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 What is N? 
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 “Completeness theorems for non-cryptographic 
fault-tolerant distributed computation” 
◦ M. Ben-Or, S. Goldwasser, A. Wigderson, 1988. 

 
◦ Published concurrently with “Multiparty unconditionally 

secure protocols” Chaum, Crepau, Damgard. 

 
 Published after the results of Yao and GMW, with 

the motivation of obtaining results               
without any intractability                        
assumptions. 
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 “Completeness theorems for non-cryptographic 
fault-tolerant distributed computation” 
◦ M. Ben-Or, S. Goldwasser, A. Wigderson, 1988. 

 

 The setting 
◦ A complete synchronous network of n parties 

◦ Each party Pi has an input xi 

◦ Communication channels between parties are secure 

◦ The solution for the malicious case                      
requires a broadcast channel 
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 The function f(x1,…,xn) is represented by an 
arithmetic circuit over a field F (say, modulo a 
large prime) 
◦ Contains addition and multiplication gates in F 

◦ Can be more compact than a Boolean circuit 

◦ We need only care about deterministic 
functionalities:   

◦ A randomized functionality f(r; x1,…,xn) can be 
computed by each party providing                     
(ri,xi), and the circuit computing                          

and using r=r1…rn. 
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 The construction provides unconditional 
security 
◦ Against semi-honest adversaries controlling t<n/2 

parties 

◦ Against malicious adversaries controlling t<n/3 
parties 

 Unlike the GMW construction, which is based 
on cryptographic assumptions 
◦ oblivious transfer 

◦ ZK proofs 
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 t-out-of-n secret sharing  

 Given a secret s, provide shares to n parties, s.t. 
◦ Any t shares enable the reconstruction of the secret 
◦ Any t-1 shares reveal nothing about the secret  

 

 Consider 2-out-of-n secret sharing. 
◦ Define a line which intersects the  
 Y axis at S 
◦ The shares are points on the line 
◦ Any two shares define S 
◦ A single share reveals nothing 
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 Fact: Let F be a field. Any d+1 pairs (ai , bi ) 
define a unique polynomial P  of degree ≤ d, 
s.t. P(ai )=bi.  (assuming d < |F|). 

 

 Shamir’s secret sharing scheme: 
◦ The secret S is an element in a field (say, in Zp). 

◦ Define a polynomial P of degree t-1 by choosing 
random coefficients a1,…,at-1 and defining  

P(x) = at-1x
 t-1+…+a1x+S. 

◦ The share of party Pj is ( j, P(j) ). 
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 Reconstructing the secret: 
◦ Assume we have P(x1),…,P(xt ). 

◦ Use Lagrange interpolation to compute the unique 
polynomial of degree ≤ t-1 which agrees with these 
points. 

◦ Output the free coefficient of this polynomial.  

 

 Lagrange interpolation 
◦ P(x) = ∑i=1..t P(xi )·Li(x) 

◦ where Li(x)=∏j≠i(x-xj ) / ∏j≠i(xi-xj )   

   (Note that Li (xi )=1, Li (xj )=0 for  j≠i.) 
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 Perfect secrecy: Any t-1 shares give no information 
about the secret.        Pr(secret=s | P(1),…, P(t-1)) = 
Pr(secret=s).  

 Proof:  
◦ Intuition from 2-out-of-n secret sharing: 

◦ The polynomial is generated by choosing a random coefficient 
a  and defining P(x)= ax+s. 

◦ Suppose that the adversary knows the share P(1)=a1+s. 
 

◦ For any value of s, there is a one-to-one correspondence 
between a and P(1)  (a=P(1)-s).  

◦ Since a is uniformly distributed, so is P(1) 

 Therefore P(1) does not reveal any                           
information about s. 
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 Perfect secrecy: Any t-1 shares give no information 
about the secret. 

 Proved by showing that, even given S,  any t-1 shares are 
uniformly distributed.    

 Proof:  
◦ The polynomial is generated by choosing a random 

polynomial of degree t-1, subject to P(0)=S. 

 

◦ Suppose that the adversary knows the shares P(1),…,P(t-1). 

◦ The values of P(1),…,P(t-1) are defined                              
by an invertible set of t-1 linear equations                        
of a1,…,at-1, s. 

 P(i) = j=1,…,t-1 ( i ) 
j aj + s. 
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 Proof (cont.):  
◦ The values of P(1),…,P(t-1) are defined by an 

invertible set of t-1 linear equations of a1,…,at-1, s. 

 P(xi) =  j=1,…,t-1 ( i ) 
j aj + s. 

◦ For any possible value of s, there is a exactly one 
set of values of a1,…,at-1 which gives the values 
P(1),…,P(t-1). 

 This set of a1,…,at-1 can be found by solving a linear 
system of equations.  

◦ Since a1,…,at-1 are uniformly distributed,                
so are the values of P(x1),…,P(xt-1).  

 ⇒P(x1),…,P(xt-1) reveal nothing about s. 
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 Ideal size: 
◦ Each share is the same size as the secret. 

 

 Homomorphic property: 
◦ Suppose P(1),…,P(n) are shares of S, 

 and P’(1),…,P’(n) are shares of S’, 

 then P(1)+P’(1),… ,P(n)+P’(n) are shares of S+S’. 
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 Input sharing phase 

 Computation phase 

 Output reconstruction phase 

 

 Main idea: 
◦ for every wire, the parties will know a secret sharing 

of the value which passes through that wire. 
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 Let t<n/2  be a bound on the number of corrupt 
parties. 

 Each Pi generates a (t+1)-out-of-n sharing of its 
input xi. 
◦ Namely, chooses a polynomial fi() over F, s.t. fi(0)=xi 

◦ Any subset of t shares does not leak any information 
about xi 

◦ t+1 shares reveal xi 

 Pi sends to each Pj the value fi(j). 

 

 The protocol continues from the                              
input wires to the output wires. 
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 All parties participate in the computation of 
every gate 
◦ already know a sharing of its input wires 

◦ Must generate a sharing of the output wire 

 Addition gate: c = a+b 
◦ Must generate a polynomial fc() of degree t, which is 

random except for fc(0)=a+b. Each Pi learns fc(i). 

◦ Define fc(·) = fa(·)+fb(·) 

◦ Each Pi sets ci=ai+bi=fa(i)+fb(i)=fc(i) 

◦ No interaction is needed! 

 What about multiplication gates? 
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 Easier to describe than the protocol for 
multiplication gates 

 

 Output wires 
◦ If output wire yi must be learned by Pi, then all 

parties send it their shares of yi. 

◦ Pi reconstructs the secret and learns the output 
value. 
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 c = a·b.  First attempt: 
◦ Define fab(·) = fa(·)·fb(·). 
◦ Each Pi computes ai·bi = fa(i)·fb(i) = fab(i). 
◦ Indeed, fab(0) = a·b. 
◦ But the degree of fab is 2t, 

and fab is not a random polynomial. 

 Interpolation: 
◦ fab is of degree 2t<n, and fab(0) = a·b. 

◦ Therefore   coefficients r1,…,rn s.t.   
fab(0) = a·b = r1fab(1)+…rnfab(n) =                                      

r1·a1b1+…rn·anbn. 

◦ Each ri is easily computable. 
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 Each Pi 

◦ Has ai·bi 

◦ Creates a random polynomial gi(·) of degree t  s.t. 
gi(0)=ai·bi 

 Consider g(x)=i=1…nri·gi(x) 
◦ of degree t 

◦ g(0)=i=1…nri·gi(0) = i=1…n ri·aibi = a·b. 

◦ This is exactly the polynomial we need.  

◦ Must provide each Pi  with a                               
share of g(). 
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 Each Pi 

◦ Creates a random polynomial gi(·) of degree t s.t. 
gi(0)=ai·bi 

◦ Define g(x)=i=1…nri·gi(x), of degree t. 
g(0)=i=1…nri·gi(0) = a·b. 

 

 Pi sends to every Pj the value gi(j) 

 Every Pj receives g1(j),…,gn(j),                          
computes g(j)= i=1…nri·gi(j)  

 This is the desired sharing                             
of a·b. 
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 Correctness is straightforward 

 

 Overhead: 
◦ O(n2) messages for every multiplication gate 

◦ # of rounds linear in depth of circuit (where only 
multiplication gates count) 
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 Main idea: every set of t players, receives in 
each round values which are t-wise 
independent, and therefore uniformly 
distributed.  
◦ Therefore no information about the actual wire 

values are leaked.  
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 Recall what we showed 
◦ In (t+1)-out-of-n secret sharing, any t shares are 

uniformly distributed, independently of the secret. 

 

 Suppose first that multiplication is computed 
by an oracle (this is the fmult hybrid model) 

◦ The simulator obtains the inputs and outputs of the 
t corrupt parties 

◦ The transcript of a party includes                           
its input, randomness used, all                      
messages received. 
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 Adversary controls a set J of t</2 parties. 

 The simulator: 
◦ PiJ, set input zi=xi.  PiJ, set input zi=0. 

◦ Share inputs zi according to protocol. 

◦ Addition gates: add shares as in protocol. 

◦ Mult gates: provide PiJ with shares of a random 
sharing of the value 0. 

 

◦ Simulation is correct since t shares                          
of any value are uniformly                           
distributed. 
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 Output stage: 

  wire, the simulator already defined shares for all 
PiJ. 

 Let w be an output wire of PiJ. The simulator has 
the output value yw, and the t shares of PiJ. 

 The simulator interpolates the t-degree polynomial 
fw going through these values. It then simulates 

receiving the shares fw(i)  from all PiJ. 

 Let w be an output wire of PjJ. For                        
all PiJ, the simulator  sends the                   
corresponding share to Pj. 
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 Recall, the multiplication protocol 
◦ Pi creates a random poly gi(·) of deg t s.t. gi(0)=ai·bi 

◦ Pi sends to  Pj the value gi(j), and receive shares gj(i) 

◦ Pi computes its share as g(i)= j=1…nrj·gj(i). 

◦   

 Simulation  PiJ: 
◦ Create a random poly gi(·) of deg t s.t. gi(0)=Pi’s share 

◦ Send to every Pj the value gi(j) 

◦ PjJ simulate receipt of a random                        
share gj(i) 

◦ Compute share of wire value as                              
g(i)= j=1…nrj·gj(i) 

26 
Secure Computation and Efficiency 

Bar-Ilan University, Israel     2011 



Bar-Ilan University 
Dept. of Computer Science 

 Aka security against Byzantine adversaries 

 Possible problems in using the previous 
protocol: 
◦ When sharing its input, Pi might send values of a 

polynomial of degree greater than t. 

 As a result, different subsets of the clients might 
recover different values as the secret. 

◦ Parties might send incorrect shares 

 How can we interpolate in this case? 

 

 Protocol secure against t<n/3 
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 Sharing stage 
◦ Add elements to the shares so that parties are 

assured to receive values of a polynomial of degree 
t (even if the dealer is malicious) 

 Recovery stage 
◦ As long as t<n/3 shares are corrupt, use error 

correction techniques to recover the secret. 

◦ Based on the fact that Shamir’s secret sharing 
scheme is a Reed-Solomon code,                      
which can correct up to t<n/3 errors. 
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 Reed-Solomon code 
◦  A linear [n,k,d]-code, with k=t+1, and d=n-t. 

◦ The message is (m0,…mt). 

◦ Use it as the coefficients of a degree t polynomial, Pm. 

 

◦ Codeword is Pm(1),…,Pm(n). 

◦ Two codewords differ in at least d=n-t locations. 

◦  efficient decoding correcting (n-t-1)/2 errors. 

◦ If t<n/3, correcting up to t errors. 
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 Usage: 
◦ Let P() be a polynomial of degree t. (E.g., the 

polynomial used for (t+1)-out-of-n secret sharing.) 

◦ If instead of receiving P(1),P(2),…,P(n), we receive up 
to t<n/3 corrupt values, can still recover P. 

 (And in particular, recover P(0), the secret.) 

 
 Conclusion: 
◦ Can easily handle corrupt parties which send corrupt 

shares. 
◦ Need to focus on forcing the dealer                                   

to distribute shares consistent with                                   
a t-degree polynomial. 
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 f(x,y) = i=0…tj=0…t ai,j·xi·yj 

 

◦ Defined by (t+1)2 coefficients 

◦ Claim: f(x,y) can be defined by t+1 univariate 
polynomials: 

 Given t+1 polynomials of degree t: f1(x),…,ft+1(x)  
there exists a single bivariate polynomial of degree t 
such that f(x,1)=f1(x), …, f(x,t+1)=ft+1(x) 
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f(x,1) = f1(x) 

f(x,2) = f2(x) 

f(x,3) = f3(x) 
∶ 



Bar-Ilan University 
Dept. of Computer Science 

 Dealer defines a random f(x,y) of degree t, 
s.t. f(0,0)= secret. 

 Sends to Pi the share fi(x)=f(x,i).  (t-deg poly) 

◦ By the claim, any t+1 shares suffice to reveal secret. 

 Sends to Pi the dual share gi(x)=f(i,x). 
◦ Will be used for checking shares received from 

other parties 
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 Claim: subset J of size t, the shares and dual 
shares of PiJ do not reveal the secret. 
◦ Assume wlog J=1,2,…,t. 

◦ f1(x),…,ft(x), each of degree t, enforce t·(t+1) 
constraints of the bivariate polynomial f. 

◦ g1(x),…,gt(x), each add another constraint. 

◦ Total # of constraints is t(t+1)+t=t2+2t=(t+1)2-1. 
None of them defines f(0,0) directly. 
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 Each party Pi: 
◦  j, send fi(j) and gi(j) to Pj. 

◦  j, let (uj,vj) the values received from Pj. 

 If uj  gi(j) or vj  fi(j), then broadcast                
“complaint(i, j, fi(j), gi(j))”.   
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fi(x) 

gj(x) gi(x) 

fj(x) 

uj=fj(i)=gi(j) 

vj=gj(i)=fi(j) 

(the two values Pi was 
supposed to receive) 

whom should 
we believe? 
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 The dealer: 
◦ Upon receiving the message “complaint(i, j, fi(j), 

gi(j))” sent by Pi, 

 check that fi(j)=f(i,j) and that gi(j)=f(j,i). 

◦ If the checks fail, broadcast reveal(i,fi(x),gi(x)). 

◦ (Namely, if Pi sent an incorrect complaint,  
broadcast the shares that it received from dealer.) 

 

 Now, whom should the parties                
believe, Pi or the dealer? 
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 Each Pi 

1. If Pi views two messages complaint(k,j,u1,v1) and 
complaint(j,k,u2,v2), and the dealer did not 
broadcast a corresponding reveal message, go to 3. 

2. If Pi views a message reveal(j,fj(x),gj(y)), check if it 
agrees with Pi’s shares: fi(j)=gj(i) and gi(j)=fj(i).       
If the check succeeds, broadcast “good”. 

3. If at least n-t parties broadcasted “good” then 
output fi(0) as your share of the                            
secret.  Otherwise abort. 
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 Assume dealer is honest 
◦ An honest PJ complains only if a corrupt Pi sends it 

incorrect values. But since the complaint of Pi 
contains good values, the dealer does not reveal PJ’s 
share. 

◦ If a corrupt Pi complains with incorrect values, 
dealer sends a reveal message of Pi’s shares, 

which passes the test of the n-t honest parties, 

which then send n-t good messages 

and therefore output the correct shares.   
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 Assume dealer is corrupt 
◦ Suppose Pi,Pk are honest and receive inconsistent 

shares: fj(k)gk(j), or gj(k)fk(j). 
◦ Both parties complain, and therefore dealer must send 

reveal message or else no honest party broadcasts 
good. 

◦ The shares are output only if n-t parties output 
“good”. At least (n-t)-t=t+1 of them are honest. 

◦ Their polynomials agree with those                   
revealed by the dealer. 

◦ These t+1 polynomials define a unique            
bivariate poly, which defines the secret. 

◦ That’s all that we need. 
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 Inputs are shared using VSS. 
◦ Therefore dealer deals consistent shares.  

 Addition gates are trivial. 

 Multiplication gates: 
◦ Must ensure that each party multiplies its own 

shares. 

◦ Must use a VSS to perform the sharing defined by 
the protocol. 

◦ The full description and proof are                            
quite intricate. 
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 No public key operations are needed! 

 Input sharing step is more complicated than 
in the semi-honest case 
◦ Length of messages increases by O(n) 

◦ But this protocol is run only once, and has O(1) 
rounds. 

 

 Multiplication gates 
◦ Requires the use of a VSS  

◦ Message length increases by O(n) 
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