
A Whirlwind Tour of
Anonymous Credentials and

Related Protocols

Anna Lysyanskaya
Brown University

Anonymous Credentials:
Motivation

Today’‛s news?

Who are you? Do you have a
subscription?

It’‛s Bond. James Bond. I can tell you, but then I’‛ll
have to kill you...

Today’‛s news?

Show me your subscription.

Subscription #76590

Anonymous Credentials:
Motivation

87% of US population uniquely identifiable by date of birth,
zip code and gender [Sweeney].

Today’‛s news?

Prove that you are authorized.

Here is a zero-knowledge proof

Anonymous Credentials:
Motivation

Anonymous Credentials:
Definition of Security

Just kidding! Instead, I’ll show you
how to construct them so as to
satisfy any reasonable definition...

(Don’t generally recommend this
approach.)

What’‛s Under the Hood?

Today’‛s news?
Who are you?

I am PKJB. Please
give me a cert that says I

have a subscription

σNYT=σNYT(PKJB, Subscription)

PKNYT
PKJB

PKJB

It’‛s Bond, James Bond:
 PK and σ such that

Verify(PKNYT,(PK. Subscription),σ)

+ ID protocol for PK

Credential issue:

Credential demo
(non-anon):

What’‛s Under the Hood?

Today’‛s news?
Prove to me that you have a

valid subscription!

I am PKJB. Please
give me a cert that says I

have a subscription

σNYT=σNYT(PKJB, Subscription)

PKNYT
PKJB

PKJB

Credential issue:

Credential demo
(anonymous):

Zero-knowledge proof that

I know SK, PK and σ such that:
(1) PK corresponds to SK

(2) Verify(PKNYT,(PK. Subscription),σ).

What’‛s Under the Hood?

PKJB

Credential issue
(anonymous):

2PC SKProJo
 =ProJo(SKJB)

SKJB, creds

PKProJo

PKProJo

What’‛s Under the Hood?

PKProJo

PKJB

Credential issue
(anonymous):

2PC SKProJo
 = ProJo(SKJB)

SKJB, R, creds

C,PKProJo C=Commit(SKJB,R)

In theory, we are done...
• Anonymous issuing:

– Bond’s pseudonym is C = Commit(SKJB; R)
– Credential  = ProJo(C)

• Anonymous demo:

– [GMW+BG] ZK proof of knowledge for any NP relation
– [DDP00+DDOPS01] “Robust” NIZK proof of knowledge

for any NP relation
• To a verifier who knows him by pseudonym
C’ = Commit(SKJB;; R’), Bond proves knowledge of (SK,C,R,R’)
such that
– C = Commit(SK;; R) and C’ = Commit(SK;; R’)
–  = ProJo(C)

If we want this stuff used, then
it’s another story...

What’s Needed for
Anonymous Credentials

• A commitment scheme and a signature
scheme with three efficient protocols:
– “Robust” ZK proof of knowledge and

equality of committed values
– “Secure” protocol for signing a committed

value/a set of committed values
– “Robust” ZK proof of knowledge of a

signature on a set of committed values

History

• 1980s: Chaum’s vision (no actual defs or constructions)
• 1990s: the naive era

– Brands99: no proof of security, single-use
– Damgard90,LRSW99: general inefficient constructions

• 2000s: the early modern era
– CL01,L02,CL02,CL04,BBS04,BCKL08: identify the right building

blocks and give efficient constructions under various complexity
assumptions (strong RSA, LRSW, qSDH), from interactive to non-
interactive in RO model and CRS models

– CHL05,CHKLM06,BCKL09: ecash and etokens

• 2010s: the age of GS proofs
– Gro06, AFGHO’10, AGHO’11, HJ12, ACDKNO’12: “structure-
preserving signatures:” signatures on group elements that also
consist of group elements, verification equations can be expressed
as pairing product equations

– BCCKLS09,CKLM13: delegatable anonymous credentials

History (the Practice, in $10Ms)

• IBM’s Idemix project + European partners (2003-present):
- outgrowth of [CL01]
- funding from the EU, about 30M Euro so far
- implementations, pilots

• Trusted Computing Group (TCG) standard (2004):

- direct anonymous attestation (DAA) uses my anonymous credentials –
hardware support on every PC

• Microsoft’s UProve (2007-present):
- bought Stefan Brands’ company for undisclosed amount of money

• National Strategy for Trusted Identities in Cyberspace (NSTIC) (2011):

- comes from the White House
- administered by NIST, about $20M

Pandora’s Box

 • Anonymity is an invitation for abuse. Alice will
share her credentials with all of her friends.
– Answer #1: anonymity is not the issue. The fact that

credentials are digital is the issue.
– Answer #2: can have limited-use credentials.
– Answer #3: can revoke credentials in case of abuse,

similarly to non-anonymous case.
– Answer #4: can escrow Alice’s identity, to be

revealed in case of emergency.
– Answer #5: can make Alice’s SK too valuable to

share.

Roadmap

 • Warm-up: commitment, signature, protocols from

CL04+BBS04
• Structure-preserving signature (SPS)
• “Robust” NIZK PoK from GS NIWI and SPS [adapted

from Groth06]
• Anonymous credentials from SPS and “robust” NIZK

 ---- break ----
• Ecash from these building blocks [adapted from

BCKL09]
• Delegatable anonymous credentials

[BCCKLS09,CKLM13]

q-SDH Assumption in BM Groups

• Given: G,GT of order q , g of G, BM e: G x G  GT,
values {Xi = gx^i: 1 ≤ i ≤ q}

• Hard to compute (a, A) such that A = g1/(x+a).

• [BBS04]: The following sig scheme is secure
against non-adaptive attack under q-SDH:
– key generation: PK = (G,GT, e, g, X), SK = (x : X = gx)

– signature on a is g1/(x+a).

– verification of (a,A): e(Xga, A) = e(g,g) .

• (non-adaptive attack means that an adversary sees
up to q signatures on random a’‛s)

CMA-Secure Sig for Blocks

• Non-adaptive sig:
– key generation: PK = (G,GT, e, g, X), SK = (x : X = gx)

– signature on a is A = g1/(x+a). ie Ax+a = g

– verification of (a,A): e(Xga, A) = e(g,g) .

• Modification [BBS04 + CL04]:
– keygen: PK = (G,GT, e, g, g0, Z1,..., ZL, X),

 SK = (x : X = gx)

– signature on (r, m1,...,mL) is (A, a) such that

Ax+ag0
r Π Zi

mi = g
(signer picks random a and solves for A to compute sig)

NOTE: to sign, sufficient to know M=g0
r Π Zi

mi

– verification: e (Xga, A) = e(g, g/ g0
rΠ Zi

mi) = e(g, g/M).

CMA-Secure Sig for Blocks

• Non-adaptive sig:
– key generation: PK = (G,GT, e, g, X), SK = (x : X = gx)

– signature on a is A = g1/(x+a). ie Ax+a = g

– verification of (a,A): e(Xga, A) = e(g,g) .

• Modification [BBS04 + CL04]:
– keygen: PK = (G,GT, e, g, g0, Z1,..., ZL, X),

 SK = (x : X = gx)

– signature on (r, m1,...,mL) is (A, a) such that

Ax+ag0
r Π Zi

mi = g
(signer picks random a and solves for A to compute sig)

NOTE: signer need not know (r, m1,...,mL) , only g0
r Π Zi

mi

– verification: e (Xga, A) = e(g, g/ g0
rΠ Zi

mi) .

In the proof of security, the reduction is
given a non-adaptive sig (b,B) and all the dlogs:

g0 = gu and Zi = gvi and it must solve for a s.t.:
a + ru + ∑mivi = b

and output (a,B) as the sig

And the Protocols:
(1) obtaining sig on a committed value
(2) ZKPOK of a sig on a committed value
(use Pedersen commitments)

Signature on a Committed Value

M

 σ

Proof of
knowledge

1. Commit to m:
 M= g0

rΠZi
mi

2. ZKPOK of
 representation
 of M in g0, Z 3. Issue the

signature σ
Signer Alice

4. Output signature!

Proof of Knowledge of a Signature

• Idea: Prover holds a,r,{mi},A such that
 e (Xga, A) = e(g, g/M)
 M = g0

rΠ Zi
mi

• Express everything as a relationship between
discrete logarithm representations & use
[Schnorr91,Brands99] (interactive or RO model)

Why don’t want
interactive proofs?

• Just don’t. Interaction is expensive.
• Composition issues: complicated to get

knowledge extraction without rewinding, making
it work makes it much more expensive [CS03];
standard constructions for UC-secure ZK are
based on “robust” NIZK [CF01,CLOS02].

• Interactive proofs are non-transferable, don’t
work for some applications (e.g. ecash,
delegatable credentials).

Structure-Preserving Signatures

• First appeared in [Gro06]. Better constructions are
[AFGHO’10,AGHO’11,HJ12,ACDKNO’12]. They are
incomparable to each other: different assumptions and sizes.
Most efficient has three group elements (necessary)
[AGHO’11].

• Definition: a secure signature scheme (Paramgen,
Keygen,Sign,Verify) is structure-preserving if:
• PKs, messages, and sigs are sets of elements of G1 or G2
for which there’s a bilinear map e: G1 x G2 -> GT

• Verify checks a pairing prod equation (PPE) of the form

πiπj e(Ai,Bj)aij = 1, where {Ai} in G1, {Bj} in G2, are
elements of parameters, PK, message or signature, and
aij are integer constants

Application of SPS [Gro06]: Simulation-
Extractable NIZK from GS NIWI (1 of 2)

• “Definition” [SimExt NIZK PoK]: NIZK PoK where
adversary A can’t win this game:
– A adaptively requests simulated proofs of statements of

his choice
– A outputs (new statement x, proof π)
– KnowledgeExtractor(x,π) computes w
– A wins if w is NOT a witness for x

• Stronger definition: A can’t win even given the
extraction trapdoor

• This is essentially the notion of “robust” NIZK we
care about

Application of SPS [Gro06]: Simulation-
Extractable NIZK from GS NIWI (2 of 2)

• Let PPE be a pairing product equation. Then
 LPPE = {{Ci} | values inside commitments {Ci}
 satisfy the PPE}
– Recall: GS NIWI designed for languages of this form, for

extractable commitments; has perfect soundness/extractability

• SimExt NIZK for LPPE:
– CRS contains GS NIWI CRS1, and a PK for a SPS
– Prover forms new commitments {C’i} and uses GS NIWI to prove

that either {Ci} in LPPE or values inside {C’i} are a signature under
PK on the values {Ci}

– Simulator has SK for PK, forms proofs by signing {Ci}
– If A outputs a new statement x, and extractor can’t extract the

witness attesting that x in LPPE, then by perfect extraction properties
of GS NIWI it extracts a new signature – contradiction! (Works
even if A knows the extraction trapdoor.)

Exercise: express disjunctions as PPEs

Anonymous Credentials from SPS and
SimExt NIZK PoK [BCKL08,...,CKLM13]

• System parameters: CRS for SimExt NIZK PoK for PPEs
(what we just saw)

• Issuer’s PK: PK for a structure-preserving sig

• where Nym = CommitGS(SKJB)
– Nym and σ consist of group elements.

Nym

Credential issue
(anonymous):

 =PK(Nym) PKProJo

Today’‛s news?
Prove to me that you have a

valid subscription! Nym’‛

Credential demo
(anonymous):

CNym = CommitGS(Nym)
Cσ= CommitGS(σ)
Proof π that (1) the value inside Cσ
is a sig on the value inside CNym
(2) the value inside CNym is a
commitment to the same value
as the one inside Nym’

Anonymous Credentials from SPS and
SimExt NIZK PoK [BCKL08,...,CKLM13]

Anonymous Credentials from SPS and
SimExt NIZK PoK [BCKL08,...,CKLM13]

• System parameters: CRS for SimExt NIZK PoK for PPEs
(what we just saw)

• Issuer’s PK: PK for a structure-preserving sig
• Issue: Let Nym = CommitGS(SKJB). Issuer computes
σ = σPK(Nym) and sends it to James Bond.
– Recall: Nym and σ consist of group elements.

• Demo: Let Nym’ = CommitGS(SKJB) (another pseudonym for
James Bond). James Bond wants to prove that the identity
inside Nym’ has a credential from the Issuer. His proof π
consists of the following:
– CNym = CommitGS(Nym), Cσ= CommitGS(σ)
– Proof π that (1) the value inside Cσ is a sig on the value inside CNym and

(2) the value inside CNym is a commitment to the same value as the one
inside Nym’.

A Whirlwind Tour of
Anonymous Credentials and

Related Protocols, Part 2

Anna Lysyanskaya
Brown University

Roadmap

 • Warm-up: commitment, signature, protocols from

CL04+BBS04
• Structure-preserving signature (SPS)
• “Robust” NIZK PoK from GS NIWI and SPS [adapted

from Groth06]
• Anonymous credentials from SPS and “robust” NIZK

 ---- break ----
• Ecash from these building blocks [adapted from

BCKL09]
• Delegatable anonymous credentials

[BCCKLS09,CKLM13]

Single-Use Creds (Idea) [CFN88,Brands]
• SETUP: Signature key pair for Issuer (pk,sk).

 Assume a PKI for all the users.
 Large prime Q.

• ISSUE:

• SHOW:

2PC sk
x=SKJB

Random A,B < Q
 =pk(x,A,B)

0 < “new” R < Q
e.g. R=H(contract, rand)

A (credential’‛s serial number)
T =x+RB mod Q (double-spending equation)

ZK proof of knowledge of (x,B,) such that
 1. T = x+RB
 2. VerifySig(pk,(x,A,B), ) = TRUE

PKI, Q, pk

Store
(A,R,T,proof)

Suppose a cred is shown twice.
Same cred => same A
Spent twice: two R’‛s,
 with high prob, R ≠ R’‛
 T = x+RB mod Q, T’‛ = x+R’‛Bmod Q
 solve for x, identify & penalize JB

Privacy:
A,T: random,
proof is ZK!

N-Use Creds/Compact Ecash [CHL05]
• SETUP: Signature key pair for Issuer (pk,sk).

 Assume a PKI for all the users.
 Large prime Q.

• ISSUE:

• SHOW ith time:

2PC sk
x=SKJB

Random s,t
 =pk(x,s,t)

0 < “new” R < Q
e.g. R=H(contract, rand)

A = Fs(i) (credential’‛s serial number)
T =x+RFt(i) mod Q (double-spending equation)

ZK pf of knowledge of (x,i,t,s,) such that
 1. 1 ≤ i ≤ N
 2. A=Fs(i)
 3. T = x+RFt(i)
 4. VerifySig(pk,(x,s,t), ) = TRUE

PKI, pk

Store
(A,R,T,proof)

N per Day Creds/Anon. Etokens [CHKLM06]
• SETUP: Signature key pair for Issuer (pk,sk).

 Assume a PKI for all the users.
 Large prime Q.

• ISSUE:

• SHOW ith time on Day j:

2PC
sk

x=SKJB

Random s,t

 =pk(x,s,t)

0 < “new” R < Q
e.g. R=H(contract, rand)

A = Fs(i,j) (credential’‛s serial number)
T =x+RFt(i,j) mod Q (double-spending equation)

ZK pf of knowledge of (x,i,t,s,) such that

 1. 1 ≤ i ≤ N

 2. A=Fs(i,j)

 3. T = x+RFt(i,j)

 4. VerifySig(pk,(x,s,t), ) = TRUE

PKI, pk

Pandora’s Box

 • Anonymity is an invitation for abuse. Alice will
share her credentials with all of her friends.
– Answer #1: anonymity is not the issue. The fact that

credentials are digital is the issue.
– Answer #2: can have limited-use credentials.
– Answer #3: can revoke credentials in case of abuse,

similarly to non-anonymous case.
– Answer #4: can escrow Alice’s identity, to be

revealed in case of emergency.
– Answer #5: can make Alice’s SK too valuable to

share.

Before GS Proofs

• In theory: could instantiate using general robust NIZK, get
provably security
- inefficient, useless for practical applications 

• In practice:

- could instantiate under various number-thretic assumptions
- use the Fiat-Shamir transform to get a NIZK
- sacrifice provable security 

• With GS proofs:
- the best of both worlds 

How to Instantiate Compact Ecash?
• SETUP: Signature key pair for Issuer (pk,sk).

 Assume a PKI for all the users.
 Large prime Q.

• ISSUE:

• [BCKL09]: GS-proof-based instantiation without SPS’s
• Adapted from [BCKL09], but with an SPS (easier):

– Step 1: They agree on commitments Cs, Ct to random s and t using
coin-flipping; Bond knows openings s and t
 NB1: s and t are integers, not group elements!
 Open question: “structure-preserving” PRF
 NB2: AFAIK this requires interaction with the Issuer

– Step 2: Bond obtains  = pk(NymJB,Cs,Ct)

2PC sk
x=SKJB

Random s,t
 =pk(x,s,t)

NymJB, pk

How to Instantiate (continued)?

0 < “new” R < Q
e.g. R=H(contract, rand)

A = Fs(i) (credential’‛s serial number)
T =x+RFt(i) mod Q (double-spending equation)

ZK pf of knowledge of (x,i,t,s,) such that
 1. 1 ≤ i ≤ N
 2. A=Fs(i)
 3. T = x+RFt(i)
 4. VerifySig(pk,(x,s,t), ) = TRUE

• SHOW ith time:

How to Instantiate (continued)?

0 < “new” R < Q
e.g. R=H(contract, rand)

• SHOW ith time:

A = Fs(i) (the coin’s serial number)
T = x+RFt(i) mod Q (double-spending equation)

SimExt NIZK PoK of (Ci,x,Cx,Cs,Ct,) such that
 0. Ci,Cx,Cs,Ct are commitments to i,x,s,t
 1. 1 ≤ i ≤ N
 2. A = Fs(i)
 3. T = x+RFt(i)
 4. VerifySig(pk,(Cx,Cs,Ct), ) = TRUE





How to Instantiate (continued)?

0 < “new” R < Q
e.g. R=H(contract, rand)

• SHOW ith time:

A = Fs(i) (the coin’s serial number)
T = gxFt(i)R (double-spending equation)

SimExt NIZK PoK of (Ci,x,Cx,Cs,Ct,) such that
 0. Ci,Cx,Cs,Ct are commitments to i,x,s,t
 1. 1 ≤ i ≤ N
 2. A = Fs(i)
 3. T = gxFt(i)R
 4. VerifySig(pk,(Cx,Cs,Ct), ) = TRUE





Use DY05 PRF: Fs(i) = g1/(s+i), can express correctness
of A and T as PPEs




various standard techniques 

But…

 • These credentials are a simplification of what
non-anonymous credentials look like in practice!

Credential Chains

M is an
employee

Bond is an
agent

MI6: British
Intelligence

• Non-anonymous: trivial from signatures + ID schemes
• Bond’s anonymous credential

– Reveals that he got a credential from a valid employee (who had
a credential from MI6)

– Should reveal no other information
– Even Bond himself should not know M’s real name and her PK!

• (Compare with conventional certification chains…)

Credential Chains

M is an
employee

Bond is an
agent

MI6: British
Intelligence

• M’s credential:  = MI6(PKM, M’s attributes)
• Bond’s credential:

– M must somehow use the fact that she knows her SKM and the
value  to “sign” PKBond.

Efficient Anonymous
Delegation via Randomizable

NIZK proofs
[BCCKLS09,CKLM13]

Randomizable Proofs [BCCKLS09]
• Randomizable commitment:

Commit(x,r)  r’ = Commit(x,r+r’)
• NIZK proof system (Setup, Prove, Verify) for

properties of committed values
• Algorithm Rand(C1,…Cn,,r’1,…,r’n)-> ’‛

Randomizable if (1) and (2) identical: on input

(x1…xn,r1,…rn,r’1,…,r’2,R) s.t. x1…,xn satisfy R
(1) compute C’i=Commit(xi,ri+r’i) and run Prove to
get  that values in C’i satisfy R
(2) compute Ci=Commit(xi,ri), run Prove to get 
that values in Ci satisfy R, then run Rand

Efficiently computable
operation Random given one of r, r’

• Randomizable commitment:
Commit(x,r)  r’ = Commit(x,r+r’)

• NIZK proof system (Setup, Prove, Verify) that
committed values satisfy relation R

• Algorithm Rand(C1,…Cn,,r’1,…,r’n)-> ’‛

Randomizable if (1) and (2) identical: on input
(x1…xn,r1,…rn,r’1,…,r’2,R) s.t. x1…,xn satisfy R
(1) compute C’i=Commit(xi,ri+r’i) and run Prove to
get  that values in C’i satisfy R
(2) compute Ci=Commit(xi,ri), run Prove to get 
that values in Ci satisfy R, then run Rand

Randomizable Proofs [BCCKLS09]

Delegatable Anonymous Credentials

A B Root

• Each participant has a secret key; PKRoot = Commit(SKRoot)
• Root->A credential:

- A sends to Root: a pseudonym CA = Commit(SKA;rA)
- Root sends to A: proof A that CA was signed under PKRoot

- A’s output is (CA, A; rA).
• A->B credential: (B knows A by C’A = Commit(SKA;rA+r’A)

- B sends to A: a pseudonym CB = Commit(SKB; rB)
- A sends to B:

- (1) ’A = Rand(CA,,r’A) that C’A was signed under PKRoot
- (2) B that CB was signed under C’A

- B outputs (C’A, ’A, CB, B; rB)

Computed using SPS-Sign and Prove

Twist on SPS sigs: Commitments as keys

A B Root

• How does B delegate to D?
- D knows B by pseudonym C’B = Commit(SKB;rB+r’B)
- D sends to B: a pseudonym CD = Commit(SKD;rD)
- B sends to D:

- (1) C’’A = C’A  r’’A

- (2) ’’A = Rand(C’A,’A,r’’A) that C’’A was signed under PKRoot
- (3) ’B = Rand(C’A,CB,B,r’’A,r’B) that C’B was signed under C’’A
- (2) D that CD was signed under C’B

- D outputs (C’’A, ’’A, C’B, ’B, CD, D ; rD)

Computed using Sign and Prove

D

Delegatable Anonymous Credentials

Here can also incorporate
attributes and e-token info

• GS NIZK is randomizable too
• Problem: how to make it “robust,” so that A can’t
fake credentials even with access to “simulated”
credentials from honest participants?

• Answer: stay tuned for CKLM13!

GS NIWI is Randomizable...

Conclusion

• NIZK is a practical tool, thanks to GS proofs and
bilinear pairings

• Name of the game: express what you want to
prove as a PPE

• What we thought was theoretical-only can be
practical

• Plus some things (e.g. delegatable credentials)
that we didn’t even think could be done.

