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Why the need for Elliptic Curves?
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Discrete logarithm problem example

Let p =
10535462803950169753046165829339587319488718149259
13489342608734258717883575185867300386287737705577
93738292587376245199045043066135085968269741025626
82711472830348975632143002371663691740666159071764
72549470083113107138189921280884003892629359

NB: p = 158(2800 + 25) + 1 and has 807 bits.

Problem:
Find λ ∈ Z such that

2 ≡ 3λ (mod p).
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Discrete logarithm problem

Let p and L be large primes such that L|(p − 1).

The multplicative group of integers modulo p contains an element g
of order L.

The discrete logarithm problem:
Suppose h ∈ Z∗p also has order L.
Find λ ∈ Z such that

h ≡ gλ (mod p).

One-way function:
Fast to compute gλ but difficult to compute λ.
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Generalisation of DLOGs

Can take any (finite) group.

Bad Choices:
I Additive group Z or Fq.
I Multiplicative group of or C.

Apparently Good Choices:
I Finite fields F∗q.
I Elliptic curves over finite fields.
I Ideal class groups of number fields.
I Jacobian varieties of curves over finite fields.
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Subexponential Algorithms

For factoring and the discrete logarithm problem in finite fields F∗q
there are index calculus algorithms.

These have subexponential complexity

O(exp(c(ln N)1/3(ln ln N)2/3)).

For solving the discrete logarithm problem in class groups and
Jacobians of curves of sufficiently high genus there are index
calculus algorithms of subexponential complexity

O(exp(c(ln N)1/2(ln ln N)1/2)).

But elliptic curve groups generally have exponential complexity.
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Basics on Elliptic Curves
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Elliptic Curves
An elliptic curve over a field K is non-singular curve

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

with a1,a2,a3,a4,a6 ∈ K .

From these constants we define

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6.
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Elliptic Curves
A curve is called non-singular if it has no singularities.

I Essentially the “curve” does not cross or intersect itself.
This is easy to detect since the “discrimiannt” ∆ will be zero if the
curve is singular

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

Think of this as related to the discriminant of a polynomial, which is
zero when the polynomial has repeated roots.

The curve is considered to be the set of solutions to the equations,
plus

I An additional special point at infinity OE .
This is considered to lie infinitely far up the y -axis.
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Elliptic Curves
Two curves E and E ′ are isomorphic over K if there is a bi-rational
map between them which preserves the point at infinity.

Two curves with variables X ,Y and X ′,Y ′ are isomorphic over K if
there are constants r , s, t ∈ K and u ∈ K ∗, such that the change of
variables

X = u2X ′ + r , Y = u3Y ′ + su2X ′ + t (1)

transforms E into E ′.

Two most used cases (in classical ECC) are
I Characteristic p : K = Fp, p a large prime
I Characteristic 2 : K = F2n .

In pairing based crypto we also use
I Characteristic p : K = Fpn for small n.
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Elliptic Curves: Char p

In char p all curves are isomorphic to one of the form

EA,B : Y 2 = X 3 + AX + B,

in which case we have

∆ = −64A3 − 432B2.

Two curves in this form EA,B and EA′,B′ are isomorphic over K if

A′ = u4A and B′ = u6B for u ∈ K ∗.
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Elliptic Curves: Char p

If −3/A is a fourth root in K ∗ then we can replace EA,B by the curve

E−3,B′ : Y 2 = X 3 − 3X + B′,

which will provide a lot of efficiency gains later.
I In practice it is rare to choose A 6= −3 for classical cryptography.

The value −3/A will be a fourth root
I 25 percent of the time when p ≡ 1 (mod 4).
I 50 percent of the time when p ≡ 3 (mod 4).
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Elliptic Curves: Char 2
In char 2 all curves are isomorphic to one of the form

EA,B : Y 2 + XY = X 3 + AX 2 + B,

where A ∈ {0, γ} where γ is a fixed element in B of trace one.

In which case we have
∆ = B.

Note for later, the number of elements in EA,B(K ) is divisible by 4 if
the trace of A is zero, and divisible by 2 otherwise.

Since we want curves with small cofactor and we usually choose
fields of odd exponent, e.g. K = F2p where p is prime it is common
to select

A = 1,

since this aids efficiency.
Nigel Smart
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The Group Law
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Elliptic Curves As Groups

E(K ) = {points (x , y) ∈ K 2} ∪ {OE}.

Point Addition
There is a process which, given two points (x1, y1) and (x2, y2),
gives a third point (x3, y3).

This addition process makes the set E(K ) an Abelian group with
identity OE .

I An Abelian group is what you need for a lot of crypto protocols.
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Adding two points on an elliptic curve
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Doubling a point on an elliptic curve
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Addition Formulae

We can write down formulae for the addition law
I Hence, can compute with the addition law

This can be done with the general equation in any characteristic.

We shall give the simplifications in the two main cases.
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Addition Formulae: Char p

Suppose we are in characteristic p

E : Y 2 = X 3 + AX + B

Let P1 = (x1, y1) and P2 = (x2, y2) be points on E .

Negation in group law is given by
I −P1 = (x1,−y1).
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Addition Formulae: Char p
Suppose

P3 = (x3, y3) = P1 + P2

then

x3 = λ2 − x1 − x2,

y3 = (x1 − x3)λ− y1.

where when x1 6= x2 we set

λ =
y2 − y1

x2 − x1
,

and when x1 = x2 and y1 6= 0 we set

λ =
3x2

1 + A
2y1

.
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Addition Formulae: Char 2

Suppose we are in characteristic 2

E : Y 2 + XY = X 3 + AX 2 + B

Let P1 = (x1, y1) and P2 = (x2, y2) be points on E .

Negation in group law is given by
I −P1 = (x1, y1 + x1).
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Addition Formulae: Char 2
Suppose

P3 = (x3, y3) = P1 + P2

then

x3 = λ2 + λ+ A + x1 + x2,

y3 = (x1 + x3)λ+ x3 + y1.

where when x1 6= x2 we set

λ =
y2 + y1

x2 + x1
,

and when x1 = x2 6= 0 we set

λ =
x2

1 + y1

x1
.
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Cost of Addition Formulae: Char p

Point Addition:
I 6 Field Additions (Trivial)
I 3 General Field Multiplications
I 1 Field Inversion

Point Doubling:
I 5 Field Additions (Trivial)
I 2 Scalar/Field Multiplications (Trivial)
I 4 General Field Multiplications
I 1 Field Inversion
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Cost of Addition Formulae: Char 2

Point Addition:
I 9 Field Additions (Trivial)
I 1 Field squaring (Trivial in Char 2)
I 2 General Field Multiplications
I 1 Field Inversion

Point Doubling:
I 8 Field Additions (Trivial)
I 2 Field squaring (Trivial in Char 2)
I 2 General Field Multiplications
I 1 Field Inversion

Note point doubling requires fewer multiplications than in the char p
case.
Nigel Smart
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The ECDLP

Given P = (x , y) and an integer n we can efficiently compute

nP = (x , y) + (x , y) + · · ·+ (x , y)︸ ︷︷ ︸
n times

using the double-and-add method.

The Order of the point P is the smallest number L > 0 such that

LP = OE .

Assume that L is a ‘large’ prime.
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ECDLP

Suppose that Q = (x ′, y ′) is some other point of order L.

Then there is some number λ such that

Q = λP.

The ECDLP is to find this number λ.
I This problem is believed to be hard.
I This gives a one way function.

It is believed in general that the best algorithm to solve this problem
takes time

O(
√

L).

i.e. fully exponential complexity.
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Choices of Finite Field Arithmetic

Nigel Smart
Introduction to ECC Slide 27



Recap on Finite Fields

A Field is a set with two operations (G,×,+) such that
I (G,+) is an abelian group, identity denoted by 0.
I (G \ {0},×) is an abelian group
I (G,×,+) satisfies the distributive law

Distributive law
For all f ,g,h ∈ (G,×,+)

f × (g + h) = (f × g) + (f × h).

Examples
Rational numbers, real numbers, complex numbers, integers
modulo p.
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Fields
We define the set of invertible elements of Z/NZ as

(Z/NZ)∗ = {a ∈ Z/NZ : gcd(a,N) = 1}.

The set (Z/NZ)∗ is always a group with respect to multiplication and
clearly has size φ(N).
When N is a prime p we have

Z/NZ∗ = {1, . . . ,p − 1}.

We define the sets

Fp = Z/pZ = {0, . . . ,p − 1} and F∗p = (Z/pZ)∗ = {1, . . . ,p − 1}.

We call Fp a finite field of characteristic p.
Finite fields are of central importance in coding theory and
cryptography.
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Finite Field Arithmetic

It is crucial to have a good finite field arithmetic.

A number of different choices have been proposed.

We shall now recap on the main two choices.
I F2p , p prime
I Fp, p prime
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Characteristic Two Fields
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Characteristic Two Fields

Of particular interest are fields of char 2.

Take an irreducible binary polynomial f of degree n and let F2n

denote all the binary polynomials of degree < n.

Addition in F2n is defined as
I a⊕ b = a + b (mod 2)

I Note this means −a = a.

Multiplication in F2n is defined as
I a⊗ b = a · g (mod f ).
I Inversion is performed by a variant of the Euclidean algorithm

for polynomials.
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Characteristic Two Fields

Often write
F2n = F2[x ]/f

to denote working modulo f .

Set of non-zero elements denoted by F∗2n

I This is the multiplicative subgroup of the field
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Char 2 Example

Let f = x6 + x + 1 (this is irreducible) The finite field of 26 elements
can then be identified with

I Bit strings of length six bits
I Binary polynomials of degree less than or equal to five

a = 001101 = x3 + x2 + 1
b = 101011 = x5 + x3 + x + 1
a⊕ b = 100110 = x5 + x2 + x

I Since the two x3 and the two 1 terms cancel, as we are working
mod two.

I Notice, we are simply taking the exclusive-or of the bit string
representation.
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Char 2 Example

Recap f = x6 + x + 1, a = 001101 = x3 + x2 + 1,
b = 101011 = x5 + x3 + x + 1.

Since f is sparse reduction mod f done using rewriting, as
x6 = x + 1 (mod f ),

a⊗ b = (x3 + x2 + 1) · (x5 + x3 + x + 1)

= x8 + x7 + x6 + x4 + x3 + x2 + x + 1
= x6 · (x2 + x + 1) + x4 + x3 + x2 + x + 1
= (x + 1) · (x2 + x + 1) + x4 + x3 + x2 + x + 1
= (x3 + 1) + (x4 + x3 + x2 + x + 1)

= x4 + x2 + x .

i.e. a⊗ b = 010110 = x4 + x2 + x .
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Char 2 Example
Since f is assumed irreducible, every polynomial a 6= 0 is coprime to
f .

Hence, using a binary polynomial version of the extended GCD
algorithm we can find u and v so that

u · a + v · f = 1 (mod 2).

In which case a−1 = u in F2n .

If a = x3 + x2 + 1 and f = x6 + x + 1 then taking u = x5 + x3 and
v = x2 + x + 1 gives us

I u · a + v · f = 1 (mod 2)

and so
I a−1 = u = x5 + x3 = 101000.
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Choice of Defining Polynomial
All char 2 fields of the same degree n are isomorphic.

I This means it does not depend on which polynomial f we take.
I Different f ’s give different representations of the same thing.

Let f (x) and g(y) be irreducible polynomials of degree n. Then
there are polynomial’s r(x) and s(y) such that one can map one
field into the other via

I x (mod f (x)) −→ s(y) (mod g(y))

I y (mod g(y)) −→ r(x) (mod f (x))

This means we can select the best irreducible polynomial f for our
own implementation.

I Requires the mapping s(y) only when talking to someone elses
implementation which uses g(y) instead.
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Characteristic Two : Composite Extension

These are fields of the form F2n·m

For a while some people proposed these (of course backed up by
patents).

I The IETF standards include such finite fields.
I They provide a number of performance advantages

Problem is that such fields when used in ECC are suspectible to
Weil Descent attacks.

I Whilst such attacks are often not practical they cast sufficient
concern to mean we no longer use such fields.
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Characteristic Two : Prime Extension

K = F2p With p prime, eg p = 163,191.

I Trinomial Bases
I Pentanomial Bases
I Normal Bases

All are very good in hardware, normal bases are very good.

All three occur in standards documents ANSI/NIST etc.
I These days Normal Bases less used.
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Large Prime Characteristic Fields
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Large Prime Characteristic

K = Fp
Can be implemented in a number of ways.

I Montgomery arithmetic (general prime)
I Barrett Reduction (general prime)
I Generalised Mersenne Primes (special prime)

Most popular method for a general modulus is Montgomery
arithmetic.

In deployed classical ECC systems the most popular choice are
Generalised Mersenne Primes.

Nigel Smart
Introduction to ECC Slide 41



GM Primes
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GM Primes

K = Fp
Standards bodies have settled on GM-Primes as the main
recommend fields.

I GM-Primes give significant performance advantages.
I Their special form means one has significant performance

improvements.
I Montgomery Mult takes about 2n(n + 1) word multiplications,

whereas for GM-Primes this is only n2.

A GM-prime is one of the form

p = f (232) or f (264),

where f is a "low weight" polynomial.

I Eg. p = 2192 − 264 − 1 is popular.
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GM Primes

Suppose we take p = 2192 − 264 − 1 as an example and we want to
compute

z = x · y (mod p).

To perform modular multiplication we first do a standard school book
(or Karatsuba) multiplication

a = x · y = a12192 + a0

where a0,a1 < 2192.
I This requires at most 36 32-bit word multiplications plus some

additions
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GM Primes
We now need to produce z = a (mod p), but note that mod p we
have

2192 = 264 + 1

and so

a ≡ a1(264 + 1) + a0 (mod p)

= b12192 + b0,

where b0 < 2192 but b1 < 265.

We then repeat to obtain

b ≡ b1(264 + 1) + b0 (mod p)

= z.
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GM Primes

Notice the reduction stage just involved some shifting and addition
I i.e. very cheap operations.

This total time is dominated by the 36 32-bit word multiplications.

If we did Montgomery arithmetic on similar size numbers we would
require

2 · 6 · (6 + 1) = 84

32-bit word multiplications.

Hence the GM-Prime version will be around twice as fast.
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OEF Fields
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OEF Fields

K = Fpn

These have appeared in a number of papers for classical ECC.
OEF Fields.

I OEF fields choose p close to the word size.
I The equation defining K over Fp is chosen to be very simple,

xn − 2.

OEF Fields give very good implementations.
I Very fast field inversion.

Mainly utilized in pairing based systems, for the second field
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Curve Arithmetic
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Curve Arithmetic
Points can be added/doubled in a number of formats:
Affine:

I P = (X ,Y ).
Projective (Standard):

I P = (X ,Y ) = (x/z, y/z).
Projective (Jacobian):

I P = (X ,Y ) = (x/z2, y/z3) = (x , y , z).
Chudnovsky:

I As Jacobian but store P = (x , y , z, z2, z3).
Lopez-Dahab:

I P = (X ,Y ) = (x/z, y/z2) = (x , y , z)

Mixed:
I A combination of any of the above.
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Curve Arithmetic
Standard projective coordinates are rarely used.

We will concentrate on
I Affine,
I Jacobean Projective/Lopez-Dahab
I A mixture of the two.

Main problem with Affine is that we require field inversions.
I Field inversions are generally much slower than multiplications.

Projective coordinates allow us to trade a number of multiplications
for an inversion.

We shall see later that its is point doubling which is most important.
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Cost of Curve Arithmetic: Char p
In odd characteristic it is often best to use Jacobean Projective
coordinates:

Operation Affine Projective Mixed
Addition 3M + 1I 16M 11M
Doubling 4M + 1I 10M n/a

In next few slides we give the formulae for computing
I P3 = P1 + P2

with
I Pi = (Xi ,Yi ,Zi)

when the curve is given by

Y 2 = X 3 + AX + B.
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Projective Addition Formulae: Char p

λ1 = X1Z 2
2 2M

λ2 = X2Z 2
1 2M

λ3 = λ1 − λ2
λ4 = Y1Z 3

2 2M
λ5 = Y2Z 3

1 2M
λ6 = λ4 − λ5
λ7 = λ1 + λ2
λ8 = λ4 + λ5
Z3 = Z1Z2λ3 2M
X3 = λ2

6 − λ7λ
2
3 3M

λ9 = λ7λ
2
3 − 2X3

Y3 = (λ9λ6 − λ8λ
3
3)/2 3M

16M
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Projective Addition Formulae: Char p

In previous slide

λ3 = 0 if and only if P1 = ±P2

λ3 = λ6 = 0 if and only if P1 = P2

I In this case need to execute a point doubling (see later)

A mixed addition is when Z1 = 1 in which case we simplify the
formulae as in the next slide
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Projective (Mixed) Addition Formulae: Char p

λ1 = X1Z 2
2 2M

λ3 = λ1 − X2
λ4 = Y1Z 3

2 2M
λ6 = λ4 − Y2
λ7 = λ1 + X2
λ8 = λ4 + Y2
Z3 = Z2λ3 1M
X3 = λ2

6 − λ7λ
2
3 3M

λ9 = λ7λ
2
3 − 2X3

Y3 = (λ9λ6 − λ8λ
3
3)/2 3M

11M
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Projective Doubling Addition Formulae: Char p

A point doubling is performed via

λ1 = 3X 2
1 + AZ 4

1 4M
Z3 = 2Y1Z1 1M
λ2 = 4X1Y 2

1 2M
X3 = λ2

1 − 2λ2 1M
λ3 = 8Y 4

1 1M
Y3 = λ1(λ2 − X3)− λ3 1M

10M
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Projective Doubling Addition Formulae: Char p

Recall we said usually A = −3 then

λ1 = 3X 2
1 + AZ 4

1 = 3(X1 + Z 2
1 )(X1 − Z 2

1 ) 2M
Z3 = 2Y1Z1 1M
λ2 = 4X1Y 2

1 2M
X3 = λ2

1 − 2λ2 1M
λ3 = 8Y 4

1 1M
Y3 = λ1(λ2 − X3)− λ3 1M

8M
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Cost of Curve Arithmetic: Char 2
In even characteristic it is often best to use Lopez-Dahab
coordinates:

Operation Affine Lopez-Daheb Mixed
Addition 2M + 1I 13 M 8 M
Doubling 2M + 1I 4 M n/a

Note squaring is free in even characteristic.

In next few slides we give the formulae for computing
I P3 = P1 + P2

with
I Pi = (Xi ,Yi ,Zi)

when the curve is given by

Y 2 + XY = X 3 + AX 2 + B.
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Projective Addition Formulae: Char 2

λ1 = X1Z2 1M
λ2 = X2Z1 1M
λ3 = λ1 + λ2
λ4 = λ2

1 free
λ5 = λ2

2 free
λ6 = λ4 + λ5
λ7 = Y1Z 2

2 1M
λ8 = Y2Z 2

1 1M
λ9 = λ7 + λ8
λ10 = λ3λ9 1M
Z3 = Z1Z2λ6 2M
X3 = λ1(λ8 + λ5) + λ2(λ7 + λ4) 2M
Y3 = (λ1λ10 + λ7λ6)λ6 + (λ10 + Z3)X3 4M

13M
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Projective (Mixed) Addition Formulae: Char 2

λ1 = Z2Y1 + Y2 1M
λ2 = Z2X1 + X2 1M
λ3 = Z2λ2 1M
Z3 = λ2

3 free
λ5 = Z3X1 1M
λ6 = X1 + Y1
X3 = λ2

1 + λ3(λ1 + λ2
2 + Aλ3) 2M

Y3 = (λ5 + X3)(λ3λ1 + Z3) + λ6Z 2
3 3M

9M

If A = 1 then this reduces to 8M.
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Projective Doubling Addition Formulae: Char 2

A point doubling is performed via

λ1 = X 2
1 free

λ2 = λ1 + Y1
λ3 = X1Z1 1M
Z3 = λ2

3 free
λ5 = λ2Z3 1M
X3 = λ2

2 + λ3 + AZ3 1M
Y3 = (Z3 + λ5)X3 + λ2

1Z3 2M
5M

Which reduces to 4M if we choose A = 1.
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Projective Formulae Summary

Odd Characteristic

Operation Affine Projective Mixed
Addition 3M + 1I 16M 11M
Doubling 4M + 1I 10M n/a

Even Characteristic

Operation Affine Lopez-Daheb Mixed
Addition 2M + 1I 13 M 8 M
Doubling 2M + 1I 4 M n/a

Doubling is very fast in even characteristic.
I This can make up for the slow software field arithmetic in a final

implementation.
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Point Multiplication
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Point Multiplication
The basic cryptographic operation is to compute

Q = [d ]P

for some integer d and point P.

The binary method:
I Q = 0.
I For j = log2(d)− 1 to 0

I Q = [2]Q.
I If dj = 1 then Q = Q + P.

This requires
I Exactly log2(d) point doublings.
I About log2(d)/2 general point additions.

I If P affine and Q projective used mixed addition

We can reduce the number of general point additions.
Nigel Smart
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Point Multiplication

m-ary method
The binary method uses a fixed window of size 2.
The m-ary method uses a fixed window of size m = 2r .

I Taking m bits at a time.
Requires precomputation of

2r−1 − 1

general point additions.

Then requires
I log2(d) doublings.
I About log2(d)/r general point additions.
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Point Multiplication

Sliding Window Method
This method slides the window of length m across runs of zero’s in
the binary expansion.

Requires precomputation of

2r−1 − 1

general point additions.

Then requires
I log2(d) doublings.
I About log2(d)/(r + 1) general point additions.
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Point Multiplication

Signed Window Methods
For elliptic curves negation comes for free

−P = (x ,−y) or (x , y + x).

Hence we could used a signed binary representation.

7 = 22 + 2 + 1 or 7 = 23 − 1.

This allows us to reduce the number of point additions even further
I In both the m-ary and the sliding window algorithms.
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Signed Sliding Window Method
The following precomputation is done once for each point P;
Precomputation

I P1 = P, P2 = [2]P.
I For i = 1 to 2r−2 − 1

I P2i+1 = P2i−1 + P2..
I Q = Pdl−1 .

These are computed in affine coordinates
Next we encode the number d Set

d =
l−1∑
i=0

di2ei

with ei+1 − ei ≥ r and

di ∈ {±1,±3, . . . ,±2r−1 − 1}.
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Signed Sliding Window Method

Main Loop
I For i = l − 2 to 0

I Q = [2ei+1−ei ]Q.
I If li > 0 then Q = Q + Pdi .
I Else Q = Q − P−di .

I Q = [2e0 ]Q.

The Q is held in projective coordinates
I Since Pi are affine can use mixed addition
I Can use efficient projective doubling formulae
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Point Multiplication

The signed sliding window method generally comes out to be the
fastest.

Remember
In all cases CPU time is dominated by the time to compute

log2(d)

point doublings.

Lesson
Optimise the doubling operation at all times.

I This is often ignored.
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Point Multiplication

Notice that doubling in char 2 requires less multiplications than in
char p.

This can often lead (depending on the processor or the
implementation) that the relative advantage of char p field
multiplication can be cancelled out by the doubling operation.

This will become even more pronounced as the new instruction set
extensions to Intel and other chips become more prevalent, since
these will provide native carry-free multipliers.

I i.e. char 2 field multiplications will run as fast as char p field
multiplications

I Indeed possibly faster.
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Key Agreement
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Elliptic Curve Diffie-Hellman

Easiest to understand of all the protocols.

Two people, Alice and Bob, want to agree a shared secret.

E(Fq) is an elliptic curve over a finite field for which ECDLP is hard.

P is a point of large prime order.
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EC-DH

Alice Bob

x
[x ]P
=⇒ [x ]P

[y ]P
[y ]P⇐= y

Alice can now compute

KA = [x ]([y ]P) = [xy ]P

Bob can now compute

KB = [y ]([x ]P) = [xy ]P

and
KA = KB

Very small bandwidth if one uses point compression.
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EC-DHP

Given
[x ]P and [y ]P

the problem of recovering
[xy ]P

is called the Elliptic Curve Diffie-Hellman Problem (ECDHP).

If we can solve ECDLP then we can solve ECDHP.
It is unknown if the other implication holds.

A proof of equivalence of the DHP and DLP for many black box
groups follows from work of Boneh, Maurer and Wolf.
This proof uses elliptic curves in a crucial way.

I EC-DH is standardised in ANSI X9.63.
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EC-DH

In practice life is not so simple, for example in EC-DH we have a
man-in-the-middle attack

Alice Eve Bob
x −→ [x ]P

[m]P ←− m
[xm]P [xm]P

n −→ [n]P
[y ]P ←− y
[yn]P [yn]P

Alice agrees a key with Eve, thinking it is Bob Bob agrees a key with
Eve, thinking it is Alice

Eve can now examine communications as they pass through her
(she acts as a router).
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Diffie-Hellman

Diffie-Hellman on its own is not enough.

For example how does Alice know who she is agreeing a key with ?
I Is it Bob or Eve ?

One way around is for
I Alice to sign her message to Bob
I Bob to sign his message to Alice.

In that way both parties know who they are talking to.
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Signed Diffie-Hellman

Assuming we can construct secure signature schemes we have now
solved the key distribution problem:

Authentic public keys are obtained from a CA.

Then secure session keys are obtained using signed Diffie-Hellman

Alice Bob
([a]P,SignAlice([a]P)) −→

←− ([b]P,SignBob([b]P))

However, it is more common to use the STS-protocol in this situation
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STS Key Agreement Protocol
When using signed Diffie–Hellman it is common to adopt the
Station-to-Station protocol, or STS protocol

I A −→ B : [x ]P
I B −→ A : [y ]P, {SigB([y ]P, [x ]P)}Kab

I A −→ B : {SigA([x ]P, [y ]P)}Kab

where Kab = gxy

STS provides forward secrecy, but has some subtle problems

Has unknown key share attack
I This attack requires adversary to obtain “invalid” certificates

from a CA
I Very damaging if duplicate signatures can be found
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MQV Protocol

System setup
Alice and Bob generate a public/private key pair each

(A = [a]P,a) and (B = [b]P,b).

Via some means (eg a certificate)
I Bob knows A is authentic
I Alice knows B is authentic

They now want to agree on a secret session key to which they both
contribute a random nonce

I nonce = number which is used once and then thrown away
Use of the nonce’s provides them with forward secrecy
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MQV Authenticated Key Exchange
This is the most efficient deployed authenticated key exchange
protocol

I Most analysed authenticated key exchange mechanism
available

I NSA like this one

The key exchange Alice and Bob now generate a public/private
ephemeral key pair each

(C = [c]P, c) and (D = [d ]P,d).

They exchange C and D.

Hence to some extent this looks like a standard Diffie-Hellman
exchange with no signing.

However the final session key will also depend on A and B.
Nigel Smart
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MQV

Determining the Session Key
Assume you are Alice

I You know A,B,C,D,a and c
Let l denote half the bit size of the group G

I e.g. l = 160/2 = 80
Shared secret K computed via

I Convert C to an integer i
I Put s = (i

(
mod 2l)) + 2l

I Convert D to an integer j
I Put t = (j

(
mod 2l)) + 2l

I Put h = c + sa.
I Put K = [h] ([t ](DB)
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Why does MQV this work ?
Note that s and t seen be Alice, are swapped when seen by Bob,

I sAlice = tBob

I tAlice = sBob

Let
I hAlice denote the h seen by Alice
I hBob denote the h seen by Bob

Then
I P = ghAlice·hBob

You should check this for yourself

MQV however still suffers from a unknown key-share attack
I But a very subtle attack, hence probably not important in

practice
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Encryption
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Hybrid Encryption : KEMs and DEMs

Before introducing ECIES we recap on the modern method for
creating public key encryption schemes.

Most public key schemes are used in a hybrid manner.
I A public key system is used to encrypt a symmetric key (key

encapsulation mechanism).
I The symmetric key is used to encrypt the actual data (data

encapsulation mechanism).

This is now formalised: the KEM-DEM or hybrid encryption
methodology.
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Key Encapsulation Mechanisms

Key Encapsulation Mechanism
A KEM is an algorithm which takes as input a public key y and
outputs a pair (K ,C) where

I K is a key for a symmetric encryption function (e.g. DES or
AES) and

I C is an encapsulation (encryption) of K using y .
The inverse, decapsulation algorithm takes as input (C, x) where

I C is an encapsulation under y of some key K - or it should be! -
and

I x is the private key corresponding to y .
It outputs

I either ⊥ if C is an invalid encapsulation, or
I K if C is an encapsulation of the key K .
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Data Encapsulation Mechanisms

Data Encapsulation Mechanism
A DEM is a symmetric algorithm which on input of

I a message M and
I a symmetric key K

outputs an encryption E of M using key K .

The inverse operation takes as input
I (E ,K )

and outputs either
I ⊥ if E is an invalid ciphertext or
I M if E is an encryption of M under the key K .
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A KEM-DEM Hybrid Cipher

Using the primitives we have been discussing, a KEM-DEM hybrid
encryption scheme can then be created as follows.

Encryption
I (K ,C)←− KEM(y)

I E ←− DEM(M,K )

I Return (C,E)

Decryption
I K ←− KEM−1(C, x)

I If K =⊥ then return ⊥
I M ←− DEM−1(E ,K )

I If M =⊥ then return ⊥
I Return M
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DEM : Construction

To construct a secure DEM we take
I a secure (under passive attack) block cipher E and
I a secure (cannot produce a MAC without the corresponding

key) MAC function MAC.

The function DEM(M,K ) is then constructed as follows.
I Split K into k0 and k1.
I c0 ←− E(M, k0).
I c1 ←− MAC(c0, k1).
I Return C = (c0, c1).
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KEM-DEM Security Properties

It can be shown that if
I a KEM is secure

and
I a DEM is secure

then the combined KEM-DEM hybrid scheme is IND-CCA2 secure.

Thus the KEM-DEM approach to public key encryption allows us to
build schemes in a modular fashion:

I design a secure KEM;
I design a secure DEM;
I combine them to obtain a secure encryption scheme.

Each component can be designed independently.
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EC-IES

This is the standard ECC encryption algorithm.
I Based on Abdalla, Bellare and Rogaway’s DHAES protocol
I Secure under a non-standard assumption (Abdalla et. al.)
I Secure under in the ROM (Abdalla et. al.)
I Secure under in the Generic Group Model (Smart)

IES stands for integrated encryption scheme
I The scheme works like static Diffie-Hellman followed by

symmetric encryption.
I We use Diffie-Hellman as a KEM
I Then encrypt the message with a DEM
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EC-IES Components

A symmetric encryption scheme SYM = (Ek ,Dk ),
I Key space K1

A MAC function MACk

I Key space K2.

A key derivation function V .
I The key derivation function V will map group elements
I to the key space of both the encryption and MAC functions.

The scheme ECIES is defined as a triple of randomised algorithms,
I {keygen, enc, dec}.
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EC-IES KeyGen

I d ← {1, . . . ,q}.
I Q ← [d ]P.
I Return (Q,d).
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EC-IES Encryption
I k ← {1, . . . ,q}.
I U ← [k ]P.
I T ← [k ]Q.
I (k1, k2)← V (T )

I c ← Ek1(m)

I r ← MACk2(c)

I Return e← U‖c‖r .

The cipher text is (U, c, r).
I U is needed to agree a key
I c is the actual encrypted message
I r is used to avoid adaptive chosen ciphertext attacks

The data item U can be compressed to reduce bandwidth.
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EC-IES Decryption

I Parse e as U‖c‖r
I T ← [d ]U
I (k1, k2)← V (T )
I If r 6= MACk2(c)

I Return Invalid
I m← Dk1(c).
I Return m.
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ECIES

EC-IES makes it easy to encrypt long messages

Standardized in a number of places
I ANSI X9.63
I IEEE P1363
I SEC 1
I etc
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Signatures
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EC-DSA
Variant of the American DSA algorithm as specified in NIST FIPS
186.

FIPS 186.2 contains the new version including EC-DSA,
I This is also in ANSI X9.62, IEEE P1363 and SECG

With all digital signature algorithms one actually signs a hash of the
message, M.

I For ECC this hash function is always SHA− 1/SHA− 2.
I SHA− 1 (resp. SHA− 2) takes an arbitrary length input and

produces a 160 (resp 256 etc) bit output.
I We interpret this output bit string as a number.

We also interpret the x-coordinate of a point as a number.
I Even when K = F2p .
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EC-DSA : System set up

E an elliptic curve over K = Fpn .
P a point of large prime order, q.

#E(K ) = hq

h is called the cofactor.

The set {K ,E ,q,h,P} is called the domain parameters.

Private Key : d ∈R [1, . . . ,q − 1]. Public Key : Q = [d ]P.
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EC-DSA : Signing

Choose k ∈R [1, . . . ,q − 1].
Compute [k ]P = (x , y).
Convert x to an integer, r , mod q.
If r ≡ 0 then goto beginning.
Put e = SHA− 1(M).
Compute

s ≡ (e + dr)/k (mod q).

If s ≡ 0 then goto beginning.
Return (r , s) as the signature.
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EC-DSA : Verifying

Put e = SHA− 1(M).
Reject if r , s 6∈ [1, . . . ,q − 1].
Compute

u1 ≡ e/s (mod q).

u2 ≡ r/s (mod q).

Set R = (x , y) = [u1]P + [u2]Q.
Reject if R is at infinity.
Convert x to an integer, l , modulo q.
Accept if and only if r ≡ l .
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EC-DSA

Need to make sure ephemeral exponent is truly random.

Signing is much faster than RSA
I Verification is slower.

Size of signature is much smaller than RSA.

Scales much better than RSA or DSA over time.
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Schnorr Signatures
An important DLP based signature scheme is that of Schnorr.

I It occurs in many ZK proofs and as parts of other protocols.
I It is the simplest among the DLP based schemes that are

provably secure.
I The signing and verifying operations are simpler than those for

DSA.
I Is the basis for many other protocols.
I Standardisation by ISO

Each user generates a secret signing key x at random and such that

I 0 < x < q.

Public key is Q = xP.
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Schnorr Signatures : Signing

To sign a message M the signer proceeds as follows.

I Signer chooses a random ephemeral key: 0 < k < q.
I Signer computes R = kP.
I Signer computes one-way hash m = H(R||M).
I Finally, signer computes

s = (k + mx) (mod q).

The signature on M is the pair (m, s).
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Schnorr Signatures : Verification

To verify a signature (m, s) on a message M under public key Q, the
verifier proceeds as follows.

The verifier computes
R′ = sP −mQ.

If the signature is valid we have

R′ = (k + mx)P − xmP = kP.

So, the verifier accepts signature if and only if

m = H(R′||M).
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ECDLP
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How hard is the ECDLP?

Black box group means there is no information about the
representation.

I Only generic algorithms are available.

Theorem: (V. Shoup)
In a black box group of prime order L it takes at least O(

√
L)

operations to solve the discrete logarithm problem.

Compare to factoring where underlying problem is sub-exponential
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Generic Algorithms
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Baby step giant step (Shanks)
Want to find 0 ≤ λ < L such that Q = λP in E(Fq).

Put M = d
√

Le (or M = d
√

L/2e).

Make a list of baby steps:
I OE ,P,2P, . . . ,MP.

Take giant steps Q −MP,Q − 2MP, . . . until find a match

Q − λ1MP = λ0P

with the list.

Then λ = λ0 + Mλ1.
I Time: O(

√
L).

I Memory: O(
√

L).
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Pollard methods

Use deterministic random walks in E(Fq):
I Partition E(Fq) into 2n sets G1, . . . ,G2n .
I Construct 2n random points Pi = αiP.
I Random walk X 7→ (X + Pi if X ∈ Gi).

Method:
I Start at X = P and take O(

√
L) steps in random walk and store

the final value Y = αP.
I Start at X = Q and take steps in walk until hit Y .
I Have Q + α′P = αP.

I Time: O(
√

L).
I Memory: O(1).
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Parallel Pollard (Van Oorschot-Wiener)
Distinguished point set D, size θ#E(Fq).

Method: Suppose we have M processors in parallel.
I Each processor starts at a random point X = αP + βQ and

walks in the group.
I Every time a distinguished point X is encountered then send

(X , α, β) to the central server.
I When the server receives (X , α, β) and (X , α′, β′) then can

solve for discrete logarithm.

I Time:
√
πL/2/M + L/(θ#E(Fq)).

I Server memory: θ
√

L.

In practice: L ∼ 2100, M ∼ 210 and θ = 2−30.
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Equivalence classes (W-Z/G-L-V)
Example :

I For P = (x , y) have −P = (x ,−y).
I Impose a canonical choice of representative for elements of the

set E(Fq)/〈±1〉
I Define the random walk on this set instead.
I Pollard methods are faster by a factor of

√
2.

Example:
I Consider a subfield curve E/F2 with discrete logarithm problem

in E(F2l ) (Koblitz curve)
I Action of ±Frob2 gives equivalence classes of size 2l .
I So method faster by factor

√
2l .

Koblitz curves are recommended in some standards eg ANSI, NIST
etc
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Special Algorithms
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Special Attacks

There are a number of special attacks.
I Only apply to certain curves
I Analogous to weak RSA keys

Unlike weak RSA keys, weak ECC keys are easily detected by any
user

I i.e. can be detected by anyone and not just the person who
makes the key.
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Menezes-Okamoto-Vanstone/Frey-Rück

Construct group homomorphism

E(Fq) −→ F∗qk

where k is the smallest integer such that the exponent of E(Fq)
divides qk − 1.

Can solve discrete logarithm problem in F∗qk using an index calculus
algorithm of subexponential complexity (in qk ).

E supersingular implies k ≤ 6.

General case k ∼ q.
I But are some special cases for ordinary curves.
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Menezes-Okamoto-Vanstone/Frey-Rück

There is a pairing, the (modified) Tate pairing, such that for
supersingular curves

t :

{
E(Fq)× E(Fq) −→ F∗qk

(P,Q) 7−→ fn,P(Q)(q
k−1)/n

where
I (fn,P) = n(P)− n(O)

I n = #E(Fq)

I t(P,Q) is bilinear
I If P,Q 6= O then t(P,Q) 6= 1
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Menezes-Okamoto-Vanstone/Frey-Rück

To solve
Q = λP

Compute
I g = t(P,P)

I h = t(Q,P)

Try to solve, in the finite field,

h = t(Q,P)

= t(λP,P),

= t(P,P)λ,

= gλ.
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Menezes-Okamoto-Vanstone/Frey-Rück

For general curves the modified Tate pairing is defined as

t :

{
E(Fq)× E(Fqe ) −→ F∗qk

(P,Q) 7−→ fn,P(Q)(q
k−1)/n

where
I (fn,P) = n(P)− n(O)

I n = #E(Fq)

I t(P,Q) is bilinear
I If P,Q 6= O then t(P,Q) 6= 1
I e = k/d where d is the largest possible twist
I E is a d-th twist of E , which is a curve defined over Fqe .

Nigel Smart
Introduction to ECC Slide 118



Semaev/Smart/Araki-Satoh

Suppose E(Fp) has exactly p points.

Construct a group homomorphism

E(Fp) −→ F+
p .

Methods:
I Using p-adic logarithm and p-adic lift.
I Take a function f such that (f ) = p(P)− p(O) and consider the

holomorphic differential ω = 1
f df .

Discrete logarithm problem in F+
p solved using Euclid’s algorithm.
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Weil Descent

Only (currently) applies to fields of characteristic two.

If curve defined over Fqn for a small value of n can reduce ECDLP to
a HCDLP.

For some values of n, eg n = 4 this weakens the curve.
I Work of Frey, Galbraith, Gaudry, Hess and Smart

Values of n of 4,5,6 sometimes chosen for efficiency reasons.

Note, only standard which uses such curves is IPSec (I think)
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New Techniques

The most successful of the more modern techniques (post 2005)
have been those in the Semaev/Gaudry/Diem family.

I Use a combination of index calculus, division polynomials and
Groebner basis.

Almost all are non-practical but they obtain sub-exponential
complexity for infinite familties of curves over fields of the form

Fpn

where p and n lie in certain regions.
I Sort of “medium characteristic” fields.
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Gaudry’s Method

For curves over Fqn

For fixed n, but with q tending to infinity, Gaudry obtains a
complexity of

O(q2−2/n).

Comparing to Pollard rho of O(qn/2) we see that for n = 4 this is
more efficient.

I But is totally impractical
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Diem’s Method

If a > 2 + ε and (2 + ε)n2 ≤ log2(q) ≤ an2 then obtain

exp(O(1) · (log(qn))2/3)

i.e. Lqn (1/3, c ·
√

a) for some constant c.

This generalises Gaudry’s result.

We essentially obtain a polynomial algorithm in q as long as log2(q)
is larger than 2n2.

I Hence if q is subexponential in qn then we get a subexponential
algorithm.

Again the method is totally impractical, even for small values of n
and q.
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How big?

To compare ECC against other technologies we use the following
table provided by NIST

Block Cipher Example ECC RSA
Key Size Block Cipher Key Size Key Size

80 SKIPJACK 163 1024
128 AES (small) 283 3072
192 AES (medium) 409 7680
256 AES (large) 571 15360

ECC at 571 bits is usable, RSA at 15360 bits is not.

Although 571 is really huge, conservative managers may want to go
for the highest level of security possible.
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Counting Points
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Counting points
To use an elliptic curve in a real system we first need to know

#E(Fq).

For some curves this is easy
I Koblitz curves

For others we need to be more clever to compute this number

Frobenius endomorphism

π : (x , y) 7→ (xq, yq).

Characteristic polynomial

π2 − tπ + q = 0.

Then have #E(Fq) = q + 1− t .
Hasse: |t | ≤ 2

√
q.

Computing #E(Fq) is equivalent to computing t .
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Schoof

Idea:
Compute the value of t modulo small primes (or prime powers) l
Recover t using the Chinese remainder theorem and the bound
|t | ≤ 2

√
q.

Very complicated algorithm.
I Can be made to be very efficient using ideas of Elkies and Atkin
I Can compute #E(Fq) for a given curve in a matter of seconds

for most interesting values of q.
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Satoh
Satoh in 1998 invented a new method which is better than Schoof
for fields Fpn of small characteristic p, eg characteristic two,

Lifts the curve to a p-adic extension.

Applies a p-isogeny n times, to obtain an isogeny cycle.

Use this to write down t modulo pn.

Note : A 2-isogeny is given by the Arithmetic-Geometric mean as
any standard textbook on elliptic integrals (or computing π) will tell
you.

I Thus Satoh’s algorithm gives rise to the AGM method of
Harley-Gaudry from 2001

I AGM method only useful for characteristic two.
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Any Questions?
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