Bar llan Winter School. Feb. 2013

Bilinear Pairings 1n Cryptography:

School Overview

Dan Boneh

Stanford University

(25 minutes)



In the beginning ... L mMwWNI

Cryptoin F,* : (dim 0)

Fo

Lots of amazing applications:
Diffie-Hellman key exchange, pub-key encryption,
digital signatures, ...

But discrete log problem in  F,* is only sub-exp hard

GNFS: exp( =log"3(p) ) , record = 530-bit prime



Discrete log 1n other finite groups?

Lots of other groups can be used for crypto:
extension fields, matrix groups, class groups,

But either sub-exp Dlog or inefficient group operation

Elliptic curves over F, : [Miller8s, Koblitz] y2 = x3 + 5x + 17
no known sub-exp Dlog algorithm, and

efficient group operation

128 bits 3092 bits 256 bits



Elliptic Curve Crypto: Day 1
Cryptosystems in F ™ generally translate to elliptic curves.

Wide deployment:

www.google.com

The identity of this website has been verified by Thawte SGC
CA.

Certificate Information

" I | | . | Elliptic curve
ur connection to www.google.com is encrypte e
encryption. Diffie-Hellman

The connection uses TLS 1.0.

The connection is encryptdd using RC4_128, with SHA1 for
message authentication apd ECDHE_RSA as the key

exchange mechanism.



Pairings: additional structure on

elliptic curves
(Some) elliptic curves have surprising structure [Weil 1940]

Pairing e: E(F,) x E(F)) — Fpu

P

2 points on curve finite field
extension

st. v P€EF,), abez e(aP, bP)=e(P,P)P

and e(P,Q) is efficiently computable [Miller'86]




More abstractly:
bilinear groups

G, G;: finite cyclic groups
of prime order q.

(- Def: A pairing e: GxG— G, isamap:

SEIEEIE e(g?, g°) = e(g,9)® Va,bez, geG

o Poly-time computable and non-degenerate:
\ g generates G = e(g,9) generates G-

_/

= Current examples: GCE(F,) , Gy C (Fpoc)*

(a=1,2,3,4,6,10,12)



Pairings-based crypto: days 2,3,4

Encryption schemes with new properties:

|dentity-based, attribute-based, functional,

Broadcast, BGN-Homomorphic, Searchable, CCA, ...

Signature systems with new properties:

Short, Aggregate, Append-only, VRF,

Short group sigs, e-cash, anon. credentials ...

Protocols: 3-way DH, efficient NIZKs, SNARGs, ...



Simplest example: BLS signatures
[B-Lynn-Shacham’01]

KeyGen: sk=rand.x in Z, , pk=g €G
Sign(sk, m) — H(m)* € G e(g, H(m)") = e(g”, H(m))

Verify(pk, m, sig) — accept iff e(g, sig ) £ e(pk, H(m))

Thm: Existentially unforgeable under CDH in the RO model

New properties: (unknown with F ¥)

Short: signatureis a single elementin G

Aggregatable [BGLS02]




Agoregating BLS signatures (sesoz:

( : — X1 — X1
user1. pk,=g*', m;, — s,=H(m,)
- 1 1 1 1 ~—
: S H S1... Sn
| usern: pk.=g"", m, — s=H(m)*" —
Aggregate S convinces verifier that msgs were signed by users 1, ..., n.

Applications: cert. chains, Dbitcoins, SBGP

Verifying an aggregate signature: (incomplete)

IT., e(HM), b)) £ e(s, h)

I
/

T, e(HmyS n) = e(IT_HM), h)



How paitrings work: Day 4

Miller’s algorithm and optimizations

Basis of several pairings implementations:

PBC, jPBC , TinyPBC, MIRACL



Beyond bilinear maps pso3, cGrriz

k-linear map e: GxGx-xG — G,
K

non-degenerate, efficient, hard Dlogin G

Even more applications:

Optimal broadcast encryption,
optimal traitor tracing, ABE for circuits [sw’12],

Can they be constructed?



k-linear maps: a recent breakthrough
S. Garg, C. Gentry, S. Halevi

Properties: (informal)

= “randomized” representation of group elements
= Representationof g& G is O(k) bits
= More than k-linear map:  gradation
e,. GxG — G,
e, GxG, — G,

e, GXxG, — G,



The future

Lots of work to do to extend and enhance

bilinear constructions using k-linear maps

Many (but not all) bilinear techniques translate to lattices
o On going effort -- more on this tomorrow

o Many open questions: 3-way DH, broadcast enc.,

... but first need to understand bilinear techniques



