i

Non-interactive Zero-Knowledge Proofs

Jens Groth
University College London

3rd Bar-llan Winter School on Cryptography 2013



Zero-knowledge:
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true, but nothing else
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Zero-knowledge proof as solution
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Round complexity

* Non-interactive zero-knowledge proof
% Useful for non-

Interactive tasks
« Signatures
* Encryption




Non-interactive proofs

L language in NP defined by R;

Statement: xelL %( xel }

Prover Verifier



Non-interactive zero-knowledge (NIZK) proofs

 Completeness
— Can prove a true statement

« Soundness
— Cannot prove false statement

« Zero-knowledge
— Proof reveals nothing (except truth of statement)



Zero-knowledge = Simulation

Verifier



NIZK proofs in the plain model only possible
for trivial languages LeBPP [GO94]

Given probabilistic polynomial time algorithms P, V, S
for prover, verifier and simulator

Decision algorithm for xeL or xgL
Run S(x) —»n
Return V(r)

If xgL: Soundness implies verifier algorithm rejects
If xelL: Zero-knowledge; simulation looks like real proof
Completeness then means verifier accepts ™



Non-interactive zero-knowledge proof [BFM88]

Common reference string
0100...11010

Statement: xelL

Verifier
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Common reference string (CRS)

0110110101000101110100101

« Can be uniform random or specific distribution
— Key generation algorithm K for generating CRS

* Trusted generation
— Trusted party
— Secure multi-party computation
— Multi-string model with majority of strings honest [GOOQ07]
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Zero-knowledge simulation Simulation trapdoor

Common reference string \/7

0100...11010

Statement: xelL

Verifier

13



Publicly verifiable NIZK proofs

NP language L

— Statement xeL if there is withess w so that (x,w)eR,

» An NIZK proof system for R, consists of three
probabilistic polynomial time algorithms (K,P,V)
— K(1¥): Generates common reference string o
— P(o,x,w): Generates a proof «
— V(o,x,n): Outputs 1 (accept) or O (reject)
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Public vs. private verification

Anybody can check
» Publicly verifiable the proof

— K generates CRS & w

— V checks proof given input (o,x,n)

Designated verifier
 Privately verifiable | with ® can check proof

— K generates CRS o anerification key o
— V checks proof given input (»,X,7)
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Public vs. private verifiability

Public verifiability
« Sometimes required

— Signatures
— Universally verifiable voting

Reusability

— Proof can be copied and
sent to somebody else

— Prover only needs to run
once to create proof = that
convinces everybody

Hard to construct

Private verifiability

« Sometimes suffices

— CCA-secure public-key
encryption, e.g., Cramer-
Shoup encryption

« Cannot be transferred
— For designated verifier only

« Easier to construct

16



Completeness

Common reference stringc  «—— K(1%)

.  Statement xeL

Withess w

so (x,w)eR v(o.x,m) =

7+ Accept/reject

Perfect completeness: Pr[Accept] = 1
17



Soundness

Common reference stringc  «—— K(1%)

.  Statement x¢L

J\\

Adaptive soundness: T
The adversary first sees
CRS and then cheats

V(o,x,mt) —
7+ Accept/reject

Perfect soundness: V Adv: Pr[Reject] = 1
Statistical soundness: V Adv: Pr[Reject] =~ 1

Computational soundness: V poly-time Adv: Pr[Reject] 1 °



Proofs vs. arguments

* Proof

— Perfect or statistical soundness

— No unbounded adversary can prove a false statement
* Argument

— Computational soundness

— No probabilistic polynomial time adversary can prove a
false statement
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Proof of knowledge [DP92]

Common reference stringo «—— E(1%) > &

.  Statement x

V(o,x,mt) —
7+ Accept/reject

Extractor E:
E(E,x,T) > W

Perfect proof of knowledge: V Adv: Pr[(x,w)eR, | accept] = 1
Statistical PoK: Vv Adv: Pr[(x,w)eR, | accept] = 1
Comp. PoK: V poly-time Adv: Pr[(x,w)eR, | accept] = 1




Zero-knowledge

Multi-theorem ZK [FLS99]
The adversary can get
many real/simulated proofs

S,(0,1,X) — T

Perfect ZK: Pr[Adv —1|Real ] = Pr[Adv—1|Simulation]
Computational ZK:
V poly-time Adv: Pr[Adv —1|Real | = Pr[Adv—1|Simulation]



Witness indistinguishability [FS90]

Common reference string o ~—— K(1¥)

Statement xeL

Witnesses w,,w;
(X,VYO),(X,WOE R

P(o,x,w,) — =

Perfect witness-indistinguish.: V Adv: Pr[Guess = b] = 7%
Computational WI: V¥V poly-time Adv: Pr[Guess = b] ~ 72
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Witness-indistinguishability vs. zero-knowledge

« Zero-knowledge implies witness-indistinguishability
— Reveals nothing, in particular not which witness used
» Witness-indistinguishability weaker than ZK
— Suppose all witnesses for the same statement in L have
the same prefix, then a WI proof may reveal that prefix

" W, =100100101 11011ﬁ WI proof may reveal 100100101
* w, =100100101 00100

— If each statement has only one witness, then the Wi
proof may reveal the entire witness
« Statement: (u,v) ElIGamal encryption of 1, i.e., (u,v) = (g",h")
» Witness-indistinguishable proof: r

23



Fiat-Shamir heuristic [FS86]

« Take an interactive ZK argument where verifier's
messages are random bits (public coin argument)

 Let the CRS describe a hash-function H

* Replace the verifier's messages with hash-values
from the current transcript

« NIZK argument = = (a,2) 2



Fiat-Shamir heuristic

 Efficient NIZK arguments that work well in practice

* Hopefully they are secure

— Can argue heuristically that they are computationally
sound in the random oracle model [BR93], where we
pretend H is a truly random function

— But in real life H is a deterministic function and there are
instantiations of the Fiat-Shamir heuristic [GK03] that
yields insecure real-life schemes
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Encrypted random bits [BFM88]

Statement: xelL

CRS
£Q%6.0:)

Efick )

K(1¥) - (pk,sk)

EOXT0)
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Statistical sampling

robably
remaining pairs of
encrypted bits are
00 and 11

« Random bits not useful

« Use statistical sampling to get
hidden bits with structure

CRS
1 1
1 0
0 0
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Reveal certain bits from structures
Reveal: 20 1?7® 7?1 =0

Kilian-Petrank for j ormulas

10 v 11 v 11

(21 VX v—X3 )A(—X1 VIV )A(X] o)A L

BUNCIE ING T
They give method to assign hidden pairs of bits to each
literal in a consistent manner such that
— If literal is true the pair is 01 or 10, if literal is false the pair is 00 or 11

— Pairs for literals corresponding to different appearances of same
variable are consistent with each other

With satisfying assignment possible to XOR all clauses to 0
With an unsatisfied clause 50% chance bits do not XOR to 0



NIZK proofs for Circuit SAT

« Security level: 2%
« Trapdoor perm size: k; = poly(k)

« Group element size: kg = k®

_____________[CRS inbits__|Proofinbits | Assumption __

G-Ostrovsky-Sahai 12 O(kg)

Groth 10
Groth 10
Gentry 09

|C|-k-polylog(k)
|C|-polylog(k)
poly(k)

« Circuit size: |C| = poly(k)
« Witness size: |w| < |C]

O(IC|kg)
|C|-ks-polylog(k)
|C|-polylog(k)
Iw|-poly(k)

Pairing-based
Trapdoor perms
Naccache-Stern
FHE + NIZK
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Practice

Statement: Here is a ciphertext and a document. The ciphertext
contains a digital signature on the document.

| Practical

statements

| Circuit SAT
Inefficient Damgard 92
Kilian-Petrank 98
Efficient

Groth-Ostrovsky-
Sahai 12

Groth-Sahai 12

30




i

Non-interactive Zero-Knowledge Proofs from
Pairings

Jens Groth
University College London

3rd Bar-llan Winter School on Cryptography 2013



Groth-Ostrovsky-Sahai 2012 (2006)

NIZK proof for Circuit SAT

* Perfect completeness, perfect soundness,
computational zero-knowledge

« Common reference string: O(1) group elements
Proofs: O(|C|) group elements



Composite order bilinear group

e Gen(1%) generates (p,q,G,Gr, e, 9)
e G, Gy finite cyclic groups of order n = pq
 Pairinge:G X G - G
- e(g% g") = e(g, P
- G =(g).Gr ={e(g,9))
* Deciding group membership, group operations,

and bilinear pairing efficiently computable

« Subgroup decision assumption

— Given (n, G, Gr, e, g, h) hard to distinguish whether h has

order g or h has order n
3



BGN encryption [Boneh-Goh-Nissim 05]

Public key: (n,G,Gr,e, g, h) h has order g
Secret key: D, q n =pq
Encryption: c=g%h" re—Z2,
Decryption: c?1 = (g*h")q = g9%h9" = (g1)“

Compute discrete logarithm if a small

BGN encryption is IND-CPA secure if the subgroup decision
assumption holds

Sketch of proof
By subgroup decision assumption public key looks the same as if h had
order n. But if h had order n, ciphertext would have no information about
the plaintext a.
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Commitment

Public key: (n,G,Gr,e,g,h) h has order q
Commitment: c=g%h" r—Z,
Perfectly binding: Unique a mod p
Computationally hiding: Indistinguishable from h order n
Addition: (g*h")(gPhs) = g*tbhT+s
Multiplication: e(g*h”, g°h®)

= e(g% g?)e(h, g?)e(g%, hS)e(h", h®)

as+rb hTS)

=e(g9,9)%e(h, g



A

NIZK proof for Circuit SAT
1

Circuit SAT is NP
complete




A

NIZK proof for Circuit SAT

gl

— w T 3 g3 ?
C]_g 1h1

c; = g"2h'"?

Prove w,; € {0,1}
Prove w, € {0,1}
Prove w; € {0,1}

Prove w, € {0,1}

Prove
Wy = (Wi Aw,)

Prove
1 = _I(W3/\W4_)



Proof for ¢ containing 0 or 1

Write ¢ = g"h" (unique w mod p since h has order q)
Recall e(c,cg™) = e(g, g)W™WVe(h, g@w-Drpr*)
Proof m = g@w-Drpr’

Verifier checks: e(c,cg™1) = e(h, )

— e(g, 9" Ve(h,g®¥V"h™") = e(h, m)
— w=0modp orw=1modp



Observation

by | by | b, | by+b+2b,-2
0 0 0 -2

0 0 1 0

0 1 0 -1

0 1 1 1

1 0 0 -1

1 0 1 1

1 1 0 0

b, = —(byAby)
if and only if
bo + b1 + 2b2 -2 € {0,1}



Proof for NAND-gate

Given c,, ¢4, ¢, containing bits by, by, b,
wish to prove b, = —(byAb;)

bz — _I(bo/\bl) If bO + b1 + sz — 2 € {0,1}

2 —2 _— bog+bi+2b,—21,19+1{+2T
COC1C2g =g 0TP1 2 hO 1 2

Prove cycicég~2 contains 0 or 1

10



A

NIZK proof for Circuit SAT

gl

cz = g"3h'

c; = g"2h'

Prove w,; € {0,1}
Prove w, € {0,1}
Prove w; € {0,1}

Prove w, € {0,1}

Prove
Wy = (Wi Awy)

Prove
1 — _I(W3 /\W4_)

CRS (n,G,Gr,e, g, h)
CRS size 3k,
Proof size (2|w]| + |C|) kg




Zero-Knowledge

Subgroup decision assumption

Hard to distinguish whether h has order g or n

Simulated common reference string
h ordern by choosing g = h' T« 23
The simulation trapdoor is t

Commitments are now perfectly hiding trapdoor
commitments
glhr — gOhr+T

12



A

Simulation

Prove w,; € {0,1}
Prove w, € {0,1}
Prove w; € {0,1}

Prove w, € {0,1}

Prove
W4 = _I(W]_/\Wz)

Prove
1 — _I(W3/\W4_)

Usingw, =0,w3 =0
for the NAND proofs .



Withess-indistinguishable 0/1-proof

Write ¢ = gth" or c = g°h"*"

e(c,cg™t) = e(h,g’”h’"z) or e(c,cg™) = e(h,g‘(T”)h(r”)z)

2

Proof 7 = g"h"™ or & =g (+Dp+D*
Verifier checks e(c,cg™) = e(h, n)

Perfect witness-indistinguishable when h has order n since

there is unique & satisfying equation, no matter whether ¢
contains O or 1
14



Zero-knowledge of full Circuit SAT proof

Sketch of proof:
Pr[Adv—1|Real proof]

U

Pr[Adv—1|Real proof on h with order n]

Pr[Adv—1|Hybrid proof where h has order n and
commitments to 1. The simulator uses trapdoor
to open them to real witness and gives real proofs]

Pr[Adv—1|Hybrid proof where h has order n and
commitments to 1. The simulator uses trapdoor to
open some commitments to 0 in NAND proofs]

Pr[Adv—1|Simulated proof]

15



Composable zero-knowledge

* Real common reference string
computationally indistinguishable from
simulated common reference string

» Real proof on simulated common reference string
perfectly indistinguishable from
simulated proof on simulated common reference

string

16



NIZK proof for Circuit SAT

« Commit to all wires w; as ¢; = g"ih'i

* For each i prove c; contains O or 1

 For each NAND prove cyc;csg~2 contains O or 1
 Total size: 2|w| + |C| group elements

* Perfect completeness, perfect soundness,
composable zero-knowledge

* Also, perfect proof of knowledge
Ciq — (gwihri)q — (gCI)Wi

17



Known for all| Computational Perfect

of NP? zero-knowledge | Zero-knowledge
(everlasting privacy)

Interactive Yes Yes
proof [Goldreich-Micali- [Brassard-
Wigderson 1980] Crepeau 19806]
Non- Yes
Interactive ves
[Blum-Feldman-

[Groth-Ostrovsky-

roof icali
D Micali 1988] Sahai 2012]




Perfect zero-knowledge

Instead of h with order g, use h with order n
Easy to verify that we have perfect completeness

As argued earlier we have perfect zero-knowledge
What about soundness”?

19



”Natural” computational soundness fails

« Start with h of order n and Adversary that
produces a false statement and a valid proof

» Switch to h of order g, which Adversary cannot
distinguish from order n. Therefore Adversary still
produces a statement and a valid proof

* We now have non-adaptive soundness, when
statement is independent of CRS. Otherwise a
false statement has been proven with h of order g

« But there is a problem with adaptive soundness

— Consider the statement "h has order g" 20



Adaptive culpable soundness

Common reference string — K(1%)

C’ WguiIt
Proof «t

Wgit Witness for C unsatisfiable

Comp. culpable soundness: V poly-time Adv: Pr[Reject] = 1 N



Computational culpable soundness

Sketch of proof:

* Imagine poly-time Adversary could break culpable
soundness; after seeing CRS where h has order
n, Adversary makes valid (C,wg;, ).

By subgroup decision assumption approximately
same success probability for Adversary producing
valid (C,wg;,) when h has order q.

But w,;; guarantees C is unsatisfiable and when h
has order g the perfect soundness guarantees C

IS satisfiable.
22



Culpable soundness the ’right” definition

* Abe-Fehr 07 show that impossible to achieve
perfect zero-knowledge and the "natural” adaptive
soundness definition with standard direct black-
box methods

» Often a non-satisfiability witness exists
— Consider for instance verifiable encryption; here the
secret key is a witness for the plaintext not being m
« Computational culpable soundness sufficient for

constructing universally composable NIZK proofs
23



Groth-Ostrovsky-Sahai 12 o= (n,G,Gr e g,h)

where ord(h) = q

 NIZK proof for Circuit SAT/
* Perfect binding key [
A'& :

— Perfect completeness
— Perfect soundness
— Computational zero-knowledge

* Perfect hiding key

— Perfect completeness 6 = (n,G,Gpe g, h)
— Culpable soundness where ord(h) = n

— Perfect zero-knowledge

24
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NIZK proof efficiency
Circuit SAT Practical
statements
Inefficient
Hidden bits Groth 06
Efficient Groth-Ostrovsky- Groth-Sahai 12
Sahai 12 Coming next




Our goal

* We want high efficiency. Practical non-interactive
proofs!

* We want non-interactive proofs for statements
arising in practice such as "the ciphertext c
contains a signature on m”. No NP-reduction!



Example: Boyen-Waters 07 group signatures

o Statement
Uiy iU €EZ,,0,9, U,V ,Vq, ..,V €EG,AE Gyp

* Prover knows witness 6,,60,,05,0, € G
8(01, HZQ) = A 8(02,U,) = 8(83,'9)8(@4,77,1_[77;”)
i
* The group signature on M = (uy, ..., Uy,) IS @ SIX
element proof of knowledge (o4, 0,, 03,04, 1, T5)

* Boyen-Waters 07 NIZK proof independent of our work



Constructions in bilinear groups

a,ce€ G b,deZ,

t =b+ydmodn

te = xYa¥ct

tr = e(tg, cte)




Non-interactive cryptographic proofs for
correctness of constructions

correct? | do not know your

secret x, y.
- /

[Yes here is a proof. g Are the constructions

t =b+ yd modn
WS — . =xYaVct

tr = e(tg, ctd)

. Proof




Commitment to group elements

Common reference string (n, G, G, e, g, h)
— Real CRS: h has order g
— Simulation CRS: g = h* with t € Zj,

Commitment to group element x € G
c =xh" re—Z2,
Real CRS: Perfect binding in order p subgroups
— Let 1 = 1mod p,A = 0 mod q then c* = x*h*" = x* determines x*

Simulation CRS: Perfect hiding commitments
— When h has order n the commitment is a random group element



Homomorphic properties

 Commitments are homomorphic
- (xh")(yh®) = xyh™™*
_ (QXhT')(gth) — gx+yhr+s
* Pairing commitments
- e(xh”,yh%) = e(x,y)e(h,x5y"h"s)
- e(xh”,g”h%) = e(g,xY)e(h,x5g¥"h")
- e(g*h", g”h*) = e(g,g)*Ye(h, g* ™" h'"s)



NIWI proof example

« Consider an equation

e(a,y)e(x,y) — tT
Commitments to variables

c =xh",d = yh®
Proof that committed values satisfy the equation

T = asxsyrhrs
« Verify proof © by checking
e(a,d)e(c,d) = tre(h,m)
 Completeness
e(a,yh®)e(xh",yh®)
= e(a,y)e(x,y) e(h,a’x*y"h"™) 9



NIWI proof example

* Consider an equation
e(a,y)e(x,y) =ty
* Verify proof n by checking
e(a,d)e(c,d) = tre(h,m)
» Soundness when ord(h) = g

— Let A = 1 mod p,A = 0 mod q and raise to 1 = A* mod n
on both sides of verification equation

e(al, d’l)e(c"l, dl) = t%ze(h’l,nl) = tT;L
— We see x = c*,y = d* satisfy the equation in the order
p subgroups of G, G

10



NIWI proof example

* Consider an equation
e(a,y)e(x,y) =ty
* Verify proof & by checking
e(a,d)e(c,d) =tre(h,m)
 Witness-indistinguishability when ord(h) = n
— The commitments are perfectly hiding, so there are

many different possible openings x,r,y,s of ¢,d
satisfying the equation

— However, since ord(h) = n there is a unique proof n
satisfying the verification equation

— Two openings xg, 1, Yo, So and x4,77,y4, 51 of ¢, d that
satisfy the original equation therefore give the same n



Full NIWI proof for a set of equations

* Suppose we have equations eqq, eq,, ... of the form

1_[ e(a;, x;) 1_[ e(xl-, xj)yij = tr
L,j

l
* We can give a NIWI proof that there are values
X1, -, Xm €E G
satisfying all the equations simultaneously
— Commit to each variable x;
— Make a NIWI proof for each equation eqy

« Commitments and proofs cost 1 group element each

12



Together with commitments to exponents in Z,, we
get NIWI proof for simultaneous satisfiability a set
of equations eq4, eq,, ... that can be a mix of
— Pairing product equations
1_[ e(a;, x;) 1_[ e(x;, xj)y” =t
i ij

— Multi-exponentiation equations

. b; e
‘ ‘ a;”) ‘ ‘ X ‘ ‘ x;YuYi = tg
J L L,J

— Quadratic equations

2 b]y] + z Yl]yly] = tmodn
J L,J

13



Properties of the NIWI proof

Two types of common reference string
— Real CRS: h has order q
— WI CRS: h has order n
— Real and WI reference strings computationally indistinguishable

Perfect completeness on both types of strings

Real CRS: Perfect soundness in order p subgroups
— Commitments perfectly binding and equation proofs perfectly sound

WI CRS: Perfect witness-indistinguishability

— Commitments perfectly hiding so can contain any valid witness

— The equation proofs are perfectly witness-indistinguishable, so do
not reveal anything about the witness inside the commitments

14



What makes the NIWI proof work?

GXG - Gr (x,y) —-tr
Lol )l !

GXG - Gr (xh",yh>) - tre(h, )
Lol b !

G, X Gy = Gy (x*,y*) - t#

 Commuting linear and bilinear map

* We will generalize this methodology
— Groups can have prime or composite order
— Pairing e: G; X G, = Gy with G; #+ G, or G, = G,
— Many different assumptions: Subgroup decision, SXDH
(i.e., DDH in both groups), decision linear, etc.



Modules

* An abelian group (4, +,0) is a Z,,-module if Z,
acts on A such thatforallr,s € Z,,a,b € A
- la=a
- (r+s)a=ra+sa
-r(a+b)=ra+rb
- r(sa) = (rs)a
» If pis a prime then A4 is a vector space
 Examples

2 rn2 4
- Z,,Gq, Gy, Gr, G, G5, Gy are Z,,-modules .



Modules with bilinear map

* We will be interested in finite Z,,-modules
Aq1,A,, A with a bilinear map -4: A; X A, = Ar
 Examples:
- pair:Gy X G, » Gy (x,y) »e(x,y)
- exp:Gy X Z, - Gy (x,y) » xY
- exp:Z, X G = G (x,y) » y*
-mult:Z, XZ, > Z, (x,y)~ xymodp

17



Statements we want to prove

« Statements consisting of quadratic equations
eqq,...,eqy in Ay, A,, Ar of the form

Zaj y]+2xlbl+2x1yuy] =1
J L Lj
* The prover knows secret withess

-

56 — (le ,.X'm) Yy = (yl' ""yn)
that satisfies all equations eqq, ..., eqy

« Simplify notation using vectors and matrices
i-y+%-b+x-Ty=t

18



Commitments in modules

Easy to compute

Linear maps and moduy
2 Hard to compute

ALpBe
 Elements uq,u,,...,u,,, €EB
« Committoanelementx € 4
c =1i(x)+ Eriui
i
Perfectly hiding x if i(4) € (uq, ..., Uy,
Perfectly binding to p(c)

— For soundness, we want p(u;) =0

19



Example
* Linear maps and modules
i P i:x = (1,x)
G- G*—>G p:(a,b) - ba™®

« Elements u; = (g,9%),u, = (h, h**")
— |f the DDH problem is hard in G cannot distinguish
whethert =0orz # 0

« Commitmenttox € G
C = (g'rlh'ré,x(grlhrz)ah‘frz)
— If T # 0 this is a perfectly hiding commitment

— If T = 0 the commitment is an ElIGamal encryption of x
and p is the EIGamal decryption algorithm

* Note p(u,) =p(u,) =1 and p(i(x)) =X 20



Commuting linear and bilinear maps

* CRS defines Z,,-modules A,, A;, Ar, By, B, Br,
C1, Co, Cr and (bi)linear maps iy, iy, it, P1, P2, PTr'ar' B> C

A; X A, B A
i1 ip) . liT
B, xB, 5 B,
pll le . lpr
C; X C, S Cr

* Prover's witness is in 44, 4,
« Will commit and make proofs in B, B,

« Soundness will hold in C4, C5, Cr 3



N | [ o N

Example
Gy X Gy > Gr (x,9) = e(x, )
il il | i i) i) | i
Gf XG5 = Gr  ((1,%), (1,y)) = (1,1,1,e(x,y))
P1l D2l o | % P1l D2l J pr
G1 X Gy = Gy (x,y) > e(x,y)

ElGamal decryption with
- p(a,b) = ba%,p,(c,d) = dc~F keys a, B, respectively
- (a; b) ® (C) d) — (e(al C)) e(a; d)) e(b; C)) e(b; d))

- pr(a,b,c,d) = dc‘ﬁ(ba_ﬁ)_a

22



Common reference string

 CRS has modules A4,4,,A+,B{,B,,B7,C{,C,,Cr
and (bi)linear maps i4, iy, iy, P1, P2, P1,° 2,8, c and
elements u, ..., u,, € By,v4, ..., v, € B,

« Two indistinguishable types of CRS
— WICRS has i;(4;) € (uq, ..., Uy), i, (Ay) € (vq, ..., V)
— Soundness CRS has p; (u;) = 0 and p,(v;) =0

23



Statement

* The statement consist of quadratic equations
eqq,...,eqy in Ay, A,, Ar of the form

Zaj " Yj +in -bi+2xl- "Yijyi = L
J L Lj
* The prover knows values

X = (%1, %m) Y =1 s V)
that satisfy all equations eqy, ..., eqy

« Simplified notation
G- y+X-b+%-Ty=t

24



Commitment to withess

* Prover commits in B, B, to all secret elements
= i1(x;) + 2 NieU  d; = (y;) + z SikVk
k

. Leté = (cq,...,cy) and d = (dl, ..,d,) then
C = 1(x)+Ru lz(y)+Sv

25



NIWI proofs

* For each equation
i-y+x-b+x-Ty=t
the prover creates a NIWI proof 7 € B}, ¢ € B™

* For each equation the verifier checks
i1(@)-d+¢-iy(b)+¢-Td=ir(t)+U-T+¢-D

26



Soundness

* For each equation the verifier checks
i@ -d+2 iy(b)+¢ - Td=ip(t)+U-T+¢ D
- On a soundness string p, (%) = 0,p,(3) = 0
* We define
@' =p(i1(@) b =pa(iz(b)) t' =pr(ir®)
¥ =p@ § =p(d)
Projecting the verification equation to C;, C,, Cr
-y +% b +x% Ty =t'+0+0=t¢

27



N | [ o N

Example
Gy X G, > Gr (x,y) = e(x,y)
i1l i) L ig ip) i) | i
Gf X G5 =3 Gr  ((1,%),(1,y)) = (1,11, e(x,y))
Pl P2l o | pr Pl D2l | pr
G, X G, = G (x,y) = e(x,y)

e p1(i1(@)) =a Pz(iz(l_;)) =b pr(ir(t)) =t
* Projection therefore gives us the original
equation is satisfied by x = p,(¢) and y = p, (J)
i-y+%-b+%-Ty=t 28



Completeness

The prover has commitments
C=i;(X)+RU d=1i,(3)+SD
For each equation the committed witness satisfies
i-y+x-b+x-Ty=t
For each equation the verifier checks
i1(@)-d+2 iy(b)+¢ - Td=ip(t)+1U-T+¢ D
The prover can create a proof T € BY, b € B"
7 =RT(iy(b) +Td) ¢ =ST(i,(@) +ITi;(®))

29



Witness-indistinguishability

« WICRS i;(4,) € (u),i,(4,) € (v)
- The commitments ¢ d are perfectly hiding
« What about the proofs?
i@ -d+2 iy(b)+¢-Td=ip(t)+1U-T+ ¢ D
e Ifm, q_b) are unique then we have perfect Wi

* For non-unique proofs, we will randomize them
such that any witness yields a uniform random
distribution over proofs satisfying the equation

30



Witnhess-indistinguishability

« What about the proofs?
i(@-d+2 iy(b)+¢-Td=ip(t)+U-T+¢ D
* For non-unique proofs, we will randomize them

such that any witness yields a uniform random
distribution over proofs satisfying the equation
— Observe

U-T+¢-v=u-@+T0)+(¢p—TT1) D
—OnaWICRS e (@)son' =m+ Tvis random in (V)
— Randomise ¢’ = ¢ — TT4 + w with random w - % = 0

« May require CRS to contain information to make it possible to pick
random w € (1) such that w - ¥ = 0 (but often not needed)



Overview

* CRS defines Z,-modules A,, A;, A7, By, B3, Br, €1, C3, Cr and
(bi)linear maps iy, iy, i7, P1, P2, P1> 4, 5, ¢ @nd U, v and w-info

G-y+%-b+x-Ty=t

Ay}

@ -d+¢-i,(B)+¢-Td=ir() +U- -7+

—

i@ -y +% -b+% Ty =t

* Prover's witness is in 44, 4,
« Commitments and proofs are in By, B,

« Soundness holds in Cy, C,, Cr »



Zero-knowledge

 On a WI CRS the commitments and proofs
¢, d, 7, ¢ are perfectly witness-indistinguishable
* Are the commitments and proofs also ZK?

* Problem
— Cannot simulate proofs without knowing a witness!

33



Zero-knowledge

« Strategy
— Set up WI CRS so that the simulator can find a withess
 Consider the case where 4, = Z,,

— On the WI CRS we have i;(4;) S (u) so
— The simulator will use r as the simulation trapdoor
* Rewrite all the equations eqq, ..., eqy to the form

1-(-)+d-y+%-b+%-Ty=0

34



Zero-knowledge simulation

Consider 1 to be an extra variable x, where we
use commitment ¢, = i;(1)

We now have equations eqy, ..., eqy of the form
Xg-(—)+d-§+X-b+x-Ty=0
Choosing x, = 0,% = 0,7 = 0 gives the simulator
a witness satisfying all equations simultaneously

And because ¢y = i1 (1) = i;(0) + 77w on a WI
CRS the simulator has an opening of ¢, to 0 that
it can use in all the NIWI proofs

Each commitment is perfectly hiding and each
proof perfectly WI, so this is a perfect simulation



Example

 Consider equations over x; € G;,y; € G,,X;,y; € Z,,
— Pairing product equations

[ [ewp] [ecunp] [e@iy) =g 00°
i ij

J
— Multi-exponentiation equations in G; (similar for G,)

I I 5. I I B I I 5.
J l L,J
— Quadratic equations

2 a;y; Z Xipi + Z YijXiyj = t modp
J l L,J

* Usingx; =1,y;, =1,%; =0,y; = 0 we can simulate



Efficiency in the example

* Proofs for e: G; X G, = G setting where DDH

problem hard in both G; and G,

Cost of each variable/equation G G,
Variables x € G;,X € Z,, 2 0
Variables y € G,,J € Z,, 0 2
Pairing product equations 4 4
(zero-knowledge if all t; = 1)
Multi-exponentiations in G, 2 4
Multi-exponentiations in G, 4 2
Quadratic equations in Z, 2 2
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Non-interactive Zero-Knowledge Proofs from
Pairings — extra remarks

Jens Groth
University College London



CRS-free
proofs for all Zero- Witness-
of NP? knowledge | indistinguishability
Interactive 4 rounds 2 rounds
proofs

Non-interactive

f Impossible Yes
proofs




Naive idea for NIWI proofs in the plain model

No, maybe you used
Statement: xelL a simulation CRS

CRS o
Proof T

Prover Verifier



NIWI proofs in the plain model [GOS12]

* Nalve idea: Provers picks both CRS and proof

— Not convincing

» Better idea: Prover picks two CRSs and proofs

— The two CRSs related such that at least one is
guaranteed to be sound

— But the verifier cannot tell which one is the sound string



NIWI proofs in the plain model

fAt least one CRS is\

sound. So either r,

or n, shows that xelL
J

Statement: xelL

CRS o, o4
Proof n,, m,

Prover Verifier



NIWI proof in the plain model

» Better idea: Prover picks two CRSs and proofs

— The two CRSs related such that at least one is
guaranteed to be sound

— But the verifier cannot tell which one is the sound string

* Requirements
— Prover can pick two related CRSs such that either CRS
can give witness-indistinguishability

— The verifier can check that at least one CRS is sound,
but not distinguish the sound CRS from the WI CRS



Suitable groups

 BGN group of composite order n = pg not good
because hard to tell whether h has order g

* Prime order groups better
— Forinstance e: G X G — G4 with prime order p
— A CRS specifies (f,1,h),(1,g,h), (u,v,w)
— Write (u,v,w) = (f7, g5, A" tSt)
— If t = 0 perfect Wl and if t # 0 perfect soundness
— Decision linear assumption says hard to distinguish

 Related CRSs

- O-O — (p; G) GT; e;f; g; h; uO; vOJ WO)
- 01 = (p,G,Gr,e,f, g, h,up, vy, woh)



NIWI proof in plain model

o Statement: C

 Proof

(60’01) < Krelated(1k’b) (Gb iS W] CRS)
ny < P(c,,C,w)
n, < P(c,C,w)
The proof is n = (64,04,m5,74)
* Verification

C
C

necC
NecC

C

NecC

K (0y,04) related so at least one is sound
K (04,C,mp) Is valid proof

K (64,C,m4) is valid proof



Witness-indistinguishabili Adversary knows C,wq,W;

and sees (G(,G,M,71)

Given circuit C and two withesses w,, w, %

» Generate o, as WI CRS and o, as perfect sound CRS

Proof using w, on g, Proof using w, on o,
Proof using w, on o, Proof using w, on o,
« Switch to o, perfect sound CRS and o; WI CRS
Proof using w, on o, Proof using w, on o,
Proof using w, on g, Proof using w, on o,
« Switch back to o, being WI CRS and o, perfect sound CRS



Special properties of pairing-based proofs

* Proofs consist of group elements and they are
verified by pairing product equations

— We can give an NIWI proof that there exists an NIWI
proofs that a statement is true

* Proofs may be modified or randomized
— Noted by [BCCKLS09] and used in delegatable credentials
— Controlled malleable proofs formalized in [CKLM12]



Randomization of proofs

» Pairing-based NIZK proofs may be randomized

 Example
— Consider statement e(a,x) = 1 in BGN group

— An NIZK proof would consist of a commitment and proof
c =xh" T=a"
which is verified by checking e(a,c) = e(h, n)
— Given commitment and proof ¢, m we can rerandomize

¢’ =ch’ n' = ma’
— Or we can modify the commitment and proof
c"=cb™! nw"=nt

— Which shows x'’ satisfies e(af,x"'b) = 1



Short pairing-based NIZK arguments

___________[CRs ____|size ____|Prover comp. | Verifier comp.

Abe-Fehr 07 O(1) group O(n) group O(n) expo
Dlog & knowledge of expo. Comp. sound
Groth 10 O(n?) group  O(1) group O(n?) mult
Groth 10 O(n?3) group O(n%3) group O(n*3) mult
g-CPDH and g-PKE Comp. sound
Lipmaa 12 n*o() group  O(1) group O(n?) add
Lipmaa 12 n12+(1) group n'2*(") group O(n¥?) add
A-PSDL and A-PKE Comp. sound
Gennaro-Gentry- O(n) group 7 group O(n log n) mult

Parno-Raykova Comp. sound

O(n) pairing
Perfect ZK
O(n) mult
O(n) mult
Perfect ZK
O(n) mult
O(n) mult
Perfect ZK
O(n) mult
Perfect ZK



Knowledge commitment [G10]

« Commitment key

2
= (g,gl,gz, ) (9,9 9%,
3.1, 92, ) \g% g%, g%, ..
* Committo ay,ay,..,a, € Z, as
T aj
(C) _ (g “—[ie[q] gi )
Al T A ] A
¢ g u—[ie[q] g;
 Can verify commitment correct e(c, g) = e(¢, g)

* Power Knowledge of Exponent assumption

— Impossible to make correct commitment without
knowing r and ay, ..., a,

13



Homomorphic property

« We now have a perfectly hiding commitment
scheme using just two group elements to commit
to a set of g known values a,, ..., a,

 The commitment scheme is homomorphic

) b; ithi
(g" 1_[ g9;“)(g° 1_[ g;)=g"* 1_[ gt
i€lq] i€lq]

i€lq]
 We can add multiple committed values in a
verifiable way using only a few group elements

14



Polynomial balancing

+ Recall (g,91, -, 94) = (9, 9% -, 9*")
» Commitment is ¢ = g" [Tic;19; " = g Hielq) G¥'

» Pairing two commitments correspond to
computing a committed product of polynomials

(r + 2 al-xi)(s + 2 bjxj)
L J

« Carefully create large polynomial equations that
are satisfied if and only if the statement is true

« Use proofs to cancel out extra polynomial terms s



Size vs. assumption

Risk

random oracle

knowledge extract.

pairing-based
factoring-based

trapdoor perm.
one-way functions
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