mc1,c2(sk)  F

Thm: Circular secure
 & Boostrappable
 Homomorphic for any func.

31
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

c/p, rounded to
nearest integer

 Decp(c) = LSB(c)  LSB([[c/p]])

◦ We have |c|~n5, |p|~n2

 Naïvely computing [[c/p]] takes degree >n5

 Our scheme only supports degree ~ n

 Need to “squash the decryption circuit”
in order to get a bootstrappable scheme

◦ Similar techniques to [Gentry 09]

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

32

Bar-Ilan University
Dept. of Computer Science

 Add to public key another “hint” about sk

◦ Hint should not break secrecy of encryption

 With hint, ciphertext can be publically
post-processed, leaving less work for Dec

 Idea is used in server-aided cryptography.

Old
decryption
algorithm

m

c sk

Dec

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

33

Bar-Ilan University
Dept. of Computer Science

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Old
decryption
algorithm

m

c sk

Dec

c f(sk, r)

Public
Post-
Processing

sk*

m

Dec*

c*

Processed
ciphertext

New
approach

The hint
about sk in
public key

Hint in pub key lets
anyone post-process
the ciphertext, leaving
less work for Dec*

34

Bar-Ilan University
Dept. of Computer Science

 Old secret key is the integer p

 Add to public key many “real numbers”
◦ d1,d2, …, dt  [0,2] (with precision of ~|c| bits)

◦  sparse S for which SiS di = 1/p mod 2

 Post Processing: yi=c x di mod 2, i=1,…,t
◦ New ciphertext is c* = (c, y1, y2,…, yi)

 New secret key is char. vector of S (s1,…,st)
◦ si=1 if iS, si=0 otherwise

◦ c/p = c x(S sidi)= S siYi mod 2

 Dec*(c*) = c – [[Si siYi]] mod 2

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

35

Bar-Ilan University
Dept. of Computer Science

 Dec*s(c*)= LSB(c)  LSB([[Si siyi]])

 Grade-school addition

◦ What is the degree of b(s1,…,st)?

The ai„s in binary:
each ai,j is either si or 0

ai  [0,2]

b{0,1}

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

36

Bar-Ilan University
Dept. of Computer Science

c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

Carry Bits

b-p

Result Bit

c1,0c1,-1 … c1,1-p b-p

= HammingWeight(Colum-p)

 mod 2p+1

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

37

Bar-Ilan University
Dept. of Computer Science

c2,0 c2,-1 …

c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b-p b1-p

c2,0c2,-1 … c2,2-p b1-p

= HammingWeight(Column1-p)

 mod 2p

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

38

Bar-Ilan University
Dept. of Computer Science

cp,0

… …

c2,0 c2,-1 …

c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b-p b1-p b-1
…

cp,0b-1 =

 HamWeight(Col-1)

 mod 4

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

39

Bar-Ilan University
Dept. of Computer Science

cp,0

… …

c2,0 c2,-1 …

c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b-p b1-p b-1
… b

 Express ci,j’s
as polynomials
in the ai,j’s

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

40

Bar-Ilan University
Dept. of Computer Science

 Binary Vector x = (x1, …, xu){0,1}u

 ek(x) = deg-k elementary symmetric polynomial

◦ Sum of all products of k bits (u-choose-k terms)

 Dynamic programming to evaluate in time O(ku)

◦ ei(x1…xj) = ei-1(x1…xj-1)xi + ei(x1…xj-1) (for ij)

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

 L x1 x1,x2 … x1…xu-1 x1…xu

e0 1 1 1 1 1

e1 0

… ei(x1…xj)

ek 0

41

Bar-Ilan University
Dept. of Computer Science

Thm: For a vector x = (x1, …, xu){0,1}u,
i‟th bit of W=HW(x) is e2i(x) mod 2

◦ Observe e2i(x) = (W choose 2i)

◦ Need to show: i‟th bit of W=(W choose 2i) mod 2

 Say 2k  W<2k+1 (bit k is MSB of W), show:

◦ For i<k, (W choose 2i)=(W–2k choose 2i) mod 2

◦ For i=k, (W choose 2k)=(W–2k choose 2k)+1 mod 2

 Then by induction over W

◦ Clearly holds for W=0

◦ By above, if holds for W-2k
 then holds also for W

42
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 Use identity (*)

◦ For r=0 or r=2k we have (2k choose r) = 1

◦ For 0<r<2k we have (2k choose r) = 0 mod 2

 i<k: The only nonzero term
 in (*) is j=2i

 i=k: The only nonzero terms
 in (*) are j=0 and j=2k

 43
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

1

)12(
...

)1(

)12(22 

















 r

rrr

kkkk integer

Numerator has
more powers of 2
than denominator




























 
















 jj

WW

i

k

j

k

i

i

2

22

2

2

0




















1

12

r

k

Bar-Ilan University
Dept. of Computer Science c4,0

c3,0 c3,-1

c2,0 c2,-1 c2,-2

c1,0 c1,-1 c1,-2 c1,-3

a1,0 a1,-1 a1,-2 a1,-3 a1,-4

a2,0 a2,-1 a2,-2 a2,-3 a2,-4

… … … … …

at,0 at,-1 at,-2 at,-3 at,-4

b
Goal:
compute the degree of
the polynomial b(ai,j‟s)

Carry Bits

Input Bits

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

44

Bar-Ilan University
Dept. of Computer Science

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e16(…) e8(…) e4(…) e2(…)

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

45

Bar-Ilan University
Dept. of Computer Science

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e8(…) e4(…) e2(…)

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

46

Bar-Ilan University
Dept. of Computer Science

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e4(…) e2(…)

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

47

Bar-Ilan University
Dept. of Computer Science

deg=9 deg=7

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e2(…)

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

48

Bar-Ilan University
Dept. of Computer Science deg=15

deg=9 deg=7

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

b deg() = 16

Claim: with p bits of precision,
 deg(b(ai,j))  2p

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

49

Bar-Ilan University
Dept. of Computer Science

 Dec*s(c*)= LSB(c)  LSB([[Si siyi]])

 degree(b) = 2p

◦ We can only handle degree ~ n

◦ Need to work with low precision,
 p ~ log n

The ai„s in binary:
each ai,j is either si or 0

ai  [0,2]

b{0,1}

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

50

Bar-Ilan University
Dept. of Computer Science

 Parameters ensure “noise” < p/2

◦ For degree-2n polynomials with < 2n terms (say)

◦ With |r|=n, need |p|~3n2

 What if we want a somewhat smaller noise?

◦ Say that we want the noise to be < p/2n

◦ Instead of |p|~3n2, set |p|~3n2+log n

 Makes essentially no difference

Claim: c has noise < p/2n
 & sparse subset size  n-1
 enough to keep precision
 of log n bits for the yi‟s

51

2

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

Claim: |S|  n-1 & c/p within 1/2n from integer
 enough to keep log n bits for the yi‟s

Proof: fi = rounding of yi to log n bits

◦ |fi - yi|  1/2n  sifi = siYi if si0

 siYi  1/2n if si1

|Ssifi - SsiYi|  |S|/2n  (n-1)/2n

 SsiYi=c/p, within 1/2n of an integer

Ssifi within 1/2n+(n-1)/2n=1/2
of the same integer

 [[Ssifi]] = [[SsiYi]] QED

52
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 Dec*s(c*)= LSB(c)  LSB([[Si sifi]])

 degree(Dec*
c*(s))  n

 degree(Mc1*c2*(s))  2n

 Our scheme can do this!!!

a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

… … … …

at,0 at,-1 … at,-log n

The ai„s in binary:
each ai,j is either si or 0

ai  [0,2]

b

Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

53

Bar-Ilan University
Dept. of Computer Science

 Add to public key d1,d2, …, dt  [0,2]
◦  sparse S for which SiS di = 1/p mod 2

 New secret key is (s1,…,st), char. vector of S

 Also add to public key ui = Enc(si), i=1,2,…,t

 Hopefully, scheme remains secure

◦ Security with di‟s relies on hardness of
“sparse subset sum”

 Same arguments of hardness as for
the approximate-GCD problem

◦ Security with ui‟s relies on “circular
security” (just praying, really)

54
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 To “multiply” c1, c2 (both with noise < p/2n)
◦ Evaluate Mc1,c2(*) on the ciphertexts u1,u2,…,ut

◦ This is a degree-2n polynomial

◦ Result is new c, with noise <p/2n

◦ Can keep computing on it

 Same thing for “adding” c1, c2

 Can evaluate any function

55
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 May want evaluated ciphertexts to have the
same distribution as freshly encrypted ones
◦ Currently they have more noise

 To do this, add n more bits to p
◦ “Raw evaluated ciphertext” have noise < p/2n

 After encryption/evaluation, add noise ~ p/2n
◦ Note: DOES NOT more noise to Enc(s) in public key

 Evaluated, fresh ciphertexts
now have the same noise
◦ Can show that distributions are

 statistically close

56
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

Bar-Ilan University
Dept. of Computer Science

 Constructed a fully-homomorphic (public
key) encryption scheme

 Underlying somewhat-homomorphic scheme
relies on hardness of approximate-GCD

 Resulting scheme relies also on hardness
of sparse-subset-sum and circular security

 Ciphertext size is ~ n5 bits

 Public key has ~ n10 bits

57
Secure Computation and Efficiency

Bar-Ilan University, Israel 2011

