
Non-interactive Zero-Knowledge Proofs

Jens Groth
University College London

3rd Bar-Ilan Winter School on Cryptography 2013

Zero-knowledge proof [GMR85]

 Statement

 Prover Verifier

Witness:
Statement true
because…

OK, statement
is true

Zero-knowledge:
Verifier learns statement is

true, but nothing else

2

Internet voting

 Voters Election authorities

 Ciphertext

Vote Encrypts vote to
keep it private

Tally without decrypting
individual votes

3

Election fraud

 Voters Election authorities

 Ciphertext

Not Bob Encrypts -100
votes for Bob

Is the encrypted
vote valid?

4

Zero-knowledge proof as solution

 Voters Election authorities

 Ciphertext

Soundness:
Vote is valid

Zero-knowledge
proof for valid
vote encrypted

Zero-knowledge:
Vote is secret

5

Round complexity

• Non-interactive zero-knowledge proof

• Interactive zero-knowledge proof


Useful for non-
interactive tasks
• Signatures
• Encryption
• …

6

Non-interactive proofs

 Prover Verifier

Statement: xL OK, xL

Witness w
(x,w)  RL

Proof 

L language in NP defined by RL

7

Non-interactive zero-knowledge (NIZK) proofs

• Completeness
– Can prove a true statement

• Soundness
– Cannot prove false statement

• Zero-knowledge
– Proof reveals nothing (except truth of statement)

8

Zero-knowledge = Simulation

 Prover Verifier

Statement: xL

Witness w
(x,w)  RL



9

NIZK proofs in the plain model only possible
for trivial languages LBPP [GO94]

Given probabilistic polynomial time algorithms P, V, S
for prover, verifier and simulator

Decision algorithm for xL or xL
 Run S(x) 
 Return V()

If xL: Soundness implies verifier algorithm rejects
If xL: Zero-knowledge; simulation looks like real proof
 Completeness then means verifier accepts 10

Non-interactive zero-knowledge proof [BFM88]

 Prover Verifier

 Statement: xL

Proof: 

(x,w)RL

 Common reference string
 0100…11010

11

Common reference string (CRS)

• Can be uniform random or specific distribution
– Key generation algorithm K for generating CRS

• Trusted generation
– Trusted party
– Secure multi-party computation
– Multi-string model with majority of strings honest [GO07]

0110110101000101110100101

12

Zero-knowledge simulation

 Prover Verifier

 Statement: xL (x,w)RL

 Common reference string
 0100…11010  K  S  

Simulation trapdoor

S(,x)  

13

Publicly verifiable NIZK proofs

• NP language L
– Statement xL if there is witness w so that (x,w)RL

• An NIZK proof system for RL consists of three

probabilistic polynomial time algorithms (K,P,V)
– K(1k): Generates common reference string σ
– P(σ,x,w): Generates a proof 
– V(σ,x,): Outputs 1 (accept) or 0 (reject)

14

Public vs. private verification

• Publicly verifiable
– K generates CRS 
– V checks proof given input (,x,)

• Privately verifiable

– K generates CRS  and private verification key 
– V checks proof given input (,x,)

Designated verifier
with  can check proof

Anybody can check
the proof

15

Public vs. private verifiability

Public verifiability
• Sometimes required

– Signatures
– Universally verifiable voting

• Reusability
– Proof can be copied and

sent to somebody else
– Prover only needs to run

once to create proof  that
convinces everybody

• Hard to construct

Private verifiability
• Sometimes suffices

– CCA-secure public-key
encryption, e.g., Cramer-
Shoup encryption

• Cannot be transferred

– For designated verifier only

• Easier to construct

16

Completeness

Perfect completeness: Pr[Accept] = 1

P(σ,x,w) →  V(σ,x,) →
Accept/reject

K(1k) Common reference string σ

Statement xL

Witness w
so (x,w)R

17

Soundness

Perfect soundness:  Adv: Pr[Reject] = 1
Statistical soundness:  Adv: Pr[Reject]  1
Computational soundness:  poly-time Adv: Pr[Reject]  1

  V(σ,x,) →
Accept/reject

K(1k) Common reference string σ

Statement xL

Adaptive soundness:
The adversary first sees
CRS and then cheats

18

Proofs vs. arguments

• Proof
– Perfect or statistical soundness
– No unbounded adversary can prove a false statement

• Argument
– Computational soundness
– No probabilistic polynomial time adversary can prove a

false statement

19

Proof of knowledge [DP92]

Perfect proof of knowledge:  Adv: Pr[(x,w)RL | accept] = 1
Statistical PoK:  Adv: Pr[(x,w)RL | accept]  1
Comp. PoK:  poly-time Adv: Pr[(x,w)RL | accept]  1

  V(σ,x,) →
Accept/reject

E(1k)   Common reference string σ

Statement x

Extractor E:
E(,x,)  w

Zero-knowledge

Perfect ZK: Pr[Adv →1|Real] = Pr[Adv→1|Simulation]
Computational ZK:
 poly-time Adv: Pr[Adv →1|Real]  Pr[Adv→1|Simulation]

P(σ,x,w) → 

K(1k) → σ

0/1
(x,w)  RL

S2(σ,,x) → 

  S1(1k) → σ

 0/1
(x,w)  RL

Multi-theorem ZK [FLS99]
The adversary can get
many real/simulated proofs

Witness indistinguishability [FS90]

Perfect witness-indistinguish.:  Adv: Pr[Guess = b] = ½

Computational WI:  poly-time Adv: Pr[Guess = b]  ½

P(σ,x,wb) → 

K(1k) Common reference string σ

Statement xL
Witnesses w0,w1
(x,w0),(x,w1)RL

b{0,1}
Guess
{0,1}

22

Witness-indistinguishability vs. zero-knowledge

• Zero-knowledge implies witness-indistinguishability
– Reveals nothing, in particular not which witness used

• Witness-indistinguishability weaker than ZK
– Suppose all witnesses for the same statement in L have

the same prefix, then a WI proof may reveal that prefix
• w0 = 100100101 11011
• w1 = 100100101 00100

– If each statement has only one witness, then the WI
proof may reveal the entire witness
• Statement: (u,v) ElGamal encryption of 1, i.e., (u,v) = (gr,hr)
• Witness-indistinguishable proof: r

 WI proof may reveal 100100101

23

Fiat-Shamir heuristic [FS86]

• Take an interactive ZK argument where verifier’s
messages are random bits (public coin argument)

• Let the CRS describe a hash-function H
• Replace the verifier’s messages with hash-values

from the current transcript

• NIZK argument  = (a,z)

H(x,a)
a a

z z

24

Fiat-Shamir heuristic

• Efficient NIZK arguments that work well in practice
• Hopefully they are secure

– Can argue heuristically that they are computationally
sound in the random oracle model [BR93], where we
pretend H is a truly random function

– But in real life H is a deterministic function and there are
instantiations of the Fiat-Shamir heuristic [GK03] that
yields insecure real-life schemes

25

Encrypted random bits [BFM88]

 Statement: xL

 CRS

(x,w)RL
01...0

11…1

00…1

10…0
K(1k)  (pk,sk)

 c1

 c2

 c3

 c4

Epk(0;r1)

Epk(1;r2)

Epk(0;r3)

Epk(1;r4)

 c1

 1 ; r2

 c3

 0 ; r4
26

1

1 0

0 0

0 1

1

Statistical sampling
• Random bits not useful
• Use statistical sampling to get

hidden bits with structure

Probably
remaining pairs of
encrypted bits are

00 and 11

CRS

27

• Kilian-Petrank for instance consider 3SAT5 formulas

(𝑥ଵ𝑥ଶ𝑥ଷ)(𝑥ଵ𝑥ସ𝑥ହ) 𝑥ଵ … …
… 𝑥ଵ … (𝑥ଵ …)

• They give method to assign hidden pairs of bits to each
literal in a consistent manner such that
– If literal is true the pair is 01 or 10, if literal is false the pair is 00 or 11
– Pairs for literals corresponding to different appearances of same

variable are consistent with each other

• With satisfying assignment possible to XOR all clauses to 0
• With an unsatisfied clause 50% chance bits do not XOR to 0

T  F  F

Reveal certain bits from structures
Reveal: ?0  1?  ?1 = 0

10  11  11

28

NIZK proofs for Circuit SAT

• Security level: 2-k

• Trapdoor perm size: kT = poly(k)
• Group element size: kG ≈ k3

• Circuit size: |C| = poly(k)
• Witness size: |w|  |C|

CRS in bits Proof in bits Assumption
G-Ostrovsky-Sahai 12 O(kG) O(|C|∙kG) Pairing-based
Groth 10 |C|∙kT∙polylog(k) |C|∙kT∙polylog(k) Trapdoor perms
Groth 10 |C|∙polylog(k) |C|∙polylog(k) Naccache-Stern
Gentry 09 poly(k) |w|∙poly(k) FHE + NIZK

29

Practice

Circuit SAT Practical
statements

Inefficient

Efficient

Damgård 92
Kilian-Petrank 98

Groth-Ostrovsky-
Sahai 12

Groth 06

Groth-Sahai 12

1 GB

1 KB

Statement: Here is a ciphertext and a document. The ciphertext
contains a digital signature on the document.

30

Non-interactive Zero-Knowledge Proofs from
Pairings

Jens Groth
University College London

3rd Bar-Ilan Winter School on Cryptography 2013

Groth-Ostrovsky-Sahai 2012 (2006)

• NIZK proof for Circuit SAT
• Perfect completeness, perfect soundness,

computational zero-knowledge
• Common reference string: O(1) group elements
• Proofs: O(|C|) group elements

2

Composite order bilinear group

• Gen(1௞) generates (𝑝, 𝑞, 𝐺, 𝐺், 𝑒, 𝑔)
• 𝐺, 𝐺் finite cyclic groups of order 𝑛 = 𝑝𝑞
• Pairing 𝑒: 𝐺 × 𝐺 → 𝐺்

– 𝑒 𝑔௔, 𝑔௕ = 𝑒 𝑔, 𝑔 ௔௕
– 𝐺 = 𝑔 , 𝐺் = 〈𝑒 𝑔, 𝑔 〉

• Deciding group membership, group operations,
and bilinear pairing efficiently computable

• Subgroup decision assumption
– Given 𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ hard to distinguish whether ℎ has

order 𝑞 or ℎ has order 𝑛

3

BGN encryption [Boneh-Goh-Nissim 05]

Public key: (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ) ℎ has order 𝑞

Secret key: 𝑝, 𝑞 𝑛 = 𝑝𝑞

Encryption: 𝑐 = 𝑔௔ℎ௥ 𝑟 ← 𝒁௡

Decryption: 𝑐௤ = 𝑔௔ℎ௥ ௤ = 𝑔௤௔ℎ௤௥ = 𝑔௤ ௔
 Compute discrete logarithm if 𝑎 small

BGN encryption is IND-CPA secure if the subgroup decision
assumption holds

Sketch of proof
By subgroup decision assumption public key looks the same as if ℎ had
order 𝑛. But if ℎ had order 𝑛, ciphertext would have no information about
the plaintext 𝑎.

4

Commitment

Public key: (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ) ℎ has order 𝑞

Commitment: 𝑐 = 𝑔௔ℎ௥ 𝑟 ← 𝒁௡

Perfectly binding: Unique 𝑎 𝑚𝑜𝑑 𝑝

Computationally hiding: Indistinguishable from ℎ order 𝑛

Addition: 𝑔௔ℎ௥ 𝑔௕ℎ௦ = 𝑔௔ା௕ℎ௥ା௦
Multiplication: 𝑒(𝑔௔ℎ௥, 𝑔௕ℎ௦)
 = 𝑒 𝑔௔, 𝑔௕ 𝑒 ℎ௥, 𝑔௕ 𝑒 𝑔௔, ℎ௦ 𝑒(ℎ௥, ℎ௦)
 = 𝑒 𝑔, 𝑔 ௔௕𝑒(ℎ, 𝑔௔௦ା௥௕ℎ௥௦) 5

NIZK proof for Circuit SAT
1

𝑤ଵ

𝑤ସ

𝑤ଷ 𝑤ଶ

Circuit SAT is NP
complete

NAND

NAND

6

NIZK proof for Circuit SAT
 𝑔ଵ

𝑐ସ = 𝑔௪రℎ௥ర

Prove 𝑤ଵ ∈ {0,1}
Prove 𝑤ଶ ∈ {0,1}
Prove 𝑤ଷ ∈ {0,1}
Prove 𝑤ସ ∈ {0,1}

Prove
𝑤ସ = ¬(𝑤ଵ𝑤ଶ)

Prove
1 = ¬(𝑤ଷ𝑤ସ)

NAND

NAND

𝑐ଵ = 𝑔௪భℎ௥భ

𝑐ଶ = 𝑔௪మℎ௥మ

𝑐ଷ = 𝑔௪యℎ௥య

7

Proof for c containing 0 or 1

Write 𝑐 = 𝑔௪ℎ௥ (unique 𝑤 𝑚𝑜𝑑 𝑝 since ℎ has order 𝑞)

Recall 𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒 𝑔, 𝑔 ௪ ௪ିଵ 𝑒(ℎ, 𝑔 ଶ௪ିଵ ௥ℎ௥మ)

Proof 𝜋 = 𝑔 ଶ௪ିଵ ௥ℎ௥మ

Verifier checks: 𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝜋)
 → 𝑒 𝑔, 𝑔 ௪ ௪ିଵ 𝑒 ℎ, 𝑔 ଶ௪ିଵ ௥ℎ௥మ = 𝑒 ℎ, 𝜋
 → 𝑤 = 0 𝑚𝑜𝑑 𝑝 or 𝑤 = 1 𝑚𝑜𝑑 𝑝

8

Observation

 b2 = (b0b1)
 if and only if
 b0 + b1 + 2b2 - 2  {0,1}

b0 b1 b2 b0+b1+2b2-2
0 0 0 -2

0 0 1 0

0 1 0 -1

0 1 1 1

1 0 0 -1

1 0 1 1

1 1 0 0

1 1 1 2
9

Proof for NAND-gate

Given 𝑐଴, 𝑐ଵ, 𝑐ଶ containing bits 𝑏଴, 𝑏ଵ, 𝑏ଶ
wish to prove 𝑏ଶ = ¬(𝑏଴𝑏ଵ)

 𝑏ଶ = ¬(𝑏଴𝑏ଵ) if 𝑏଴ + 𝑏ଵ + 2𝑏ଶ − 2 ∈ {0,1}

 𝑐଴𝑐ଵ𝑐ଶଶ𝑔ିଶ = 𝑔௕బା௕భାଶ௕మିଶℎ௥బା௥భାଶ௥మ

Prove 𝑐଴𝑐ଵ𝑐ଶଶ𝑔ିଶ contains 0 or 1

10

NIZK proof for Circuit SAT
 𝑔ଵ

𝑐ସ = 𝑔௪రℎ௥ర

Prove 𝑤ଵ ∈ {0,1}
Prove 𝑤ଶ ∈ {0,1}
Prove 𝑤ଷ ∈ {0,1}
Prove 𝑤ସ ∈ {0,1}

Prove
𝑤ସ = ¬(𝑤ଵ𝑤ଶ)

Prove
1 = ¬(𝑤ଷ𝑤ସ)

NAND

NAND

𝑐ଵ = 𝑔௪భℎ௥భ

𝑐ଶ = 𝑔௪మℎ௥మ

𝑐ଷ = 𝑔௪యℎ௥య

11

CRS (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ)
CRS size 3𝑘ீ
Proof size 2 𝑤 + 𝐶 𝑘ீ

Zero-Knowledge

Subgroup decision assumption

 Hard to distinguish whether ℎ has order 𝑞 or 𝑛

Simulated common reference string

 ℎ order 𝑛 by choosing 𝑔 = ℎఛ 𝜏 ← 𝒁௡∗

The simulation trapdoor is 

Commitments are now perfectly hiding trapdoor
commitments

𝑔ଵℎ௥ = 𝑔଴ℎ௥ାఛ

12

Simulation
 𝑔ଵ

𝑐ସ = 𝑔ଵℎ௥ర

Prove 𝑤ଵ ∈ {0,1}
Prove 𝑤ଶ ∈ {0,1}
Prove 𝑤ଷ ∈ {0,1}
Prove 𝑤ସ ∈ {0,1}

Prove
𝑤ସ = ¬(𝑤ଵ𝑤ଶ)

Prove
1 = ¬(𝑤ଷ𝑤ସ)

Using 𝑤ଶ = 0,𝑤ଷ = 0
for the NAND proofs

NAND

NAND

𝑐ଵ = 𝑔ଵℎ௥భ

𝑐ଶ = 𝑔ଵℎ௥మ

𝑐ଷ = 𝑔ଵℎ௥య

13

Witness-indistinguishable 0/1-proof

Write 𝑐 = 𝑔ଵℎ௥ or 𝑐 = 𝑔଴ℎ௥ାఛ

 𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝑔௥ℎ௥మ) or 𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝑔ି ௥ାఛ ℎ ௥ାఛ మ)

Proof 𝜋 = 𝑔௥ℎ௥మ or 𝜋 = 𝑔ି ௥ାఛ ℎ ௥ାఛ మ

Verifier checks 𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝜋)

Perfect witness-indistinguishable when ℎ has order 𝑛 since

there is unique  satisfying equation, no matter whether 𝑐
contains 0 or 1

14

Zero-knowledge of full Circuit SAT proof

Sketch of proof:

 Pr[Adv→1|Real proof]

 Pr[Adv→1|Real proof on ℎ with order 𝑛]

= Pr[Adv→1|Hybrid proof where ℎ has order 𝑛 and
 commitments to 1. The simulator uses trapdoor
 to open them to real witness and gives real proofs]

= Pr[Adv→1|Hybrid proof where ℎ has order 𝑛 and
 commitments to 1. The simulator uses trapdoor to
 open some commitments to 0 in NAND proofs]

= Pr[Adv→1|Simulated proof]
15

Composable zero-knowledge

• Real common reference string
computationally indistinguishable from
simulated common reference string

• Real proof on simulated common reference string
perfectly indistinguishable from
simulated proof on simulated common reference
string

16

NIZK proof for Circuit SAT

• Commit to all wires 𝑤௜ as 𝑐௜ = 𝑔௪೔ℎ௥೔
• For each 𝑖 prove 𝑐௜ contains 0 or 1
• For each NAND prove 𝑐଴𝑐ଵ𝑐ଶଶ𝑔ିଶ contains 0 or 1
• Total size: 2 𝑤 + |𝐶| group elements

• Perfect completeness, perfect soundness,

composable zero-knowledge
• Also, perfect proof of knowledge

𝑐௜௤ = 𝑔௪೔ℎ௥೔ ௤ = 𝑔௤ ௪೔
17

Known for all
of NP?

Computational
zero-knowledge

Perfect
zero-knowledge

(everlasting privacy)

Interactive
proof

Non-
interactive

proof ?

Yes
[Goldreich-Micali-
Wigderson 1986]

Yes
[Brassard-

Crepeau 1986]

Yes
[Blum-Feldman-

Micali 1988]

Yes
[Groth-Ostrovsky-

Sahai 2012]

Perfect zero-knowledge

• Instead of ℎ with order 𝑞, use ℎ with order 𝑛

• Easy to verify that we have perfect completeness
• As argued earlier we have perfect zero-knowledge
• What about soundness?

19

”Natural” computational soundness fails

• Start with ℎ of order 𝑛 and Adversary that
produces a false statement and a valid proof

• Switch to ℎ of order 𝑞, which Adversary cannot
distinguish from order 𝑛. Therefore Adversary still
produces a statement and a valid proof

• We now have non-adaptive soundness, when
statement is independent of CRS. Otherwise a
false statement has been proven with ℎ of order 𝑞

• But there is a problem with adaptive soundness
– Consider the statement "ℎ has order 𝑞" 20

Adaptive culpable soundness

Comp. culpable soundness:  poly-time Adv: Pr[Reject] ≈ 1

C, wguilt
Proof 

K(1k) Common reference string

 wguilt witness for C unsatisfiable

21

Computational culpable soundness

Sketch of proof:
• Imagine poly-time Adversary could break culpable

soundness; after seeing CRS where ℎ has order
𝑛, Adversary makes valid (C,wguilt,).

• By subgroup decision assumption approximately
same success probability for Adversary producing
valid (C,wguilt,) when ℎ has order 𝑞.

• But wguilt guarantees C is unsatisfiable and when ℎ
has order 𝑞 the perfect soundness guarantees C
is satisfiable.

22

Culpable soundness the ”right” definition

• Abe-Fehr 07 show that impossible to achieve
perfect zero-knowledge and the ”natural” adaptive
soundness definition with standard direct black-
box methods

• Often a non-satisfiability witness exists
– Consider for instance verifiable encryption; here the

secret key is a witness for the plaintext not being 𝑚
• Computational culpable soundness sufficient for

constructing universally composable NIZK proofs
23

Groth-Ostrovsky-Sahai 12

• NIZK proof for Circuit SAT
• Perfect binding key

– Perfect completeness
– Perfect soundness
– Computational zero-knowledge

• Perfect hiding key
– Perfect completeness
– Culpable soundness
– Perfect zero-knowledge

𝜎 = (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ)
where 𝑜𝑟𝑑 ℎ = 𝑞

𝜎 = 𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ
where 𝑜𝑟𝑑 ℎ = 𝑛

?

24

Non-interactive Zero-Knowledge Proofs from
Pairings

Jens Groth
University College London

3rd Bar-Ilan Winter School on Cryptography 2013

NIZK proof efficiency

Circuit SAT Practical
statements

Inefficient

Efficient

Hidden bits

Groth-Ostrovsky-
Sahai 12

Groth 06

Groth-Sahai 12
Coming next

2

Our goal

• We want high efficiency. Practical non-interactive
proofs!

• We want non-interactive proofs for statements
arising in practice such as ”the ciphertext 𝑐
contains a signature on 𝑚”. No NP-reduction!

3

Example: Boyen-Waters 07 group signatures

• Statement
𝜇ଵ, … , 𝜇௠ ∈ 𝒁௡, Ω, 𝑔, 𝑢, 𝑣ᇱ, 𝑣ଵ, … , 𝑣௠ ∈ 𝐺 , 𝐴 ∈ 𝐺்

• Prover knows witness 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ ∈ 𝐺

𝑒 𝜃ଵ, 𝜃ଶΩ = 𝐴 𝑒 𝜃ଶ, 𝑢 = 𝑒 𝜃ଷ, 𝑔 𝑒(𝜃ସ, 𝑣ᇱෑ𝑣௜
ఓ೔

௜
)

• The group signature on 𝑀 = (𝜇ଵ, … , 𝜇௠) is a six
element proof of knowledge (𝜎ଵ, 𝜎ଶ, 𝜎ଷ, 𝜎ସ, 𝜋ଵ, 𝜋ଶ)

* Boyen-Waters 07 NIZK proof independent of our work
 4

Constructions in bilinear groups

𝑎, 𝑐 ∈ 𝐺 𝑏, 𝑑 ∈ 𝒁௡

 𝑡 = 𝑏 + 𝑦𝑑 𝑚𝑜𝑑 𝑛

 𝑡ீ = 𝑥௬𝑎௬𝑐௧
 𝑡் = 𝑒(𝑡ீ, 𝑐𝑡ீ௕)

5

Non-interactive cryptographic proofs for
correctness of constructions

Are the constructions
correct? I do not know your

secret 𝑥, 𝑦.

Proof

Yes, here is a proof.

 𝑡 = 𝑏 + 𝑦𝑑 𝑚𝑜𝑑 𝑛

 𝑡ீ = 𝑥௬𝑎௬𝑐௧
 𝑡் = 𝑒(𝑡ீ, 𝑐𝑡ீ௕)

6

Commitment to group elements

• Common reference string (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ)
– Real CRS: ℎ has order 𝑞
– Simulation CRS: 𝑔 = ℎఛ with 𝜏 ∈ 𝒁௡∗

• Commitment to group element 𝑥 ∈ 𝐺
 𝑐 = 𝑥ℎ௥ 𝑟 ← 𝒁௡

• Real CRS: Perfect binding in order p subgroups
– Let 𝜆 = 1 𝑚𝑜𝑑 𝑝, 𝜆 = 0 𝑚𝑜𝑑 𝑞 then 𝑐ఒ = 𝑥ఒℎఒ௥ = 𝑥ఒ determines 𝑥ఒ

• Simulation CRS: Perfect hiding commitments
– When ℎ has order 𝑛 the commitment is a random group element

7

Homomorphic properties

• Commitments are homomorphic
– 𝑥ℎ௥ 𝑦ℎ௦ = 𝑥𝑦ℎ௥ା௦
– 𝑔௫ℎ௥ 𝑔௬ℎ௦ = 𝑔௫ା௬ℎ௥ା௦

• Pairing commitments
– 𝑒 𝑥ℎ௥, 𝑦ℎ௦ = 𝑒 𝑥, 𝑦 𝑒 ℎ, 𝑥௦𝑦௥ℎ௥௦
– 𝑒 𝑥ℎ௥, 𝑔௬ℎ௦ = 𝑒 𝑔, 𝑥௬ 𝑒 ℎ, 𝑥௦𝑔௬௥ℎ௥௦
– 𝑒 𝑔௫ℎ௥, 𝑔௬ℎ௦ = 𝑒 𝑔, 𝑔 ௫௬𝑒(ℎ, 𝑔௫௦ା௬௥ℎ௥௦)

8

NIWI proof example

• Consider an equation
𝑒 𝑎, 𝑦 𝑒(𝑥, 𝑦) = 𝑡்

• Commitments to variables
𝑐 = 𝑥ℎ௥, 𝑑 = 𝑦ℎ௦

• Proof that committed values satisfy the equation
𝜋 = 𝑎௦𝑥௦𝑦௥ℎ௥௦

• Verify proof  by checking
𝑒 𝑎, 𝑑 𝑒(𝑐, 𝑑) = 𝑡்𝑒 ℎ, 𝜋

• Completeness
 𝑒 𝑎, 𝑦ℎ௦ 𝑒 𝑥ℎ௥, 𝑦ℎ௦
= 𝑒 𝑎, 𝑦 𝑒 𝑥, 𝑦 𝑒 ℎ, 𝑎௦𝑥௦𝑦௥ℎ௥௦

9

NIWI proof example

• Consider an equation
𝑒 𝑎, 𝑦 𝑒 𝑥, 𝑦 = 𝑡்

• Verify proof  by checking
𝑒 𝑎, 𝑑 𝑒 𝑐, 𝑑 = 𝑡்𝑒 ℎ, 𝜋

• Soundness when 𝑜𝑟𝑑 ℎ = 𝑞
– Let 𝜆 = 1 𝑚𝑜𝑑 𝑝, 𝜆 = 0 𝑚𝑜𝑑 𝑞 and raise to 𝜆 = 𝜆ଶ 𝑚𝑜𝑑 𝑛

on both sides of verification equation
𝑒 𝑎ఒ, 𝑑ఒ 𝑒 𝑐ఒ, 𝑑ఒ = 𝑡ఒ்మ𝑒 ℎఒ, 𝜋ఒ = 𝑡்ఒ

– We see 𝑥 = 𝑐ఒ, 𝑦 = 𝑑ఒ satisfy the equation in the order
𝑝 subgroups of 𝐺, 𝐺்

10

NIWI proof example

• Consider an equation
𝑒 𝑎, 𝑦 𝑒 𝑥, 𝑦 = 𝑡்

• Verify proof  by checking
𝑒 𝑎, 𝑑 𝑒 𝑐, 𝑑 = 𝑡்𝑒 ℎ, 𝜋

• Witness-indistinguishability when 𝑜𝑟𝑑 ℎ = 𝑛
– The commitments are perfectly hiding, so there are

many different possible openings 𝑥, 𝑟, 𝑦, 𝑠 of 𝑐, 𝑑
satisfying the equation

– However, since 𝑜𝑟𝑑 ℎ = 𝑛 there is a unique proof 𝜋
satisfying the verification equation

– Two openings 𝑥଴, 𝑟଴, 𝑦଴, 𝑠଴ and 𝑥ଵ, 𝑟ଵ, 𝑦ଵ, 𝑠ଵ of 𝑐, 𝑑 that
satisfy the original equation therefore give the same 𝜋

Full NIWI proof for a set of equations

• Suppose we have equations 𝑒𝑞ଵ, 𝑒𝑞ଶ, … of the form

ෑ𝑒(𝑎௜, 𝑥௜)
௜

ෑ𝑒 𝑥௜, 𝑥௝
ఊ೔ೕ

௜,௝
= 𝑡்

• We can give a NIWI proof that there are values
𝑥ଵ,… , 𝑥௠ ∈ 𝐺

satisfying all the equations simultaneously
– Commit to each variable 𝑥௜
– Make a NIWI proof for each equation 𝑒𝑞௞

• Commitments and proofs cost 1 group element each
12

Together with commitments to exponents in 𝒁௡ we
get NIWI proof for simultaneous satisfiability a set
of equations 𝑒𝑞ଵ, 𝑒𝑞ଶ, … that can be a mix of

– Pairing product equations

ෑ𝑒(𝑎௜, 𝑥௜)
௜

ෑ𝑒 𝑥௜, 𝑥௝
ఊ೔ೕ

௜,௝
= 𝑡்

– Multi-exponentiation equations

ෑ𝑎௝௬ೕ
௝

ෑ𝑥௜
௕೔

௜
ෑ𝑥௜ఊ೔ೕ௬ೕ
௜,௝

= 𝑡ீ

– Quadratic equations

෍𝑏௝𝑦௝ +෍𝛾௜௝𝑦௜𝑦௝
௜,௝௝

= 𝑡 𝑚𝑜𝑑 𝑛

13

Properties of the NIWI proof

• Two types of common reference string
– Real CRS: ℎ has order 𝑞
– WI CRS: ℎ has order 𝑛
– Real and WI reference strings computationally indistinguishable

• Perfect completeness on both types of strings
• Real CRS: Perfect soundness in order 𝑝 subgroups

– Commitments perfectly binding and equation proofs perfectly sound
• WI CRS: Perfect witness-indistinguishability

– Commitments perfectly hiding so can contain any valid witness
– The equation proofs are perfectly witness-indistinguishable, so do

not reveal anything about the witness inside the commitments

14

What makes the NIWI proof work?

• Commuting linear and bilinear map
• We will generalize this methodology

– Groups can have prime or composite order
– Pairing 𝑒: 𝐺ଵ × 𝐺ଶ → 𝐺் with 𝐺ଵ ≠ 𝐺ଶ or 𝐺ଵ = 𝐺ଶ
– Many different assumptions: Subgroup decision, SXDH

(i.e., DDH in both groups), decision linear, etc.

 𝑥, 𝑦 → 𝑡்

𝑥ℎ௥, 𝑦ℎ௦ → 𝑡்𝑒(ℎ, 𝜋)

𝑥ఒ, 𝑦ఒ → 𝑡்ఒ

𝐺 × 𝐺 → 𝐺்

𝐺 × 𝐺 → 𝐺்

𝐺௣ × 𝐺௣ → 𝐺்,௣

15

Modules

• An abelian group (𝐴,+, 0) is a 𝒁௣-module if 𝒁௣
acts on 𝐴 such that for all 𝑟, 𝑠 ∈ 𝒁௣, 𝑎, 𝑏 ∈ 𝐴
– 1𝑎 = 𝑎
– 𝑟 + 𝑠 𝑎 = 𝑟𝑎 + 𝑠𝑎
– 𝑟 𝑎 + 𝑏 = 𝑟𝑎 + 𝑟𝑏
– 𝑟 𝑠𝑎 = 𝑟𝑠 𝑎

• If 𝑝 is a prime then 𝐴 is a vector space
• Examples

– 𝒁௣, 𝐺ଵ, 𝐺ଶ, 𝐺், 𝐺ଵଶ, 𝐺ଶଶ, 𝐺ସ் are 𝒁௣-modules

16

Modules with bilinear map

• We will be interested in finite 𝒁௣-modules
𝐴ଵ, 𝐴ଶ, 𝐴் with a bilinear map ⋅஺: 𝐴ଵ × 𝐴ଶ → 𝐴்

• Examples:
– 𝑝𝑎𝑖𝑟: 𝐺ଵ × 𝐺ଶ → 𝐺் 𝑥, 𝑦 ↦ 𝑒(𝑥, 𝑦)
– 𝑒𝑥𝑝: 𝐺ଵ × 𝒁௣ → 𝐺ଵ 𝑥, 𝑦 ↦ 𝑥௬

– 𝑒𝑥𝑝: 𝒁௣ × 𝐺ଶ → 𝐺ଶ 𝑥, 𝑦 ↦ 𝑦௫

– 𝑚𝑢𝑙𝑡: 𝒁௣ × 𝒁௣ → 𝒁௣ 𝑥, 𝑦 ↦ 𝑥𝑦 𝑚𝑜𝑑 𝑝

17

Statements we want to prove

• Statements consisting of quadratic equations
𝑒𝑞ଵ, … , 𝑒𝑞ே in 𝐴ଵ, 𝐴ଶ, 𝐴் of the form

෍𝑎௝ ⋅ 𝑦௝ +෍𝑥௜ ⋅ 𝑏௜
௜௝

+෍𝑥௜ ⋅ 𝛾௜௝𝑦௝
௜௝

= 𝑡

• The prover knows secret witness
𝑥⃗ = 𝑥ଵ,… , 𝑥௠ 𝑦⃗ = 𝑦ଵ,… , 𝑦௡

that satisfies all equations 𝑒𝑞ଵ, … , 𝑒𝑞ே
• Simplify notation using vectors and matrices

𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡
 18

Commitments in modules

• Linear maps and modules

𝐴 → 𝐵 → 𝐶
• Elements 𝑢ଵ, 𝑢ଶ, … , 𝑢௠ ∈ 𝐵
• Commit to an element 𝑥 ∈ 𝐴

𝑐 = 𝑖 𝑥 +෍𝑟௜𝑢௜
௜

• Perfectly hiding 𝑥 if 𝑖 𝐴 ⊆ 〈𝑢ଵ, … , 𝑢௠〉
• Perfectly binding to 𝑝(𝑐)

– For soundness, we want 𝑝 𝑢௜ = 0

𝑖 𝑝 Hard to compute

Easy to compute

19

Example
• Linear maps and modules

• Elements 𝑢ଵ = 𝑔, 𝑔ఈ , 𝑢ଶ = (ℎ, ℎఈାఛ)
– If the DDH problem is hard in 𝐺 cannot distinguish

whether 𝜏 = 0 or 𝜏 ≠ 0
• Commitment to 𝑥 ∈ 𝐺

𝑐 = 𝑔௥భℎ௥మ, 𝑥(𝑔௥భℎ௥మ ఈℎఛ௥మ)
– If 𝜏 ≠ 0 this is a perfectly hiding commitment
– If 𝜏 = 0 the commitment is an ElGamal encryption of 𝑥

and 𝑝 is the ElGamal decryption algorithm
• Note 𝑝 𝑢ଵ = 𝑝 𝑢ଶ = 1 and 𝑝 𝑖 𝑥 = 𝑥

•

𝑖 𝑝
𝐺 → 𝐺ଶ → 𝐺

 𝑖: 𝑥 → (1, 𝑥)
𝑝: 𝑎, 𝑏 → 𝑏𝑎ିఈ

20

Commuting linear and bilinear maps
• CRS defines 𝒁௣-modules 𝐴ଵ, 𝐴ଶ, 𝐴், 𝐵ଵ, 𝐵ଶ, 𝐵்,

𝐶ଵ, 𝐶ଶ, 𝐶் and (bi)linear maps 𝑖ଵ, 𝑖ଶ, 𝑖், 𝑝ଵ, 𝑝ଶ, 𝑝்,⋅஺,⋅஻,⋅஼

• Prover’s witness is in 𝐴ଵ, 𝐴ଶ
• Will commit and make proofs in 𝐵ଵ, 𝐵ଶ
• Soundness will hold in 𝐶ଵ, 𝐶ଶ, 𝐶்

𝐴ଵ × 𝐴ଶ → 𝐴்

𝐵ଵ × 𝐵ଶ → 𝐵்

𝐶ଵ × 𝐶ଶ → 𝐶்

𝑖ଵ 𝑖ଶ 𝑖்

𝑝ଵ 𝑝ଶ 𝑝்

⋅஺

⋅஻

⋅஼

21

Example

– 𝑝ଵ 𝑎, 𝑏 = 𝑏𝑎ିఈ , 𝑝ଶ 𝑐, 𝑑 = 𝑑𝑐ିఉ
– 𝑎, 𝑏 ⊗ 𝑐, 𝑑 = 𝑒 𝑎, 𝑐 , 𝑒 𝑎, 𝑑 , 𝑒 𝑏, 𝑐 , 𝑒 𝑏, 𝑑
– 𝑝் 𝑎, 𝑏, 𝑐, 𝑑 = 𝑑𝑐ିఉ 𝑏𝑎ିఉ ିఈ

𝐺ଵ × 𝐺ଶ → 𝐺்

𝐺ଵଶ × 𝐺ଶଶ → 𝐺ସ்

𝐺ଵ × 𝐺ଶ → 𝐺்

𝑖ଵ 𝑖ଶ 𝑖்

𝑝ଵ 𝑝ଶ 𝑝்

𝑒

⊗

𝑒

𝑥, 𝑦 → 𝑒(𝑥, 𝑦)

(1, 𝑥 , (1, 𝑦)) → (1,1,1, 𝑒 𝑥, 𝑦)

𝑥, 𝑦 → 𝑒(𝑥, 𝑦)

𝑖ଵ 𝑖ଶ 𝑖்

𝑝ଵ 𝑝ଶ 𝑝்

ElGamal decryption with
keys 𝛼, 𝛽, respectively

22

Common reference string

• CRS has modules 𝐴ଵ, 𝐴ଶ, 𝐴், 𝐵ଵ, 𝐵ଶ, 𝐵், 𝐶ଵ, 𝐶ଶ, 𝐶்
and (bi)linear maps 𝑖ଵ, 𝑖ଶ, 𝑖், 𝑝ଵ, 𝑝ଶ, 𝑝்,⋅஺,⋅஻,⋅஼ and
elements 𝑢ଵ, … , 𝑢௠ ∈ 𝐵ଵ, 𝑣ଵ, … , 𝑣௡ ∈ 𝐵ଶ

• Two indistinguishable types of CRS
– WI CRS has 𝑖ଵ 𝐴ଵ ⊆ 𝑢ଵ, … , 𝑢௠ , 𝑖ଶ 𝐴ଶ ⊆ 〈𝑣ଵ, … , 𝑣௡〉
– Soundness CRS has 𝑝ଵ 𝑢௜ = 0 and 𝑝ଶ 𝑣௝ = 0

23

Statement

• The statement consist of quadratic equations
𝑒𝑞ଵ, … , 𝑒𝑞ே in 𝐴ଵ, 𝐴ଶ, 𝐴் of the form

෍𝑎௝ ⋅ 𝑦௝ +෍𝑥௜ ⋅ 𝑏௜
௜௝

+෍𝑥௜ ⋅ 𝛾௜௝𝑦௝
௜௝

= 𝑡

• The prover knows values
𝑥⃗ = 𝑥ଵ,… , 𝑥௠ 𝑦⃗ = 𝑦ଵ,… , 𝑦௡

that satisfy all equations 𝑒𝑞ଵ, … , 𝑒𝑞ே
• Simplified notation

𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡
24

Commitment to witness

• Prover commits in 𝐵ଵ, 𝐵ଶ to all secret elements

𝑐௜ = 𝑖ଵ(𝑥௜) +෍𝑟௜௞𝑢௞
௞

 𝑑௝ = 𝑖ଶ(𝑦௝) +෍𝑠௝௞𝑣௞
௞

• Let 𝑐 = (𝑐ଵ,… , 𝑐௠) and 𝑑 = 𝑑ଵ,… , 𝑑௡ then
𝑐 = 𝑖ଵ 𝑥⃗ + 𝑅𝑢 𝑑 = 𝑖ଶ 𝑦⃗ + 𝑆𝑣⃗

25

NIWI proofs

• For each equation
𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡

the prover creates a NIWI proof 𝜋 ∈ 𝐵ଶ௡, 𝜙 ∈ 𝐵ଵ௠

• For each equation the verifier checks
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗

26

Soundness

• For each equation the verifier checks
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗

• On a soundness string 𝑝ଵ 𝑢 = 0, 𝑝ଶ 𝑣⃗ = 0
• We define

𝑎⃗ᇱ = 𝑝ଵ 𝑖ଵ 𝑎⃗ 𝑏ᇱ = 𝑝ଶ 𝑖ଶ 𝑏 𝑡ᇱ = 𝑝்(𝑖் 𝑡)
 𝑥⃗ᇱ = 𝑝ଵ 𝑐 𝑦⃗ᇱ = 𝑝ଶ 𝑑

Projecting the verification equation to 𝐶ଵ, 𝐶ଶ, 𝐶்
𝑎⃗ᇱ ⋅ 𝑦⃗ᇱ + 𝑥⃗ᇱ ⋅ 𝑏ᇱ + 𝑥⃗ᇱ ⋅ Γ𝑦⃗ᇱ = 𝑡ᇱ + 0 + 0 = 𝑡′

27

Example

• 𝑝ଵ 𝑖ଵ 𝑎⃗ = 𝑎⃗ 𝑝ଶ 𝑖ଶ 𝑏 = 𝑏 𝑝் 𝑖் 𝑡 = 𝑡
• Projection therefore gives us the original

equation is satisfied by 𝑥⃗ = 𝑝ଵ(𝑐) and 𝑦⃗ = 𝑝ଶ(𝑑)
𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡

𝐺ଵ × 𝐺ଶ → 𝐺்

𝐺ଵଶ × 𝐺ଶଶ → 𝐺ସ்

𝐺ଵ × 𝐺ଶ → 𝐺்

𝑖ଵ 𝑖ଶ 𝑖்

𝑝ଵ 𝑝ଶ 𝑝்

𝑒

⊗

𝑒

𝑥, 𝑦 → 𝑒(𝑥, 𝑦)

(1, 𝑥 , (1, 𝑦)) → (1,1,1, 𝑒 𝑥, 𝑦)

𝑥, 𝑦 → 𝑒(𝑥, 𝑦)

𝑖ଵ 𝑖ଶ 𝑖்

𝑝ଵ 𝑝ଶ 𝑝்

28

Completeness

• The prover has commitments
𝑐 = 𝑖ଵ 𝑥⃗ + 𝑅𝑢 𝑑 = 𝑖ଶ 𝑦⃗ + 𝑆𝑣⃗

• For each equation the committed witness satisfies
𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡

• For each equation the verifier checks
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗

• The prover can create a proof 𝜋 ∈ 𝐵ଶ௡, 𝜙 ∈ 𝐵ଵ௠
𝜋 = 𝑅் 𝑖ଶ 𝑏 + Γ𝑑 𝜙 = 𝑆்(𝑖ଵ 𝑎⃗ + Γ்𝑖ଵ 𝑥⃗)

29

Witness-indistinguishability

• WI CRS 𝑖ଵ 𝐴ଵ ⊆ 𝑢 , 𝑖ଶ 𝐴ଶ ⊆ 𝑣⃗
• The commitments 𝑐, 𝑑 are perfectly hiding
• What about the proofs?
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗

• If 𝜋, 𝜙 are unique then we have perfect WI
• For non-unique proofs, we will randomize them

such that any witness yields a uniform random
distribution over proofs satisfying the equation

30

• What about the proofs?
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗

• For non-unique proofs, we will randomize them
such that any witness yields a uniform random
distribution over proofs satisfying the equation
– Observe

𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ = 𝑢 ⋅ 𝜋 + 𝑇𝑣⃗ + 𝜙 − 𝑇்𝑢 ⋅ 𝑣⃗
– On a WI CRS 𝜋 ∈ 〈𝑣⃗〉 so 𝜋ᇱ = 𝜋 + 𝑇𝑣⃗ is random in 〈𝑣⃗〉
– Randomise 𝜙ᇱ = 𝜙 − 𝑇்𝑢 + 𝑤 with random 𝑤 ⋅ 𝑣⃗ = 0

• May require CRS to contain information to make it possible to pick
random 𝑤 ∈ 〈𝑢〉 such that 𝑤 ⋅ 𝑣⃗ = 0 (but often not needed)

Witness-indistinguishability

Overview
• CRS defines 𝑍௣-modules 𝐴ଵ, 𝐴ଶ, 𝐴், 𝐵ଵ, 𝐵ଶ, 𝐵், 𝐶ଵ, 𝐶ଶ, 𝐶் and

(bi)linear maps 𝑖ଵ, 𝑖ଶ, 𝑖், 𝑝ଵ, 𝑝ଶ, 𝑝்,⋅஺,⋅஻,⋅஼ and 𝑢, 𝑣⃗ and 𝑤-info

• Prover’s witness is in 𝐴ଵ, 𝐴ଶ
• Commitments and proofs are in 𝐵ଵ, 𝐵ଶ
• Soundness holds in 𝐶ଵ, 𝐶ଶ, 𝐶்

𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡

𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗

𝑎⃗′ ⋅ 𝑦⃗′ + 𝑥⃗′ ⋅ 𝑏′ + 𝑥⃗′ ⋅ Γ𝑦ᇱ = 𝑡′

32

Zero-knowledge

• On a WI CRS the commitments and proofs
c⃗, 𝑑, 𝜋, 𝜙 are perfectly witness-indistinguishable

• Are the commitments and proofs also ZK?
• Problem

– Cannot simulate proofs without knowing a witness!

𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗

33

Zero-knowledge

• Strategy
– Set up WI CRS so that the simulator can find a witness

• Consider the case where 𝐴ଵ = 𝒁௣
– On the WI CRS we have 𝑖ଵ 𝐴ଵ ⊆ 〈𝑢〉 so

𝑖ଵ 1 = 𝑖ଵ 0 + 𝑟்𝑢
– The simulator will use 𝑟 as the simulation trapdoor

• Rewrite all the equations 𝑒𝑞ଵ, … , 𝑒𝑞ே to the form
1 ⋅ −𝑡 + 𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 0

34

Zero-knowledge simulation

• Consider 1 to be an extra variable 𝑥଴ where we
use commitment 𝑐଴ = 𝑖ଵ(1)

• We now have equations 𝑒𝑞ଵ, … , 𝑒𝑞ே of the form
𝑥଴ ⋅ −𝑡 + 𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 0

• Choosing 𝑥଴ = 0, 𝑥⃗ = 0, 𝑦⃗ = 0 gives the simulator
a witness satisfying all equations simultaneously

• And because 𝑐଴ = 𝑖ଵ 1 = 𝑖ଵ 0 + 𝑟்𝑢 on a WI
CRS the simulator has an opening of 𝑐଴ to 0 that
it can use in all the NIWI proofs

• Each commitment is perfectly hiding and each
proof perfectly WI, so this is a perfect simulation 35

Example

• Consider equations over 𝑥௜ ∈ 𝐺ଵ, 𝑦௝ ∈ 𝐺ଶ, 𝑥ො௜, 𝑦ො௝ ∈ 𝒁௣
– Pairing product equations

ෑ𝑒(𝑎௝, 𝑦௝)
௝

ෑ𝑒(𝑥௜, 𝑏௝)
௜

ෑ𝑒 𝑥௜, 𝑦௝
ఊ೔ೕ

௜,௝
= 𝑒 𝑔, 𝑔 ଴

– Multi-exponentiation equations in 𝐺ଵ (similar for 𝐺ଶ)
ෑ𝑎௝௬ොೕ
௝

ෑ𝑥௜
ఉ೔

௜
ෑ𝑥௜ఊ೔ೕ௬ොೕ
௜,௝

= 𝑡ீభ

– Quadratic equations

෍𝛼௝𝑦ො௝෍𝑥ො௜𝛽௜
௜

+෍𝛾௜௝𝑥ො௜𝑦ො௝
௜,௝௝

= 𝑡 𝑚𝑜𝑑 𝑝

• Using 𝑥௜ = 1, 𝑦௝ = 1 , 𝑥ො௜ = 0, 𝑦ො௝ = 0 we can simulate

Efficiency in the example

• Proofs for 𝑒: 𝐺ଵ × 𝐺ଶ → 𝐺் setting where DDH
problem hard in both 𝐺ଵ and 𝐺ଶ

Cost of each variable/equation 𝐺ଵ 𝐺ଶ

Variables 𝑥 ∈ 𝐺ଵ, 𝑥ො ∈ 𝒁௣ 2 0

Variables 𝑦 ∈ 𝐺ଶ, 𝑦ො ∈ 𝒁௣ 0 2

Pairing product equations
 (zero-knowledge if all 𝑡் = 1)

4 4

Multi-exponentiations in 𝐺ଵ 2 4

Multi-exponentiations in 𝐺ଶ 4 2

Quadratic equations in 𝒁௣ 2 2 37

Non-interactive Zero-Knowledge Proofs from
Pairings – extra remarks

Jens Groth
University College London

CRS-free
proofs for all

of NP?

Zero-

knowledge

Witness-

indistinguishability

Interactive

proofs

Non-interactive

proofs
?

4 rounds 2 rounds

Impossible Yes

Naïve idea for NIWI proofs in the plain model

 Prover Verifier

Statement: xL

CRS 
Proof 

No, maybe you used
a simulation CRS

NIWI proofs in the plain model [GOS12]

• Naïve idea: Provers picks both CRS and proof
– Not convincing

• Better idea: Prover picks two CRSs and proofs
– The two CRSs related such that at least one is

guaranteed to be sound
– But the verifier cannot tell which one is the sound string

NIWI proofs in the plain model

 Prover Verifier

Statement: xL

CRS 0, 1
Proof 0, 1

At least one CRS is
sound. So either 0

or 1 shows that xL

NIWI proof in the plain model

• Better idea: Prover picks two CRSs and proofs
– The two CRSs related such that at least one is

guaranteed to be sound
– But the verifier cannot tell which one is the sound string

• Requirements
– Prover can pick two related CRSs such that either CRS

can give witness-indistinguishability
– The verifier can check that at least one CRS is sound,

but not distinguish the sound CRS from the WI CRS

Suitable groups

• BGN group of composite order 𝑛 = 𝑝𝑞 not good
because hard to tell whether ℎ has order 𝑞

• Prime order groups better
– For instance 𝑒: 𝐺 × 𝐺 → 𝐺் with prime order 𝑝
– A CRS specifies 𝑓, 1, ℎ , 1, 𝑔, ℎ , (𝑢, 𝑣, 𝑤)
– Write 𝑢, 𝑣, 𝑤 = (𝑓௥, 𝑔௦, ℎ௥ା௦ା௧)
– If 𝑡 = 0 perfect WI and if 𝑡 ≠ 0 perfect soundness
– Decision linear assumption says hard to distinguish

• Related CRSs
– 𝜎଴ = 𝑝, 𝐺, 𝐺், 𝑒, 𝑓, 𝑔, ℎ, 𝑢଴, 𝑣଴, 𝑤଴
– 𝜎ଵ = (𝑝, 𝐺, 𝐺், 𝑒, 𝑓, 𝑔, ℎ, 𝑢଴, 𝑣଴, 𝑤଴ℎ)

NIWI proof in plain model

• Statement: C
• Proof

 (0,1)  Krelated(1k,b) (b is WI CRS)
 0  P(0,C,w)
 1  P(1,C,w)
The proof is  = (0,1,0,1)

• Verification
 Check (0,1) related so at least one is sound
 Check (0,C,0) is valid proof
 Check (1,C,1) is valid proof

Witness-indistinguishability

Given circuit C and two witnesses w0, w1

• Generate 0 as WI CRS and 1 as perfect sound CRS

Proof using w0 on 0 Proof using w0 on 1

Proof using w1 on 0 Proof using w0 on 1

• Switch to 0 perfect sound CRS and 1 WI CRS

Proof using w1 on 0 Proof using w0 on 1

Proof using w1 on 0 Proof using w1 on 1

• Switch back to 0 being WI CRS and 1 perfect sound CRS

Adversary knows C,w0,w1
and sees (0,1,0,1)

Special properties of pairing-based proofs

• Proofs consist of group elements and they are
verified by pairing product equations
– We can give an NIWI proof that there exists an NIWI

proofs that a statement is true
• Proofs may be modified or randomized

– Noted by [BCCKLS09] and used in delegatable credentials
– Controlled malleable proofs formalized in [CKLM12]

Randomization of proofs

• Pairing-based NIZK proofs may be randomized
• Example

– Consider statement 𝑒 𝑎, 𝑥 = 1 in BGN group
– An NIZK proof would consist of a commitment and proof

𝑐 = 𝑥ℎ௥ 𝜋 = 𝑎௥
which is verified by checking 𝑒 𝑎, 𝑐 = 𝑒(ℎ, 𝜋)

– Given commitment and proof 𝑐, 𝜋 we can rerandomize
𝑐ᇱ = 𝑐ℎ௦ 𝜋ᇱ = 𝜋𝑎௦

– Or we can modify the commitment and proof
𝑐ᇱᇱ = 𝑐𝑏ିଵ 𝜋ᇱᇱ = 𝜋௧

– Which shows 𝑥′′ satisfies 𝑒 𝑎௧, 𝑥′′𝑏 = 1

Short pairing-based NIZK arguments

CRS Size Prover comp. Verifier comp.
Abe-Fehr 07 O(1) group O(n) group O(n) expo O(n) pairing

Dlog & knowledge of expo. Comp. sound Perfect ZK
Groth 10 O(n2) group O(1) group O(n2) mult O(n) mult
Groth 10 O(n2/3) group O(n2/3) group O(n4/3) mult O(n) mult

q-CPDH and q-PKE Comp. sound Perfect ZK
Lipmaa 12 n1+o(1) group O(1) group O(n2) add O(n) mult
Lipmaa 12 n1/2+o(1) group n1/2+o(1) group O(n3/2) add O(n) mult

-PSDL and -PKE Comp. sound Perfect ZK
Gennaro-Gentry- O(n) group 7 group O(n log n) mult O(n) mult
Parno-Raykova Comp. sound Perfect ZK

Knowledge commitment [G10]

• Commitment key

𝑐𝑘 = 𝑔, 𝑔ଵ, 𝑔ଶ, …
𝑔ො, 𝑔ොଵ, 𝑔ොଶ, …

= 𝑔 , 𝑔௫ , 𝑔௫మ, …
𝑔ఈ, 𝑔ఈ௫, 𝑔ఈ௫మ, …

• Commit to 𝑎ଵ, 𝑎ଶ, … , 𝑎௤ ∈ 𝒁௣ as
𝑐
𝑐̂ =

𝑔௥ ∏ 𝑔௜
௔೔

௜∈ ௤
𝑔ො௥ ∏ 𝑔ො௜

௔೔
௜∈ ௤

• Can verify commitment correct 𝑒 𝑐, 𝑔ො = 𝑒 𝑐̂, 𝑔
• Power Knowledge of Exponent assumption

– Impossible to make correct commitment without
knowing 𝑟 and 𝑎ଵ, … , 𝑎௤

13

Homomorphic property

• We now have a perfectly hiding commitment
scheme using just two group elements to commit
to a set of 𝑞 known values 𝑎ଵ,… , 𝑎௤

• The commitment scheme is homomorphic

(𝑔௥ ෑ 𝑔௜௔೔)(𝑔௦ ෑ 𝑔௜
௕೔) = 𝑔௥ା௦ ෑ 𝑔௜

௔೔ା௕೔

௜∈ ௤௜∈ ௤௜∈ ௤

• We can add multiple committed values in a
verifiable way using only a few group elements

14

Polynomial balancing

• Recall 𝑔, 𝑔ଵ,… , 𝑔௤ = (𝑔, 𝑔௫,… , 𝑔௫೜)
• Commitment is 𝑐 = 𝑔௥ ∏ 𝑔௜

௔೔
௜∈ ௤ = 𝑔௥ା∑ ௔೔௫೔೔∈ ೜

• Pairing two commitments correspond to
computing a committed product of polynomials

(𝑟 +෍𝑎௜𝑥௜
௜

)(𝑠 +෍𝑏௝𝑥௝)
௝

• Carefully create large polynomial equations that
are satisfied if and only if the statement is true

• Use proofs to cancel out extra polynomial terms 15

Size vs. assumption

Size

Risk

one-way functions
trapdoor perm.
factoring-based
pairing-based
knowledge extract.
random oracle

0 sublinear

linear

superlinear
AF07,GW11

BFM

FLS KP

Mic

Gro
Lip

GOS

Dam Gro

Gro

CDS

BDMP

16

GGPR

