

Session 2: The Yao Construction and its Proof of Security

Yehuda Lindell Bar-llan University

Yao's Protocol

- Protocol for general secure two-party computation
 - Constant number of rounds
 - Secure for semi-honest adversaries
 - Many applications of the methodology beyond secure computation
- General secure computation
 - Can be used to securely compute any functionality
 - Based on the Boolean circuit for computing the function

Outline

Garbled circuit

- An encrypted circuit together with a pair of keys (k₀,k₁) for every input wire so that given one key on every wire:
 - It is possible to compute the output (based on the input determined by the key provided on every wire)
 - It is not possible to learn anything else

Oblivious transfer

- Sender has x_0, x_1 ; receiver has b
- Receiver obtains x_b only
- Sender learns nothing

Outline

Yao's protocol

- Party P₁ constructs a garbled circuit
- P₁ sends P₂ the keys associated with its input on its own input wires
 - P₁ sends only the keys so P₂ doesn't know what the actual input is
- P₁ and P₂ use oblivious transfer so that for every one of P₂'s input wires:
 - P₂ obtains the correct key associated with its input
 - P₁ learns nothing about P₂'s input
- P₂ computes the circuit and receives the output, and sends it back to P₁

Oblivious Transfer - Background

- ▶ Trapdoor permutation (I,D,F,F⁻¹)
 - I: samples a function f and trapdoor t in the family
 - D(f): uniformly samples a value in the domain of f
 - F(f,x): computes f(x)
 - $F^{-1}(t,y)$: computes $f^{-1}(y)$
 - Hard to invert a random y, given f (but not t)

Enhanced trapdoor permutations

 Hard to invert y, even given the random coins used to sample y (using D)

Oblivious Transfer - Background

- Hard-core predicate B
 - Given y=f(x), can guess B(x) with probability only negligibly greater than $\frac{1}{2}$
 - Equivalently, given y=f(x), the bit B(x) is pseudorandom

Oblivious Transfer Protocol

- Sender's input: (z_0,z_1) ; receiver's input b
- Sender's first message:
 - Sender chooses (f,t) using sampling algorithm I
 - Sender sends f to receiver
- Receiver's first message:
 - Receiver chooses x_b and computes $y_b = f(x_b)$
 - Receiver chooses random y_{1-b}
 - Receiver sends (y₀,y₁) to sender
- Sender's second message:
 - Sender computes (x_0,x_1) by inverting
 - Sender computes $a_i = z_i \oplus B(x_i)$
 - Sender sends (a₀,a₁) to receiver
- Receiver outputs $z_b = a_b \oplus x_b$

Oblivious Transfer Protocol

$$\frac{S(z_0,z_1)}{\text{Choose }(f,t)} \xrightarrow{\qquad \qquad \qquad } \frac{R(b)}{\text{Choose }x_b, \text{ compute }y_b=f(x_b)}$$

$$a_0 = z_0 \oplus B(x_0)$$

$$\begin{array}{c} x_1 = f^{-1}(y_1) \\ a_1 = z_1 \oplus B(x_1) \end{array} \longrightarrow \text{Output } z_b = a_b \oplus B(x_b) \end{array}$$

Security - P₁ Corrupted

- ▶ Simulator is given (z_0,z_1) ; there is no output
 - SIM generates (f,t)
 - SIM chooses random y_0, y_1 using D(f)
 - SIM computes a_0,a_1 as in sender's instructions
- The transcript is exactly like a real protocol execution
 - Choosing x_b using D(f) and computing $y_b = f(x_b)$ is identical to choosing y_b using D(f)

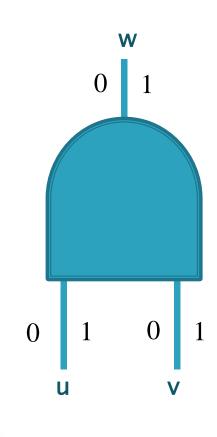
Security - P₂ Corrupted

- Simulator is given (b,z_b)
 - SIM generates (f,t)
 - SIM chooses random x_b, y_{1-b} using D(f)
 - SIM computes $y_b = f(x_b)$
 - SIM computes $a_b = B(x_b) \oplus z_b$
 - SIM chooses a_{1-b} at random
- The transcript is indistinguishable from a real execution
 - By the hard-core property of B and the enhancement property of TDP, B(x_{1-b}) is indistinguishable from random

A Garbled Circuit

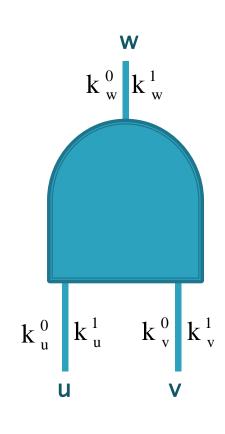
- For the entire circuit, assign random values/keys to each wire (key k₀ for 0, key k₁ for 1)
- Encrypt each gate, so that given one key for each input wire, can compute the appropriate key on the output wire

An AND Gate



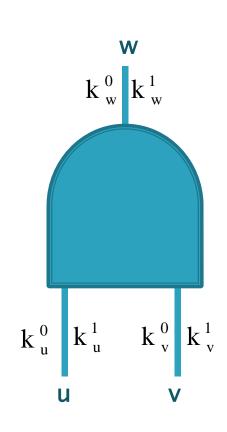
u	V	W
0	0	0
0	1	0
1	0	0
1	1	1

An AND Gate with Garbled Values



u	V	W
$\mathbf{k}_{\mathrm{u}}^{\mathrm{0}}$	$\mathbf{k}_{\mathrm{v}}^{\mathrm{0}}$	$k_{\mathrm{w}}^{\mathrm{0}}$
$egin{array}{ccc} \mathbf{k}_{\mathrm{u}}^{0} & & \\ \mathbf{k}_{\mathrm{u}}^{1} & & \end{array}$	k_{v}^{1}	k_{w}^{0}
k_{u}^{1}	k_{v}^{0}	k_{w}^{0}
k_{u}^{1}	k_{v}^{1}	k_{w}^{1}

A Garbled AND Gate



u	V	W
k_{u}^{0}	k_{v}^{0}	$E_{k_{u}^{0}}(E_{k_{v}^{0}}(k_{w}^{0}))$
k_{u}^{0}	k_{v}^{1}	$E_{k_{u}^{0}}(E_{k_{v}^{1}}(k_{w}^{0}))$
k_{u}^{1}	k_{v}^{0}	$E_{k_{u}^{1}}(E_{k_{v}^{0}}(k_{w}^{0}))$
k_{u}^{1}	k_{v}^{1}	$E_{k_{u}^{1}}(E_{k_{v}^{1}}(k_{w}^{1}))$

A Garbled AND Gate

The actual garbled gate

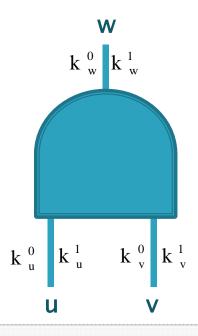
$$E_{k_{u}^{1}}(E_{k_{v}^{0}}(k_{w}^{0}))$$

$$E_{k_{u}^{0}}(E_{k_{v}^{1}}(k_{w}^{0}))$$

$$E_{k_{u}^{1}}(E_{k_{v}^{1}}(k_{w}^{1}))$$

$$E_{k_{u}^{0}}(E_{k_{v}^{0}}(k_{w}^{0}))$$

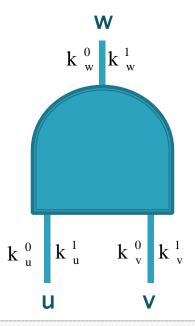
- \blacktriangleright Given $k_{\,\,u}^{\,\,0}$ and $k_{\,\,v}^{\,\,1}$ can obtain $k_{\,\,w}^{\,\,0}$ only
- Furthermore, since the table is permuted, the party has no idea if it obtained the 0 or 1 key



Output Translation

- If the gate is an output gate, need to provide the "decryption" of the output wire
- Output translation table

$$[(0, k_{w}^{0}), (1, k_{w}^{1})]$$



Constructing a Garbled Circuit

Given a Boolean circuit

- Assign garbled values to all wires
- Construct garbled gates using the garbled values

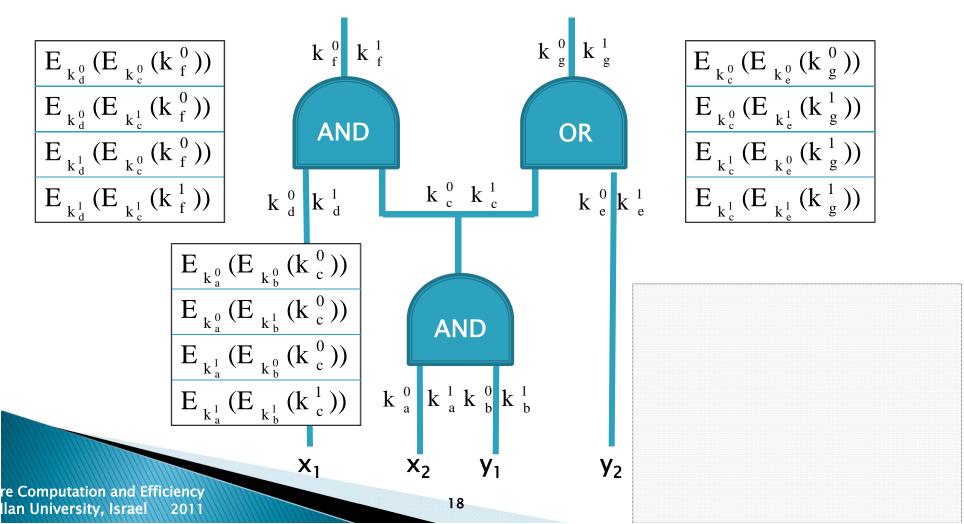
Central property:

- Given a set of garbled values, one for each input wire, can compute the entire circuit, and obtain garbled values for the output wires
- Given a translation table for the output wires, can obtain output
- But, nothing but the output is learned!

An Example Circuit

(input wires $P_1 = d,a; P_2 = b,e$)

$$[(0, k_f^0), (1, k_f^1)] \qquad [(0, k_g^0), (1, k_g^1)]$$



Computing a Garbled Circuit

- How does the party computing the circuit know which is the "correct" entry
 - It has one key on each wire, but symmetric encryption may decrypt "correctly" even with incorrect keys
- Two possibilities (actually many...)
 - Use encryption based on a PRF with redundant zeroes; only correct keys give redundant block
 - Add a bit to signal which ciphertext to decrypt

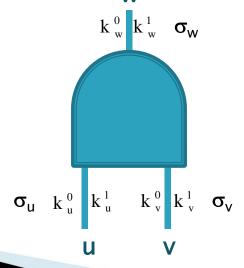
Computing a Garbled Circuit

Option 1:

- Encryption: $E_K(m) = [r, F_K(r) \oplus (m||0^n)]$
- By pseudorandomness of F, probability of obtaining Oⁿ with an incorrect K is negligible

Option 2:

 For every wire, choose a random signal bit together with the keys



Computing a Garbled Circuit

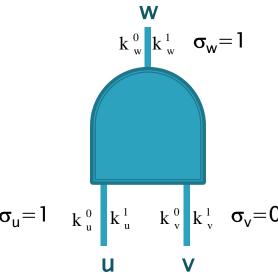
The actual garbled gate

$$(0,0) \rightarrow E_{k_{u}^{1}}(E_{k_{v}^{0}}(k_{w}^{0} || 1))$$

$$(1,1) \rightarrow E_{k_{u}^{0}}(E_{k_{u}^{1}}(k_{w}^{0} || 1))$$

$$(0,1) \rightarrow E_{k^{\frac{1}{2}}}(E_{k^{\frac{1}{2}}}(k^{\frac{1}{w}} \parallel 0))$$

$$(1,0) \rightarrow E_{k_{u}^{0}}(E_{k_{v}^{0}}(k_{w}^{0} || 1)) \qquad \sigma_{u}=1 \quad k_{u}^{0} k_{u}^{1} \quad k_{v}^{0} k_{v}^{1} \quad \sigma_{v}=0$$



Advantage

 Computing the circuit requires just two decryptions per gate (rather than an average of 5)

Double-Encryption Security

- Need to formally prove that given 4 encryptions of a garbled gate and only 2 keys
 - Nothing is learned beyond one output
- Actually, in order to simulate the protocol, we need something stronger
- Notation:
 - Double encryption: $\overline{E}(k_u, k_v, m) = E_{k_u}(E_{k_v}(m))$
 - Oracle: $\overline{E}(\cdot, k_v, \cdot)$

Double-Encryption Security

$\mathsf{Expt}^\mathsf{double}_\mathcal{A}(n,\sigma)$

- The adversary A is invoked upon input 1ⁿ and outputs two keys k₀ and k₁ of length n and two triples of messages (x₀, y₀, z₀) and (x₁, y₁, z₁) where all messages are of the same length.
- Two keys k'₀, k'₁ ← G(1ⁿ) are chosen for the encryption scheme.
- A is given the challenge ciphertext (E(k₀, k'₁, x_σ), E(k'₀, k₁, y_σ), E(k'₀, k'₁, z_σ)) as well as oracle access to E(·, k'₁, ·) and E(k'₀, ·, ·)
- A outputs a bit b and this is taken as the output of the experiment.

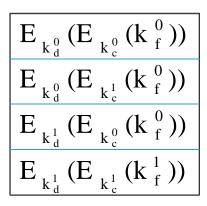
Yao's Protocol

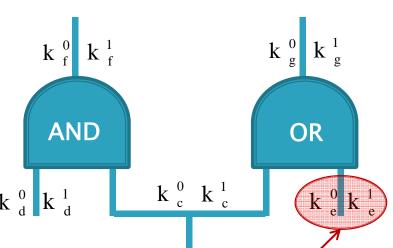
- Input: x and y of length n
- P₁ generates a garbled circuit G(C)
 - k_L^0 , k_L^1 are the keys on wire w_L
 - Let $w_1,...,w_n$ be the input wires of P_1 and $w_{n+1},...,w_{2n}$ be the input wires of P_2
- $ightharpoonup P_1$ sends P_2 the strings $k_1^{x_1},...,k_n^{x_n}$
- ▶ P₁ and P₂ run n OTs in parallel
 - P_1 inputs k_{n+1}^0 , k_{n+1}^1
 - P₂ inputs y_i
- Given all keys, P₂ computes G(C) and obtains C(x,y)
 - P₂ sends result to P₁

The Example Circuit

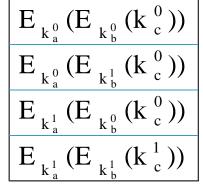
(input wires $P_1 = d,a$; $P_2 = b,e$)

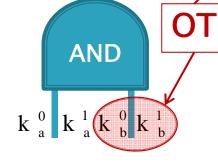
$$[(0, k_f^0), (1, k_f^1)] \qquad [(0, k_g^0), (1, k_g^1)]$$





$E_{k_c^0}(E_{k_e^0}(k_g^0))$
$E_{k_{c}^{0}}(E_{k_{e}^{1}}(k_{g}^{1}))$
$E_{k_c^1}(E_{k_e^0}(k_g^1))$
$E_{k_{\mathfrak{c}}^{1}}(E_{k_{\mathfrak{e}}^{1}}(k_{\mathfrak{g}}^{1}))$





- Party P₁'s view consists only of the messages it receives in the oblivious transfers
- ▶ In the OT-hybrid model, P₁ receives no messages in the oblivious transfers
- Simulation:
 - Generate an empty transcript

More difficult case

- Need to construct a fake garbled circuit G(C') that looks indistinguishable to G(C)
- Simulated view contains keys to input wires and G(C')
- G(C') together with the keys computes to f(x,y)
- Simulator doesn't know x, so cannot generate a real garbled circuit

Simulator

- Given y and z = f(x,y), construct a fake garbled circuit G'(C) that always outputs z
 - Do this by choosing wire keys as usual, but encrypting the same output key in all ciphertexts

$$E_{k_{u}^{0}}(E_{k_{v}^{0}}(k_{w}^{0})) \qquad E_{k_{u}^{1}}(E_{k_{v}^{1}}(k_{w}^{0}))$$

$$E_{k_{u}^{0}}(E_{k_{v}^{1}}(k_{w}^{0})) \qquad E_{k_{u}^{0}}(E_{k_{v}^{0}}(k_{w}^{0}))$$

 This ensures that no matter the input, the same known garbled values on the output wires are received

- Simulator (continued)
 - Simulation of output translation tables
 - Let k,k' be the keys on the ith output wire; let k be the key encrypted in the preceding gate
 - If $z_i = 0$, write [(0,k),(1,k')]
 - If $z_i = 1$, write [(0,k'),(1,k)]
 - Simulation of input keys phase
 - Input wires associated with P₁'s input: send any one of the two keys on the wire
 - Input wires associated with P₂'s input: simulate output of OT to be any one of the two keys on the wire

- Need to prove that the simulation is indistinguishable from the real
- First step modify simulator as follows
 - Given x and y (just for the sake of the proof), label all keys on the wires as <u>active</u> or <u>inactive</u>
 - <u>active</u>: key is obtained on this wire upon inputs (x,y)
 - <u>inactive</u>: key is **not** obtained on wire upon inputs (x,y)
 - The single key to be encrypted in each gate is the active one
- This simulation is identical

- Proven by a hybrid argument
 - Consider a garbled circuit G_L(C) for which:
 - The first L gates are generated as in the (alternative) simulation
 - The rest of the gates are generated honestly
- ▶ Claim: $G_{L-1}(C)$ is indistinguishable from $G_L(C)$
- Proof:
 - Difference is in Lth gate
 - Intuition: use indistinguishability of encryptions to say that cannot distinguish real garbled gate from one where same key is encrypted

Observation – Lth gate

- The encryption under both active keys is identical in both cases
- The difference is what the inactive keys encrypt (only the next active key, or also the inactive)
 - The triple in the experiment are all encryptions under inactive keys

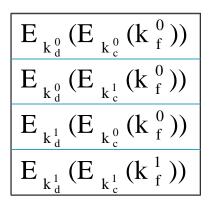
The problem

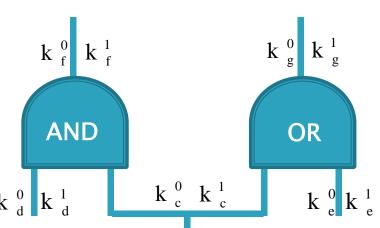
- The inactive keys in this gate may appear in other gates as well
 - Use oracles to generate rest...

The Example Circuit

(input wires $P_1 = d_1$, $P_2 = b_2$)

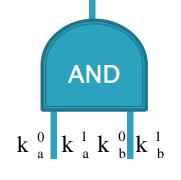
$$[(0, k_f^0), (1, k_f^1)] \qquad [(0, k_g^0), (1, k_g^1)]$$





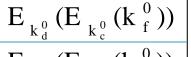
$E_{k_c^0}(E_{k_e^0}(k_g^0))$
$E_{k_{c}^{0}}(E_{k_{e}^{1}}(k_{g}^{1}))$
$E_{k_{c}^{1}}(E_{k_{e}^{0}}(k_{g}^{1}))$
$E_{k_c^1}(E_{k_e^1}(k_g^1))$

$$\begin{array}{c|c} E_{k_a^0} (E_{k_b^0} (k_c^0)) \\ E_{k_a^0} (E_{k_b^1} (k_c^0)) \\ E_{k_a^1} (E_{k_b^0} (k_c^0)) \\ E_{k_a^1} (E_{k_b^0} (k_c^0)) \\ E_{k_a^1} (E_{k_b^1} (k_c^1)) \end{array}$$



Simulator's Circuit (Output 01)

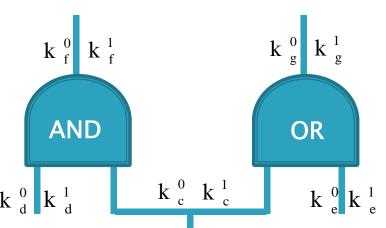
$$[(0, k_f^0), (1, k_f^1)] \qquad [(0, k_g^0), (1, k_g^1)]$$



$$E_{k_d^0}(E_{k_c^1}(k_f^0))$$

$$E_{k_{d}^{1}}(E_{k_{c}^{0}}(k_{f}^{0}))$$

$$E_{k_{1}^{1}}(E_{k_{1}^{1}}(k_{f}^{0}))$$



$$E_{k_{c}^{0}}(E_{k_{e}^{0}}(k_{g}^{1}))$$

$$E_{k_{a}^{0}}(E_{k_{a}^{1}}(k_{g}^{1}))$$

$$E_{k_{a}^{1}}(E_{k_{a}^{0}}(k_{g}^{1}))$$

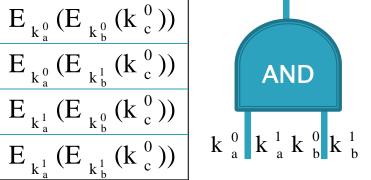
$$E_{k_{c}^{1}}(E_{k_{a}^{1}}(k_{g}^{1}))$$

$$\left| E_{k_a^0} (E_{k_b^0} (k_c^0)) \right|$$

$$E_{k_{a}^{0}}(E_{k_{b}^{1}}(k_{c}^{0}))$$

$$E_{k_a^1}(E_{k_b^0}(k_c^0))$$

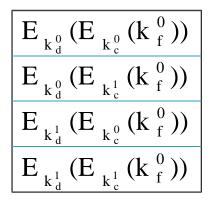
$$E_{k_a^1} (E_{k_b^1} (k_c^0))$$

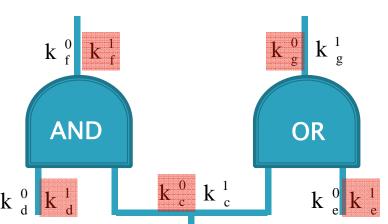


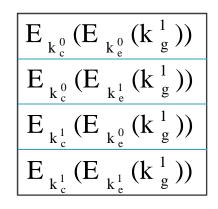
Inactive Keys

Input (da=01,be=10), Output (fg=01)

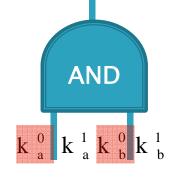
$$[(0, k_f^0), (1, k_f^1)] \qquad [(0, k_g^0), (1, k_g^1)]$$







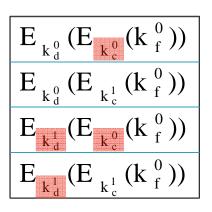
$$\begin{array}{c|c}
E_{k_{a}^{0}}(E_{k_{b}^{0}}(k_{c}^{0})) \\
E_{k_{a}^{0}}(E_{k_{b}^{1}}(k_{c}^{0})) \\
E_{k_{a}^{1}}(E_{k_{b}^{0}}(k_{c}^{0})) \\
E_{k_{a}^{1}}(E_{k_{b}^{0}}(k_{c}^{0}))
\end{array}$$

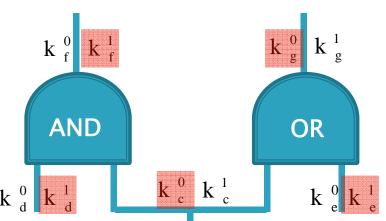


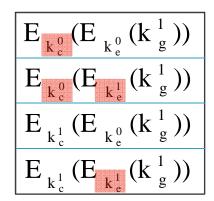
Inactive Keys

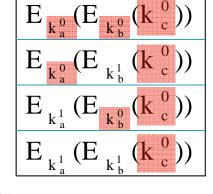
Input (da=01,be=10), Output (fg=01)

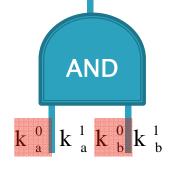
$$\left[\left(0,\,k_{\,\mathrm{f}}^{\,0}\right),\left(1,\,k_{\,\mathrm{f}}^{\,1}\right)\right] \qquad \left[\left(0,\,k_{\,\mathrm{g}}^{\,0}\right),\left(1,\,k_{\,\mathrm{g}}^{\,1}\right)\right]$$





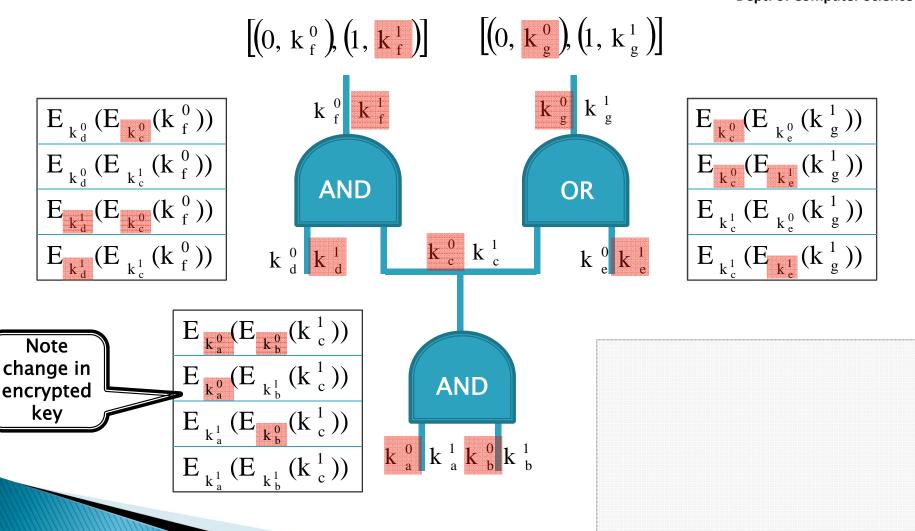




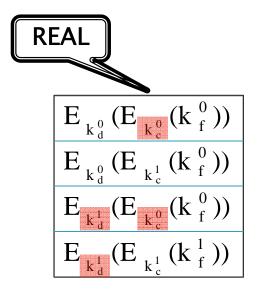


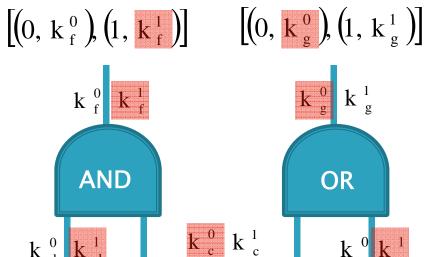
Alternative Simulator

(Encrypt Active Keys Only)

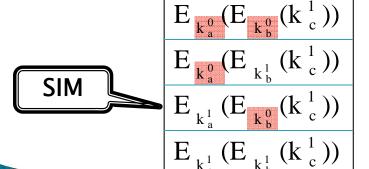


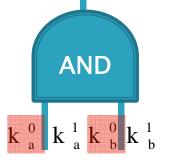
Hybrid on OR Gate – Simulated OR



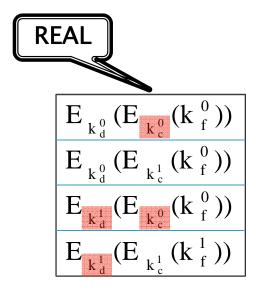


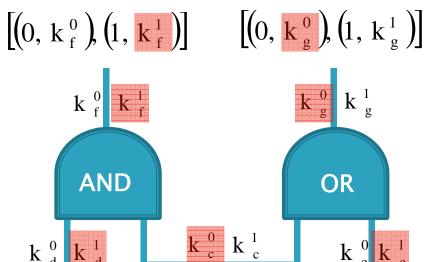


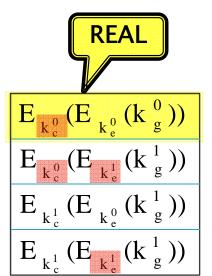


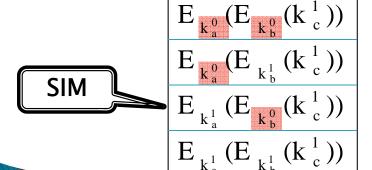


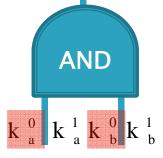
Hybrid on OR Gate – Real OR











What's the Difference

- In the simulated OR case, the inactive key k_c^0 encrypts the key k_a^1
- In the real OR case, the inactive key k_c^0 encrypts the key k_q^0
- Indistinguishability follows from the indistingushability of encryptions under the inactive key k_c⁰

oving Indistinguishability

Follows from the indistingushability of encryptions under the inactive key k_c0

The good news

Key k_c⁰ is not encrypted anywhere (as data) because prior gates are simulated

The bad news

The key k_c⁰ needs to be used to construct the real AND gate for the hybrid

The solution

The special double-encryption

ouble-Encryption Security

 $_{\scriptscriptstyle A}^{\sf louble}(n,\sigma)$

The adversary A is invoked upon input 1^n and outputs two keys k_0 and k_1 of length n and two triples of messages (x_0, y_0, z_0) and (x_1, y_1, z_1) where all messages are of the same length.

Two keys $k'_0, k'_1 \leftarrow G(1^n)$ are chosen for the encryption scheme.

A is given the challenge ciphertext $(\overline{E}(k_0, k'_1, x_\sigma), \overline{E}(k'_0, k_1, y_\sigma), \overline{E}(k'_0, k'_1, z_\sigma))$ as well as oracle access to $\overline{E}(\cdot, k'_1, \cdot)$ and $\overline{E}(k'_0, \cdot, \cdot)$.

A outputs a bit b and this is taken as the output of the experiment.

 $k_0, k_1 (k_c^1, k_e^0)$ are active keys c'₀,k'₁ (k_c⁰,k_e¹) are inactive keys Can use oracle to generate the REAL AND gate

Since each gate-replacement is ndistinguishable, using a hybrid argument we have that the distributions are ndistinguishable

QED

ficiency

- 2-4 rounds (depending on OT and if both or one party receives output)
- y oblivious transfers
- B|C| symmetric encryptions to generate circuit and 2|C| to compute it (using the signal bit)
- For circuit of 33,000 gates:
- Between 7 and 14 seconds
- Between 503 and 3162 Kbytes
 - (depends on encryption used)

alicious Adversaries

Assume that the OT is secure for malicious adv:

- A corrupted P₁ cannot learn **anything** (it receives no messages in the protocol, in the hybrid-OT model)
 - Thus, we have privacy
- We can prove full security for the case of a corrupted P₂

This can be useful, but...

- Be warned that this doesn't compose with anything
- E.g., consider P₁ that builds circuit so that if P₂'s first bit
- is 0, the circuit doesn't decrypt
- If P₁ can detect this in the real world, privacy is lost

ımmary

Can compute any functionality securely in presence of semi-honest adversaries

Protocol is efficient enough for use, for circuits that are not too large

Recommendation: read full proof