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 Storing an encrypted file F on a remote server 

 Later send keyword w to server, get answer, 
determine whether F contains w 

◦ Trivially: server returns the entire encrypted file 

◦ We want: answer length independent of |F| 

Claim: to do this, sufficient to evaluate  
low-degree polynomials on encrypted data 

◦ degree ~ security parameter 
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 File is encrypted bit by bit, E(F1) E(F2) … E(Ft) 

 Word has s bits w1w2…ws  

 For i=1,2,…,t-s+1, server computes the bit 
ci = 

◦ ci=1 if w appears at position i, else ci=0 

◦ Each ci is a degree-s polynomial in the Fi‟s 

 Trick from [Smolansky‟93] to get degree-n polynomials, 
error-probability 2-n 

 Return n random subset-sums 
of the ci‟s (mod 2) to client 
◦ Still degree-n, another 2-n error 
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 Want an encryption scheme (Gen, Enc, Dec) 
◦ Say, symmetric bit-by-bit encryption 

◦ Semantically secure, E(0)E(1) 

 Another procedure: Eval(f, C1,…Ct) 
◦ f  is a binary polynomial in t variables, degreen 

 Represented as arithmetic circuit 

◦ The Ci‟s are ciphertexts 

 For any such f, and any Ci=Enc(xi) it holds that 
Dec( Eval(f, C1,…Ct) ) = f(x1,…,xt) 
◦ Also |Eval(f,…)| does not depend 

on the “size” of f (i.e., # of vars 
or # of monomials, circuit-size) 

◦ That‟s called “compactness” 
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 Shared secret key: odd number p 

 To encrypt a bit m: 

◦ Choose at random small r, large q 

◦ Output c = pq + 2r + m 

 Ciphertext is close to a multiple of p 

 m = LSB of distance to nearest multiple of p  

 To decrypt c: 
◦ Output m = (c mod p) mod 2 

 =   c – p • [[c/p]] mod 2 
 =   c – [[c/p]] mod 2  
   =   LSB(c)  XOR  LSB([[c/p]]) 
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[[c/p]] is rounding 
of the rational c/p 
to nearest integer 

Noise much 
smaller than p 

The “noise” 
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 Basically because: 

◦ If you add or multiply two near-multiples  
of p, you get another near multiple of p… 
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 c1=q1p+2r1+m1,   c2=q2p+2r2+m2 

 c1+c2 = (q1+q2)p + 2(r1+r2) + (m1+m2) 

◦ 2(r1+r2)+(m1+m2) still much smaller than p 

c1+c2 mod p = 2(r1+r2) + (m1+m2) 

 c1 x c2 = (c1q2+q1c2q1q2)p  
      + 2(2r1r2+r1m2+m1r2) + m1m2 

◦ 2(2r1r2+…) still smaller than p 

c1xc2 mod p = 2(2r1r2+…)+m1m2 

Distance to nearest multiple of p 
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 c1=q1p+2r1+m1, …, ct=qtp+2rt+mt 

 Let f be a multivariate poly with integer 
coefficients (sequence of +‟s and x‟s) 

 Let c = Eval(f, c1, …, ct) = f(c1, …, ct) 

◦ f(c1, …, ct) = f(m1+2r1, …, mt+2rt)  + qp 
      = f(m1, …, mt)     + 2r    + qp 

 (c mod p) mod 2 = f(m1, …, mt) 

Suppose this noise is much smaller than p 

That‟s what we want! 
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 Can keep adding and multiplying until the  
“noise term” grows larger than p/2 

◦ Noise doubles on addition, squares on multiplication 

◦ Multiplying d ciphertexts  noise of size ~2dn 

 We choose r ~ 2n, p ~ 2n   (and q ~ 2n ) 

◦ Can compute polynomials of degree ~n before  
the noise grows too large 
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 Ciphertext size grows with degree of f 

◦ Also (slowly) with # of terms 

 Publish one “noiseless integer”, N = pq 

◦ In the symmetric setting, include N with the  
secret key and with every ciphertext 

◦ For technical reasons: q is odd, the qi‟s for 
encryption are chosen from [q] rather than [2n ] 

 Ciphertext arithmetic mod N 

 Ciphertext-size remains  
    always the same 
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Rothblum‟11:  Any homomorphic and compact 
symmetric encryption (wrt class C  including 
linear functions), can be turned into public key 
◦ Still homomorphic and compact wrt essentially the 

same class of functions C 

 Public key: N random bits r=(r1…rN) and their 
symmetric encryption ci=Encsk(ri) 
◦ N larger than size of evaluated ciphertext 

 NewEncpk (b): Choose random s 
s.t. <s,r>=b,  use Eval to get  
c*=Encsk (<s,r>) 
◦ Note that s  c* is shrinking 
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 The approximate-GCD problem: 

◦ Input: integers w0, w1,…, wt,  

 Chosen as w0=q0p, wi=qip + ri (p and q0 are odd) 

 p$[0,P], qi$[0,Q], ri$[0,R] (with R << P << Q) 

◦ Task: find p 

 Thm: If we can distinguish Enc(0)/Enc(1) for 
some p, then we can find that p 

◦ Roughly: the LSB of ri is a “hard core bit” 

 If approx-GCD is hard then 
scheme is secure 

 (Later: Is approx-GCD hard?) 
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A. The approximate-GCD problem: 

◦ Input: w0=q0p, {wi=qip+ri} 

 p$[0,P], qi$[0,Q], ri$[0,R] (with R << P << Q) 

◦ Task: find p 

B. The cryptosystem 

◦ Input: : N=q0p, {cj=qjp+rj, LSB(rj)}, c=qp+2r+m 

 p$[0,P], qi$[0,Q], ri$[0,R‟] (with R‟ << P << Q) 

◦ Task: distinguish m=0 from m=1 

Thm: Solving B  solving A 

◦ small caveat: R smaller than R‟ 
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 Input: w0=q0p, {wi = qip + ri} 

 Use the wi‟s to form the cj‟s and c 

◦ This is where we need R‟>R 

 Amplify the distinguishing advantage 

◦ From any noticeable e to almost 1 

 Use reliable distinguisher to learn q0 

◦ Using the binary GCD procedure 

 Finally p = w0/q0 
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 We have wi=qip+ri, need xj=qj‟p+2rj‟  

◦ Then we can add the LSBs to get cj = xj + mj 

 Set N=w0,  xj=2(subsetSum{wi }+rj) mod N 

◦ The rj‟s are random < R‟  

 Correctness: 

◦ SubsetSum{ri}+rj distributed almost identically to rj 

 Since R‟>R by a super-polynomial factor 

◦ 2SubsetSum{qi} mod q0 is  
almost random in [q0] 
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 Given any  integer z=qp+r, with r<R: 
Set c = [z+ m+2(r + subsetSum{wi})] mod N 

◦ For random r<R‟,  random bit m 

 c is nearly a random ciphertext for m+LSB(r) 
◦ Same reason as for the cj‟s 

 c mod p mod 2 = r+m mod 2 

◦ A guess for c mod p mod 2  vote for r mod 2 

 Choose many random c‟s,  

take majority 

Noticeable advantage  
Reliably computing r mod 2 
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z = (2s)p + r  
 z/2=sp+r/2 
 floor(z/2) = 
   sp+floor(r/2) 

 From any  z=qp+r (r<R‟) can get r mod 2 

◦ Note: z = q+r mod 2 (since p is odd) 

◦ So (q mod 2) = (r mod 2)  (z mod 2) 

 Given z1, z2, both near multiples of p 

◦ Get bi := qi mod 2,  if z1<z2 swap them 

◦ If b1=b2=1, set z1:=z1z2, b1:=b1b2 

 At least one of the bi‟s must be zero now 

◦ For any bi=0 set zi := floor(zi/2) 

 new-qi = old-qi/2 

◦ Repeat until one zi is zero,  
output the other 
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The odd part 
of the GCD 

 zi=qip+ri, i=1,2,  z‟:=OurBinaryGCD(z1,z2) 

◦ Then z‟ = GCD*(q1,q2)·p + r‟ 

◦ For random q,q‟, Pr[GCD(q,q‟)=1] ~ 0.6 

 Try (say) z‟:= OurBinaryGCD(w0,w1) 

◦ Hope that z‟=1·p+r  

 Else try again with OurBinaryGCD(z‟,w2), etc. 

 Then run OurBinaryGCD(w0,z‟) 

◦ The b1 bits spell out the bits of q0 

 Once you learn q0, p=w0/q0 
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 Several lattice-based approaches for solving 
approximate-GCD 

◦ Approximate-GCD is related to Simultaneous 
Diophantine Approximation (SDA) 

◦ Studied in [Hawgrave-Graham01] 

 We considered some extensions of his attacks 

 All run out of steam when |qi|>|p|2 

◦ In our case |p|~n2, |qi|~n5 >> |p|2 
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 w0 = q0p, wi = qip + ri  (ri << p << qi) 

◦ yi = wi/w0 = (qip + ri)/q0p = (qi+ei)/q0 

 ei  = ri/p << 1 

◦ y1, y2, … is an instance of SDA 

 q0 is a denominator that approximates all yi‟s 

 Try to use Lagarias‟es algorithm to solve 

◦ Find q0, then p=w0/q0 

Secure Computation and Efficiency 

Bar-Ilan University, Israel     2011 

21 



Bar-Ilan University 
Dept. of Computer Science 

 Consider the rows of this matrix B: 

◦ They span dim-(t+1) lattice 

 (q0,q1,…,qt)  B is short 

◦ 1st entry: q0R < Q·R 

◦ ith entry (i>1): q0(qip+ri)-qi(q0p)=q0ri 

 Less than Q·R in absolute value 

 Total size less than Q·R·t 

 vs. size ~Q·P (or more) for basis vectors 

 Hopefully we can find it with  
a lattice-reduction algorithm  
(LLL or variants) 

R w1 w2 … wt 
  -w0 
      -w0 
        … 
   -w0 

B= 
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 Is (q0,q1,…,qt)  B  the shortest in the lattice? 

◦ Is it shorter than t·det(B)1/t+1 ? 

 det(B) is small-ish (due to R in the corner) 

◦ Need ((QP)tR)1/t+1 > QR 

 t+1 > (log Q + log P – log R) / (log P – log R) 
      ~ log Q/log P 

 log Q = w(log2P)  need t=w(log P) 

 Quality of LLL & co. degrades with t 

◦ Find vectors of size ~ 2et·shortest 

◦ t=w(log P)  2et·QR > det(B)1/t+1 

◦ Contemporary lattice reduction 
                       not strong enough 

Minkowski bound 

R w1 w2…wt 
  -w0 
      -w0 
    … 
           -w0 
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auxiliary solutions 
(Minkowski‟s bound) 
converges to ~ logQ+logP 

What LLL can find 
min(blue,purple)+et 

blue line 
remains above 
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 A Simple Scheme that supports computing 
low-degree polynomials on encrypted data 

◦ Any fixed polynomial degree can be done 

◦ To get degree-d, ciphertext size must be w(nd2) 

 Already can be used in applications 

◦ E.g., the keyword-match example 

 

 Next we turn it into a 
fully-homomorphic scheme 
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 So far, can evaluate low-degree polynomials 

f(x1, x2 ,…, xt) 

f 

… 

x2 

xt 

x1 
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 So far, can evaluate low-degree polynomials 
 
 
 
 

 Can eval y=f(x1,x2…,xn) when xi‟s are “fresh” 

 But y is “evaluated ciphertext” 

◦ Can still be decrypted 

◦ But eval Q(y) has too much noise 

f 
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f(x1, x2 ,…, xt) 
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 So far, can evaluate low-degree polynomials 

 

 

 

 Bootstrapping to handle higher degrees: 

 For a ciphertext c, consider Dc(sk) = Decsk(c) 
◦ Hope: Dc(*) has a low degree in sk 

◦ Then so are 
        Ac1,c2(sk) = Decsk(c1) + Decsk(c2) 
and  Mc1,c2(sk) = Decsk(c1) x Decsk(c2) 

f 
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Mc1,c2 sk1 

sk2 

skn 

… 

 Include in the public key also Encpk(sk) 

 

 

 

 

 

 

 Homomorphic computation  
applied only to the “fresh”  
             encryption of sk 

 

sk1 

sk2 

skn 

… 

x1 x2 

c1 c2 

Mc1,c2(sk) 

= Decsk(c1) x Decsk(c2) = x1 x x2 

c 

Requires 

“circular 
security” 
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 Fix a scheme (Gen, Enc, Dec, Eval)  

 For a class F  of functions , denote 
◦ CF = { Eval(f, c1,…,ct) : f  F, ci  Enc(0/1) } 

◦ Encrypt some t bits and evaluate on them some fF 

 Scheme bootstrappable  if exists F  for which: 
◦ Eval “works” for F 

  f  F, ci  Enc(xi), Dec( Eval(f,c1,…,ct) ) = f(x1,…,xt) 

◦ Decryption + add/mult in F 

  c1,c2CF , Ac1,c2(sk), Mc1,c2(sk)  F 

Thm: Circular secure  
          & Boostrappable  
 Homomorphic for any func. 
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c/p, rounded to 
nearest integer 

 Decp(c) = LSB(c)  LSB([[c/p]]) 

◦ We have |c|~n5, |p|~n2 

 

 Naïvely computing [[c/p]]  takes degree >n5 

 Our scheme only supports degree ~ n 

 Need to “squash the decryption circuit”  
in order to get a bootstrappable scheme 

◦ Similar techniques to [Gentry 09] 
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 Add to public key another “hint” about sk 

◦ Hint should not break secrecy of encryption 

 With hint, ciphertext can be publically 
post-processed, leaving less work for Dec 

 Idea is used in server-aided cryptography. 

Old 
decryption 
algorithm 

m 

c sk 

Dec 
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Old 
decryption 
algorithm 

m 

c sk 

Dec 

c f(sk, r) 

Public 
Post-
Processing 

sk* 

m 

Dec* 

c* 

Processed 
ciphertext 

New 
approach 

The hint 
about sk in 
public key 

Hint in pub key lets 
anyone post-process 
the ciphertext, leaving 
less work for Dec* 
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 Old secret key is the integer p 

 Add to public key many “real numbers” 
◦ d1,d2, …, dt  [0,2] (with precision of ~|c| bits) 

◦  sparse S for which SiS di = 1/p mod 2 

 Post Processing: yi=c x di mod 2, i=1,…,t 
◦ New ciphertext is c* = (c, y1, y2,…, yi) 

 New secret key is char. vector of S (s1,…,st) 
◦ si=1 if iS, si=0 otherwise 

◦ c/p = c x(S sidi)= S siYi mod 2 
 

 Dec*(c*) = c – [[Si siYi]] mod 2 
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 Dec*s(c*)= LSB(c)  LSB([[ Si siyi ]]) 

 

 

 

 

 

 
 

 Grade-school addition 

◦ What is the degree of b(s1,…,st)?
 

The ai„s in binary:  
each ai,j is either si or 0 

ai  [0,2] 

b{0,1} 

a1,0 a1,-1 …  a1,1-p a1,-p 

a2,0 a2,-1 …  a2,1-p a2,-p 

a3,0 a3,-1 …  a3,1-p a3,-p 

… … …  … 

at,0 at,-1 …  at,1-p at,-p 

b 
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c1,0 c1,-1 … c1,1-p 

a1,0 a1,-1 …  a1,1-p a1,-p 

a2,0 a2,-1 …  a2,1-p a2,-p 

a3,0 a3,-1 …  a3,1-p a3,-p 

… … …  … 

at,0 at,-1 …  at,1-p at,-p 

Carry Bits 

b-p 

Result Bit 

c1,0c1,-1 … c1,1-p b-p 

= HammingWeight(Colum-p) 

   mod 2p+1 
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c2,0 c2,-1 … 

c1,0 c1,-1 … c1,1-p 

a1,0 a1,-1 …  a1,1-p a1,-p 

a2,0 a2,-1 …  a2,1-p a2,-p 

a3,0 a3,-1 …  a3,1-p a3,-p 

… … …  … 

at,0 at,-1 …  at,1-p at,-p 

b-p b1-p 

c2,0c2,-1 … c2,2-p b1-p  

= HammingWeight(Column1-p)  

   mod 2p 
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cp,0 

… … 

c2,0 c2,-1 … 

c1,0 c1,-1 … c1,1-p 

a1,0 a1,-1 …  a1,1-p a1,-p 

a2,0 a2,-1 …  a2,1-p a2,-p 

a3,0 a3,-1 …  a3,1-p a3,-p 

… … …  … 

at,0 at,-1 …  at,1-p at,-p 

b-p b1-p b-1 
… 

cp,0b-1 = 

  HamWeight(Col-1)  

  mod 4 
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cp,0 

… … 

c2,0 c2,-1 … 

c1,0 c1,-1 … c1,1-p 

a1,0 a1,-1 …  a1,1-p a1,-p 

a2,0 a2,-1 …  a2,1-p a2,-p 

a3,0 a3,-1 …  a3,1-p a3,-p 

… … …  … 

at,0 at,-1 …  at,1-p at,-p 

b-p b1-p b-1 
… b 

 Express ci,j’s 
as polynomials 
in the ai,j’s 
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 Binary Vector x = (x1, …, xu){0,1}u 

 ek(x) = deg-k elementary symmetric polynomial 

◦ Sum of all products of k bits  (u-choose-k terms) 

 Dynamic programming to evaluate in time O(ku) 

◦ ei(x1…xj) = ei-1(x1…xj-1)xi + ei(x1…xj-1)  (for ij) 

Secure Computation and Efficiency 
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    L x1 x1,x2 … x1…xu-1 x1…xu 

e0 1 1 1 1 1 

e1 0 

… ei(x1…xj) 

ek 0 
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Thm: For a vector x = (x1, …, xu){0,1}u,  
i‟th bit of W=HW(x) is e2i(x) mod 2 

◦ Observe e2i(x) = (W choose 2i) 

◦ Need to show: i‟th bit of W=(W choose 2i) mod 2 

 Say 2k  W<2k+1 (bit k is MSB of W), show: 

◦ For i<k, (W choose 2i)=(W–2k choose 2i)      mod 2 

◦ For i=k, (W choose 2k)=(W–2k choose 2k)+1 mod 2 

 Then by induction over W 

◦ Clearly holds for W=0 

◦ By above, if holds for W-2k  
           then holds also for W 
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 Use identity           (*) 

◦ For r=0 or r=2k we have (2k choose r) = 1 

◦ For 0<r<2k we have (2k choose r) = 0 mod 2 

 

 

 i<k: The only  nonzero term 
       in (*) is j=2i  

 i=k: The only nonzero terms 
   in (*) are j=0 and j=2k 
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c3,0 c3,-1   

c2,0 c2,-1 c2,-2  

c1,0 c1,-1 c1,-2  c1,-3 

a1,0 a1,-1 a1,-2  a1,-3 a1,-4 

a2,0 a2,-1 a2,-2 a2,-3 a2,-4 

… … …  … … 

at,0 at,-1 at,-2 at,-3 at,-4 

b 
Goal: 
compute the degree of 
the polynomial b(ai,j‟s) 

Carry Bits 

Input Bits 
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deg=1 deg=1 deg=1  deg=1 deg=1 

deg=1 deg=1 deg=1 deg=1 deg=1 

… … …  … … 

deg=1 deg=1 deg=1 deg=1 deg=1 

e16(…)      e8(…)   e4(…)      e2(…) 
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deg=16 deg=8 deg=4 deg=2 

deg=1 deg=1 deg=1  deg=1 deg=1 

deg=1 deg=1 deg=1 deg=1 deg=1 

… … …  … … 

deg=1 deg=1 deg=1 deg=1 deg=1 

e8(…)       e4(…)   e2(…) 
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deg=9 deg=5 deg=3 

deg=16 deg=8 deg=4 deg=2 

deg=1 deg=1 deg=1  deg=1 deg=1 

deg=1 deg=1 deg=1 deg=1 deg=1 

… … …  … … 

deg=1 deg=1 deg=1 deg=1 deg=1 

e4(…)       e2(…)  
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deg=9 deg=7 

deg=9 deg=5 deg=3 

deg=16 deg=8 deg=4 deg=2 

deg=1 deg=1 deg=1  deg=1 deg=1 

deg=1 deg=1 deg=1 deg=1 deg=1 

… … …  … … 

deg=1 deg=1 deg=1 deg=1 deg=1 

e2(…)   
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deg=9 deg=7 

deg=9 deg=5 deg=3 

deg=16 deg=8 deg=4 deg=2 

deg=1 deg=1 deg=1  deg=1 deg=1 

deg=1 deg=1 deg=1 deg=1 deg=1 

… … …  … … 

deg=1 deg=1 deg=1 deg=1 deg=1 

b deg(  ) = 16 

Claim: with p bits of precision, 
    deg( b(ai,j) )  2p 
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 Dec*s(c*)= LSB(c)  LSB([[ Si siyi ]]) 

 

 

 

 

 

 degree(b) = 2p 

◦ We can only handle degree ~ n 

◦ Need to work with low precision, 
       p ~ log n 

The ai„s in binary:  
each ai,j is either si or 0 

ai  [0,2] 

b{0,1} 

a1,0 a1,-1 …  a1,1-p a1,-p 

a2,0 a2,-1 …  a2,1-p a2,-p 

a3,0 a3,-1 …  a3,1-p a3,-p 

… … …  … 

at,0 at,-1 …  at,1-p at,-p 

b 
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 Parameters ensure “noise” < p/2 

◦ For degree-2n polynomials with < 2n   terms (say) 

◦ With |r|=n, need |p|~3n2 

 What if we want a somewhat smaller noise? 

◦ Say that we want the noise to be < p/2n 

◦ Instead of |p|~3n2, set |p|~3n2+log n 

 Makes essentially no difference 

Claim: c has noise < p/2n 
    & sparse subset size  n-1 
 enough to keep precision  
    of log n bits for the yi‟s 
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Claim: |S|  n-1 & c/p within 1/2n from integer 
 enough to keep log n bits for the yi‟s 

Proof: fi = rounding of yi to log n bits  

◦ |fi - yi|  1/2n  sifi =   siYi       if si0 

            siYi  1/2n  if si1 

|Ssifi - SsiYi|  |S|/2n  (n-1)/2n 

 SsiYi=c/p, within 1/2n of an integer 

Ssifi within 1/2n+(n-1)/2n=1/2 
of the same integer 

 [[Ssifi]] = [[SsiYi]]               QED 
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 Dec*s(c*)= LSB(c)  LSB([[ Si sifi ]]) 

 

 

 

 

 

 

 degree( Dec*
c*(s) )  n 

 degree( Mc1*c2*(s) )  2n 

 Our scheme can do this!!! 

a1,0 a1,-1 …  a1,-log n 

a2,0 a2,-1 …  a2,-log n 

a3,0 a3,-1 …  a3,-log n 

… … …  … 

at,0 at,-1 …  at,-log n 

The ai„s in binary:  
each ai,j is either si or 0 

ai  [0,2] 

b 
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 Add to public key  d1,d2, …, dt  [0,2]  
◦  sparse S for which SiS di = 1/p mod 2 

  New secret key is (s1,…,st), char. vector of S  

 Also add to public key ui = Enc(si), i=1,2,…,t 

 Hopefully, scheme remains secure 

◦ Security with di‟s relies on hardness of  
“sparse subset sum” 

 Same arguments of hardness as for 
the approximate-GCD problem 

◦ Security with ui‟s relies on “circular  
security” (just praying, really) 
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 To “multiply” c1, c2 (both with noise < p/2n) 
◦ Evaluate Mc1,c2(*) on the ciphertexts  u1,u2,…,ut  

◦ This is a degree-2n polynomial 

◦ Result is new c, with noise <p/2n 

◦ Can keep computing on it 

 Same thing for “adding” c1, c2  

 Can evaluate any function 
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 May want evaluated ciphertexts to have the 
same distribution as freshly encrypted ones  
◦ Currently they have more noise 

 To do this, add n more bits to p 
◦ “Raw evaluated ciphertext” have noise < p/2n 

 After encryption/evaluation, add noise ~ p/2n 
◦ Note: DOES NOT more noise to Enc(s) in public key  

 Evaluated, fresh ciphertexts  
now have the same noise 
◦ Can show that distributions are 

   statistically close 
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 Constructed a fully-homomorphic (public 
key) encryption scheme 

 Underlying somewhat-homomorphic scheme 
relies on hardness of approximate-GCD 

 Resulting scheme relies also on hardness  
of sparse-subset-sum and circular security 

 Ciphertext size is ~ n5 bits 

 Public key has ~ n10 bits 
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