Bilinear Pairings in Cryptography: School Overview

Dan Boneh

Stanford University

In the beginning ...

בראשית ...

Crypto in
$$F_p^*$$
: (dim 0)
$$F_p$$

Lots of amazing applications:

 Diffie-Hellman key exchange, pub-key encryption, digital signatures, ...

But discrete log problem in F_p^* is only sub-exp hard

GNFS: $exp(\approx log^{1/3}(p))$, record = 530-bit prime

Discrete log in other finite groups?

Lots of other groups can be used for crypto:

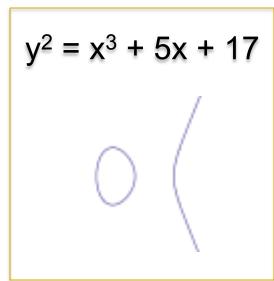
extension fields, matrix groups, class groups,

But either sub-exp Dlog or inefficient group operation

Elliptic curves over F_p: [Miller'85, Koblitz]

- no known sub-exp Dlog algorithm, and
- efficient group operation

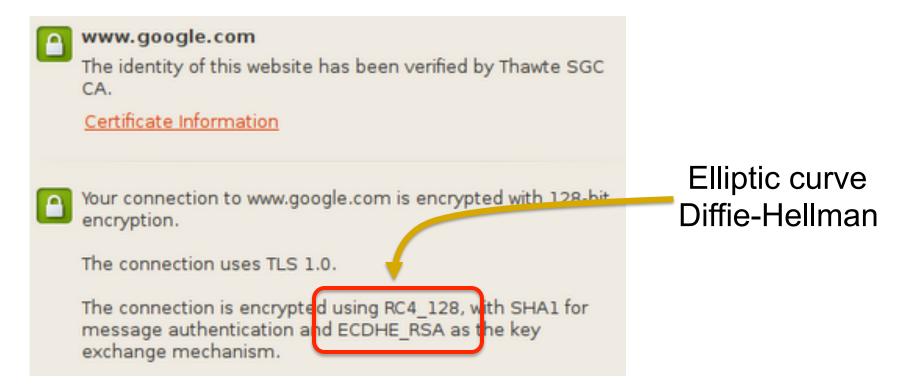
Security Comparison	Symmetric	F _p *	ECC
	128 bits	3092 bits	256 bits



Elliptic Curve Crypto: Day 1

Cryptosystems in F_p* generally translate to elliptic curves.

Wide deployment:



Pairings: additional structure on elliptic curves

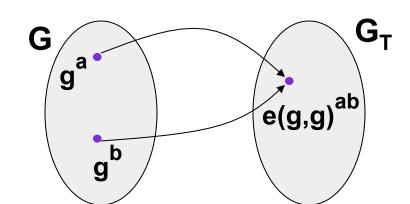
(Some) elliptic curves have surprising structure [Weil 1940]

Pairing e:
$$E(F_p) \times E(F_p) \longrightarrow F_{p^\alpha}$$
2 points on curve finite field extension

s.t.
$$\forall P \in E(F_q)$$
, $a,b \in Z$: $e(aP, bP) = e(P,P)^{ab}$

and e(P,Q) is efficiently computable [Miller'86]

More abstractly: bilinear groups



G, G_T : finite cyclic groups of prime order q.

- <u>Def</u>: A <u>pairing</u> e: $G \times G \rightarrow G_T$ is a map:
 - Bilinear: $e(g^a, g^b) = e(g,g)^{ab}$ $\forall a,b \in Z, g \in G$
 - □ Poly-time computable and non-degenerate: g generates $G \Rightarrow e(g,g)$ generates G_T
- Current examples: $G \subseteq E(\mathbf{F}_p)$, $G_T \subseteq (\mathbf{F}_p\alpha)^*$ (α = 1, **2**, 3, 4, **6**, 10, 12)

Pairings-based crypto: days 2,3,4

Encryption schemes with new properties:

Identity-based, attribute-based, functional,

Broadcast, BGN-Homomorphic, Searchable, CCA, ...

Signature systems with new properties:

Short, Aggregate, Append-only, VRF,

Short group sigs, e-cash, anon. credentials ...

Protocols: 3-way DH, efficient NIZKs, SNARGs, ...

Simplest example: BLS signatures

[B-Lynn-Shacham'01]

```
KeyGen: sk = rand. x \text{ in } Z_q, pk = g^x \in G

Sign(sk, m) \rightarrow H(m)^x \in G e(g, H(m)^x) = e(g^x, H(m))

Verify(pk, m, sig) \rightarrow accept iff e(g, sig) \stackrel{?}{=} e(pk, H(m))
```

Thm: Existentially unforgeable under CDH in the RO model

New properties: (unknown with F_p^*)

- Short: signature is a single element in G
- Aggregatable [BGLS'02]

Aggregating BLS signatures [BGLS'02]

$$\begin{cases} \text{user 1:} & \text{pk}_1 = g^{X1} \text{,} & \text{m}_1 \longrightarrow s_1 = H(m_1)^{X1} \\ & & \\ & & \\ \text{user n:} & \text{pk}_n = g^{Xn} \text{,} & \text{m}_n \longrightarrow s_n = H(m_n)^{Xn} \end{cases}$$

Aggregate S convinces verifier that msgs were signed by users 1, ..., n.

Applications: cert. chains, bitcoins, SBGP

Verifying an aggregate signature: (incomplete)

$$\Pi_{i=1} e(H(M_i), h^{x_i}) \stackrel{?}{=} e(S, h)$$

$$\Pi_{i=1} e(H(M_i)^{x_i}, h) = e(\Pi_{i=1} H(M_i)^{x_i}, h)$$

How pairings work: Day 4

Miller's algorithm and optimizations

Basis of several pairings implementations:

PBC, jPBC , TinyPBC, MIRACL

Beyond bilinear maps [BS'03, GGH'12]

k-linear map
$$e: G \times G \times \cdots \times G \longrightarrow G_k$$

non-degenerate, efficient, hard Dlog in G

Even more applications:

Optimal broadcast encryption,
 optimal traitor tracing, ABE for circuits [SW'12], ...

Can they be constructed?

k-linear maps: a recent breakthrough

S. Garg, C. Gentry, S. Halevi

Properties: (informal)

- "randomized" representation of group elements
- Representation of $g \in G$ is O(k) bits
- More than k-linear map: gradation

$$e_1: G \times G \longrightarrow G_2$$

$$e_2: G \times G_2 \longrightarrow G_3$$

$$e_k: G \times G_k \longrightarrow G_{k+1}$$



The future

 Lots of work to do to extend and enhance bilinear constructions using k-linear maps

- Many (but not all) bilinear techniques translate to lattices
 - On going effort -- more on this tomorrow
 - Many open questions: 3-way DH, broadcast enc., ...

... but first need to understand bilinear techniques