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Zero-knowledge proof [GMR85]  

 
            Statement  

  Prover    Verifier 

Witness: 
Statement true 
because… 

OK, statement 
is true 

Zero-knowledge: 
Verifier learns statement is 

true, but nothing else 
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Internet voting 

 Voters    Election authorities 

 Ciphertext 

Vote Encrypts vote to 
keep it private 

Tally without decrypting 
individual votes 
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Election fraud 

 Voters    Election authorities 

 Ciphertext 

Not Bob Encrypts -100 
votes for Bob 

Is the encrypted 
vote valid? 
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Zero-knowledge proof as solution 

 Voters    Election authorities 

 Ciphertext 

Soundness: 
Vote is valid 

Zero-knowledge 
proof for valid 
vote encrypted 

Zero-knowledge: 
Vote is secret 
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Round complexity 

• Non-interactive zero-knowledge proof 
 
 
 

• Interactive zero-knowledge proof 

 
Useful for non-
interactive tasks 
• Signatures 
• Encryption 
• … 
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Non-interactive proofs 

     Prover          Verifier 

Statement: xL OK, xL 

Witness w 
(x,w)  RL 

Proof  

L language in NP defined by RL 
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Non-interactive zero-knowledge (NIZK) proofs 

• Completeness 
– Can prove a true statement 

• Soundness 
– Cannot prove false statement 

• Zero-knowledge 
– Proof reveals nothing   (except truth of statement) 
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Zero-knowledge = Simulation 

     Prover          Verifier 

Statement: xL 

Witness w 
(x,w)  RL 

 
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NIZK proofs in the plain model only possible 
for trivial languages LBPP [GO94] 

Given probabilistic polynomial time algorithms P, V, S 
for prover, verifier and simulator 

Decision algorithm for xL or xL 
 Run S(x)  
 Return V() 
 
If xL: Soundness implies verifier algorithm rejects 
If xL: Zero-knowledge; simulation looks like real proof 
   Completeness then means verifier accepts 10 



Non-interactive zero-knowledge proof [BFM88]  
 

   

  Prover    Verifier 

   Statement:  xL 

Proof:  

(x,w)RL 

  Common reference string
 0100…11010 
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Common reference string (CRS) 

• Can be uniform random or specific distribution 
– Key generation algorithm K for generating CRS 

• Trusted generation 
– Trusted party 
– Secure multi-party computation 
– Multi-string model with majority of strings honest [GO07] 

0110110101000101110100101 
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Zero-knowledge simulation  
 

   

  Prover    Verifier 

   Statement:  xL (x,w)RL 

  Common reference string
 0100…11010  K  S   

Simulation trapdoor 

S(,x)   
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Publicly verifiable NIZK proofs 

• NP language L 
– Statement xL if there is witness w so that (x,w)RL 

 
• An NIZK proof system for RL consists of three 

probabilistic polynomial time algorithms (K,P,V) 
– K(1k): Generates common reference string σ 
– P(σ,x,w): Generates a proof  
– V(σ,x,): Outputs 1 (accept) or 0 (reject) 
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Public vs. private verification 

• Publicly verifiable 
– K generates CRS  
– V checks proof given input (,x,) 

 
• Privately verifiable 

– K generates CRS  and private verification key  
– V checks proof given input (,x,) 

Designated verifier 
with  can check proof 

Anybody can check 
the proof 
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Public vs. private verifiability 

Public verifiability 
• Sometimes required 

– Signatures 
– Universally verifiable voting 

• Reusability 
– Proof can be copied and 

sent to somebody else 
– Prover only needs to run 

once to create proof  that 
convinces everybody 

• Hard to construct 

Private verifiability 
• Sometimes suffices 

– CCA-secure public-key 
encryption, e.g., Cramer-
Shoup encryption 

 
• Cannot be transferred 

– For designated verifier only 

 
• Easier to construct 
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Completeness 

Perfect completeness: Pr[Accept] = 1 

P(σ,x,w)  →   V(σ,x,) → 
Accept/reject 

K(1k) Common reference string σ 

Statement xL 

Witness w 
so (x,w)R 
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Soundness 

Perfect soundness:  Adv: Pr[Reject] = 1 
Statistical soundness:  Adv: Pr[Reject]  1 
Computational soundness:  poly-time Adv: Pr[Reject]  1 

         V(σ,x,) → 
Accept/reject 

K(1k) Common reference string σ 

Statement xL 

Adaptive soundness: 
The adversary first sees 
CRS and then cheats 
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Proofs vs. arguments 

• Proof 
– Perfect or statistical soundness 
– No unbounded adversary can prove a false statement 

• Argument 
– Computational soundness 
– No probabilistic polynomial time adversary can prove a 

false statement 

19 



Proof of knowledge [DP92] 

Perfect proof of knowledge:  Adv: Pr[(x,w)RL | accept] = 1 
Statistical PoK:      Adv: Pr[(x,w)RL | accept]  1 
Comp. PoK:           poly-time Adv: Pr[(x,w)RL | accept]  1 

         V(σ,x,) → 
Accept/reject 

E(1k)     Common reference string σ 

Statement x 

Extractor E: 
E(,x,)  w 
 



Zero-knowledge 

Perfect  ZK:                  Pr[Adv  →1|Real  ]  =  Pr[Adv→1|Simulation] 
Computational ZK:  
 poly-time  Adv:  Pr[Adv  →1|Real  ]   Pr[Adv→1|Simulation] 

P(σ,x,w)  →   

K(1k)  →  σ 

0/1 
(x,w)  RL 

S2(σ,,x)  →             

  S1(1k)  →                  σ 

 0/1 
(x,w)  RL 

Multi-theorem ZK [FLS99] 
The adversary can get 
many real/simulated proofs 



Witness indistinguishability [FS90] 

Perfect witness-indistinguish.:  Adv: Pr[Guess = b] = ½ 

Computational WI:    poly-time Adv: Pr[Guess = b]  ½ 

P(σ,x,wb)  →   

K(1k) Common reference string σ 

Statement xL 
Witnesses w0,w1 
(x,w0),(x,w1)RL 

b{0,1} 
Guess
{0,1} 
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Witness-indistinguishability vs. zero-knowledge 

• Zero-knowledge implies witness-indistinguishability 
– Reveals nothing, in particular not which witness used 

• Witness-indistinguishability weaker than ZK 
– Suppose all witnesses for the same statement in L have 

the same prefix, then a WI proof may reveal that prefix 
• w0 = 100100101 11011 
• w1 = 100100101 00100 

– If each statement has only one witness, then the WI 
proof may reveal the entire witness 
• Statement: (u,v) ElGamal encryption of 1, i.e., (u,v) = (gr,hr) 
• Witness-indistinguishable proof: r 

 WI proof may reveal 100100101 
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Fiat-Shamir heuristic [FS86] 

• Take  an  interactive  ZK  argument  where  verifier’s  
messages are random bits (public coin argument) 

• Let the CRS describe a hash-function H 
• Replace  the  verifier’s  messages  with  hash-values 

from the current transcript 
 
 
 

• NIZK argument    = (a,z) 

H(x,a) 
a a 

z z 

24 



Fiat-Shamir heuristic 

• Efficient NIZK arguments that work well in practice 
• Hopefully they are secure 

– Can argue heuristically that they are computationally 
sound in the random oracle model [BR93], where we 
pretend H is a truly random function 

– But in real life H is a deterministic function and there are 
instantiations of the Fiat-Shamir heuristic [GK03] that 
yields insecure real-life schemes 
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Encrypted random bits [BFM88] 

   Statement:  xL 
 
          CRS 

(x,w)RL 
01...0 

11…1 

00…1 

10…0 
K(1k)  (pk,sk) 

  c1 

  c2 

  c3 

  c4 

Epk(0;r1) 

Epk(1;r2) 

Epk(0;r3) 

Epk(1;r4) 

     c1 

  1 ; r2 

     c3 

  0 ; r4 
26 



1 

1 0 

0 0 

0 1 

1 

Statistical sampling 
• Random bits not useful 
• Use statistical sampling to get 

hidden bits with structure 
 

Probably 
remaining pairs of 
encrypted bits are 

00 and 11 

CRS 
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• Kilian-Petrank for instance consider 3SAT5 formulas 
  

(𝑥ଵ𝑥ଶ𝑥ଷ)(𝑥ଵ𝑥ସ𝑥ହ) 𝑥ଵ … … 
… 𝑥ଵ … (𝑥ଵ … ) 

• They give method to assign hidden pairs of bits to each 
literal in a consistent manner such that 
– If literal is true the pair is 01 or 10, if literal is false the pair is 00 or 11 
– Pairs for literals corresponding to different appearances of same 

variable are consistent with each other  

• With satisfying assignment possible to XOR all clauses to 0 
• With an unsatisfied clause 50% chance bits do not XOR to 0 

T  F  F 

Reveal certain bits from structures  
Reveal: ?0  1?  ?1 = 0 

10  11  11 

28 



NIZK proofs for Circuit SAT 

• Security level: 2-k 

• Trapdoor perm size: kT = poly(k) 
• Group element size: kG ≈  k3

  

• Circuit size: |C| = poly(k) 
• Witness size: |w|  |C| 

CRS  in bits Proof in bits Assumption 
G-Ostrovsky-Sahai 12 O(kG) O(|C|∙kG) Pairing-based 
Groth 10 |C|∙kT∙polylog(k) |C|∙kT∙polylog(k) Trapdoor perms 
Groth 10 |C|∙polylog(k) |C|∙polylog(k) Naccache-Stern 
Gentry 09 poly(k) |w|∙poly(k) FHE + NIZK 
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Practice 

Circuit SAT Practical 
statements 

Inefficient 

Efficient 

Damgård 92 
Kilian-Petrank 98 

Groth-Ostrovsky- 
Sahai 12 

Groth 06 

Groth-Sahai 12 

1 GB 

1 KB 

Statement: Here is a ciphertext and a document. The ciphertext 
contains a digital signature on the document. 

30 
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Groth-Ostrovsky-Sahai 2012 (2006) 

• NIZK proof for Circuit SAT 
• Perfect completeness, perfect soundness, 

computational zero-knowledge 
• Common reference string: O(1) group elements 
• Proofs: O(|C|) group elements 
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Composite order bilinear group 

• Gen(1௞) generates (𝑝, 𝑞, 𝐺, 𝐺், 𝑒, 𝑔)   
• 𝐺, 𝐺் finite cyclic groups of order 𝑛 = 𝑝𝑞   
• Pairing 𝑒: 𝐺 × 𝐺 → 𝐺்  

– 𝑒 𝑔௔, 𝑔௕ = 𝑒 𝑔, 𝑔 ௔௕ 
– 𝐺 = 𝑔 , 𝐺் = 〈𝑒 𝑔, 𝑔 〉 

• Deciding group membership, group operations, 
and bilinear pairing efficiently computable 

• Subgroup decision assumption 
– Given 𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ  hard to distinguish whether ℎ has 

order 𝑞 or ℎ has order 𝑛 
 

3 



BGN encryption [Boneh-Goh-Nissim 05] 

Public key:  (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ)    ℎ has order 𝑞 

Secret key:  𝑝, 𝑞   𝑛 = 𝑝𝑞 

Encryption:  𝑐 = 𝑔௔ℎ௥  𝑟 ← 𝒁௡  

Decryption:  𝑐௤ = 𝑔௔ℎ௥ ௤ = 𝑔௤௔ℎ௤௥ = 𝑔௤ ௔ 
   Compute discrete logarithm if 𝑎 small 

BGN encryption is IND-CPA secure if the subgroup decision 
assumption holds 

Sketch of proof  
By subgroup decision assumption public key looks the same as if ℎ had 
order 𝑛. But if ℎ had order 𝑛, ciphertext would have no information about 
the plaintext 𝑎. 
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Commitment 

Public key:  (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ)    ℎ has order 𝑞 

Commitment:  𝑐 = 𝑔௔ℎ௥  𝑟 ← 𝒁௡ 

Perfectly binding: Unique 𝑎  𝑚𝑜𝑑  𝑝 

Computationally hiding: Indistinguishable from ℎ order 𝑛 

Addition:  𝑔௔ℎ௥ 𝑔௕ℎ௦ = 𝑔௔ା௕ℎ௥ା௦ 
Multiplication: 𝑒(𝑔௔ℎ௥, 𝑔௕ℎ௦) 
         = 𝑒 𝑔௔, 𝑔௕ 𝑒 ℎ௥, 𝑔௕ 𝑒 𝑔௔, ℎ௦ 𝑒(ℎ௥, ℎ௦) 
         = 𝑒 𝑔, 𝑔 ௔௕𝑒(ℎ, 𝑔௔௦ା௥௕ℎ௥௦) 5 



NIZK proof for Circuit SAT 
1 

𝑤ଵ 

𝑤ସ 

𝑤ଷ 𝑤ଶ 

Circuit SAT is NP 
complete 

NAND 

NAND 
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NIZK proof for Circuit SAT 
      𝑔ଵ 

𝑐ସ = 𝑔௪రℎ௥ర  

Prove 𝑤ଵ ∈ {0,1} 
Prove 𝑤ଶ ∈ {0,1} 
Prove 𝑤ଷ ∈ {0,1} 
Prove 𝑤ସ ∈ {0,1} 

Prove  
𝑤ସ = ¬(𝑤ଵ𝑤ଶ) 

Prove  
1 = ¬(𝑤ଷ𝑤ସ) 

NAND 

NAND 

𝑐ଵ = 𝑔௪భℎ௥భ  

𝑐ଶ = 𝑔௪మℎ௥మ  

𝑐ଷ = 𝑔௪యℎ௥య  
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Proof for c containing 0 or 1 

Write    𝑐 = 𝑔௪ℎ௥ (unique 𝑤  𝑚𝑜𝑑  𝑝 since ℎ has order 𝑞) 
  
Recall  𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒 𝑔, 𝑔 ௪ ௪ିଵ 𝑒(ℎ, 𝑔 ଶ௪ିଵ ௥ℎ௥మ) 
   
Proof  𝜋 = 𝑔 ଶ௪ିଵ ௥ℎ௥మ 
 
Verifier checks:   𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝜋)  
   →    𝑒 𝑔, 𝑔 ௪ ௪ିଵ 𝑒 ℎ, 𝑔 ଶ௪ିଵ ௥ℎ௥మ = 𝑒 ℎ, 𝜋  
   →    𝑤 = 0  𝑚𝑜𝑑  𝑝   or 𝑤 = 1  𝑚𝑜𝑑  𝑝  

8 



Observation 

 b2 = (b0b1) 
    if and only if 
 b0 + b1 + 2b2 - 2  {0,1} 

b0 b1 b2 b0+b1+2b2-2 
0 0 0 -2 

0 0 1 0 

0 1 0 -1 

0 1 1 1 

1 0 0 -1 

1 0 1 1 

1 1 0 0 

1 1 1 2 
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Proof for NAND-gate 

Given 𝑐଴, 𝑐ଵ, 𝑐ଶ containing bits 𝑏଴, 𝑏ଵ, 𝑏ଶ 
wish to prove 𝑏ଶ = ¬(𝑏଴𝑏ଵ) 
 
  𝑏ଶ = ¬(𝑏଴𝑏ଵ)   if   𝑏଴ + 𝑏ଵ + 2𝑏ଶ − 2 ∈ {0,1} 
 
  𝑐଴𝑐ଵ𝑐ଶଶ𝑔ିଶ = 𝑔௕బା௕భାଶ௕మିଶℎ௥బା௥భାଶ௥మ 
 
Prove  𝑐଴𝑐ଵ𝑐ଶଶ𝑔ିଶ  contains 0 or 1 

10 



NIZK proof for Circuit SAT 
      𝑔ଵ 

𝑐ସ = 𝑔௪రℎ௥ర  

Prove 𝑤ଵ ∈ {0,1} 
Prove 𝑤ଶ ∈ {0,1} 
Prove 𝑤ଷ ∈ {0,1} 
Prove 𝑤ସ ∈ {0,1} 

Prove  
𝑤ସ = ¬(𝑤ଵ𝑤ଶ) 

Prove  
1 = ¬(𝑤ଷ𝑤ସ) 

NAND 

NAND 

𝑐ଵ = 𝑔௪భℎ௥భ  

𝑐ଶ = 𝑔௪మℎ௥మ  

𝑐ଷ = 𝑔௪యℎ௥య  

11 

CRS (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ) 
CRS size 3𝑘ீ 
Proof size 2 𝑤 + 𝐶 𝑘ீ 



Zero-Knowledge 

Subgroup decision assumption 

   Hard to distinguish whether ℎ has order 𝑞 or 𝑛 

Simulated common reference string 

  ℎ order 𝑛   by choosing   𝑔 = ℎఛ    𝜏 ← 𝒁௡∗  

The simulation trapdoor is  

Commitments are now perfectly hiding trapdoor 
commitments 

𝑔ଵℎ௥ = 𝑔଴ℎ௥ାఛ 
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Simulation 
      𝑔ଵ 

𝑐ସ = 𝑔ଵℎ௥ర  

Prove 𝑤ଵ ∈ {0,1} 
Prove 𝑤ଶ ∈ {0,1} 
Prove 𝑤ଷ ∈ {0,1} 
Prove 𝑤ସ ∈ {0,1} 

Prove  
𝑤ସ = ¬(𝑤ଵ𝑤ଶ) 

Prove  
1 = ¬(𝑤ଷ𝑤ସ) 

Using 𝑤ଶ = 0,𝑤ଷ = 0 
for the NAND proofs 

NAND 

NAND 

𝑐ଵ = 𝑔ଵℎ௥భ  

𝑐ଶ = 𝑔ଵℎ௥మ  

𝑐ଷ = 𝑔ଵℎ௥య  

13 



Witness-indistinguishable 0/1-proof 

Write 𝑐 = 𝑔ଵℎ௥ or 𝑐 = 𝑔଴ℎ௥ାఛ 
  
  𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝑔௥ℎ௥మ)   or  𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝑔ି ௥ାఛ ℎ ௥ାఛ మ)  
 
Proof  𝜋 = 𝑔௥ℎ௥మ  or  𝜋 = 𝑔ି ௥ାఛ ℎ ௥ାఛ మ 
 
Verifier checks   𝑒 𝑐, 𝑐𝑔ିଵ = 𝑒(ℎ, 𝜋) 
 
Perfect witness-indistinguishable when ℎ has order 𝑛 since 

there is unique  satisfying equation, no matter whether 𝑐 
contains 0 or 1 

14 



Zero-knowledge of full Circuit SAT proof 

Sketch of proof:  

 Pr[Adv→1|Real  proof]   

  Pr[Adv→1|Real  proof  on  ℎ with order 𝑛] 

=  Pr[Adv→1|Hybrid  proof  where  ℎ has order 𝑛 and 
     commitments to 1. The simulator uses trapdoor 
     to open them to real witness and gives real proofs] 

=  Pr[Adv→1|Hybrid  proof  where  ℎ has order 𝑛 and 
     commitments to 1. The simulator uses trapdoor to 
      open some commitments to 0 in NAND proofs] 

=  Pr[Adv→1|Simulated  proof] 
15 



Composable zero-knowledge 

• Real common reference string 
computationally indistinguishable from 
simulated common reference string 

• Real proof on simulated common reference string 
perfectly indistinguishable from 
simulated proof on simulated common reference 
string 

16 



NIZK proof for Circuit SAT 

• Commit to all wires 𝑤௜ as 𝑐௜ = 𝑔௪೔ℎ௥೔  
• For each 𝑖 prove 𝑐௜ contains 0 or 1 
• For each NAND prove 𝑐଴𝑐ଵ𝑐ଶଶ𝑔ିଶ contains 0 or 1 
• Total size: 2 𝑤 + |𝐶| group elements 

 
• Perfect completeness, perfect soundness, 

composable zero-knowledge 
• Also, perfect proof of knowledge 

𝑐௜௤ = 𝑔௪೔ℎ௥೔ ௤ = 𝑔௤ ௪೔  
17 



Known for all 
of NP? 

Computational 
zero-knowledge 

Perfect 
zero-knowledge 

(everlasting privacy) 

Interactive 
proof 

 
 

Non-
interactive 

proof ? 

Yes 
[Goldreich-Micali-
Wigderson 1986] 

Yes 
[Brassard- 

Crepeau 1986] 

Yes 
[Blum-Feldman-

Micali 1988] 

Yes 
[Groth-Ostrovsky-

Sahai 2012] 



Perfect zero-knowledge 

• Instead of ℎ with order 𝑞, use ℎ with order 𝑛 
 

• Easy to verify that we have perfect completeness 
• As argued earlier we have perfect zero-knowledge 
• What about soundness? 

19 



”Natural”  computational  soundness  fails 

• Start with ℎ of order 𝑛 and Adversary that 
produces a false statement and a valid proof 

• Switch to ℎ of order 𝑞, which Adversary cannot 
distinguish from order 𝑛. Therefore Adversary still 
produces a statement and a valid proof 

• We now have non-adaptive soundness, when 
statement is independent of CRS. Otherwise a 
false statement has been proven with ℎ of order 𝑞 

• But there is a problem with adaptive soundness 
–  Consider the statement  "ℎ has order 𝑞" 20 



Adaptive culpable soundness 

Comp. culpable soundness:   poly-time Adv: Pr[Reject]  ≈  1 

C, wguilt 
Proof  

K(1k) Common reference string 

 wguilt witness for C unsatisfiable 

21 



Computational culpable soundness 

Sketch of proof: 
• Imagine poly-time Adversary could break culpable 

soundness; after seeing CRS where ℎ has order 
𝑛, Adversary makes valid (C,wguilt,). 

• By subgroup decision assumption approximately 
same success probability for Adversary producing 
valid (C,wguilt,) when ℎ has order 𝑞. 

• But wguilt guarantees C is unsatisfiable and when ℎ 
has order 𝑞 the perfect soundness guarantees C 
is satisfiable. 

22 



Culpable  soundness  the  ”right”  definition 

• Abe-Fehr 07 show that impossible to achieve 
perfect zero-knowledge  and  the  ”natural”  adaptive  
soundness definition with standard direct black-
box methods 

• Often a non-satisfiability witness exists  
– Consider for instance verifiable encryption; here the 

secret key is a witness for the plaintext not being 𝑚 
• Computational culpable soundness sufficient for 

constructing universally composable NIZK proofs 
23 



Groth-Ostrovsky-Sahai 12 

• NIZK proof for Circuit SAT 
• Perfect binding key 

– Perfect completeness 
– Perfect soundness 
– Computational zero-knowledge 

• Perfect hiding key 
– Perfect completeness 
– Culpable soundness 
– Perfect zero-knowledge 

𝜎 = (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ) 
where 𝑜𝑟𝑑 ℎ = 𝑞 

𝜎 = 𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ  
where 𝑜𝑟𝑑 ℎ = 𝑛 

? 
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NIZK proof efficiency 

Circuit SAT Practical 
statements 

Inefficient 

Efficient 

Hidden bits 

Groth-Ostrovsky- 
Sahai 12 

Groth 06 

Groth-Sahai 12 
Coming next 

2 



Our goal 

• We want high efficiency. Practical non-interactive 
proofs! 
 

• We want non-interactive proofs for statements 
arising  in  practice  such  as  ”the  ciphertext  𝑐 
contains a signature on 𝑚”.  No  NP-reduction! 
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Example: Boyen-Waters 07 group signatures 

• Statement  
𝜇ଵ, … , 𝜇௠ ∈ 𝒁௡, Ω, 𝑔, 𝑢, 𝑣ᇱ, 𝑣ଵ, … , 𝑣௠ ∈ 𝐺  , 𝐴 ∈ 𝐺் 

• Prover knows witness 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ ∈ 𝐺  

𝑒 𝜃ଵ, 𝜃ଶΩ = 𝐴                    𝑒 𝜃ଶ, 𝑢 = 𝑒 𝜃ଷ, 𝑔 𝑒(𝜃ସ, 𝑣ᇱෑ𝑣௜
ఓ೔

௜
) 

• The group signature on 𝑀 = (𝜇ଵ, … , 𝜇௠) is a six 
element proof of knowledge (𝜎ଵ, 𝜎ଶ, 𝜎ଷ, 𝜎ସ, 𝜋ଵ, 𝜋ଶ) 

 
* Boyen-Waters 07 NIZK proof independent of our work 
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Constructions in bilinear groups 

𝑎, 𝑐 ∈ 𝐺      𝑏, 𝑑 ∈ 𝒁௡  

 𝑡 = 𝑏 + 𝑦𝑑  𝑚𝑜𝑑  𝑛 

 𝑡ீ = 𝑥௬𝑎௬𝑐௧ 
 𝑡் = 𝑒(𝑡ீ, 𝑐𝑡ீ௕) 
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Non-interactive cryptographic proofs for 
correctness of constructions 

Are the constructions 
correct? I do not know your 

secret 𝑥, 𝑦. 

Proof 

Yes, here is a proof. 

 𝑡 = 𝑏 + 𝑦𝑑  𝑚𝑜𝑑  𝑛 

 𝑡ீ = 𝑥௬𝑎௬𝑐௧ 
 𝑡் = 𝑒(𝑡ீ, 𝑐𝑡ீ௕) 
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Commitment to group elements 

• Common reference string (𝑛, 𝐺, 𝐺், 𝑒, 𝑔, ℎ) 
– Real CRS: ℎ has order 𝑞 
– Simulation CRS: 𝑔 = ℎఛ with 𝜏 ∈ 𝒁௡∗  

• Commitment to group element 𝑥 ∈ 𝐺  
   𝑐 = 𝑥ℎ௥   𝑟 ← 𝒁௡ 

• Real CRS: Perfect binding in order p subgroups 
– Let 𝜆 = 1  𝑚𝑜𝑑  𝑝, 𝜆 = 0  𝑚𝑜𝑑  𝑞 then 𝑐ఒ = 𝑥ఒℎఒ௥ = 𝑥ఒ determines 𝑥ఒ 

• Simulation CRS: Perfect hiding commitments 
– When ℎ has order 𝑛 the commitment is a random group element 
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Homomorphic properties 

• Commitments are homomorphic 
– 𝑥ℎ௥ 𝑦ℎ௦ = 𝑥𝑦ℎ௥ା௦ 
– 𝑔௫ℎ௥ 𝑔௬ℎ௦ = 𝑔௫ା௬ℎ௥ା௦ 

• Pairing commitments 
– 𝑒 𝑥ℎ௥, 𝑦ℎ௦ = 𝑒 𝑥, 𝑦 𝑒 ℎ, 𝑥௦𝑦௥ℎ௥௦  
– 𝑒 𝑥ℎ௥, 𝑔௬ℎ௦ = 𝑒 𝑔, 𝑥௬ 𝑒 ℎ, 𝑥௦𝑔௬௥ℎ௥௦  
– 𝑒 𝑔௫ℎ௥, 𝑔௬ℎ௦ = 𝑒 𝑔, 𝑔 ௫௬𝑒(ℎ, 𝑔௫௦ା௬௥ℎ௥௦) 
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NIWI proof example 

• Consider an equation 
𝑒 𝑎, 𝑦 𝑒(𝑥, 𝑦) = 𝑡் 

• Commitments to variables  
𝑐 = 𝑥ℎ௥, 𝑑 = 𝑦ℎ௦ 

• Proof that committed values satisfy the equation 
𝜋 = 𝑎௦𝑥௦𝑦௥ℎ௥௦ 

• Verify proof  by checking 
𝑒 𝑎, 𝑑 𝑒(𝑐, 𝑑) = 𝑡்𝑒 ℎ, 𝜋  

• Completeness  
          𝑒 𝑎, 𝑦ℎ௦ 𝑒 𝑥ℎ௥, 𝑦ℎ௦    
= 𝑒 𝑎, 𝑦 𝑒 𝑥, 𝑦   𝑒 ℎ, 𝑎௦𝑥௦𝑦௥ℎ௥௦    
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NIWI proof example 

• Consider an equation 
𝑒 𝑎, 𝑦 𝑒 𝑥, 𝑦    = 𝑡் 

• Verify proof  by checking 
𝑒 𝑎, 𝑑 𝑒 𝑐, 𝑑    = 𝑡்𝑒 ℎ, 𝜋  

• Soundness when 𝑜𝑟𝑑 ℎ = 𝑞 
– Let 𝜆 = 1  𝑚𝑜𝑑  𝑝, 𝜆 = 0  𝑚𝑜𝑑  𝑞 and raise to 𝜆 = 𝜆ଶ  𝑚𝑜𝑑  𝑛 

on both sides of verification equation 
𝑒 𝑎ఒ, 𝑑ఒ 𝑒 𝑐ఒ, 𝑑ఒ    = 𝑡ఒ்మ𝑒 ℎఒ, 𝜋ఒ = 𝑡்ఒ 

– We see 𝑥 = 𝑐ఒ, 𝑦 = 𝑑ఒ satisfy the equation in the order 
𝑝 subgroups of 𝐺, 𝐺்  
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NIWI proof example 

• Consider an equation 
𝑒 𝑎, 𝑦 𝑒 𝑥, 𝑦    = 𝑡் 

• Verify proof  by checking 
𝑒 𝑎, 𝑑 𝑒 𝑐, 𝑑    = 𝑡்𝑒 ℎ, 𝜋  

• Witness-indistinguishability when 𝑜𝑟𝑑 ℎ = 𝑛 
– The commitments are perfectly hiding, so there are 

many different possible openings 𝑥, 𝑟, 𝑦, 𝑠 of 𝑐, 𝑑 
satisfying the equation 

– However, since 𝑜𝑟𝑑 ℎ = 𝑛 there is a unique proof 𝜋 
satisfying the verification equation 

– Two openings 𝑥଴, 𝑟଴, 𝑦଴, 𝑠଴ and 𝑥ଵ, 𝑟ଵ, 𝑦ଵ, 𝑠ଵ of 𝑐, 𝑑 that 
satisfy the original equation therefore give the same 𝜋 



Full NIWI proof for a set of equations 

• Suppose we have equations 𝑒𝑞ଵ, 𝑒𝑞ଶ, …  of the form 

ෑ𝑒(𝑎௜, 𝑥௜)
௜

ෑ𝑒 𝑥௜, 𝑥௝
ఊ೔ೕ

௜,௝
= 𝑡் 

• We can give a NIWI proof that there are values 
𝑥ଵ,… , 𝑥௠ ∈ 𝐺 

satisfying all the equations simultaneously 
– Commit to each variable 𝑥௜  
– Make a NIWI proof for each equation 𝑒𝑞௞ 

• Commitments and proofs cost 1 group element each 
12 



Together with commitments to exponents in 𝒁௡ we 
get NIWI proof for simultaneous satisfiability a set 
of equations 𝑒𝑞ଵ, 𝑒𝑞ଶ, … that can be a mix of 

– Pairing product equations 

ෑ𝑒(𝑎௜, 𝑥௜)
௜

ෑ𝑒 𝑥௜, 𝑥௝
ఊ೔ೕ

௜,௝
= 𝑡் 

– Multi-exponentiation equations 

ෑ𝑎௝௬ೕ
௝

ෑ𝑥௜
௕೔

௜
ෑ𝑥௜ఊ೔ೕ௬ೕ
௜,௝

= 𝑡ீ 

– Quadratic equations 

෍𝑏௝𝑦௝ +෍𝛾௜௝𝑦௜𝑦௝
௜,௝௝

= 𝑡  𝑚𝑜𝑑  𝑛 
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Properties of the NIWI proof 

• Two types of common reference string 
– Real CRS: ℎ has order 𝑞 
– WI CRS: ℎ has order 𝑛 
– Real and WI reference strings computationally indistinguishable 

• Perfect completeness on both types of strings 
• Real CRS: Perfect soundness in order 𝑝 subgroups 

– Commitments perfectly binding and equation proofs perfectly sound 
• WI CRS: Perfect witness-indistinguishability 

– Commitments perfectly hiding so can contain any valid witness 
– The equation proofs are perfectly witness-indistinguishable, so do 

not reveal anything about the witness inside the commitments 
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What makes the NIWI proof work? 

• Commuting linear and bilinear map 
• We will generalize this methodology 

– Groups can have prime or composite order 
– Pairing 𝑒: 𝐺ଵ × 𝐺ଶ → 𝐺் with 𝐺ଵ ≠ 𝐺ଶ or 𝐺ଵ = 𝐺ଶ 
– Many different assumptions: Subgroup decision, SXDH 

(i.e., DDH in both groups), decision linear, etc. 

   𝑥, 𝑦           → 𝑡் 

𝑥ℎ௥, 𝑦ℎ௦ → 𝑡்𝑒(ℎ, 𝜋) 

𝑥ఒ, 𝑦ఒ     → 𝑡்ఒ 

𝐺 × 𝐺   → 𝐺் 

𝐺 × 𝐺   → 𝐺் 

𝐺௣ × 𝐺௣ → 𝐺்,௣ 
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Modules 

• An abelian group (𝐴,+, 0) is a 𝒁௣-module if 𝒁௣ 
acts on 𝐴 such that for all 𝑟, 𝑠 ∈ 𝒁௣, 𝑎, 𝑏 ∈ 𝐴 
– 1𝑎 = 𝑎 
– 𝑟 + 𝑠 𝑎 = 𝑟𝑎 + 𝑠𝑎 
– 𝑟 𝑎 + 𝑏 = 𝑟𝑎 + 𝑟𝑏 
– 𝑟 𝑠𝑎 = 𝑟𝑠 𝑎 

• If 𝑝 is a prime then 𝐴 is a vector space 
• Examples 

– 𝒁௣, 𝐺ଵ, 𝐺ଶ, 𝐺், 𝐺ଵଶ, 𝐺ଶଶ, 𝐺ସ் are 𝒁௣-modules 
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Modules with bilinear map 

• We will be interested in finite 𝒁௣-modules 
𝐴ଵ, 𝐴ଶ, 𝐴் with a bilinear map ⋅஺: 𝐴ଵ × 𝐴ଶ → 𝐴் 

• Examples: 
– 𝑝𝑎𝑖𝑟: 𝐺ଵ × 𝐺ଶ → 𝐺் 𝑥, 𝑦 ↦ 𝑒(𝑥, 𝑦) 
– 𝑒𝑥𝑝: 𝐺ଵ × 𝒁௣ → 𝐺ଵ   𝑥, 𝑦 ↦ 𝑥௬  

– 𝑒𝑥𝑝: 𝒁௣ × 𝐺ଶ → 𝐺ଶ   𝑥, 𝑦 ↦ 𝑦௫  

– 𝑚𝑢𝑙𝑡: 𝒁௣ × 𝒁௣ → 𝒁௣  𝑥, 𝑦 ↦ 𝑥𝑦  𝑚𝑜𝑑  𝑝  
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Statements we want to prove 

• Statements consisting of quadratic equations 
𝑒𝑞ଵ, … , 𝑒𝑞ே in 𝐴ଵ, 𝐴ଶ, 𝐴் of the form 

෍𝑎௝ ⋅ 𝑦௝ +෍𝑥௜ ⋅ 𝑏௜
௜௝

+෍𝑥௜ ⋅ 𝛾௜௝𝑦௝
௜௝

= 𝑡 

• The prover knows secret witness  
𝑥⃗ = 𝑥ଵ,… , 𝑥௠           𝑦⃗ = 𝑦ଵ,… , 𝑦௡  

that satisfies all equations 𝑒𝑞ଵ, … , 𝑒𝑞ே   
• Simplify notation using vectors and matrices 

𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡 
 18 



Commitments in modules 

• Linear maps and modules 
 

𝐴 → 𝐵 → 𝐶 
• Elements 𝑢ଵ, 𝑢ଶ, … , 𝑢௠ ∈ 𝐵 
• Commit to an element 𝑥 ∈ 𝐴 

𝑐 = 𝑖 𝑥 +෍𝑟௜𝑢௜
௜

                             

• Perfectly hiding 𝑥 if 𝑖 𝐴 ⊆ 〈𝑢ଵ, … , 𝑢௠〉 
• Perfectly binding to 𝑝(𝑐) 

– For soundness, we want 𝑝 𝑢௜ = 0 
  

𝑖 𝑝 Hard to compute 

Easy to compute 
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Example 
• Linear maps and modules 

 
 

• Elements 𝑢ଵ = 𝑔, 𝑔ఈ , 𝑢ଶ = (ℎ, ℎఈାఛ) 
– If the DDH problem is hard in 𝐺 cannot distinguish 

whether 𝜏 = 0  or 𝜏 ≠ 0   
• Commitment to 𝑥 ∈ 𝐺 

𝑐 = 𝑔௥భℎ௥మ, 𝑥(𝑔௥భℎ௥మ ఈℎఛ௥మ) 
– If 𝜏 ≠ 0 this is a perfectly hiding commitment 
– If 𝜏 = 0 the commitment is an ElGamal encryption of 𝑥 

and 𝑝 is the ElGamal decryption algorithm 
• Note 𝑝 𝑢ଵ = 𝑝 𝑢ଶ = 1 and 𝑝 𝑖 𝑥 = 𝑥 

•  
  

𝑖 𝑝 
𝐺 → 𝐺ଶ → 𝐺 

  𝑖: 𝑥 → (1, 𝑥) 
𝑝: 𝑎, 𝑏 → 𝑏𝑎ିఈ 
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Commuting linear and bilinear maps 
• CRS defines 𝒁௣-modules 𝐴ଵ, 𝐴ଶ, 𝐴், 𝐵ଵ, 𝐵ଶ, 𝐵், 

𝐶ଵ, 𝐶ଶ, 𝐶் and (bi)linear maps 𝑖ଵ, 𝑖ଶ, 𝑖், 𝑝ଵ, 𝑝ଶ, 𝑝்,⋅஺,⋅஻,⋅஼ 
 
 
 
 
 
 
 

• Prover’s  witness  is  in  𝐴ଵ, 𝐴ଶ 
• Will commit and make proofs in 𝐵ଵ, 𝐵ଶ 
• Soundness will hold in 𝐶ଵ, 𝐶ଶ, 𝐶் 

𝐴ଵ × 𝐴ଶ → 𝐴் 

𝐵ଵ × 𝐵ଶ   → 𝐵் 

𝐶ଵ × 𝐶ଶ → 𝐶் 

𝑖ଵ 𝑖ଶ 𝑖் 

𝑝ଵ 𝑝ଶ 𝑝் 

⋅஺ 

⋅஻ 

⋅஼ 

21 



Example 

– 𝑝ଵ 𝑎, 𝑏 = 𝑏𝑎ିఈ  , 𝑝ଶ 𝑐, 𝑑 = 𝑑𝑐ିఉ 
– 𝑎, 𝑏 ⊗ 𝑐, 𝑑 = 𝑒 𝑎, 𝑐 , 𝑒 𝑎, 𝑑 , 𝑒 𝑏, 𝑐 , 𝑒 𝑏, 𝑑  
– 𝑝் 𝑎, 𝑏, 𝑐, 𝑑 = 𝑑𝑐ିఉ 𝑏𝑎ିఉ ିఈ 

𝐺ଵ × 𝐺ଶ → 𝐺் 

𝐺ଵଶ × 𝐺ଶଶ → 𝐺ସ் 

𝐺ଵ × 𝐺ଶ → 𝐺் 

𝑖ଵ 𝑖ଶ 𝑖் 

𝑝ଵ 𝑝ଶ 𝑝் 

𝑒 

⊗ 

𝑒 

𝑥, 𝑦 → 𝑒(𝑥, 𝑦) 

( 1, 𝑥 , (1, 𝑦)) → (1,1,1, 𝑒 𝑥, 𝑦 ) 

𝑥, 𝑦 → 𝑒(𝑥, 𝑦) 

𝑖ଵ 𝑖ଶ 𝑖் 

𝑝ଵ 𝑝ଶ 𝑝் 

ElGamal decryption with 
keys 𝛼, 𝛽, respectively  
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Common reference string 

• CRS has modules 𝐴ଵ, 𝐴ଶ, 𝐴், 𝐵ଵ, 𝐵ଶ, 𝐵், 𝐶ଵ, 𝐶ଶ, 𝐶் 
and (bi)linear maps 𝑖ଵ, 𝑖ଶ, 𝑖், 𝑝ଵ, 𝑝ଶ, 𝑝்,⋅஺,⋅஻,⋅஼ and 
elements 𝑢ଵ, … , 𝑢௠ ∈ 𝐵ଵ, 𝑣ଵ, … , 𝑣௡ ∈ 𝐵ଶ 

• Two indistinguishable types of CRS 
– WI CRS has 𝑖ଵ 𝐴ଵ ⊆ 𝑢ଵ, … , 𝑢௠ , 𝑖ଶ 𝐴ଶ ⊆ 〈𝑣ଵ, … , 𝑣௡〉 
– Soundness CRS has 𝑝ଵ 𝑢௜ = 0 and 𝑝ଶ 𝑣௝ = 0 
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Statement 

• The statement consist of quadratic equations 
𝑒𝑞ଵ, … , 𝑒𝑞ே in 𝐴ଵ, 𝐴ଶ, 𝐴் of the form 

෍𝑎௝ ⋅ 𝑦௝ +෍𝑥௜ ⋅ 𝑏௜
௜௝

+෍𝑥௜ ⋅ 𝛾௜௝𝑦௝
௜௝

= 𝑡 

• The prover knows values  
𝑥⃗ = 𝑥ଵ,… , 𝑥௠           𝑦⃗ = 𝑦ଵ,… , 𝑦௡  

that satisfy all equations 𝑒𝑞ଵ, … , 𝑒𝑞ே   
• Simplified notation 

𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡 
24 



Commitment to witness 

• Prover commits in 𝐵ଵ, 𝐵ଶ to all secret elements 

𝑐௜ = 𝑖ଵ(𝑥௜) +෍𝑟௜௞𝑢௞
௞

            𝑑௝ = 𝑖ଶ(𝑦௝) +෍𝑠௝௞𝑣௞
௞

 

• Let 𝑐 = (𝑐ଵ,… , 𝑐௠) and 𝑑 = 𝑑ଵ,… , 𝑑௡  then 
𝑐 = 𝑖ଵ 𝑥⃗ + 𝑅𝑢                  𝑑 = 𝑖ଶ 𝑦⃗ + 𝑆𝑣⃗ 
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NIWI proofs 

• For each equation 
𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡 

the prover creates a NIWI proof 𝜋 ∈ 𝐵ଶ௡, 𝜙 ∈ 𝐵ଵ௠ 
 

• For each equation the verifier checks 
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ 
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Soundness 

• For each equation the verifier checks 
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ 

• On a soundness string 𝑝ଵ 𝑢 = 0, 𝑝ଶ 𝑣⃗ = 0 
• We define  

𝑎⃗ᇱ = 𝑝ଵ 𝑖ଵ 𝑎⃗           𝑏ᇱ = 𝑝ଶ 𝑖ଶ 𝑏         𝑡ᇱ = 𝑝்(𝑖் 𝑡 ) 
                                      𝑥⃗ᇱ = 𝑝ଵ 𝑐                 𝑦⃗ᇱ = 𝑝ଶ 𝑑  

Projecting the verification equation to 𝐶ଵ, 𝐶ଶ, 𝐶் 
𝑎⃗ᇱ ⋅ 𝑦⃗ᇱ + 𝑥⃗ᇱ ⋅ 𝑏ᇱ + 𝑥⃗ᇱ ⋅ Γ𝑦⃗ᇱ = 𝑡ᇱ + 0 + 0 = 𝑡′ 
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Example 

• 𝑝ଵ 𝑖ଵ 𝑎⃗ = 𝑎⃗          𝑝ଶ 𝑖ଶ 𝑏 = 𝑏              𝑝் 𝑖் 𝑡 = 𝑡 
• Projection therefore gives us the original 

equation is satisfied by 𝑥⃗ = 𝑝ଵ(𝑐) and 𝑦⃗ = 𝑝ଶ(𝑑) 
𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡 

 
 

𝐺ଵ × 𝐺ଶ → 𝐺் 

𝐺ଵଶ × 𝐺ଶଶ → 𝐺ସ் 

𝐺ଵ × 𝐺ଶ → 𝐺் 

𝑖ଵ 𝑖ଶ 𝑖் 

𝑝ଵ 𝑝ଶ 𝑝் 

𝑒 

⊗ 

𝑒 

𝑥, 𝑦 → 𝑒(𝑥, 𝑦) 

( 1, 𝑥 , (1, 𝑦)) → (1,1,1, 𝑒 𝑥, 𝑦 ) 

𝑥, 𝑦 → 𝑒(𝑥, 𝑦) 

𝑖ଵ 𝑖ଶ 𝑖் 

𝑝ଵ 𝑝ଶ 𝑝் 
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Completeness 

• The prover has commitments 
𝑐 = 𝑖ଵ 𝑥⃗ + 𝑅𝑢          𝑑 = 𝑖ଶ 𝑦⃗ + 𝑆𝑣⃗ 

• For each equation the committed witness satisfies 
𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡 

• For each equation the verifier checks 
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ 

• The prover can create a proof 𝜋 ∈ 𝐵ଶ௡, 𝜙 ∈ 𝐵ଵ௠ 
𝜋 = 𝑅் 𝑖ଶ 𝑏 + Γ𝑑                   𝜙 = 𝑆்(𝑖ଵ 𝑎⃗ + Γ்𝑖ଵ 𝑥⃗ ) 
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Witness-indistinguishability 

• WI CRS  𝑖ଵ 𝐴ଵ ⊆ 𝑢 , 𝑖ଶ 𝐴ଶ ⊆ 𝑣⃗  
• The commitments 𝑐, 𝑑 are perfectly hiding 
• What about the proofs? 
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ 

• If 𝜋, 𝜙 are unique then we have perfect WI 
• For non-unique proofs, we will randomize them 

such that any witness yields a uniform random 
distribution over proofs satisfying the equation 
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• What about the proofs? 
𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ 

• For non-unique proofs, we will randomize them 
such that any witness yields a uniform random 
distribution over proofs satisfying the equation 
– Observe 

𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ = 𝑢 ⋅ 𝜋 + 𝑇𝑣⃗ + 𝜙 − 𝑇்𝑢 ⋅ 𝑣⃗ 
– On a WI CRS 𝜋 ∈ 〈𝑣⃗〉 so 𝜋ᇱ = 𝜋 + 𝑇𝑣⃗ is random in 〈𝑣⃗〉 
– Randomise 𝜙ᇱ = 𝜙 − 𝑇்𝑢 + 𝑤 with random 𝑤 ⋅ 𝑣⃗ = 0 

• May require CRS to contain information to make it possible to pick 
random 𝑤 ∈ 〈𝑢〉 such that 𝑤 ⋅ 𝑣⃗ = 0  (but often not needed) 

Witness-indistinguishability 



Overview 
• CRS defines 𝑍௣-modules 𝐴ଵ, 𝐴ଶ, 𝐴், 𝐵ଵ, 𝐵ଶ, 𝐵், 𝐶ଵ, 𝐶ଶ, 𝐶் and 

(bi)linear maps 𝑖ଵ, 𝑖ଶ, 𝑖், 𝑝ଵ, 𝑝ଶ, 𝑝்,⋅஺,⋅஻,⋅஼ and 𝑢, 𝑣⃗ and 𝑤-info 
 

 
 
 
 
 
 

• Prover’s  witness  is  in  𝐴ଵ, 𝐴ଶ 
• Commitments and proofs are in 𝐵ଵ, 𝐵ଶ 
• Soundness holds in 𝐶ଵ, 𝐶ଶ, 𝐶் 

𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 𝑡 

𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ 

𝑎⃗′ ⋅ 𝑦⃗′ + 𝑥⃗′ ⋅ 𝑏′ + 𝑥⃗′ ⋅ Γ𝑦ᇱ = 𝑡′ 
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Zero-knowledge 

• On a WI CRS the commitments and proofs 
c⃗, 𝑑, 𝜋, 𝜙 are perfectly witness-indistinguishable 

• Are the commitments and proofs also ZK? 
• Problem 

– Cannot simulate proofs without knowing a witness! 
 
 

𝑖ଵ 𝑎⃗ ⋅ 𝑑 + 𝑐 ⋅ 𝑖ଶ 𝑏 + 𝑐 ⋅ Γ𝑑 = 𝑖் 𝑡 + 𝑢 ⋅ 𝜋 + 𝜙 ⋅ 𝑣⃗ 

33 



Zero-knowledge 

• Strategy 
– Set up WI CRS so that the simulator can find a witness 

• Consider the case where 𝐴ଵ = 𝒁௣ 
– On the WI CRS we have 𝑖ଵ 𝐴ଵ ⊆ 〈𝑢〉 so 

𝑖ଵ 1 = 𝑖ଵ 0 + 𝑟்𝑢 
– The simulator will use 𝑟 as the simulation trapdoor 

• Rewrite all the equations 𝑒𝑞ଵ, … , 𝑒𝑞ே to the form 
1 ⋅ −𝑡 + 𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 0 
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Zero-knowledge simulation 

• Consider 1 to be an extra variable 𝑥଴ where we 
use commitment 𝑐଴ = 𝑖ଵ(1) 

• We now have equations 𝑒𝑞ଵ, … , 𝑒𝑞ே of the form 
𝑥଴ ⋅ −𝑡 + 𝑎⃗ ⋅ 𝑦⃗ + 𝑥⃗ ⋅ 𝑏 + 𝑥⃗ ⋅ Γ𝑦⃗ = 0 

• Choosing 𝑥଴ = 0, 𝑥⃗ = 0, 𝑦⃗ = 0 gives the simulator 
a witness satisfying all equations simultaneously 

• And because 𝑐଴ = 𝑖ଵ 1 = 𝑖ଵ 0 + 𝑟்𝑢 on a WI 
CRS the simulator has an opening of 𝑐଴  to 0 that 
it can use in all the NIWI proofs 

• Each commitment is perfectly hiding and each 
proof perfectly WI, so this is a perfect simulation 35 



Example 

• Consider equations over 𝑥௜ ∈ 𝐺ଵ, 𝑦௝ ∈ 𝐺ଶ, 𝑥ො௜, 𝑦ො௝ ∈ 𝒁௣ 
– Pairing product equations 

ෑ𝑒(𝑎௝, 𝑦௝)
௝

ෑ𝑒(𝑥௜, 𝑏௝)
௜

ෑ𝑒 𝑥௜, 𝑦௝
ఊ೔ೕ

௜,௝
= 𝑒 𝑔, 𝑔 ଴ 

– Multi-exponentiation equations in 𝐺ଵ (similar for 𝐺ଶ) 
ෑ𝑎௝௬ොೕ
௝

ෑ𝑥௜
ఉ೔

௜
ෑ𝑥௜ఊ೔ೕ௬ොೕ
௜,௝

= 𝑡ீభ 

– Quadratic equations 

෍𝛼௝𝑦ො௝෍𝑥ො௜𝛽௜
௜

+෍𝛾௜௝𝑥ො௜𝑦ො௝
௜,௝௝

= 𝑡  𝑚𝑜𝑑  𝑝 

• Using 𝑥௜ = 1, 𝑦௝ = 1  , 𝑥ො௜ = 0, 𝑦ො௝ = 0  we can simulate 
 



Efficiency in the example 

• Proofs for 𝑒: 𝐺ଵ × 𝐺ଶ → 𝐺் setting where DDH 
problem hard in both 𝐺ଵ and 𝐺ଶ 

Cost of each variable/equation 𝐺ଵ 𝐺ଶ 

Variables 𝑥 ∈ 𝐺ଵ, 𝑥ො ∈ 𝒁௣ 2 0 

Variables 𝑦 ∈ 𝐺ଶ, 𝑦ො ∈ 𝒁௣ 0 2 

Pairing product equations 
  (zero-knowledge if all 𝑡் = 1) 

4 4 

Multi-exponentiations in 𝐺ଵ 2 4 

Multi-exponentiations in 𝐺ଶ 4 2 

Quadratic equations in 𝒁௣ 2 2 37 
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Naïve idea for NIWI proofs in the plain model 

     Prover          Verifier 

Statement: xL 

CRS  
Proof  

No, maybe you used 
a simulation CRS 



NIWI proofs in the plain model [GOS12] 

• Naïve idea: Provers picks both CRS and proof 
– Not convincing 

• Better idea: Prover picks two CRSs and proofs 
– The two CRSs related such that at least one is 

guaranteed to be sound 
– But the verifier cannot tell which one is the sound string 

 



NIWI proofs in the plain model 

     Prover          Verifier 

Statement: xL 

CRS 0, 1 
Proof 0, 1 

At least one CRS is 
sound. So either 0 

or 1 shows that xL 
 



NIWI proof in the plain model 

• Better idea: Prover picks two CRSs and proofs 
– The two CRSs related such that at least one is 

guaranteed to be sound 
– But the verifier cannot tell which one is the sound string 

• Requirements 
– Prover can pick two related CRSs such that either CRS 

can give witness-indistinguishability 
– The verifier can check that at least one CRS is sound, 

but not distinguish the sound CRS from the WI CRS 



Suitable groups 

• BGN group of composite order 𝑛 = 𝑝𝑞 not good 
because hard to tell whether ℎ has order 𝑞 

• Prime order groups better 
– For instance 𝑒: 𝐺 × 𝐺 → 𝐺் with prime order 𝑝 
– A CRS specifies 𝑓, 1, ℎ   , 1, 𝑔, ℎ   , (𝑢, 𝑣, 𝑤) 
– Write 𝑢, 𝑣, 𝑤 = (𝑓௥, 𝑔௦, ℎ௥ା௦ା௧) 
– If 𝑡 = 0 perfect WI and if 𝑡 ≠ 0 perfect soundness 
– Decision linear assumption says hard to distinguish 

• Related CRSs 
– 𝜎଴ = 𝑝, 𝐺, 𝐺், 𝑒, 𝑓, 𝑔, ℎ, 𝑢଴, 𝑣଴, 𝑤଴  
– 𝜎ଵ = (𝑝, 𝐺, 𝐺், 𝑒, 𝑓, 𝑔, ℎ, 𝑢଴, 𝑣଴, 𝑤଴ℎ) 



NIWI proof in plain model 

• Statement: C 
• Proof  

 (0,1)  Krelated(1k,b)   (b is WI CRS) 
 0  P(0,C,w) 
 1  P(1,C,w) 
The proof is  = (0,1,0,1) 

• Verification 
 Check (0,1) related so at least one is sound 
 Check (0,C,0) is valid proof 
 Check (1,C,1) is valid proof 



Witness-indistinguishability 

Given circuit C and two witnesses w0, w1 

• Generate 0 as WI CRS and 1 as perfect sound CRS 

Proof using w0 on 0  Proof using w0 on 1 

Proof using w1 on 0  Proof using w0 on 1 

• Switch to 0 perfect sound CRS and 1 WI CRS 

Proof using w1 on 0  Proof using w0 on 1 

Proof using w1 on 0  Proof using w1 on 1 

• Switch back to 0 being WI CRS and 1 perfect sound CRS 

Adversary knows C,w0,w1  
and sees (0,1,0,1) 



Special properties of pairing-based proofs 

• Proofs consist of group elements and they are 
verified by pairing product equations 
– We can give an NIWI proof that there exists an NIWI 

proofs that a statement is true 
• Proofs may be modified or randomized 

– Noted by [BCCKLS09] and used in delegatable credentials 
– Controlled malleable proofs formalized in [CKLM12] 

 



Randomization of proofs 

• Pairing-based NIZK proofs may be randomized 
• Example 

– Consider statement 𝑒 𝑎, 𝑥 = 1 in BGN group 
– An NIZK proof would consist of a commitment and proof 

𝑐 = 𝑥ℎ௥                𝜋 = 𝑎௥ 
which is verified by checking 𝑒 𝑎, 𝑐 = 𝑒(ℎ, 𝜋) 

– Given commitment and proof 𝑐, 𝜋 we can rerandomize 
𝑐ᇱ = 𝑐ℎ௦                    𝜋ᇱ = 𝜋𝑎௦ 

– Or we can modify the commitment and proof  
𝑐ᇱᇱ = 𝑐𝑏ିଵ              𝜋ᇱᇱ = 𝜋௧ 

– Which shows 𝑥′′ satisfies 𝑒 𝑎௧, 𝑥′′𝑏   = 1 



Short pairing-based NIZK arguments 

CRS Size Prover comp. Verifier comp. 
Abe-Fehr 07 O(1) group O(n) group O(n) expo O(n) pairing 

Dlog & knowledge of expo. Comp. sound Perfect ZK 
Groth 10 O(n2) group O(1) group O(n2) mult O(n) mult 
Groth 10 O(n2/3) group O(n2/3) group O(n4/3) mult O(n) mult 

q-CPDH and q-PKE Comp. sound Perfect ZK 
Lipmaa 12 n1+o(1) group O(1) group O(n2) add O(n) mult 
Lipmaa 12 n1/2+o(1) group n1/2+o(1) group O(n3/2) add O(n) mult 

-PSDL and -PKE Comp. sound Perfect ZK 
Gennaro-Gentry- O(n) group 7 group O(n log n) mult O(n) mult 
Parno-Raykova Comp. sound Perfect ZK 



Knowledge commitment [G10] 

• Commitment key 

𝑐𝑘 = 𝑔, 𝑔ଵ, 𝑔ଶ, …
𝑔ො, 𝑔ොଵ, 𝑔ොଶ, …

= 𝑔  , 𝑔௫  , 𝑔௫మ, …  
𝑔ఈ, 𝑔ఈ௫, 𝑔ఈ௫మ, …  

• Commit to 𝑎ଵ, 𝑎ଶ, … , 𝑎௤ ∈ 𝒁௣ as 
𝑐
𝑐̂ =

𝑔௥ ∏ 𝑔௜
௔೔

௜∈ ௤
𝑔ො௥ ∏ 𝑔ො௜

௔೔
௜∈ ௤

 

• Can verify commitment correct 𝑒 𝑐, 𝑔ො = 𝑒 𝑐̂, 𝑔  
• Power Knowledge of Exponent assumption 

– Impossible to make correct commitment without 
knowing 𝑟 and 𝑎ଵ, … , 𝑎௤  
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Homomorphic property 

• We now have a perfectly hiding commitment 
scheme using just two group elements to commit 
to a set of 𝑞 known values 𝑎ଵ,… , 𝑎௤ 

• The commitment scheme is homomorphic 

(𝑔௥ ෑ 𝑔௜௔೔)(𝑔௦ ෑ 𝑔௜
௕೔) = 𝑔௥ା௦ ෑ 𝑔௜

௔೔ା௕೔

௜∈ ௤௜∈ ௤௜∈ ௤
 

• We can add multiple committed values in a 
verifiable way using only a few group elements 
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Polynomial balancing 

• Recall 𝑔, 𝑔ଵ,… , 𝑔௤ = (𝑔, 𝑔௫,… , 𝑔௫೜) 
• Commitment is 𝑐 = 𝑔௥ ∏ 𝑔௜

௔೔
௜∈ ௤ = 𝑔௥ା∑ ௔೔௫೔೔∈ ೜  

• Pairing two commitments correspond to 
computing a committed product of polynomials 

(𝑟 +෍𝑎௜𝑥௜
௜

)(𝑠 +෍𝑏௝𝑥௝)
௝

 

• Carefully create large polynomial equations that 
are satisfied if and only if the statement is true 

• Use proofs to cancel out extra polynomial terms 15 



Size vs. assumption 

Size 

Risk 

one-way functions 
trapdoor perm. 
factoring-based 
pairing-based 
knowledge extract. 
random oracle 

0 sublinear 

linear 

superlinear 
AF07,GW11 

BFM 

FLS KP 

Mic 

Gro 
Lip 

GOS 

Dam Gro 

Gro 

CDS 

BDMP 
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