

Non-interactive Zero-Knowledge Proofs

Jens Groth
University College London

Zero-knowledge proof [(

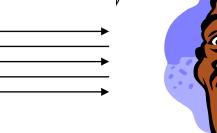
Zero-knowledge: Verifier learns statement is true, but *nothing* else

Witness:
Statement true
because...

Statement

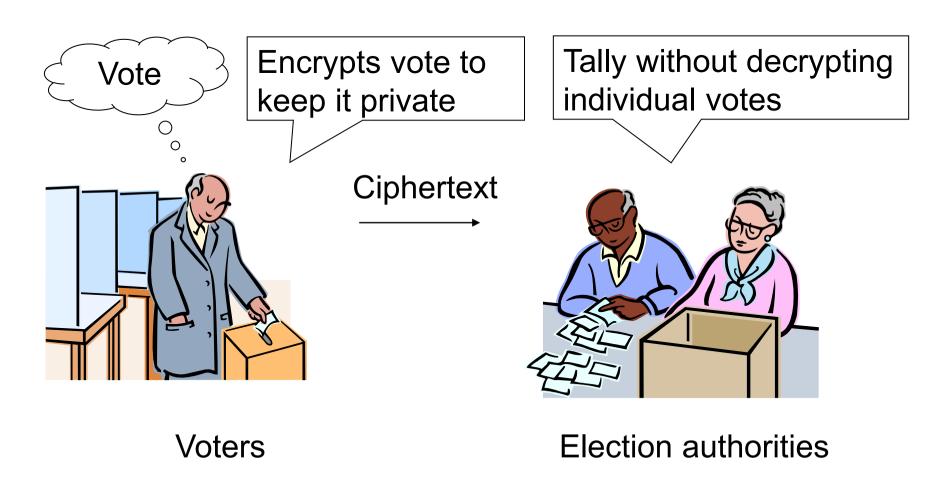
OK, statement is true

Prover

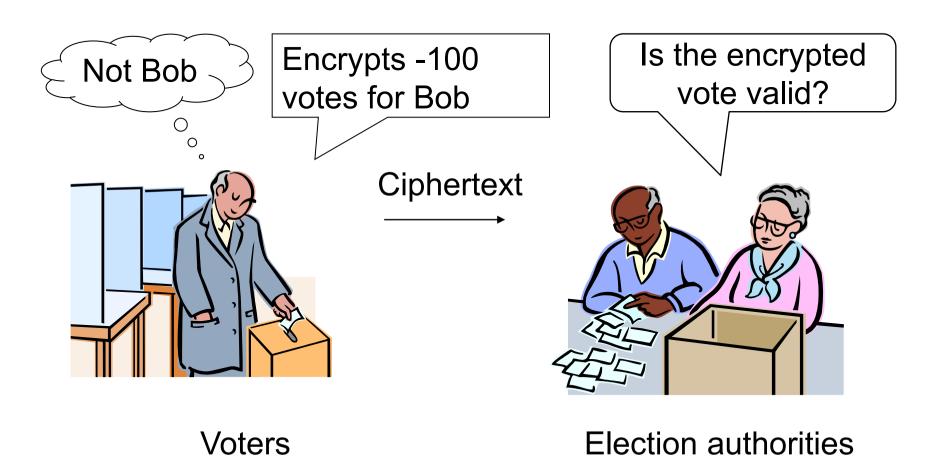


Verifier

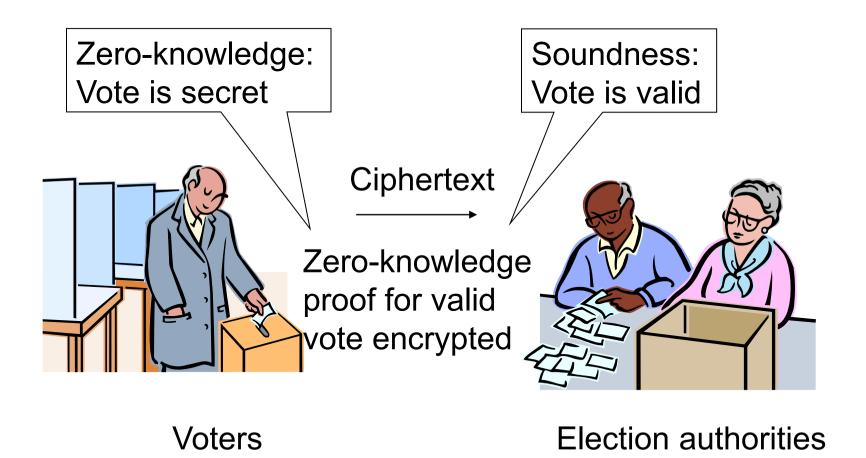
Internet voting



Election fraud



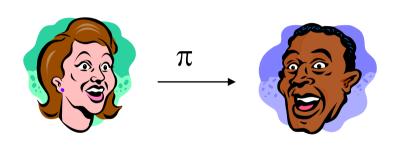
Zero-knowledge proof as solution



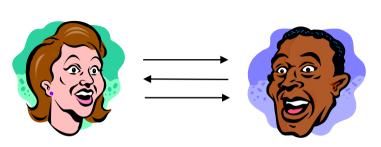
5

Round complexity

Non-interactive zero-knowledge proof



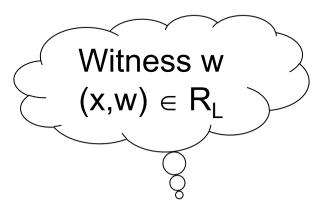
Interactive zero-knowledge proof



Useful for noninteractive tasks

- Signatures
- Encryption
- ..

Non-interactive proofs



L language in NP defined by R_L

Statement: x∈L

OK, $x \in L$

Proof π

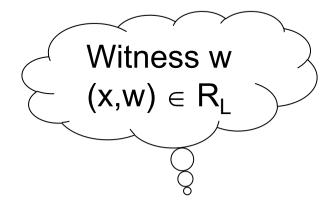
Prover

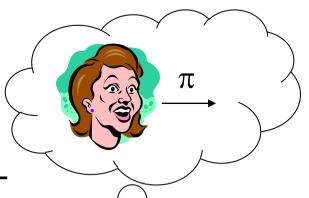
Verifier

Non-interactive zero-knowledge (NIZK) proofs

- Completeness
 - Can prove a true statement
- Soundness
 - Cannot prove false statement
- Zero-knowledge
 - Proof reveals nothing (except truth of statement)

Zero-knowledge = Simulation





Prover

Verifier

NIZK proofs in the plain model only possible for trivial languages L∈BPP [GO94]

Given probabilistic polynomial time algorithms P, V, S for prover, verifier and simulator

Decision algorithm for x∈L or x∉L

Run $S(x) \rightarrow \pi$

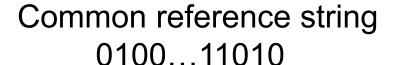
Return $V(\pi)$

If x∉L: Soundness implies verifier algorithm rejects

If x∈L: Zero-knowledge; simulation looks like real proof

Completeness then means verifier accepts

Non-interactive zero-knowledge proof [BFM88]



Statement: x∈L

Proof: π

 $(x,w) \in R_I$

Prover

Verifier

Common reference string (CRS)

0110110101000101110100101

- Can be uniform random or specific distribution
 - Key generation algorithm K for generating CRS
- Trusted generation
 - Trusted party
 - Secure multi-party computation
 - Multi-string model with majority of strings honest [GO07]

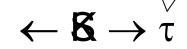
Zero-knowledge simulation

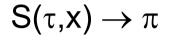
Simulation trapdoor

Common reference string

0100...11010

Statement: x∈L





Verifier

Prover

Publicly verifiable NIZK proofs

- NP language L
 - Statement x∈L if there is witness w so that $(x,w) \in R_1$
- An NIZK proof system for R_L consists of three probabilistic polynomial time algorithms (K,P,V)
 - K(1^k): Generates common reference string σ
 - P(σ ,x,w): Generates a proof π
 - $V(\sigma,x,\pi)$: Outputs 1 (accept) or 0 (reject)

Public vs. private verification

- Publicly verifiable
 - K generates CRS σ
 - V checks proof given input (σ, x, π)

Privately verifiable

Designated verifier with ω can check proof

Anybody can check

the proof

- K generates CRS σ and pr \swarrow verification key ω
- V checks proof given input (ω, x, π)

Public vs. private verifiability

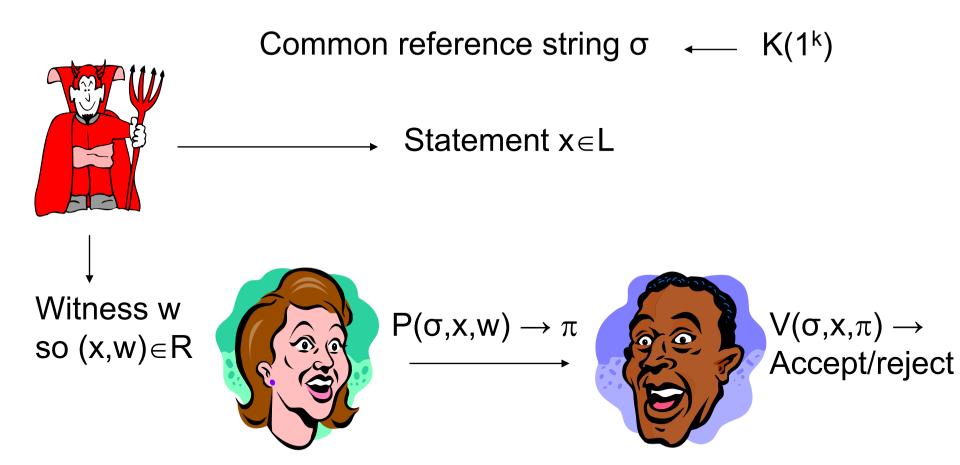
Public verifiability

- Sometimes required
 - Signatures
 - Universally verifiable voting
- Reusability
 - Proof can be copied and sent to somebody else
 - Prover only needs to run once to create proof π that convinces everybody
- Hard to construct

Private verifiability

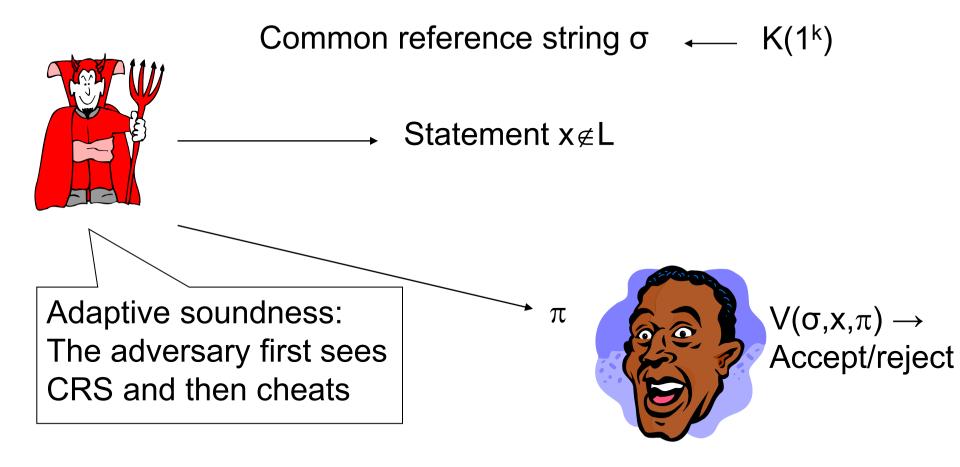
- Sometimes suffices
 - CCA-secure public-key encryption, e.g., Cramer-Shoup encryption
- Cannot be transferred
 - For designated verifier only
- Easier to construct

Completeness



Perfect completeness: Pr[Accept] = 1

Soundness



Perfect soundness: ∀ Adv: Pr[Reject] = 1

Statistical soundness: ∀ Adv: Pr[Reject] ≈ 1

Computational soundness: ∀ poly-time Adv: Pr[Reject] ≈ 1

Proofs vs. arguments

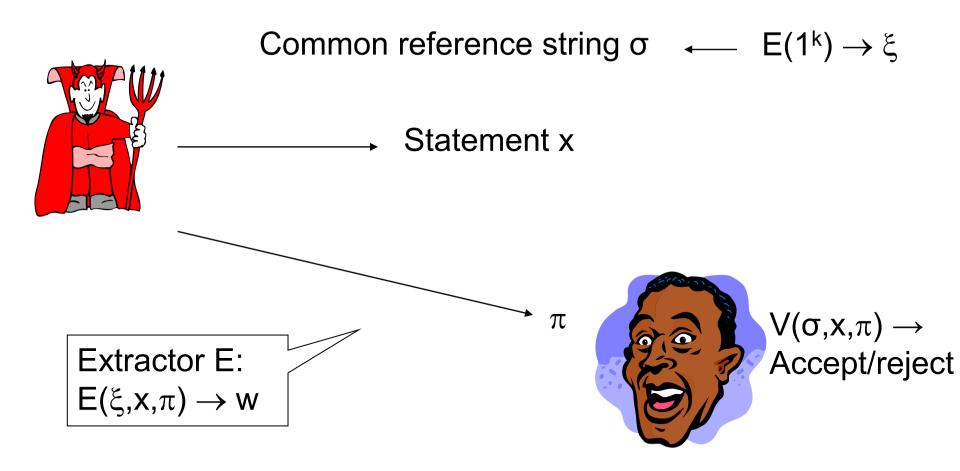
Proof

- Perfect or statistical soundness
- No unbounded adversary can prove a false statement

Argument

- Computational soundness
- No probabilistic polynomial time adversary can prove a false statement

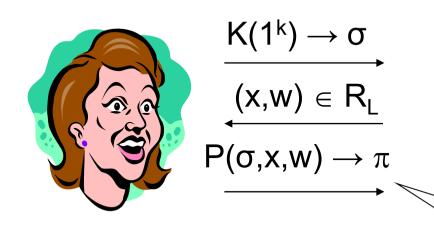
Proof of knowledge [DP92]



Perfect proof of knowledge: \forall Adv: $\Pr[(x,w) \in R_L \mid accept] = 1$ Statistical PoK: \forall Adv: $\Pr[(x,w) \in R_L \mid accept] \approx 1$ Comp. PoK: \forall poly-time Adv: $\Pr[(x,w) \in R_L \mid accept] \approx 1$

UCL

Zero-knowledge



 $\tau \leftarrow S_1(1^k) \rightarrow \sigma$ $(x,w) \in R_L$ The advergence many real.

 $S_2(\sigma,\tau,x) \rightarrow \pi$

Multi-theorem ZK [FLS99]
The adversary can get
many real/simulated proofs

 $Pr[Adv \rightarrow 1|Real] = Pr[Adv \rightarrow 1|Simulation]$

Computational ZK:

Perfect ZK:

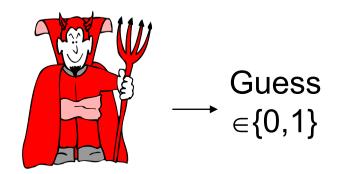
 \forall poly-time Adv: Pr[Adv \rightarrow 1|Real] \approx Pr[Adv \rightarrow 1|Simulation]

Witness indistinguishability [FS90]

Common reference string $\sigma \leftarrow K(1^k)$

Witnesses
$$w_0, w_1$$

 $(x, w_0), (x, w_1) \in R_L$
 $P(\sigma, x, w_b) \to \pi$



Perfect witness-indistinguish.: ∀ Adv: Pr[Guess = b] = ½

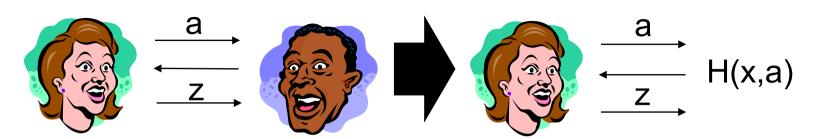
Computational WI: ∀ poly-time Adv: Pr[Guess = b] ≈ ½

Witness-indistinguishability vs. zero-knowledge

- Zero-knowledge implies witness-indistinguishability
 - Reveals nothing, in particular not which witness used
- Witness-indistinguishability weaker than ZK
 - Suppose all witnesses for the same statement in L have the same prefix, then a WI proof may reveal that prefix
 - $w_0 = 100100101 \ 11011 \$ WI proof may reveal 100100101 • $w_1 = 100100101 \ 00100$
 - If each statement has only one witness, then the WI proof may reveal the entire witness
 - Statement: (u,v) ElGamal encryption of 1, i.e., (u,v) = (g^r,h^r)
 - Witness-indistinguishable proof: r

Fiat-Shamir heuristic [FS86]

- Take an interactive ZK argument where verifier's messages are random bits (public coin argument)
- Let the CRS describe a hash-function H
- Replace the verifier's messages with hash-values from the current transcript



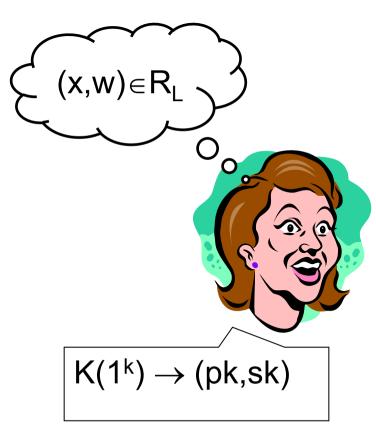
• NIZK argument $\pi = (a,z)$

Fiat-Shamir heuristic

- Efficient NIZK arguments that work well in practice
- Hopefully they are secure
 - Can argue heuristically that they are computationally sound in the random oracle model [BR93], where we pretend H is a truly random function
 - But in real life H is a deterministic function and there are instantiations of the Fiat-Shamir heuristic [GK03] that yields insecure real-life schemes

Encrypted random bits [BFM88]

Statement: x∈L



CRS

 $EQ_k(Q;Q_1)$

E11(\$1:12)

 $EQQ(Q; I_3)$

 $E_{1}^{(1)}(1_{1}^{1},0_{1}^{1})$

Statistical sampling

Random bits not useful

 Use statistical sampling to get hidden bits with structure Probably remaining pairs of encrypted bits are 00 and 11,

CRS

Reveal certain bits from structures

Reveal: $?0 \oplus 1? \oplus ?1 = 0$

Kilian-Petrank for ip
 10 ∨ 11 ∨ 11

 formulas

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor \neg x_5) \land (x_1 \dots) \land \dots$$
$$\dots \land (x_1 \dots) \land (\neg x_1 \dots)$$

- They give method to assign hidden pairs of bits to each literal in a consistent manner such that
 - If literal is true the pair is 01 or 10, if literal is false the pair is 00 or 11
 - Pairs for literals corresponding to different appearances of same variable are consistent with each other
- With satisfying assignment possible to XOR all clauses to 0
- With an unsatisfied clause 50% chance bits do not XOR to 0

NIZK proofs for Circuit SAT

- Security level: 2-k
- Trapdoor perm size: k_T = poly(k)
- Group element size: k_G ≈ k³

- Circuit size: |C| = poly(k)
- Witness size: |w| ≤ |C|

	CRS in bits	Proof in bits	Assumption
G-Ostrovsky-Sahai 12	O(k _G)	O(C ·k _G)	Pairing-based
Groth 10	$ C \cdot k_T \cdot polylog(k)$	C ⋅k _T ⋅polylog(k)	Trapdoor perms
Groth 10	C -polylog(k)	C -polylog(k)	Naccache-Stern
Gentry 09	poly(k)	w ·poly(k)	FHE + NIZK

Practice

Statement: Here is a ciphertext and a document. The ciphertext contains a digital signature on the document.

	Circuit SAT	Practical	
	1 GB	statements	
Inefficient	Damgård 92 Kilian-Petrank 98	1 KB	
Efficient	Groth-Ostrovsky- Sahai 12	Groth-Sahai 12	

Non-interactive Zero-Knowledge Proofs from Pairings

Jens Groth
University College London

Groth-Ostrovsky-Sahai 2012 (2006)

- NIZK proof for Circuit SAT
- Perfect completeness, perfect soundness, computational zero-knowledge
- Common reference string: O(1) group elements
- Proofs: O(|C|) group elements

Composite order bilinear group

- Gen (1^k) generates (p, q, G, G_T, e, g)
- G, G_T finite cyclic groups of order n = pq
- Pairing $e: G \times G \rightarrow G_T$
 - $-e(g^a, g^b) = e(g, g)^{ab}$
 - $-G = \langle g \rangle, G_T = \langle e(g,g) \rangle$
- Deciding group membership, group operations, and bilinear pairing efficiently computable
- Subgroup decision assumption
 - Given (n, G, G_T, e, g, h) hard to distinguish whether h has order g or h has order n

BGN encryption [Boneh-Goh-Nissim 05]

Public key: (n, G, G_T, e, g, h) has order q

Secret key: p, q n = pq

Encryption: $c = g^a h^r$ $r \leftarrow \mathbf{Z}_n$

Decryption: $c^q = (g^a h^r)^q = g^{qa} h^{qr} = (g^q)^a$

Compute discrete logarithm if a small

BGN encryption is IND-CPA secure if the subgroup decision assumption holds

Sketch of proof

By subgroup decision assumption public key looks the same as if h had order n. But if h had order n, ciphertext would have no information about the plaintext a.

Commitment

Public key: (n, G, G_T, e, g, h) has order q

Commitment: $c = g^a h^r$ $r \leftarrow \mathbf{Z}_n$

Perfectly binding: Unique a mod p

Computationally hiding: Indistinguishable from h order n

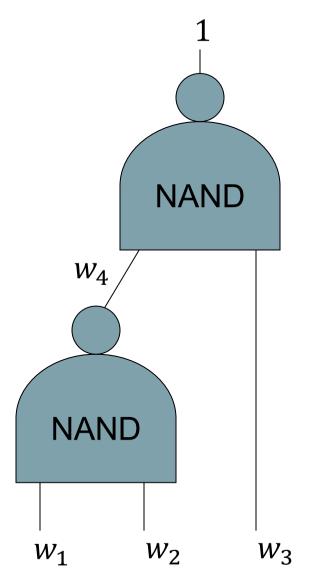
Addition: $(g^a h^r)(g^b h^s) = g^{a+b} h^{r+s}$

Multiplication: $e(g^a h^r, g^b h^s)$

$$= e(g^a, g^b)e(h^r, g^b)e(g^a, h^s)e(h^r, h^s)$$

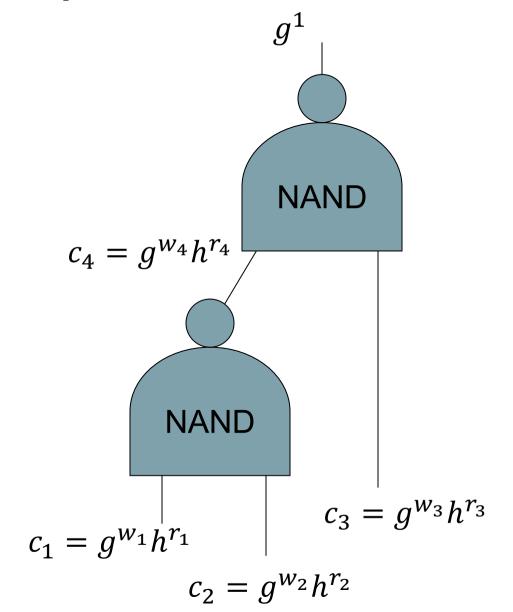
$$= e(g,g)^{ab}e(h,g^{as+rb}h^{rs})$$

NIZK proof for Circuit SAT



Circuit SAT is NP complete

NIZK proof for Circuit SAT



Prove $w_1 \in \{0,1\}$

Prove $w_2 \in \{0,1\}$

Prove $w_3 \in \{0,1\}$

Prove $w_4 \in \{0,1\}$

Prove

$$w_4 = \neg(w_1 \land w_2)$$

Prove

$$1 = \neg(w_3 \land w_4)$$

Proof for c containing 0 or 1

Write $c = g^w h^r$ (unique $w \bmod p$ since h has order q)

Recall
$$e(c, cg^{-1}) = e(g, g)^{w(w-1)}e(h, g^{(2w-1)r}h^{r^2})$$

Proof
$$\pi = g^{(2w-1)r}h^{r^2}$$

Verifier checks:
$$e(c, cg^{-1}) = e(h, \pi)$$

 $\rightarrow e(g, g)^{w(w-1)} e(h, g^{(2w-1)r} h^{r^2}) = e(h, \pi)$
 $\rightarrow w = 0 \mod p \text{ or } w = 1 \mod p$

Observation

b ₀	b ₁	b ₂	b ₀ +b ₁ +2b ₂ -2
0	0	0	-2
0	0	1	0
0	1	0	-1
0	1	1	1
1	0	0	-1
1	0	1	1
1	1	0	0
1	1	1	2

$$b_2 = \neg(b_0 \land b_1)$$

if and only if
 $b_0 + b_1 + 2b_2 - 2 \in \{0,1\}$

Proof for NAND-gate

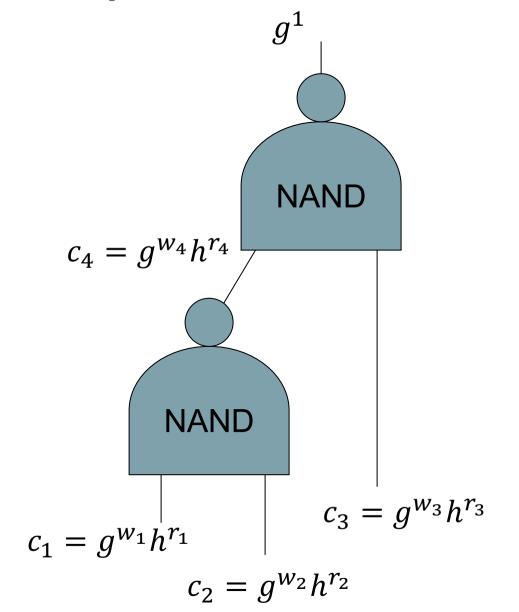
Given c_0, c_1, c_2 containing bits b_0, b_1, b_2 wish to prove $b_2 = \neg(b_0 \land b_1)$

$$b_2 = \neg(b_0 \land b_1)$$
 if $b_0 + b_1 + 2b_2 - 2 \in \{0,1\}$

$$c_0 c_1 c_2^2 g^{-2} = g^{b_0 + b_1 + 2b_2 - 2} h^{r_0 + r_1 + 2r_2}$$

Prove $c_0c_1c_2^2g^{-2}$ contains 0 or 1

NIZK proof for Circuit SAT



Prove $w_1 \in \{0,1\}$

Prove $w_2 \in \{0,1\}$

Prove $w_3 \in \{0,1\}$

Prove $w_4 \in \{0,1\}$

Prove

$$w_4 = \neg(w_1 \land w_2)$$

Prove

$$1 = \neg(w_3 \land w_4)$$

CRS (n, G, G_T, e, g, h)

CRS size $3k_G$

Proof size $(2|w| + |C|)k_G$

Zero-Knowledge

Subgroup decision assumption

Hard to distinguish whether h has order q or n

Simulated common reference string

$$h$$
 order n by choosing $g = h^{\tau}$

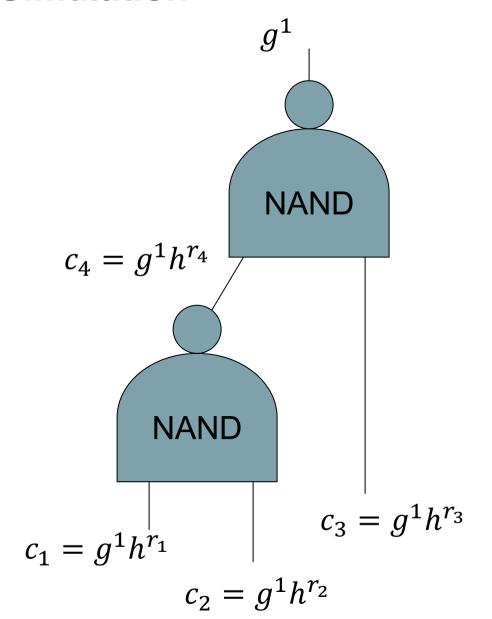
$$\tau \leftarrow \mathbf{Z}_n^*$$

The simulation trapdoor is τ

Commitments are now perfectly hiding trapdoor commitments

$$g^1 h^r = g^0 h^{r+\tau}$$

Simulation



Prove
$$w_1 \in \{0,1\}$$

Prove
$$w_2 \in \{0,1\}$$

Prove
$$w_3 \in \{0,1\}$$

Prove
$$w_4 \in \{0,1\}$$

Prove

$$w_4 = \neg(w_1 \land w_2)$$

Prove

$$1 = \neg(w_3 \land w_4)$$

Using $w_2 = 0, w_3 = 0$ for the NAND proofs 13

Witness-indistinguishable 0/1-proof

Write
$$c = g^1 h^r$$
 or $c = g^0 h^{r+\tau}$

$$e(c,cg^{-1}) = e(h,g^rh^{r^2})$$
 or $e(c,cg^{-1}) = e(h,g^{-(r+\tau)}h^{(r+\tau)^2})$

Proof
$$\pi = g^r h^{r^2}$$
 or $\pi = g^{-(r+\tau)} h^{(r+\tau)^2}$

Verifier checks $e(c, cg^{-1}) = e(h, \pi)$

Perfect witness-indistinguishable when h has order n since there is unique π satisfying equation, no matter whether c contains 0 or 1

Zero-knowledge of full Circuit SAT proof

Sketch of proof:

- Pr[Adv→1|Real proof]
- \approx Pr[Adv \rightarrow 1|Real proof on h with order n]
- Pr[Adv→1|Hybrid proof where h has order n and commitments to 1. The simulator uses trapdoor to open them to real witness and gives real proofs]
- = Pr[Adv→1|Hybrid proof where h has order n and commitments to 1. The simulator uses trapdoor to open some commitments to 0 in NAND proofs]
- = Pr[Adv→1|Simulated proof]

Composable zero-knowledge

- Real common reference string computationally indistinguishable from simulated common reference string
- Real proof on simulated common reference string perfectly indistinguishable from simulated proof on simulated common reference string

NIZK proof for Circuit SAT

- Commit to all wires w_i as $c_i = g^{w_i} h^{r_i}$
- For each i prove c_i contains 0 or 1
- For each NAND prove $c_0c_1c_2^2g^{-2}$ contains 0 or 1
- Total size: 2|w| + |C| group elements

- Perfect completeness, perfect soundness, composable zero-knowledge
- Also, perfect proof of knowledge

$$c_i^q = (g^{w_i}h^{r_i})^q = (g^q)^{w_i}$$

Known for all of NP?	Computational zero-knowledge	Perfect zero-knowledge (everlasting privacy)
Interactive proof	Yes [Goldreich-Micali- Wigderson 1986]	Yes [Brassard- Crepeau 1986]
Non- interactive proof	Yes [Blum-Feldman- Micali 1988]	Yes [Groth-Ostrovsky- Sahai 2012]

Perfect zero-knowledge

Instead of h with order q, use h with order n

- Easy to verify that we have perfect completeness
- As argued earlier we have perfect zero-knowledge
- What about soundness?

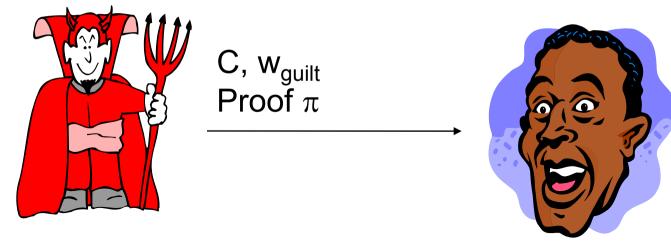
"Natural" computational soundness fails

- Start with h of order n and Adversary that produces a false statement and a valid proof
- Switch to h of order q, which Adversary cannot distinguish from order n. Therefore Adversary still produces a statement and a valid proof
- We now have non-adaptive soundness, when statement is independent of CRS. Otherwise a false statement has been proven with h of order q
- But there is a problem with adaptive soundness
 - Consider the statement "h has order q"

Adaptive culpable soundness

Common reference string

 \leftarrow K(1^k)



w_{guilt} witness for C unsatisfiable

Comp. culpable soundness: ∀ poly-time Adv: Pr[Reject] ≈ 1

Computational culpable soundness

Sketch of proof:

- Imagine poly-time Adversary could break culpable soundness; after seeing CRS where h has order n, Adversary makes valid (C,w_{quilt},π).
- By subgroup decision assumption approximately same success probability for Adversary producing valid (C, w_{quilt}, π) when h has order q.
- But w_{guilt} guarantees C is unsatisfiable and when h has order q the perfect soundness guarantees C is satisfiable.

22

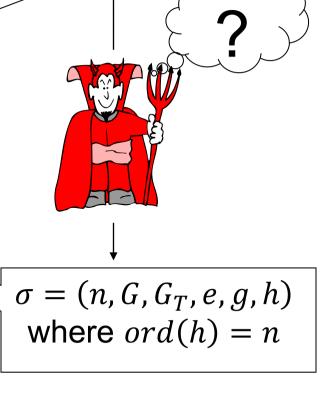
Culpable soundness the "right" definition

- Abe-Fehr 07 show that impossible to achieve perfect zero-knowledge and the "natural" adaptive soundness definition with standard direct blackbox methods
- Often a non-satisfiability witness exists
 - Consider for instance verifiable encryption; here the secret key is a witness for the plaintext not being m
- Computational culpable soundness sufficient for constructing universally composable NIZK proofs

Groth-Ostrovsky-Sahai 12

 $\sigma = (n, G, G_T, e, g, h)$ where ord(h) = q

- NIZK proof for Circuit SAT
- Perfect binding key
 - Perfect completeness
 - Perfect soundness
 - Computational zero-knowledge
- Perfect hiding key
 - Perfect completeness
 - Culpable soundness
 - Perfect zero-knowledge



Non-interactive Zero-Knowledge Proofs from Pairings

Jens Groth
University College London

NIZK proof efficiency

	Circuit SAT	Practical statements
Inefficient	Hidden bits	Groth 06
Efficient	Groth-Ostrovsky- Sahai 12	Groth-Sahai 12 Coming next

Our goal

- We want high efficiency. Practical non-interactive proofs!
- We want non-interactive proofs for statements arising in practice such as "the ciphertext c contains a signature on m". No NP-reduction!

Example: Boyen-Waters 07 group signatures

Statement

$$\mu_1, ..., \mu_m \in \mathbf{Z}_n, \Omega, g, u, v', v_1, ..., v_m \in G, A \in G_T$$

• Prover knows witness $\theta_1, \theta_2, \theta_3, \theta_4 \in G$

$$e(\theta_1, \theta_2 \Omega) = A$$
 $e(\theta_2, u) = e(\theta_3, g)e(\theta_4, v' \Big|_i \Big|_i v_i^{\mu_i})$

• The group signature on $M=(\mu_1,\ldots,\mu_m)$ is a six element proof of knowledge $(\sigma_1,\sigma_2,\sigma_3,\sigma_4,\pi_1,\pi_2)$

^{*} Boyen-Waters 07 NIZK proof independent of our work

Constructions in bilinear groups

$$a, c \in G$$
 $b, d \in \mathbf{Z}_n$

$$t = b + yd \bmod n$$

$$t_G = x^y a^y c^t$$

$$t_G = x^y a^y c^t$$
$$t_T = e(t_G, ct_G^b)$$

Non-interactive cryptographic proofs for correctness of constructions

Yes, here is a proof.

Are the constructions correct? I do not know your secret x, y.

$$t = b + yd \mod n$$

$$t_G = x^y a^y c^t$$

$$t_T = e(t_G, ct_G^b)$$

— Proof

Commitment to group elements

- Common reference string (n, G, G_T, e, g, h)
 - Real CRS: h has order q
 - Simulation CRS: $g = h^{\tau}$ with $\tau \in \mathbb{Z}_n^*$
- Commitment to group element $x \in G$

$$c = xh^r$$

$$r \leftarrow \mathbf{Z}_n$$

- Real CRS: Perfect binding in order p subgroups
 - Let $\lambda = 1 \mod p$, $\lambda = 0 \mod q$ then $c^{\lambda} = x^{\lambda}h^{\lambda r} = x^{\lambda}$ determines x^{λ}
- Simulation CRS: Perfect hiding commitments
 - When h has order n the commitment is a random group element

Homomorphic properties

- Commitments are homomorphic
 - $-(xh^r)(yh^s) = xyh^{r+s}$
 - $-(g^{x}h^{r})(g^{y}h^{s}) = g^{x+y}h^{r+s}$
- Pairing commitments
 - $-e(xh^r, yh^s) = e(x, y)e(h, x^sy^rh^{rs})$
 - $-e(xh^r, g^yh^s) = e(g, x^y)e(h, x^sg^{yr}h^{rs})$
 - $-e(g^{x}h^{r},g^{y}h^{s}) = e(g,g)^{xy}e(h,g^{xs+yr}h^{rs})$

NIWI proof example

Consider an equation

$$e(a, y)e(x, y) = t_T$$

Commitments to variables

$$c = xh^r$$
, $d = yh^s$

Proof that committed values satisfy the equation

$$\pi = a^s x^s y^r h^{rs}$$

Verify proof π by checking

$$e(a,d)e(c,d) = t_T e(h,\pi)$$

Completeness

$$e(a, yh^s)e(xh^r, yh^s)$$

$$= e(a, y)e(x, y) e(h, a^s x^s y^r h^{rs})$$

NIWI proof example

Consider an equation

$$e(a, y)e(x, y) = t_T$$

• Verify proof π by checking

$$e(a,d)e(c,d) = t_T e(h,\pi)$$

- Soundness when ord(h) = q
 - Let $\lambda = 1 \bmod p$, $\lambda = 0 \bmod q$ and raise to $\lambda = \lambda^2 \bmod n$ on both sides of verification equation

$$e(a^{\lambda}, d^{\lambda})e(c^{\lambda}, d^{\lambda}) = t_T^{\lambda^2}e(h^{\lambda}, \pi^{\lambda}) = t_T^{\lambda}$$

– We see $x = c^{\lambda}$, $y = d^{\lambda}$ satisfy the equation in the order p subgroups of G, G_T

NIWI proof example

Consider an equation

$$e(a, y)e(x, y) = t_T$$

• Verify proof π by checking

$$e(a,d)e(c,d) = t_T e(h,\pi)$$

- Witness-indistinguishability when ord(h) = n
 - The commitments are perfectly hiding, so there are many different possible openings x, r, y, s of c, d satisfying the equation
 - However, since ord(h) = n there is a unique proof π satisfying the verification equation
 - Two openings x_0, r_0, y_0, s_0 and x_1, r_1, y_1, s_1 of c, d that satisfy the original equation therefore give the same π

Full NIWI proof for a set of equations

• Suppose we have equations $eq_1, eq_2, ...$ of the form

$$\prod_{i} e(a_i, x_i) \prod_{i,j} e(x_i, x_j)^{\gamma_{ij}} = t_T$$

We can give a NIWI proof that there are values

$$x_1, \dots, x_m \in G$$

satisfying all the equations simultaneously

- Commit to each variable x_i
- Make a NIWI proof for each equation eq_k
- Commitments and proofs cost 1 group element each

Together with commitments to exponents in \mathbb{Z}_n we get NIWI proof for simultaneous satisfiability a set of equations $eq_1, eq_2, ...$ that can be a mix of

Pairing product equations

$$\prod_{i} e(a_i, x_i) \prod_{i,j} e(x_i, x_j)^{\gamma_{ij}} = t_T$$

Multi-exponentiation equations

$$\prod_{j} a_{j}^{y_{j}} \prod_{i} x_{i}^{b_{i}} \prod_{i,j} x_{i}^{\gamma_{ij}y_{j}} = t_{G}$$

Quadratic equations

$$\sum_{i} b_{j} y_{j} + \sum_{i,j} \gamma_{ij} y_{i} y_{j} = t \bmod n$$

Properties of the NIWI proof

- Two types of common reference string
 - Real CRS: h has order q
 - WI CRS: h has order n
 - Real and WI reference strings computationally indistinguishable
- Perfect completeness on both types of strings
- Real CRS: Perfect soundness in order p subgroups
 - Commitments perfectly binding and equation proofs perfectly sound
- WI CRS: Perfect witness-indistinguishability
 - Commitments perfectly hiding so can contain any valid witness
 - The equation proofs are perfectly witness-indistinguishable, so do not reveal anything about the witness inside the commitments

What makes the NIWI proof work?

$$G \times G \to G_{T} \qquad (x,y) \to t_{T}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$G \times G \to G_{T} \qquad (xh^{r}, yh^{s}) \to t_{T}e(h,\pi)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$G_{p} \times G_{p} \to G_{T,p} \qquad (x^{\lambda}, y^{\lambda}) \to t_{T}^{\lambda}$$

- Commuting linear and bilinear map
- We will generalize this methodology
 - Groups can have prime or composite order
 - Pairing $e: G_1 \times G_2 \rightarrow G_T$ with $G_1 \neq G_2$ or $G_1 = G_2$
 - Many different assumptions: Subgroup decision, SXDH (i.e., DDH in both groups), decision linear, etc.

Modules

- An abelian group (A, +, 0) is a \mathbf{Z}_p -module if \mathbf{Z}_p acts on A such that for all $r, s \in \mathbf{Z}_p$, $a, b \in A$
 - -1a = a
 - -(r+s)a = ra + sa
 - -r(a+b) = ra + rb
 - -r(sa) = (rs)a
- If p is a prime then A is a vector space
- Examples
 - \mathbf{Z}_p , G_1 , G_2 , G_T , G_1^2 , G_2^2 , G_T^4 are \mathbf{Z}_p -modules

Modules with bilinear map

- We will be interested in finite Z_p-modules
 A₁, A₂, A_T with a bilinear map ⋅_A: A₁ × A₂ → A_T
- Examples:

```
- pair: G_1 \times G_2 \rightarrow G_T (x,y) \mapsto e(x,y)

- exp: G_1 \times \mathbf{Z}_p \rightarrow G_1 (x,y) \mapsto x^y

- exp: \mathbf{Z}_p \times G_2 \rightarrow G_2 (x,y) \mapsto y^x

- mult: \mathbf{Z}_p \times \mathbf{Z}_p \rightarrow \mathbf{Z}_p (x,y) \mapsto xy \mod p
```


Statements we want to prove

• Statements consisting of quadratic equations $eq_1, ..., eq_N$ in A_1, A_2, A_T of the form

$$\sum_{j} a_j \cdot y_j + \sum_{i} x_i \cdot b_i + \sum_{ij} x_i \cdot \gamma_{ij} y_j = t$$

The prover knows secret witness

$$\vec{x} = (x_1, ..., x_m)$$
 $\vec{y} = (y_1, ..., y_n)$ that satisfies all equations $eq_1, ..., eq_N$

Simplify notation using vectors and matrices

$$\vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = t$$

Commitments in modules

Linear maps and modules

Easy to compute

Hard to compute

- Elements $u_1, u_2, \dots, u_m \in B$
- Commit to an element $x \in A$

$$c = i(x) + \sum_{i} r_i u_i$$

 $A \xrightarrow{i} R \xrightarrow{p} C$

- Perfectly hiding x if $i(A) \subseteq \langle u_1, ..., u_m \rangle$
- Perfectly binding to p(c)
 - For soundness, we want $p(u_i) = 0$

Example

Linear maps and modules

$$i p$$
 $i: x \to (1, x)$ $G \to G^2 \to G$ $p: (a, b) \to ba^{-\alpha}$

- Elements $u_1 = (g, g^{\alpha}), u_2 = (h, h^{\alpha+\tau})$
 - If the DDH problem is hard in G cannot distinguish whether $\tau = 0$ or $\tau \neq 0$
- Commitment to $x \in G$

$$c = (g^{r_1}h^{r_2}, x(g^{r_1}h^{r_2})^{\alpha}h^{\tau r_2})$$

- If $\tau \neq 0$ this is a perfectly hiding commitment
- If $\tau = 0$ the commitment is an ElGamal encryption of x and p is the ElGamal decryption algorithm
 - Note $p(u_1) = p(u_2) = 1$ and p(i(x)) = x

Commuting linear and bilinear maps

• CRS defines \mathbf{Z}_p -modules $A_1, A_2, A_T, B_1, B_2, B_T$, C_1, C_2, C_T and (bi)linear maps $i_1, i_2, i_T, p_1, p_2, p_T, \cdot_A, \cdot_B, \cdot_C$

$$A_{1} \times A_{2} \xrightarrow{A} A_{T}$$

$$i_{1} \downarrow i_{2} \downarrow \qquad \downarrow i_{T}$$

$$B_{1} \times B_{2} \xrightarrow{B} B_{T}$$

$$p_{1} \downarrow p_{2} \downarrow \qquad \downarrow p_{T}$$

$$C_{1} \times C_{2} \xrightarrow{C} C_{T}$$

- Prover's witness is in A₁, A₂
- Will commit and make proofs in B_1 , B_2
- Soundness will hold in C_1 , C_2 , C_T

Example

$$G_{1} \times G_{2} \xrightarrow{e} G_{T} \qquad (x,y) \to e(x,y)$$

$$i_{1} \downarrow i_{2} \downarrow \otimes \downarrow i_{T} \qquad i_{1} \downarrow i_{2} \downarrow \qquad \downarrow i_{T}$$

$$G_{1}^{2} \times G_{2}^{2} \xrightarrow{e} G_{T}^{4} \qquad ((1,x),(1,y)) \to (1,1,1,e(x,y))$$

$$p_{1} \downarrow p_{2} \downarrow \qquad \downarrow p_{T} \qquad p_{1} \downarrow p_{2} \downarrow \qquad \downarrow p_{T}$$

$$G_{1} \times G_{2} \xrightarrow{e} G_{T} \qquad (x,y) \to e(x,y)$$

-
$$p_1(a,b)=ba^{-\alpha}$$
 , $p_2(c,d)=dc^{-\beta}$ | ElGamal decryption with keys α , β , respectively

$$-(a,b)\otimes(c,d) = (e(a,c),e(a,d),e(b,c),e(b,d))$$

$$- p_T(a,b,c,d) = dc^{-\beta} (ba^{-\beta})^{-\alpha}$$

Common reference string

- CRS has modules $A_1, A_2, A_T, B_1, B_2, B_T, C_1, C_2, C_T$ and (bi)linear maps $i_1, i_2, i_T, p_1, p_2, p_T, \cdot_A, \cdot_B, \cdot_C$ and elements $u_1, ..., u_m \in B_1, v_1, ..., v_n \in B_2$
- Two indistinguishable types of CRS
 - WI CRS has $i_1(A_1) \subseteq \langle u_1, \dots, u_m \rangle, i_2(A_2) \subseteq \langle v_1, \dots, v_n \rangle$
 - Soundness CRS has $p_1(u_i) = 0$ and $p_2(v_i) = 0$

Statement

• The statement consist of quadratic equations $eq_1, ..., eq_N$ in A_1, A_2, A_T of the form

$$\sum_{j} a_j \cdot y_j + \sum_{i} x_i \cdot b_i + \sum_{ij} x_i \cdot \gamma_{ij} y_j = t$$

The prover knows values

$$\vec{x} = (x_1, ..., x_m)$$
 $\vec{y} = (y_1, ..., y_n)$ that satisfy all equations $eq_1, ..., eq_N$

Simplified notation

$$\vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = t$$

Commitment to witness

• Prover commits in B_1, B_2 to all secret elements

$$c_i = i_1(x_i) + \sum_k r_{ik} u_k$$
 $d_j = i_2(y_j) + \sum_k s_{jk} v_k$

• Let
$$\vec{c}=(c_1,\ldots,c_m)$$
 and $\vec{d}=(d_1,\ldots,d_n)$ then
$$\vec{c}=i_1(\vec{x})+R\vec{u} \qquad \vec{d}=i_2(\vec{y})+S\vec{v}$$

NIWI proofs

For each equation

$$\vec{a}\cdot\vec{y}+\vec{x}\cdot\vec{b}+\vec{x}\cdot\Gamma\vec{y}=t$$
 the prover creates a NIWI proof $\vec{\pi}\in B_2^n$, $\vec{\phi}\in B_1^m$

• For each equation the verifier checks $i_1(\vec{a}) \cdot \vec{d} + \vec{c} \cdot i_2(\vec{b}) + \vec{c} \cdot \Gamma \vec{d} = i_T(t) + \vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v}$

Soundness

For each equation the verifier checks

$$i_1(\vec{a}) \cdot \vec{d} + \vec{c} \cdot i_2(\vec{b}) + \vec{c} \cdot \Gamma \vec{d} = i_T(t) + \vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v}$$

- On a soundness string $p_1(\vec{u}) = \vec{0}$, $p_2(\vec{v}) = \vec{0}$
- · We define

$$\vec{a}' = p_1(i_1(\vec{a}))$$
 $\vec{b}' = p_2(i_2(\vec{b}))$ $t' = p_T(i_T(t))$ $\vec{x}' = p_1(\vec{c})$ $\vec{y}' = p_2(\vec{d})$

Projecting the verification equation to C_1 , C_2 , C_T

$$\vec{a}' \cdot \vec{y}' + \vec{x}' \cdot \vec{b}' + \vec{x}' \cdot \Gamma \vec{y}' = t' + 0 + 0 = t'$$

Example

$$G_{1} \times G_{2} \stackrel{e}{\to} G_{T} \qquad (x,y) \to e(x,y)$$

$$i_{1} \downarrow i_{2} \downarrow \otimes \downarrow i_{T} \qquad i_{1} \downarrow i_{2} \downarrow \qquad \downarrow i_{T}$$

$$G_{1}^{2} \times G_{2}^{2} \stackrel{e}{\to} G_{T}^{4} \qquad ((1,x),(1,y)) \to (1,1,1,e(x,y))$$

$$p_{1} \downarrow p_{2} \downarrow \qquad \downarrow p_{T} \qquad p_{1} \downarrow p_{2} \downarrow \qquad \downarrow p_{T}$$

$$G_{1} \times G_{2} \stackrel{e}{\to} G_{T} \qquad (x,y) \to e(x,y)$$

- $p_1(i_1(\vec{a})) = \vec{a}$ $p_2(i_2(\vec{b})) = \vec{b}$ $p_T(i_T(t)) = t$
- Projection therefore gives us the original equation is satisfied by $\vec{x} = p_1(\vec{c})$ and $\vec{y} = p_2(\vec{d})$ $\vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = t$

Completeness

The prover has commitments

$$\vec{c} = i_1(\vec{x}) + R\vec{u}$$
 $\vec{d} = i_2(\vec{y}) + S\vec{v}$

For each equation the committed witness satisfies

$$\vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = t$$

For each equation the verifier checks

$$i_1(\vec{a}) \cdot \vec{d} + \vec{c} \cdot i_2(\vec{b}) + \vec{c} \cdot \Gamma \vec{d} = i_T(t) + \vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v}$$

• The prover can create a proof $\vec{\pi} \in B_2^n$, $\vec{\phi} \in B_1^m$ $\vec{\pi} = R^T(i_2(\vec{b}) + \Gamma \vec{d})$ $\vec{\phi} = S^T(i_1(\vec{a}) + \Gamma^T i_1(\vec{x}))$

Witness-indistinguishability

- WICRS $i_1(A_1) \subseteq \langle \vec{u} \rangle, i_2(A_2) \subseteq \langle \vec{v} \rangle$
- The commitments \vec{c} , \vec{d} are perfectly hiding
- What about the proofs? $i_1(\vec{a}) \cdot \vec{d} + \vec{c} \cdot i_2(\vec{b}) + \vec{c} \cdot \Gamma \vec{d} = i_T(t) + \vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v}$
- If $\vec{\pi}$, $\vec{\phi}$ are unique then we have perfect WI
- For non-unique proofs, we will randomize them such that any witness yields a uniform random distribution over proofs satisfying the equation

Witness-indistinguishability

What about the proofs?

$$i_1(\vec{a}) \cdot \vec{d} + \vec{c} \cdot i_2(\vec{b}) + \vec{c} \cdot \Gamma \vec{d} = i_T(t) + \vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v}$$

- For non-unique proofs, we will randomize them such that any witness yields a uniform random distribution over proofs satisfying the equation
 - Observe

$$\vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v} = \vec{u} \cdot (\vec{\pi} + T\vec{v}) + (\vec{\phi} - T^T\vec{u}) \cdot \vec{v}$$

- On a WI CRS $\vec{\pi} \in \langle \vec{v} \rangle$ so $\vec{\pi}' = \vec{\pi} + T\vec{v}$ is random in $\langle \vec{v} \rangle$
- Randomise $\vec{\phi}' = \vec{\phi} T^T \vec{u} + \vec{w}$ with random $\vec{w} \cdot \vec{v} = 0$
 - May require CRS to contain information to make it possible to pick random $\vec{w} \in \langle \vec{u} \rangle$ such that $\vec{w} \cdot \vec{v} = 0$ (but often not needed)

Overview

• CRS defines Z_p -modules $A_1, A_2, A_T, B_1, B_2, B_T, C_1, C_2, C_T$ and (bi)linear maps $i_1, i_2, i_T, p_1, p_2, p_T, \cdot_A, \cdot_B, \cdot_C$ and $\overrightarrow{u}, \overrightarrow{v}$ and \overrightarrow{w} -info

$$\vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = t$$

$$i_1(\vec{a}) \cdot \vec{d} + \vec{c} \cdot i_2(\vec{b}) + \vec{c} \cdot \Gamma \vec{d} = i_T(t) + \vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v}$$

$$\vec{a}' \cdot \vec{y}' + \vec{x}' \cdot \vec{b}' + \vec{x}' \cdot \Gamma \overrightarrow{y'} = t'$$

- Prover's witness is in A₁, A₂
- Commitments and proofs are in B_1 , B_2
- Soundness holds in C_1 , C_2 , C_T

Zero-knowledge

$$i_1(\vec{a}) \cdot \vec{d} + \vec{c} \cdot i_2(\vec{b}) + \vec{c} \cdot \Gamma \vec{d} = i_T(t) + \vec{u} \cdot \vec{\pi} + \vec{\phi} \cdot \vec{v}$$

- On a WI CRS the commitments and proofs $\vec{c}, \vec{d}, \vec{\pi}, \vec{\phi}$ are perfectly witness-indistinguishable
- Are the commitments and proofs also ZK?
- Problem
 - Cannot simulate proofs without knowing a witness!

Zero-knowledge

- Strategy
 - Set up WI CRS so that the simulator can find a witness
- Consider the case where $A_1 = \mathbf{Z}_p$
 - On the WI CRS we have $i_1(A_1) \subseteq \langle \vec{u} \rangle$ so $i_1(1) = i_1(0) + \vec{r}^T \vec{u}$
 - The simulator will use \vec{r} as the simulation trapdoor
- Rewrite all the equations eq_1, \dots, eq_N to the form

$$1 \cdot (-t) + \vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = 0$$

Zero-knowledge simulation

- Consider 1 to be an extra variable x_0 where we use commitment $c_0 = i_1(1)$
- We now have equations $eq_1, ..., eq_N$ of the form $x_0 \cdot (-t) + \vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} + \vec{x} \cdot \Gamma \vec{y} = 0$
- Choosing $x_0 = 0$, $\vec{x} = \vec{0}$, $\vec{y} = \vec{0}$ gives the simulator a witness satisfying all equations simultaneously
- And because $c_0 = i_1(1) = i_1(0) + \vec{r}^T \vec{u}$ on a WI CRS the simulator has an opening of c_0 to 0 that it can use in all the NIWI proofs
- Each commitment is perfectly hiding and each proof perfectly WI, so this is a perfect simulation

Example

- Consider equations over $x_i \in G_1$, $y_j \in G_2$, \hat{x}_i , $\hat{y}_j \in \mathbf{Z}_p$
 - Pairing product equations

$$\prod_{j} e(a_j, y_j) \prod_{i} e(x_i, b_j) \prod_{i,j} e(x_i, y_j)^{\gamma_{ij}} = e(g, g)^0$$

- Multi-exponentiation equations in G_1 (similar for G_2)

$$\prod_{j} a_{j}^{\hat{y}_{j}} \prod_{i} x_{i}^{\beta_{i}} \prod_{i,j} x_{i}^{\gamma_{ij}\hat{y}_{j}} = t_{G_{1}}$$

Quadratic equations

$$\sum_{i} \alpha_{j} \hat{y}_{j} \sum_{i} \hat{x}_{i} \beta_{i} + \sum_{i,j} \gamma_{ij} \hat{x}_{i} \hat{y}_{j} = t \bmod p$$

• Using $x_i = 1$, $y_j = 1$, $\hat{x}_i = 0$, $\hat{y}_j = 0$ we can simulate

Efficiency in the example

• Proofs for $e: G_1 \times G_2 \to G_T$ setting where DDH problem hard in both G_1 and G_2

Cost of each variable/equation	G_1	G_2
Variables $x \in G_1$, $\hat{x} \in \mathbf{Z}_p$	2	0
Variables $y \in G_2$, $\hat{y} \in \mathbf{Z}_p$	0	2
Pairing product equations (zero-knowledge if all $t_T=1$)	4	4
Multi-exponentiations in G ₁	2	4
Multi-exponentiations in G_2	4	2
Quadratic equations in $oldsymbol{Z}_p$	2	2

Non-interactive Zero-Knowledge Proofs from Pairings – extra remarks

Jens Groth
University College London

CRS-free proofs for all of NP?	Zero- knowledge	Witness- indistinguishability
Interactive proofs	4 rounds	2 rounds
Non-interactive proofs	Impossible	Yes

Naïve idea for NIWI proofs in the plain model

Statement: x∈L

No, maybe you used a simulation CRS

CRS σ Proof π

Verifier

NIWI proofs in the plain model [GOS12]

- Naïve idea: Provers picks both CRS and proof
 - Not convincing
- Better idea: Prover picks two CRSs and proofs
 - The two CRSs related such that at least one is guaranteed to be sound
 - But the verifier cannot tell which one is the sound string

NIWI proofs in the plain model

Statement: x∈L

At least one CRS is sound. So either π_0 or π_1 shows that $x \in L$

Prover

CRS σ_0 , σ_1 Proof π_0 , π_1

Verifier

NIWI proof in the plain model

- Better idea: Prover picks two CRSs and proofs
 - The two CRSs related such that at least one is guaranteed to be sound
 - But the verifier cannot tell which one is the sound string
- Requirements
 - Prover can pick two related CRSs such that either CRS can give witness-indistinguishability
 - The verifier can check that at least one CRS is sound, but not distinguish the sound CRS from the WI CRS

Suitable groups

- BGN group of composite order n = pq not good because hard to tell whether h has order q
- Prime order groups better
 - For instance $e: G \times G \rightarrow G_T$ with prime order p
 - A CRS specifies (f, 1, h), (1, g, h), (u, v, w)
 - Write $(u, v, w) = (f^r, g^s, h^{r+s+t})$
 - If t = 0 perfect WI and if $t \neq 0$ perfect soundness
 - Decision linear assumption says hard to distinguish
- Related CRSs
 - $\sigma_0 = (p, G, G_T, e, f, g, h, u_0, v_0, w_0)$
 - $-\sigma_1 = (p, G, G_T, e, f, g, h, u_0, v_0, w_0h)$

NIWI proof in plain model

- Statement: C
- Proof

```
(\sigma_0, \sigma_1) \leftarrow K_{related}(1^k, b) (\sigma_b \text{ is WI CRS})
\pi_0 \leftarrow P(\sigma_0, C, w)
\pi_1 \leftarrow P(\sigma_1, C, w)
The proof is \pi = (\sigma_0, \sigma_1, \pi_0, \pi_1)
```

Verification

Check (σ_0, σ_1) related so at least one is sound Check (σ_0, C, π_0) is valid proof Check (σ_1, C, π_1) is valid proof

Witness-indistinguishabilit

Adversary knows C, w_0, w_1 and sees $(\sigma_0, \sigma_1, \pi_0, \pi_1)$

Given circuit C and two witnesses w₀, w₁

• Generate σ_0 as WI CRS and σ_1 as perfect sound CRS

Proof using w_0 on σ_0

Proof using w_0 on σ_1

Proof using w_1 on σ_0

Proof using w_0 on σ_1

• Switch to σ_0 perfect sound CRS and σ_1 WI CRS

Proof using w_1 on σ_0

Proof using w_0 on σ_1

Proof using w_1 on σ_0

Proof using w_1 on σ_1

• Switch back to σ_0 being WI CRS and σ_1 perfect sound CRS

Special properties of pairing-based proofs

- Proofs consist of group elements and they are verified by pairing product equations
 - We can give an NIWI proof that there exists an NIWI proofs that a statement is true
- Proofs may be modified or randomized
 - Noted by [BCCKLS09] and used in delegatable credentials
 - Controlled malleable proofs formalized in [CKLM12]

Randomization of proofs

- Pairing-based NIZK proofs may be randomized
- Example
 - Consider statement e(a, x) = 1 in BGN group
 - An NIZK proof would consist of a commitment and proof

$$c = xh^r$$
 $\pi = a^r$

which is verified by checking $e(a, c) = e(h, \pi)$

- Given commitment and proof c, π we can rerandomize $c' = ch^s$ $\pi' = \pi a^s$
- Or we can modify the commitment and proof

$$c'' = cb^{-1}$$
 $\pi'' = \pi^t$

- Which shows x'' satisfies $e(a^t, x''b) = 1$

Short pairing-based NIZK arguments

	CRS	Size	Prover comp.	Verifier comp.
Abe-Fehr 07	O(1) group	O(n) group	O(n) expo	O(n) pairing
	Dlog & knowledge of expo.		Comp. sound	Perfect ZK
Groth 10	O(n ²) group	O(1) group	O(n ²) mult	O(n) mult
Groth 10	O(n ^{2/3}) group	O(n ^{2/3}) group	O(n ^{4/3}) mult	O(n) mult
	q-CPDH and q-PKE		Comp. sound	Perfect ZK
Lipmaa 12	n ^{1+o(1)} group	O(1) group	O(n ²) add	O(n) mult
Lipmaa 12	n ^{1/2+o(1)} group	n ^{1/2+o(1)} group	O(n ^{3/2}) add	O(n) mult
	$\Lambda ext{-PSDL}$ and $\Lambda ext{-PKE}$		Comp. sound	Perfect ZK
Gennaro-Gentry-	O(n) group	7 group	O(n log n) mult	O(n) mult
Parno-Raykova			Comp. sound	Perfect ZK

Knowledge commitment [G10]

Commitment key

$$ck = \begin{pmatrix} g, g_1, g_2, \dots \\ \hat{g}, \hat{g}_1, \hat{g}_2, \dots \end{pmatrix} = \begin{pmatrix} g, g^x, g^x, g^{x^2}, \dots \\ g^{\alpha}, g^{\alpha x}, g^{\alpha x^2}, \dots \end{pmatrix}$$

• Commit to $a_1, a_2, ..., a_q \in \mathbf{Z}_p$ as

$$\binom{c}{\hat{c}} = \binom{g^r \prod_{i \in [q]} g_i^{a_i}}{\hat{g}^r \prod_{i \in [q]} \hat{g}_i^{a_i}}$$

- Can verify commitment correct $e(c, \hat{g}) = e(\hat{c}, g)$
- Power Knowledge of Exponent assumption
 - Impossible to make correct commitment without knowing r and $a_1, ..., a_a$

Homomorphic property

- We now have a perfectly hiding commitment scheme using just two group elements to commit to a set of q known values a_1, \ldots, a_q
- The commitment scheme is homomorphic

$$(g^r \prod_{i \in [q]} g_i^{a_i})(g^s \prod_{i \in [q]} g_i^{b_i}) = g^{r+s} \prod_{i \in [q]} g_i^{a_i+b_i}$$

 We can add multiple committed values in a verifiable way using only a few group elements

Polynomial balancing

- Recall $(g, g_1, ..., g_q) = (g, g^x, ..., g^{x^q})$
- Commitment is $c = g^r \prod_{i \in [q]} g_i^{a_i} = g^{r + \sum_{i \in [q]} a_i x^i}$
- Pairing two commitments correspond to computing a committed product of polynomials

$$(r + \sum_{i} a_i x^i)(s + \sum_{j} b_j x^j)$$

- Carefully create large polynomial equations that are satisfied if and only if the statement is true
- Use proofs to cancel out extra polynomial terms

Size vs. assumption

