Winter School on Secure Computation and Efficiency

kg*ce“encl’
Bar-llan University, Israel 30/1/2011-1/2/2011 {'\’A

Bar-llan University
Dept. of Computer Science

Fully Homomorphic

Encryption
Shai Halevi - IBM Research

Based Mostly on [van-Dijk, Gentry, Halevi,
Vaikuntanathan, EC 20] 0]

Motivating Application: @
Simple Keyword Search ety
» Storing an encrypted file F on a remote server
» Later send keyword w to server, get answer,
determine whether F contains w
> Trivially: server returns the entire encrypted file

- We want: answer length independent of |F]

Claim: to do this, sufficient to evaluate
low-degree polynomials on encrypted data

- degree ~ security parameter

Secure Comput:
Bar-llan Unive

Protocol for keywork-search N

Bar-llan University
Dept. of Computer Science

» File is encrypted bit by bit, E(F,) E(F,) ... E(F)
» Word has s bits w,w,...w,

» Fori=1,2,...,t-s+1, server computes the bit
G = H(1+W +F. ;) mod2

=1
e —1 if w appears at position i, else ¢,=0

- Each ¢, is a degree-s polynomial in the F;’s

« Trick from [Smolansky’93] to get degree-n polynomials,
error—-probability 2-"

» Return n random subset-sums
of the ¢;’s (mod 2) to client

> Still degree-n, another 2" error

Computing low-degree @
polynomials on ciphertexts

Dept. of Computer Science

» Want an encryption scheme (Gen, Enc, Dec)
> Say, symmetric bit-by-bit encryption
- Semantically secure, E(O)~E(1)

» Another procedure: Eval(f, C,,...C)

> f is a binary polynomial in t variables, degree<n
- Represented as arithmetic circuit
- The C/’s are ciphertexts

» For any such f, and any C.=Enc(x;) it holds that

Dec(Eval(f, C,,...C)) = f(x;,...,Xy)

- Also |Eval(f,...)| does not depend
on the “size” of f (i.e., # of vars
or # of monomials, circuit-size)

- That’s called “compactness”

Secure Computa \\ 1and Ef
T\ \ VLAY
Bar-llan Universit

A Simple SHE Scheme Ny

Bar-llan University
Dept. of Computer Science

» Shared secret key: odd number p
» To encrypt a bit m:

- Choose at random small r, large g _
Noise much
o Qutputc =pg + 2r + m smaller than p

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p

» To decrypt c:

Output m = (c mod p) mod 2
* [[c/p]] mod 2
C - [[C/p]] mod 2
= LSB(c) XOR LSB([[c/plD

[[c/p]] is rounding
of the rational c/p
to nearest integer

Why is this homomorphic? N

Bar-llan University
Dept. of Computer Science

» Basically because:

> |f you add or multiply two near-multiples
of p, you get another near multiple of p...

Secure Computati" NN
Bar-Ilan Universi

Why is this homomorphic? N

Bar-llan University
Dept. of Computer Science

» Cy=q p+2r,+m,, C,=q,p+2r,+m,

» C;+C, = (q;+9,)p + 2(r;+r,) + (M;+m,)
o 2(ry+ry)+(m;+m,) still much smaller than p
2C,+C, mod p = 2(r;+r,) + (Mm;+m,)

» € X € = (10,1+9,C;-0,9,)P
+ 2(2rr,4+rim,+m,r,) + mym,

o 2(2ryry+...) still smaller than p
2C,XC, mod p = 2(2r,r,+...)+mym,

Secure Computation and Effici
Bar-llan Univer;: y

Why is this homomorphic? N

Bar-llan University
Dept. of Computer Science

» Cy=q,p+2r,+Mmy, ..., C;=qp+2r+m,

» Let f be a multivariate poly with integer
coefficients (sequence of +’s and x’s)

» Let ¢ = Eval(f, ¢, ..., ¢) = f(c,, ..., C)

o f(¢q,y ..., ¢) = (M +2r,, ..., m+2r) +gp
=f(m,,.... my) +2r +qgp

= (c mod p) mod 2 = f(m,, ..., m,)

That’s what we want!

Secure Computaﬁ e

Bar-llan University,

How homomorphic is this? N

Bar-llan University
Dept. of Computer Science

» Can keep adding and multiplying until the
“noise term” grows larger than p/2

> Noise doubles on addition, squares on multiplication
- Multiplying d ciphertexts =» noise of size ~24dn
» We choose r ~ 2", p ~ 2" (and g ~ 2™)

- Can compute polynomials of degree ~n before

the noise grows too large

Keeping it small A

Bar-llan University
Dept. of Computer Science

» Ciphertext size grows with degree of f
- Also (slowly) with # of terms

» Publish one “noiseless integer”, N = pq

> In the symmetric setting, include N with the
secret key and with every ciphertext

> For technical reasons: q is odd, the q,’s for
encryption are chosen from [q] rather than [2"]

» Ciphertext arithmetic mod N

= Ciphertext-size remains
always the same

11

Public Key Encryption Ny

Bar-llan University
Dept. of Computer Science

Rothblum’11: Any homomorphic and compact
symmetric encryption (wrt class C including
linear functions), can be turned into public key

> Still homomorphic and compact wrt essentially the
same class of functions C

» Public key: N random bits r=(r,...ry) and their
symmetric encryption ¢,;=Enc,(r;)
> N larger than size of evaluated ciphertext

» NewEnc,, (b): Choose random s
s.t. <s,r>=Db, use Eval to get
c*=Enc,, (<s,r>)

> Note that s 2 c* is shrinking

:“:;;. \\ ~ 12

Secure Comp on an

Bar-llan Uni\(;_‘

Security

» The approximate-GCD problem:

° Input: integers wy, wy,..., W,

Q_(_ellen,:(2
S ’ .
—4
= 4 ‘
I3
-
)

Bar-llan University
Dept. of Computer Science

- Chosen as wy=qyp, w;=q;p + r; (p and q, are odd)
* peglO,P], g;€4[0,Q], rye4[0,R] (with R << P << Q)

> Task: find p

» Thm: If we can distinguish Enc(0)/Enc(1) for

some p, then we can find that p
> Roughly: the LSB of r, is a “hard cor

bit”

= If approx-GCD is hard then
scheme is secure

Later: Is approx-GCD hard?)

W 13

Hard-core-bit theorem N

Bar-llan University
Dept. of Computer Science

A. The approximate-GCD problem:
o Input: wy=qup, {w;=q,p+r;}
* peglO,P], g;€4[0,Q], rye4[0,R] (with R << P << Q)
> Task: find p
B. The cryptosystem
> Input: : N=qgp, {¢;=q;p+r;, LSB(r)}, c=qp+2r+m
* peglO,P], g;€4[0,Q], r,e4[0,R’] (with R << P << Q)
> Task: distinguish m=0 from m=1

Thm: Solving B = solving A

- small caveat: R smaller than R’

14

Proof outline N

Bar-llan University
Dept. of Computer Science

» Input: wo=q,p, {W; = q;p + r;}

» Use the w;’s to form the ¢;'s and ¢
> This is where we need R’>R

» Amplify the distinguishing advantage
> From any noticeable ¢ to almost 1

» Use reliable distinguisher to learn q,
- Using the binary GCD procedure

» Finally p = wy/qq

15

Secure Computation and E
Bar-llan University, Isrz

From {w,} to {c;, LSB(r)})

Bar-llan University
Dept. of Computer Science

» We have w;=q;p+r;, need x;=q; p+2r;
> Then we can add the LSBs to get ¢; = x; + m;

» Set N=w,, x;=2(subsetSumiw;, }+p;) mod N
> The p;’s are random < R’

» Correctness:

> SubsetSum{r;}+p; distributed almost identically to p;
- Since R’>R by a super-polynomial factor

> 2xSubsetSumi{q;} mod q, is
almost random in [q,]

16

Amplify distinguishing advantage Ny

Bar-llan University
Dept. of Computer Science

» Given any integer z=qp+r, with r<R:
Set ¢ = [z+ m+2(p + subsetSum{w,})] mod N
> For random p<R’, random bit m

» € is nearly a random ciphertext for m+LSB(r)
- Same reason as for the G's

»c¢mod pmod 2 = r+m mod 2
- A guess for c mod p mod 2 = vote for r mod 2

» Choose many random c’s,
take majority

Noticeable advantage =
Reliably computing r mod 2

17

Reliable distinguisher @
9 Iearning qo Bar-llan University

Dept. of Computer Science

» From any z=qgp+r (r<R’) can get r mod 2
- Note: z = g+r mod 2 (since p is odd)
> So (g mod 2) = (r mod 2) @ (z mod 2)

» Given z,, z,, both near multiples of
(- Get b, := q, mod 2, if z,<z, swap th
> If by=b,=1, set z,:=z,-z,, b;:=b,-b
- At least one of the b;’s must b

Z=02s)p +r

= z/2=sp+r/2
= floor(z/2) =
sp+floor(r/2)

> For any b,=0 set z, :=

* hew-(; = old-q;/2
- Repeat until one z; is zero,
\/ output the other

Binary-GCD
A

18

Reliable distinguisher @

7 leaming

» Z;=q;p+r;, i=1,2, 2Z=0OurBinaryGCD(z,,z,)
- Then z’ = GCD"“(],qZ)-p +r
- For random q,q’, Pr[GCD(q,q’)=1] ~ 0.6
» Try (say) z’:= OurBinaryGCD(w,,w,)
- Hope that z’=1-p+r
- Else try again with OurBinaryGCD(z’,w,), etc.
» Then run OurBinaryGCD(w,,z’)

Bar-llan University
Dept. of Computer Science

- The b, bits spell out the bits of q,
» Once you learn q,, p=W,/dg

19

Secure ;_‘
Bar-llan Universit

Is Approximate-GCD Hard? N

Bar-llan University
Dept. of Computer Science

» Several lattice-based approaches for solving
approximate-GCD

- Approximate-GCD is related to Simultaneous
Diophantine Approximation (SDA)

> Studied in [Hawgrave-GrahamO1]
- We considered some extensions of his attacks

» All run out of steam when |q;|>|p|?

> In our case |p|~n2, |g;|~n5 >> |p|?

20

AN \
Secure Computation and Effici
Bar-llan University, Isr

Relation to SDA N

Bar-llan University
Dept. of Computer Science

» Wo =qoP, Wy =qip + 17 (<< p << ()
¥ = W/Wo = (q;p + 1)/dep = (d;+¢)/dg
g =nh/p << 1
° Y1, Yo, -.- IS @n instance of SDA
* (o is @ denominator that approximates all y;’s
» Try to use Lagarias’es algorithm to solve
> Find q,, then p=w,/q,

21

Secure Computation ¢ \§ i
Bar-llan University, Israel

Lagarias’es SDA algorithm A

Bar-llan University
Dept. of Computer Science

» Consider the rows of this matrix B:

> They span dim-(t+1) lattice
» (dg,91,---,0y) % B is short @_V\\,’\} Wa oo @
> 1st entry: q,R < QR B= 8WO
> ith entry (i>1): qo(q;p+r)-0i(QoP)=qor;
- Less than Q-R in absolute value _ —Viy

= Total size less than Q-Rt
- vSs. size ~Q-P (or more) for basis vectors

» Hopefully we can find it with
a lattice-reduction algorithm
(LLL or variants)

22

Will this algorithm succeed? Ny

Bar-llan University
Dept. of Computer Science

» Is (g,dy,---,qy) x B the shortest in the lattice?

> ls it shorter than t-det(B)!/t+ ?@WSW b@

- det(B) is small-ish (due to R in the corner)

Rw, Wy,
- Need ((QP)RR)'/*+1 > QR B
< t+1 > (logQ + logP-1logR) / (log P-log R) ~Wo
~ log Q/log P
Y

» log Q = o(log?P) = need t=w(log P)
» Quality of LLL & co. degrades with t

> Find vectors of size ~ 2¢t.shortest
- t=w(log P) =& 2:t.QR > det(B)!/t+]

- Contemporary lattice reduction
not strong enough

23

Secure Compute

\ & \\\\ X
Bar-llan Universit

log Q

Bar-llan University

| _What LLL can find

min(,purple)+ct

size (log scale)

~Sauxiliary solutions
(Minkowski’s bound)

converges to ~ logQ+logP

the solution we
are seeking

blue line
remains above
purple line —

Secure Computati

Bar-Ilan Universi \\\\

Conclusions for Part | N

Bar-llan University
Dept. of Computer Science

» A Simple Scheme that supports computing
low-degree polynomials on encrypted data
- Any fixed polynomial degree can be done
- To get degree-d, ciphertext size must be o(nd?)

» Already can be used in applications
- E.g., the keyword-match example

» Next we turn it into a
fully-homomorphic scheme

25

Part Il

Bootstrapping [Gentry 09] N

Bar-llan University
Dept. of Computer Science

» So far, can evaluate low-degree polynomials

27

Secure Computation and Efficiency
Bar-llan University, Israel 2011

Bootstrapping [Gentry 09] Ny

Bar-llan University
Dept. of Computer Science

» So far, can evaluate low-degree polynomials

» Can eval

» But|y|is “evaluated ciphertext”

o Can still

> But eval- has too much noise

U -14[¢ 3
SR\ \ N\
Bar-llan University, Israe

Y=F(X1,X50+,X,)

when xis are “fresh”

be decrypted

28

Bootstrapping [Gentry 09] Ny

Bar-llan University
Dept. of Computer Science

» So far, can evaluate low-degree polynomials

» Bootstrapping to handle higher degrees:

» For a ciphertext c, consider D (sk) = Dec(c)
- Hope: D.(*) has a low degree in sk

- Then so are
Ac,,c,(sk) = Dec(c,) + Decgy(c,)
and Mg, c,(sk) = Decg(c,) x Decg(c,)

29

Secure Computati_:é and Effici
Bar-llan University

Bootstrapping [Gentry 09] Ny

Bar-llan University
Dept. of Computer Science

» Include in the public key also Enc,(sk)

X X3

Requires
“circular
security”

sk, ¢

MC,C(S/()

Skz 1342

= Dec () x Dec (G) = x; X X,

sk,

» Homomorphic computation
applied only to the “fresh”
encryption of sk

30

-

Bootstrapping [Gentry 09] Ny

Bar-llan University
Dept. of Computer Science

» Fix a scheme (Gen, Enc, Dec, Eval)
» For a class F of functions , denote
0 = { Bval(f, ¢,,...,¢c) : f e F, ¢, e Enc(0/1) }
- Encrypt some t bits and evaluate on them some feF

» Scheme bootstrappable if exists F for which:
> Eval “works” for F
- V f e £ ¢ e Enc(x;), Dec(Eval(f,c,,...,c)) = f(x,,...,Xp)
> Decryption + add/mult in F
* V C,C€ Cr,y Aciey(SK), Mc,c,(sk) € F

Thm: Circular secure

& Boostrappable
= Homomorphic for any func.

\\\\\\\\\\

31

Secure Computati
Bar-Ilan Univi

Is our SHE Bootstrappable? N

Bar-llan University
Dept. of Computer Science

» Decy(c) = LSB(c) @ LSB([[c/pIf
hearest mteger

» Naively computing [[c/p]] takes degree >n>
» Our scheme only supports degree ~ n

» Need to “squash the decryption circuit”
in order to get a bootstrappable scheme

> Similar techniques to [Gentry 09]

32

How to“Simplify” Decryption? Ny

Bar-llan University
Dept. of Computer Science

» Add to public key another “hint” about sk
- Hint should not break secrecy of encryption

» With hint, ciphertext can be publically
post-processed, leaving less work for Dec

» ldea is used in server-aided cryptography.

m
)

Old

decryption

algorithm

T MM
C sk

33

How to“simplify” decryption? N

Bar-llan University
Dept. of Computer Science

Oold
decryption
algorithm Processed] Dec’ approach
uphertext
T TTT T
mT T (Hmt in pub key lets R
anyone post-process
the ciphertext, leaving
dess work for Dec” y
TTTT T
INNN) TTk (M) f(sk, r)
C S
The hint Y
about sk in
\publlc key)
Secure Computation and Efficiency 34
Bar-llan University, Israel 2011

The New Scheme N

Bar-llan University
Dept. of Computer Science

» Old secret key is the integer p
» Add to public key many “real numbers”
> d,,d,, ..., d, € [0,2] (with precision of ~|c| bits)
- 3 sparse S for which 2, _cd. = 1/p mod 2
» Post Processing: y,=c x d. mod 2, i=1,...,t
> New ciphertext is c* = (¢, vy, Vs,..., Vi)
» New secret key is char. vector of S (o,,...,6,)

© Gi:] |f iES, Gi:O OtherWISG
o c/p = CcX(Zod)=2Z o;¥ mod 2

Dec*(c*) = ¢ - [[Z; 6,7.]] mod 2
. 35

Secure Computa' EN
Bar-llan Univers \\\\\

How to Add Numbers? N

be{0,1} Dept,of Computer Science
» Dec* (c*)= LSB(c) @ LSB([INAT]])
\a e [0,2]
allo a1,_1 e alll_p all_p
d : :
920 921 92,1-p 2P The a;‘s in binary:
d3o 93-1 -+ d331.p 93.p each a;;is either 5; or 0
At0 o 9t-1 - 91p 9p)

» Grade-school addition
- What is the degree of b(c,,...,6,)?

36

Secure Computatic
Bar-llan Universit

Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

P

dio dj -1 .« Ay 1p di,-p
azlo a2,_1 naa a2’1_p a2,_p
a3,0 a3,_1 nas a3’1_p a3,_p

atlo s at’_l atll_p) Result Bit

C1,0C1 -1 C11-p Dy
= HammingWeight(Colum_;)

37

Secure Comput
Bar-llan Univer

Grade School Addition '\Q

Bar-llan University

Dept. of Computer Science
=

Ci0 Ci-1 o Cy1p

di0 91,1 . d11p dyp

d0 92,1 . dp1p dyp

ds o ds3 1 a3,1_p a3,_p

Qo o1 e By A
b, | b,

C2,0C2,-1 -+ C2,2-p P1-p
= HammingWeight(Column,_,)

38

Secure Comput
Bar-llan Univer

Grade School Addition '\Q

Bar-llan University

Dept. of Computer Science

Coo Co -1
C1,0 Ci,-1 Ci,1-p
d d; _ d; {_ d; _ —
1,0 1,-1 1,1-p 1,-p Cp,Ob-l =
b JCPESEM - |G | fog HamWeight(Col_,)
d3o 93-1 . d31.p d3.p mod 4
At,-p
b‘p
Secure Computati 39
Bar-llan Universi

Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

Cp,0

» EXpress ¢;'s
as polynomials
in the a, ;’s

Small Detour: Elementary '\9
Symmetric Polynomials

» Binary Vector x = (x4, ..., X,)e{0,1}
» e,(x) = deg-k elementary symmetric polynomial
> Sum of all products of k bits (u-choose-k terms)

» Dynamic programming to evaluate in time O(ku)
o &(Xy... X)) = e (Xq.. X)X+ &(X;... %) (for i<])

Secure Computa

The Hamming Weight Ny

Bar-llan University
Dept. of Computer Science

Thm: For a vector x = (X;4, ..., X,)e{0,1}Y,
i’th bit of W=HW(X) is e,i(x) mod 2
- Observe ez(x) = (W choose 2/)
- Need to show: i’th bit of W=(W choose 2') mod 2

» Say 2k < W<2k+1 (bit k is MSB of W), show:
> For i<k, (W choose 2i)=(W-2k choose 2) mod 2
> For i=k, (W choose 2K)=(W-2k choose 25)+1 mod 2

» Then by induction over W
> Clearly holds for W=0

- By above, if holds for W-2k
then holds also for W

42

Secure ComputatiaRREuRNN
Bar-llan UniF:/e ;’\\\\\\\ 1
ISILy, |

The Hamming Weight Ny

WY 2 (w-2¢) 2
» Use identity | o :JZ; i |2 -] (*)

Dept. of Computer Science
> For r=0 or r=2k we have (2% choose r) = 1

> For 0<r<2k we have (2 choose r) = 0 mod 2

ooz | (2] -D @ -ran) T
r ri(r-21 1 r-1

than denominator
» i<k: The only nonzero term
in () is j=2!
» i=k: The only nonzero terms
in (*) are j=0 and j=2k

43

Secure Comput,, 13 C Effici
Bar-llan University

Back to Grade School Addition '\Q

Bar-llan University

C Dept. of Computer Science
4,0
C Cs.
3,0 31 ’ Carry Bits
Coo Co -1 Ca -2
Ci0 Ci-1 Ci-2 Ci,-3 ,
di,0 a1 dy,-2 a3 dj,-4
d2,0 dj,-1 d,-2 aj,-3 d3,-4 | Input Bits
dt,-1 dt,-2 dt,-3 dt,-4
4)
Goal:

compute the degree of
the polynomial b(a;;’s)
g J

44

Secure Comput
Bar-llan Univer

Back to Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

e6(...) egll..) el ey(..)
deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg=1.deg=1 deg=1 deg=1 deg=1

45

Secure Computation
Bar-llan University,

Back to Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

eg(...) e,(...) e,(...)

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg=1.deg=1 deg=1 deg=1 deg=1

46

Back to Grade School Addition "Q

Bar-llan University
Dept. of Computer Science

e,(...) e,(...)

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg=1.deg=1 deg=1 deg=1 deg=1

47

Back to Grade School Addition

e,(...)

g_(_ellence

s ’J
'éb })
=
¥ |
&

-

-

Bar-llan University
Dept. of Computer Science

deg=9 deg=7

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 1 deg=1 deg=1 deg=1 deg=1

48

Back to Grade School Addition

g_(_ellence

s ’:
'E? })
=
¥ |
&

-

-

Bar-llan University
Dept. of Computer Science

deg=15

deg=9 deg=7

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg(-) =16

Claim: with p bits of precision,

AN AR
Secure Computation and Ef

Bar-llan University,

49

deg(b(a;)) < 2P

Our Decryption Algorithm N

be{0,1} Dept of Computer Sciance
» Dec*_(c*)= LSB(c) ® LSB([[)INAY,]])
\a e [0,2]

allo all_l alll_p all_p
a9 ay.q . @y, Ay

' ' — — The a;'s in binary:
a ad d ad . .

3,0 3,-1 3,1-p 3,p each ga;;is either c; or 0
atlo ° at’_l atll_p at'_p)

» degree(b) = 2P
- We can only handle degree ~ n

- Need to work with low precision,
~log n

50

Lowering the Precision A

Bar-llan University
Dept. of Computer Science

» Parameters ensure “noise” < p/2
- For degree-2n polynomials with < 2n° terms (say)
- With |r|=n, need |p|~3n?

» What if we want a somewhat smaller noise?
- Say that we want the noise to be < p/2n

- Instead of |p|~3n?¢, set |p|~3n¢+log n
- Makes essentially no difference

Claim: c has noise < p/2n
& sparse subset size < n-1
= enough to keep precision
_of log n bits for the y;’s

Lowering the Precision N

Bar-llan University
Dept. of Computer Science

Claim: |S| £ n-1 & ¢/p within 1/2n from integer
= enough to keep log n bits for the y;’s

Proof: ¢; = rounding of y, to log n bits

© |(|)| - \|]|| <]/Zn 9 GI(I)I :{GI‘{II |f G,ZO

2|20, - ZoW,| < |S]/2n < (n-1)/2n
» Xo;¥;=c/p, within 1/2n of an integer

20,0, within 1/2n+(n-1)/2n=1/2
of the same integer

-> [[ZGi(I)i]] = [[ZGiLPi]] QED

52

Bootstrappable, at last N

Bar-llan University
Dept. of Computer Science

» Dec*(c*)= LSB(c) ® LSB(L 2, oy)

) a, € [0,2
a1,0 al,-l al,—log N i € [J]
as o as,-1 d2,-log n N
. 5 - > The a;'s in binary:
3,0 3,-1 >7109n [each a;is either o, or 0
a; o dt .4 At-logn__J

» degree(Dec’..(c)) < n
= degree(Mc,*c,*(c)) < 2n

2 _Our scheme can do this!!!

53

Secure Computation
! W\
Bar-llan University,

Putting Things Together Ny

Bar-llan University
Dept. of Computer Science

» Add to public key d,,d,, ..., d, € [0,2]

> 3 sparse S for which 2, _cd. = 1/p mod 2
» New secret key is (o,,...,0,), char. vector of S
» Also add to public key u;, = Enc(s), i=1,2,...,t
» Hopefully, scheme remains secure

> Security with d;’s relies on hardness of
“sparse subset sum”

- Same arguments of hardness as for
the approximate-GCD problem

> Security with u.’s relies on “circular
security” (just praying, really)

54

Secure Comput:
Bar-llan Unive

Computing on Ciphertexts Ny

Bar-llan University
Dept. of Computer Science

» To “multiply” c,, ¢, (both with noise < p/2n)
> Evaluate Mc,,c,(*) on the ciphertexts u,,u,,...,u,
> This is a degree-2n polynomial
- Result is new ¢, with noise <p/2n
- Can keep computing on it
» Same thing for “adding” ¢, ¢,
» Can evaluate any function

55

Secure Comput,, 13 C Effici
Bar-llan University

Ciphertext Distribution A

Bar-llan University
Dept. of Computer Science

» May want evaluated ciphertexts to have the
same distribution as freshly encrypted ones

> Currently they have more noise

» To do this, add n more bits to p
- “Raw evaluated ciphertext” have noise < p/2"

» After encryption/evaluation, add noise ~ p/2n
- Note: DOES NOT more noise to Enc(c) in public key

» Evaluated, fresh ciphertexts
now have the same noise

- Can show that distributions are
statistically close

56

Secure Comp o]
Bar-llan Unive

Conclusions N

Bar-llan University
Dept. of Computer Science

» Constructed a fully-homomorphic (public
key) encryption scheme

» Underlying somewhat-homomorphic scheme
relies on hardness of approximate-GCD

» Resulting scheme relies also on hardness
of sparse-subset-sum and circular security

» Ciphertext size is ~ n> bits

» Public key has ~ n'0 bits

57

Secure Compt {\\‘\\\\j 3
Bar-llan University, Is

