

# Session 8: Constructions for Specific Functions of Interest

Benny Pinkas
Bar Ilan University

#### Correction



#### Extending OT [IKNP]

- Is fully simulatable
- Depends on a non-standard security assumption "correlation robust" functions
  - Modern hash families should have this property
- Security against malicious adversaries is based on the "cut and choose" approach
  - Increases the overhead by a factor of s to reduce cheating probability to 2<sup>-s</sup>.

### How efficient is Yao's protocol?



- Example: the millionaires problem comparing two N bit numbers
- What's the overhead?
  - Circuit size is linear in N
  - N oblivious transfers

## Other applications



- Two parties. Two large data sets.
- Example applications
  - Computing the Max?
  - Mean?
  - Median?
  - Intersection?

## How efficient is <u>generic</u> secure computation?



- If the circuit is not too large then generic secure two-party computation is efficient
- AES (key and plaintext are known to Alice and Bob, respectively) [PSSW09]
  - About 33,000 gates
  - 7/60/1114 sec for semi-honest/covert/malicious
- If the circuit is large: we currently need adhoc solutions.



# Secure Computation of the Median

G. Aggarwal, N. Mishra and B. Pinkas, *Secure Computation of the K'th-ranked Element*, Eurocrypt'04.

### kth-ranked element (e.g. median)



#### Inputs:

• Alice:  $S_A$  Bob:  $S_R$  Large sets of **unique** items ( $\in D$ ).

#### Output:

•  $x \in S_A \cup S_B$  s.t. x has k-1 elements smaller than it.

#### The median

$$\cdot k = (|S_A| + |S_R|) / 2$$

#### Motivation:

- Basic statistical analysis of distributed data.
- E.g., histogram of salaries.

#### Some information is always revealed



- The k<sup>th</sup>-ranked element reveals some information.
- Suppose  $S_A = X_1, ..., X_{1000}$  (sorted)
  - Median of  $S_A \cup S_B = x_{400}$
- Party A now learns that  $S_B$  contains at least 200 elements smaller than  $x_{400}$
- But she shouldn't learn more

### Using a generic solution...

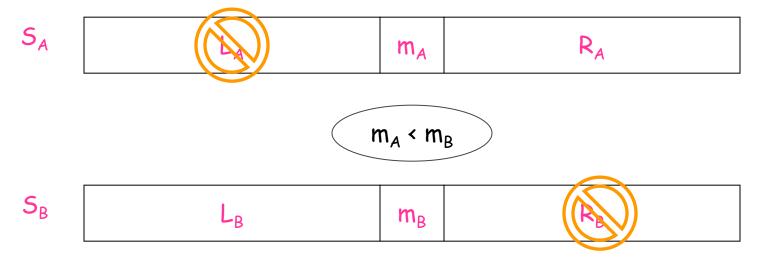


#### The Problem:

- The size of a circuit for computing the k<sup>th</sup> ranked element is at least linear in k.
- For the median, k is in the same order as the size of the inputs.
- Generic constructions using circuits [Yao,...] have communication complexity which is linear in the circuit size, and therefore in k.

## An (insecure) two-party median protocol





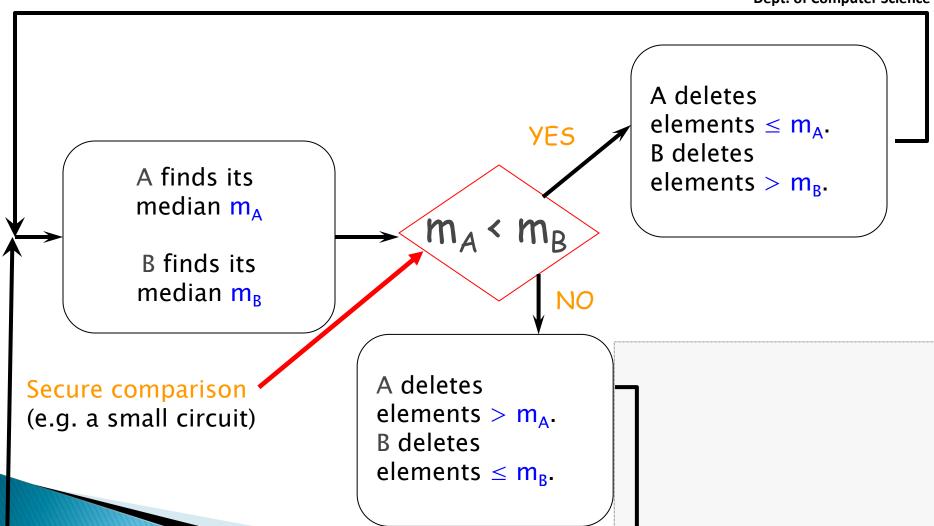
 $L_A$  lies below the median,  $R_B$  lies above the median.  $|L_A| = |R_B|$ 

New median is same as original median!

Recursion → Need log n rounds (assume each set contains n=2<sup>i</sup> items)

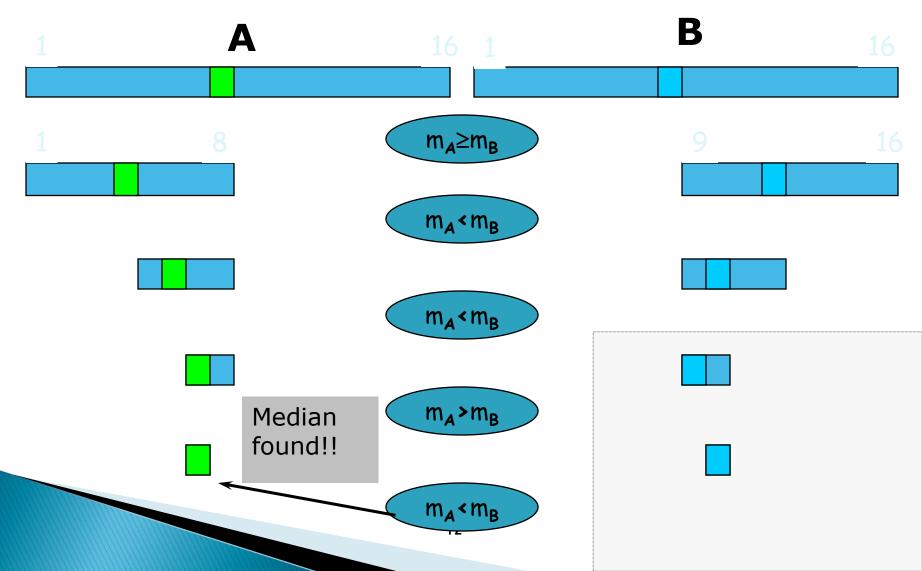
#### A Secure two-party median protocol



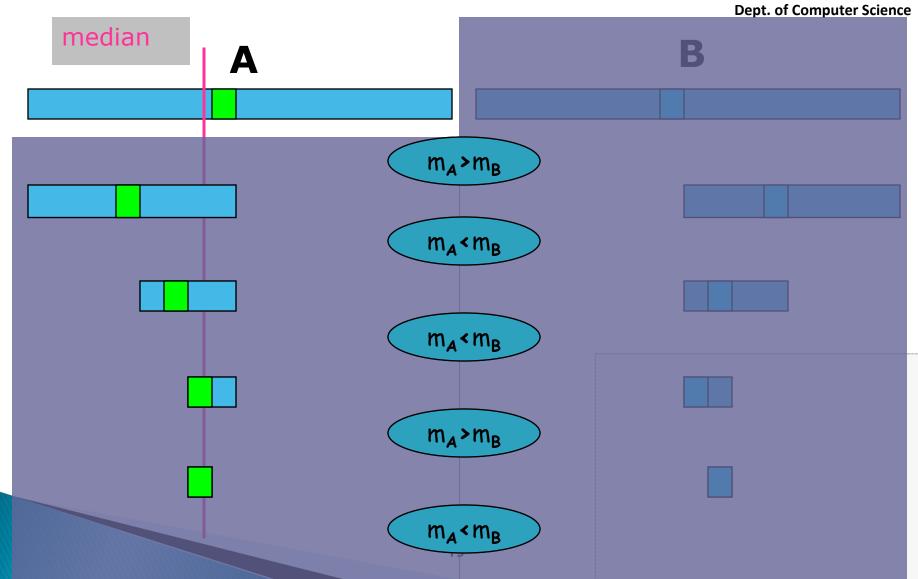


## An example







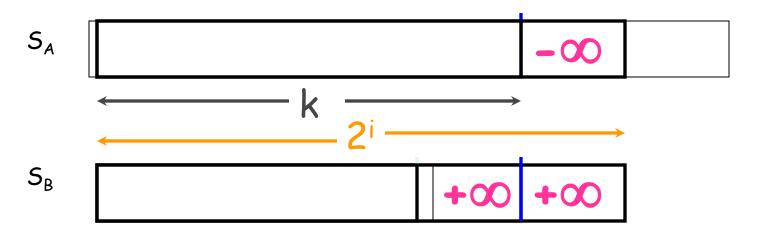




- This is a proof of security for the case of semi-honest adversaries.
- Security for malicious adversaries is more complex.
  - The protocol must be changed to ensure that the parties' answers are consistent with some input.
  - Also, the comparison of the medians must be done by a protocol secure against malicious adversaries.

### Arbitrary input size, arbitrary k





Now, compute the median of two sets of size k.

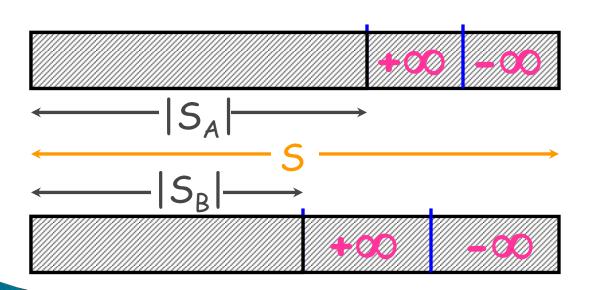
Size should be a power of 2.

median of new inputs  $= k^{th}$  element of original inputs

## Hiding size of inputs



- Can search for k<sup>th</sup> element without revealing size of input sets.
- ▶ However, k=n/2 (median) reveals input size.
- Solution: Let  $S=2^i$  be a bound on input size.



Median of new datasets is same as median of original datasets

## A Protocol secure against malicious adversaries



- The parties can choose arbitrary inputs to the comparisons.
- For example,
  - In Step 1 claim that  $m_A=100$ , and be told that  $m_A < m_R$  (therefore A must remove all items  $\le mA$ ).
  - In step 2 claim that  $m_A = 10...$
- We change the protocol so that even if input values are chosen adaptively during the protocol, they correspond to a valid input that can be sent to the TTP.

#### Protocol secure against malicious adversaries



#### The modified protocol:

- Initialize bounds  $L_A = L_B = -\infty$ ,  $U_A = U_B = \infty$ .
- Each comparison protocol must be secure against malicious parties and verify that
  - $L_{\Delta} < m_{\Delta} < U_{\Delta}$
  - $L_R < m_R < U_R$
- If the verification succeeds, then
  - If  $m_A \ge m_B$  then set  $U_A = m_A$  and  $L_B = m_B$
  - Otherwise set  $L_A = m_A$  and  $U_R = m_R$

The bounds ensure that  $m_A$  and  $m_R$  are consistent with previous inputs



#### Implementing the secure computation

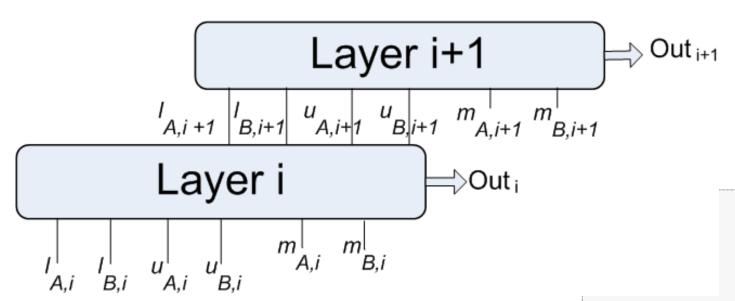


- The bounds  $L_A, L_B, U_A, U_B$  must not be revealed to any party, but rather be internal values of the secure computation.
- The secure computation is run in phases, where each phase must pass updated values of  $L_A, L_B, U_A, U_B$  to the next phase.
- Can be implemented using reactive computation
- Or, in a simpler way...

#### Implementing the secure computation



- The circuit is composed of layers.
- Each layer provides an external output, and has internal wires going into the next layer.



## Implementing reactive computation



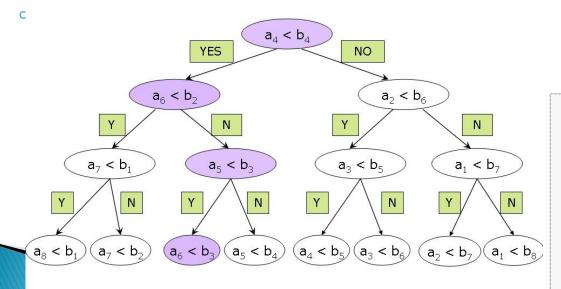
- In each layer
  - provide A with
    - Shares of L<sub>A</sub>,U<sub>A</sub>,L<sub>B</sub>,U<sub>B</sub>
    - MACs of B's shares of these values
  - provide B with
    - Shares of L<sub>A</sub>,U<sub>A</sub>,L<sub>B</sub>,U<sub>B</sub>
    - MACs of A's shares of these values

#### In the next level

- A and B inputs these values.
- The circuit checks the MACs, and reconstructs L<sub>A</sub>,U<sub>A</sub>,L<sub>B</sub>,U<sub>B</sub> from shares.

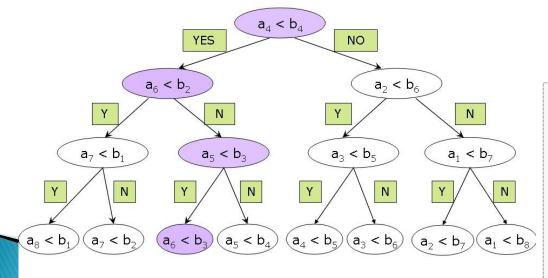


- Must show that for every adversary A' in real model there is a simulator A'' in the ideal model, etc...
- The operation of A' in the real model can be visualized as following a path in a binary tree.



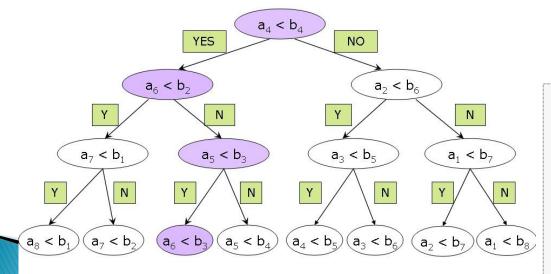


- If A' does not provide a legitimate input to a comparison (namely  $m_A \notin (L_A, U_A)$ ) then the simulator aborts.
- Assume that the random input of A' is known to the simulator, and therefore A' is deterministic.





- The simulator runs the protocol with A', rewinding over all execution paths in the tree.
- Learns the inputs of A' to all comparisons. The inputs to the leaves correspond to the sorted input of A'.
- The simulator sends this input to TTP. Based on the result, it simulates the real execution path with A'.



## The multi-party case



- Input: Party P<sub>i</sub> has set S<sub>i</sub>, i=1..n. (all values ∈[a,b], where a and b are known)
- Output:  $k^{th}$  element of  $S_1 \cup ... \cup S_n$
- Protocol (binary search): Set m = (b-a)/2. Repeat:
  - P<sub>i</sub> uses the following input for a secure computation:
    - $L_i = \#$  elements in  $S_i$  smaller than m.
    - $B_i = \#$  times m appears in  $S_i$ .
  - The following is computed securely:
    - If  $\Sigma L_i \ge k$ , set b=m, m=(m-a)/2, else
    - If  $\Sigma(L_i + B_i) \ge k$ , stop.  $k^{th}$  element is m.
    - Otherwise, set a=m, m = m+(b-m)/2.

#### Conclusion



- Efficient secure computation of the median.
  - Two-party: log k rounds \* O(log D)
  - Multi-party: log D rounds \* O(log D)
  - Very close to the communication complexity lower bound of log D bits.
- Malicious case is efficient too.
  - Do not use generic tools.
  - Instead, implement simple consistency checks.



# Private matching and set intersection

M. Freedman, K. Nissim and B. Pinkas, *Efficient Private Matching and Set Intersection*, Eurocrypt'04.

#### The Scenario







Input:

$$X = X_1 \dots X_n$$

 $Y = y_1 \dots y_n$ 

**Output:** 

$$X \cap Y$$
 only

nothing

- Shared interests (research, music)
- Credit rating
- Sharing intelligence between agencies (IARPA)
- Dating
- Genetic compatibility, etc

### Implementation by a circuit?



- Trivial circuit compares each (x<sub>i</sub>,y<sub>i</sub>) pair
  - O(n²) circuit size
- A more advanced circuit:
  - Sort the union of the two sets, using a sorting network.
  - If  $x_i = y_i$  these two values will become adjacent.
  - Scan and search for identical adjacent values
  - O(nlogn) circuit size (with huge constant [AKS])

## Basic tool: Additively homomorphic encryption



- Public key encryption, such that
  - Given E(x) it is possible to compute, without knowledge of the secret key, the value of  $E(c \cdot x)$ , for every c.
  - Given E(x) and E(y), it is possible to compute E(x+y).
- We will use the notation
  - $\circ$  E(x)  $\cdot$  E(y) = E(x+y)
  - $\circ$  E(x)<sup>c</sup> =E(c·x)
- Applications
  - Voting
  - Many cryptographic protocols, such as keyword search, oblivious transfer...

## Background on homomorphic encryption



- "Standard" public key encryption schemes support Homomorphic operations with relation to multiplication
  - RSA
    - Public key: N, e. Private key: d.
    - $E(m) = m^e \mod N$
    - $E(m_1) \cdot E(m_2) = E(m_1 \cdot m_2)$
  - El Gamal
    - Public key: p (or a similar group),  $y=g^x$ . Private key: x.
    - $E(m) = (g^r, y^r m)$
    - $E(m_1) \cdot E(m_2) = E(m_1 \cdot m_2)$

## Background on additively homomorphic encryption



#### Modified El Gamal

- $E(m) = (g^r, y^r g^m)$
- $E(m_1) \cdot E(m_2) = (g^r, y^r g^{m_1 + m_2}) = E(m_1 + m_2)$
- Decryption reveals g<sup>m</sup><sub>1</sub> + m<sub>2</sub>
- Computing  $m_1 + m_2$  is possible if  $m_1 + m_2$  is small

#### Paillier's cryptosystem

- Based on composite residuocity classes
- Works in the group  $Z^*_{n^2}$ , where n=pq.
- "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes", Pascal Paillier, Eurocrypt'99.

#### The protocol (semi-honest case)



Client (C) defines a polynomial of degree n whose roots are her inputs x<sub>1</sub>,...,x<sub>n</sub>

$$P(y) = (x_1-y)(x_2-y)...(x_k-y) = a_0 + a_1y + ... + a_ky^k$$

 C sends to server (S) homomorphic encryptions of polynomial's coefficients

$$Enc(a_0),..., Enc(a_k)$$

#### The protocol



#### Note that

- $Enc(P(y)) = Enc(a_0 + a_1 \cdot y^1 + ... + a_k \cdot y^k) =$  $Enc(a_0) \cdot Enc(a_1)^y \cdot Enc(a_2)^{y^2} \cdot ... \cdot Enc(a_k)^{y^k}$
- Therefore  $\forall y$ , server can compute Enc(P(y))
- The operation of the server
  - $\forall y_j$ , choose random  $r_j$  and compute  $Enc(r_j \cdot P(y_j) + y_j)$
  - This equals Enc(y<sub>j</sub>) if y<sub>j</sub> ∈ X, and is random otherwise.
  - S sends (permuted) results back to C
  - C decrypts and learns X∩Y

## Variants of the basic protocol



- The server computes  $Enc(r_j \cdot P(y_j) + 1)$ 
  - This equals Enc(1) if  $y_j \in X$ , and is random otherwise.
  - The client decrypts, counts the number of 1's and learns  $|X \cap Y|$ .
- A different variant enables to compute whether |intersection| > threshold.

## Security (semi-honest)



#### Client's privacy

- Server only sees semantically-secure enc's
- We can simulate server's view by sending it enc's of arbitrary values.

#### Server's privacy

- Client can simulate her view in the protocol, given the output  $X \cap Y$  alone:
  - Compute the enc's of items in X 
     Y and of random items, and receive them in random order.

## Efficiency



- Communication is O(n)
  - C sends n coefficients
  - S sends n evaluations of polynomial
- Computation
  - Client encrypts and decrypts n values
  - Server:
    - $\forall y \in Y$ , computes  $Enc(r \cdot P(y) + y)$ , using n exponentiations
    - Total of O(n²) exponentiations ⊗

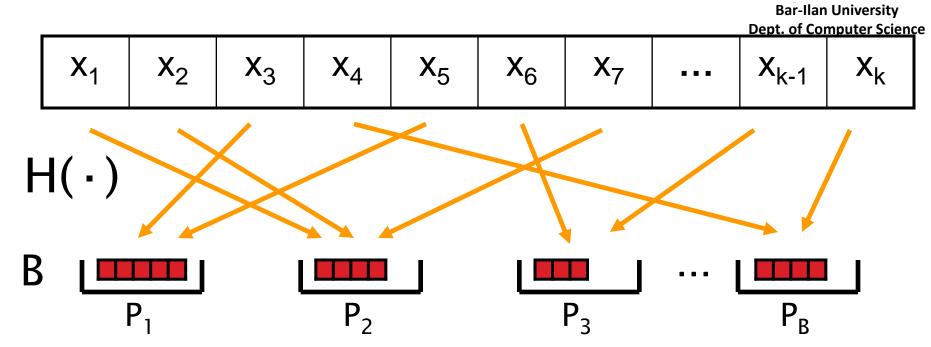
## Improving Efficiency (1)



- Inputs typically from a "small" domain of D values. Represented by logD bits (say, 20)
- Use Horner's rule to compute polynomial:
  - $P(y) = a_0 + y (a_1 + ... y (a_{n-1} + y a_n) ...)$  instead of  $P(y) = a_0 + a_1 y + a_{n-1} y^{n-1} + a_n y^n$
  - Now, exponents are only log D bits
  - Overhead of exponentiation is linear in |exponent|
- → Improvement by factor of |modulus|/log D, e.g., 1024/20≈50

### Improving Efficiency (2): Hashing





C uses  $H(\cdot)$  to hash inputs to B bins (H indep. of inputs) Let M bound max # of items in a bin.

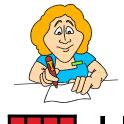
Client defines B polynomials of deg M.

Each poly encodes x's mapped to its bin.

#### Improving Efficiency (2): Hashing









$$\forall y \in Y, i \leftarrow H(y), r \leftarrow rand$$
  
Enc(  $r \cdot P_i(y) + y$ )

- C sends B polynomials and H to server.
- For every y, S computes H(y) and evaluates the corresponding poly (of degree M)

## Overhead with Hashing



- ▶ Communication: B·M
- Server:  $n \cdot M$  short exp's, n full exp's (P(y))  $(r \cdot P_i(y) + y)$
- How large should M be?
- Simple hashing:
  - If the number of bins is B=n, then M=O(logn)
  - Therefore
    - Communication O(nlogn)
    - Server computation O(nlogn)
  - Can do better...

## Overhead with Hashing



- Balanced allocations [ABKU]:
- $H=(h_1,h_2)$ : Choose two bins, map item y to the <u>less occupied</u> bin among  $h_1(y),h_2(y)$ .
- It was shown that for  $B = n/\ln \ln n$  the maximum bin size is M=O (ln ln n)
- Communication is BM=O(n)
- Server: n In In n short exp, n full exp. (in practice In In n≤5)
- Client must check results in two bins

## Overhead with Hashing



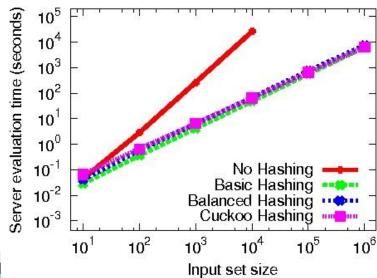
- Cuckoo hashing [Pagh-Rodler]
- Map n items to  $B\approx 2n$  bins of size M=1, or to a small stash (of size, say, 3).
- Each item y is found in either  $h_1(y)$  or  $h_2(y)$ , or in the stash.
  - Details of the construction are omitted
- Communication, and server work are only O(n)

#### Actual run times



- Asymptotic run time of server with random hashing/balanced allocations/Cuckoo hashing is nlogn/nloglogn/n, respectively.
- For n=10,000, actual run times were 48/69/65 seconds, respectively.

????????



#### Actual run times - what happened?



- Server computes E(r · P(y)+y)
- The overhead of multiplying by r is independent of the degree. It is also a <u>full</u> exponentiation.
  - Experiments showed the overhead of evaluating  $E(r \cdot P(y)+y)$  to be linear in d+6.5
- In the different methods S evaluates 1/2/3 polynomials, of degree logn/loglogn/O(1).
- Simple hashing is better since it evaluates a single polynomial.
- The other schemes are better only for larger values of n.