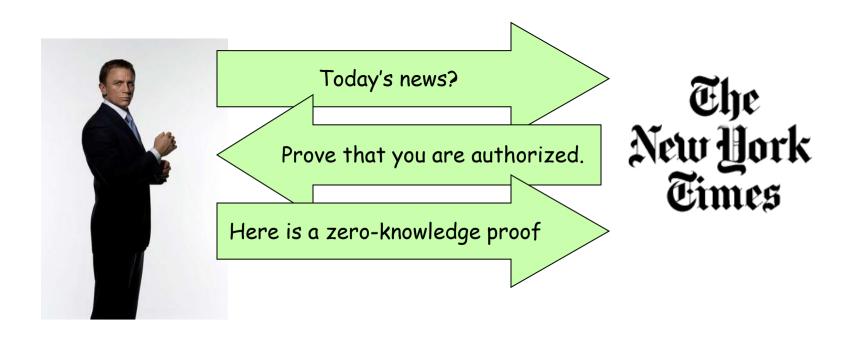
A Whirlwind Tour of Anonymous Credentials and Related Protocols

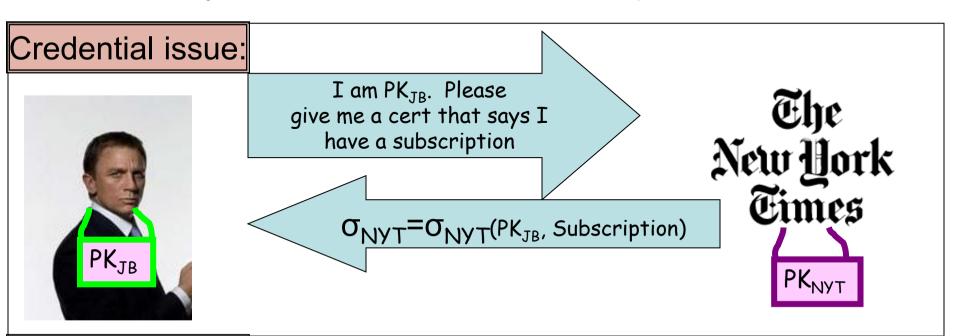
Anna Lysyanskaya Brown University

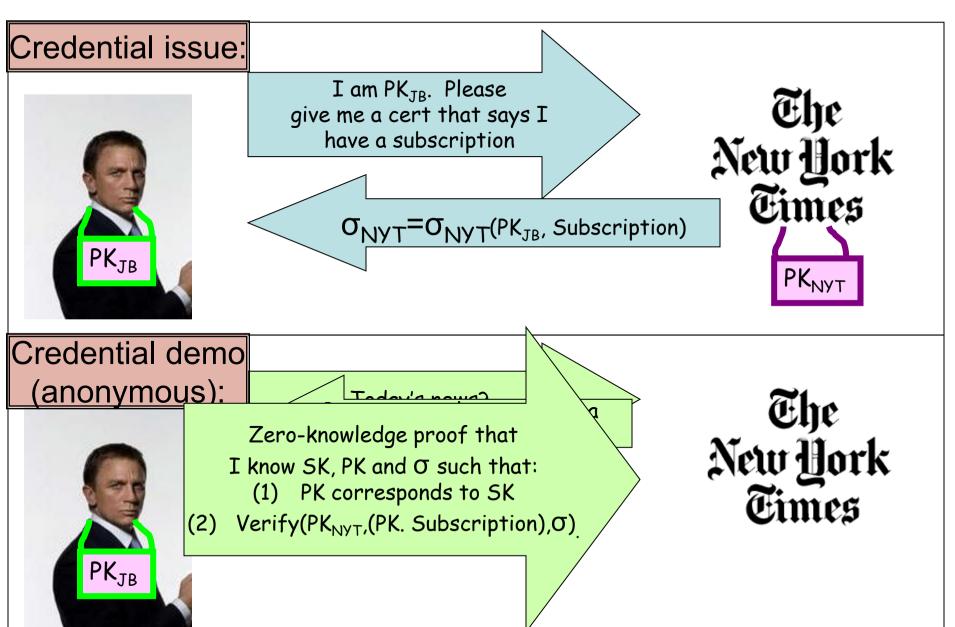
Anonymous Credentials: Motivation

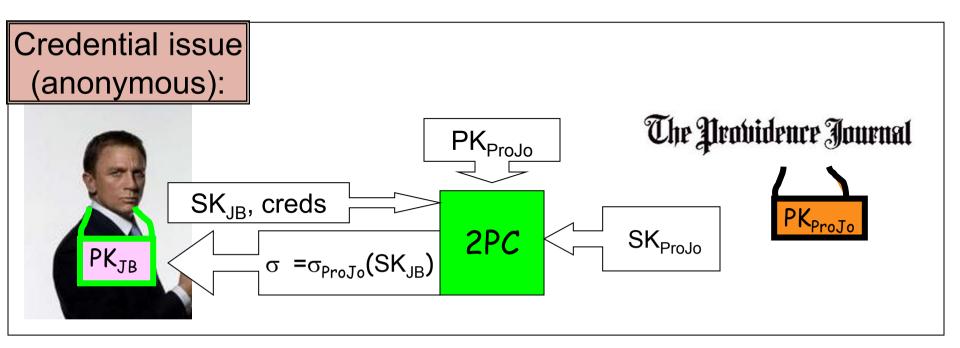


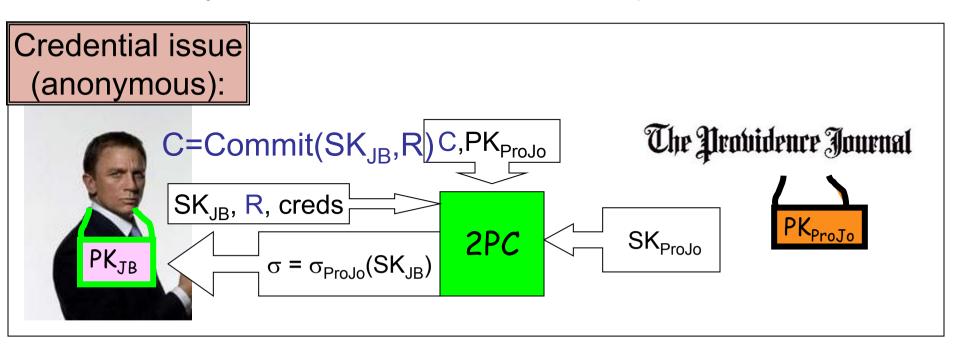
Anonymous Credentials: Motivation

87% of US population uniquely identifiable by date of birth, zip code and gender [Sweeney].


Anonymous Credentials: Motivation




Anonymous Credentials: Definition of Security


Just kidding! Instead, I'll show you how to construct them so as to satisfy any reasonable definition...

(Don't generally recommend this approach.)

In theory, we are done...

- Anonymous issuing:
 - Bond's pseudonym is C = Commit(SK_{JB}; R)
 - Credential $\sigma = \sigma_{ProJo}(C)$
- Anonymous demo:
 - [GMW+BG] ZK proof of knowledge for any NP relation
 - [DDP00+DDOPS01] "Robust" NIZK proof of knowledge for any NP relation
 - To a verifier who knows him by pseudonym
 C' = Commit(SK_{JB}; R'), Bond proves knowledge of (SK,C,R,R'σ) such that
 - C = Commit(SK; R) and C' = Commit(SK; R')
 - $-\sigma = \sigma_{ProJo}(C)$

If we want this stuff used, then it's another story...

What's Needed for Anonymous Credentials

- A commitment scheme and a signature scheme with three efficient protocols:
 - "Robust" ZK proof of knowledge and equality of committed values
 - "Secure" protocol for signing a committed value/a set of committed values
 - "Robust" ZK proof of knowledge of a signature on a set of committed values

History

- 1980s: Chaum's vision (no actual defs or constructions)
- 1990s: the naive era
 - Brands99: no proof of security, single-use
 - Damgard90,LRSW99: general inefficient constructions
- 2000s: the early modern era
 - CL01,L02,CL02,CL04,BBS04,BCKL08: identify the right building blocks and give efficient constructions under various complexity assumptions (strong RSA, LRSW, qSDH), from interactive to noninteractive in RO model and CRS models
 - CHL05,CHKLM06,BCKL09: ecash and etokens
- 2010s: the age of GS proofs
 - Gro06, AFGHO'10, AGHO'11, HJ12, ACDKNO'12: "structurepreserving signatures:" signatures on group elements that also consist of group elements, verification equations can be expressed as pairing product equations
 - BCCKLS09,CKLM13: delegatable anonymous credentials

History (the Practice, in \$10Ms)

- IBM's Idemix project + European partners (2003-present):
 - outgrowth of [CL01]
 - funding from the EU, about 30M Euro so far
 - implementations, pilots
- Trusted Computing Group (TCG) standard (2004):
 - direct anonymous attestation (DAA) uses my anonymous credentials hardware support on every PC
- Microsoft's UProve (2007-present):
 - bought Stefan Brands' company for undisclosed amount of money
- National Strategy for Trusted Identities in Cyberspace (NSTIC) (2011):
 - comes from the White House
 - administered by NIST, about \$20M

Pandora's Box

- Anonymity is an invitation for abuse. Alice will share her credentials with all of her friends.
 - Answer #1: anonymity is not the issue. The fact that credentials are digital is the issue.
 - Answer #2: can have limited-use credentials.
 - Answer #3: can revoke credentials in case of abuse, similarly to non-anonymous case.
 - Answer #4: can escrow Alice's identity, to be revealed in case of emergency.
 - Answer #5: can make Alice's SK too valuable to share.

Roadmap

- Warm-up: commitment, signature, protocols from CL04+BBS04
- Structure-preserving signature (SPS)
- "Robust" NIZK PoK from GS NIWI and SPS [adapted from Groth06]
- Anonymous credentials from SPS and "robust" NIZK
 break
- Ecash from these building blocks [adapted from BCKL09]
- Delegatable anonymous credentials [BCCKLS09,CKLM13]

q-SDH Assumption in BM Groups

- Given: G,G_T of order q, g of G, BM $e: G \times G \rightarrow G_T$, values $\{X_i = g^{x \hat{i}}: 1 \le i \le q\}$
- Hard to compute (a, A) such that $A = g^{1/(x+a)}$.
- [BBS04]: The following sig scheme is secure against non-adaptive attack under q-SDH:
 - key generation: PK = (G,G_T, e, g, X) , SK = $(x : X = g^x)$
 - signature on a is $g^{1/(x+a)}$.
 - verification of (a,A): $e(Xg^a, A) = e(g,g)$.
- (non-adaptive attack means that an adversary sees up to q signatures on random a's)

CMA-Secure Sig for Blocks

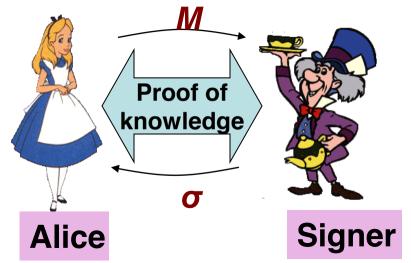
- · Non-adaptive sig:
 - key generation: PK = (G,G_T, e, g, X) , SK = $(x : X = g^x)$
 - signature on a is $A = g^{1/(x+a)}$. ie $A^{x+a} = g$
 - verification of (a,A): $e(Xg^a, A) = e(g,g)$.
- Modification [BBS04 + CL04]:
 - keygen: PK = $(G,G_T, e, g, g_0, Z_1,..., Z_L, X)$, SK = $(x : X = q^x)$
 - signature on $(r, m_1, ..., m_l)$ is (A, a) such that $A^{x+a}g_0^r \prod Z_i^{mi} = g$ (signer picks random a and solves for A to compute sig) NOTE: to sign, sufficient to know $M=g_0^r \prod Z_i^{mi}$
 - verification: $e(Xg^a, A) = e(g, g/g_o^r \Pi Z_i^{mi}) = e(g, g/M)$.

CMA-Secure Sig for Blocks

 q^{x}

- Non-adaptive sig:
 - In the proof of security, the reduction is
 - given a non-adaptive sig (b,B) and all the dlogs:
 - $g_0 = g^u$ and $Z_i = g^{vi}$ and it must solve for a s.t.: $a + ru + \sum m_i v_i = b$ and output (a, B) as the sig
- · Modification [BBSU4 + CLU4]:
 - keygen: PK = $(G,G_T, e, g, g_0, Z_1,..., Z_L, X)$, SK = $(x : X = q^x)$
 - signature on $(r, m_1, ..., m_L)$ is (A, a) such that $A^{x+a}g_0^r \prod Z_i^{mi} = g$ (signer picks random a and solves for A to compute sig) NOTE: signer need not know $(r, m_1, ..., m_L)$, only $g_0^r \prod Z_i^{mi}$
 - verification: $e(Xg^a, A) = e(g, g/g_o^r \Pi Z_i^{mi})$.

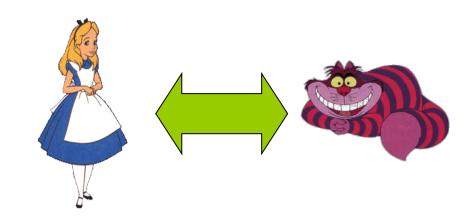
And the Protocols:


- (1) obtaining sig on a committed value
- (2) ZKPOK of a sig on a committed value
- (use Pedersen commitments)

Signature on a Committed Value

1. Commit to *m*:

$$M = g_0^r \Pi Z_i^{mi}$$


2. ZKPOK of representation of *M* in g_0 , *Z*

3. Issue the signature *σ*

4. Output signature!

Proof of Knowledge of a Signature

- Idea: Prover holds $a, r, \{m_i\}, A$ such that $e(Xg^a, A) = e(g, g/M)$ $M = g_0^r \Pi Z_i^{mi}$
- Express everything as a relationship between discrete logarithm representations & use [Schnorr91,Brands99] (interactive or RO model)

Why don't want interactive proofs?

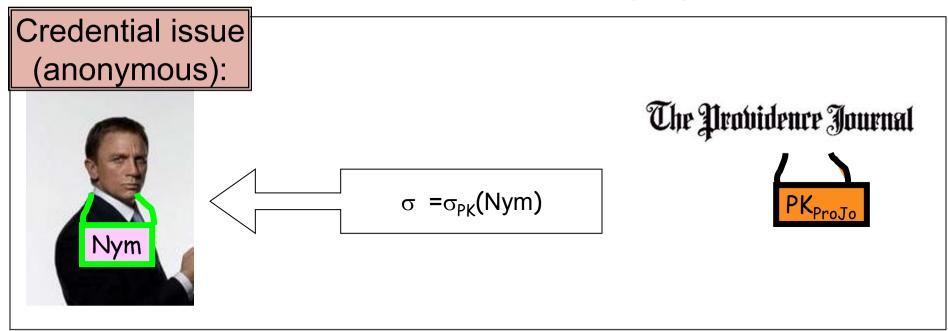
- Just don't. Interaction is expensive.
- Composition issues: complicated to get knowledge extraction without rewinding, making it work makes it much more expensive [CS03]; standard constructions for UC-secure ZK are based on "robust" NIZK [CF01,CLOS02].
- Interactive proofs are non-transferable, don't work for some applications (e.g. ecash, delegatable credentials).

Structure-Preserving Signatures

- First appeared in [Gro06]. Better constructions are [AFGHO'10,AGHO'11,HJ12,ACDKNO'12]. They are incomparable to each other: different assumptions and sizes. Most efficient has three group elements (necessary) [AGHO'11].
- Definition: a secure signature scheme (Paramgen, Keygen, Sign, Verify) is structure-preserving if:
 - PKs, messages, and sigs are sets of elements of G_1 or G_2 for which there's a bilinear map e: $G_1 \times G_2 -> G_T$
 - Verify checks a pairing prod equation (PPE) of the form

 $\Pi_i \Pi_j e(A_i, B_j)^{aij} = 1$, where $\{A_i\}$ in G_1 , $\{B_j\}$ in G_2 , are elements of parameters, PK, message or signature, and a_{ij} are integer constants

Application of SPS [Gro06]: Simulation-Extractable NIZK from GS NIWI (1 of 2)


- "Definition" [SimExt NIZK PoK]: NIZK PoK where adversary A can't win this game:
 - A adaptively requests simulated proofs of statements of his choice
 - A outputs (new statement x, proof π)
 - KnowledgeExtractor(x,π) computes w
 - A wins if w is NOT a witness for x
- Stronger definition: A can't win even given the extraction trapdoor
- This is essentially the notion of "robust" NIZK we care about

Application of SPS [Gro06]: Simulation-Extractable NIZK from GS NIWI (2 of 2)

- Let PPE be a pairing product equation. Then
 L_{PPE} = {{C_i} | values inside commitments {C_i} satisfy the PPE}
 - Recall: GS NIWI designed for languages of this form, for extractable commitments; has perfect soundness/extractability
- SimExt NIZK for L_{PPE}:
 - CRS contains GS NIWI CRS₁, and a PK for a SPS
 - Prover forms new commitments {C'_i} and uses GS NIWI to prove that either {C_i} in L_{PPE} or values inside {C'_i} are a signature under PK on the values {C_i}
 - Simulator has SK for PK, forms proofs by signing {C_i}
 - If A outputs a new statement x, and extractor can't extract the witness attesting that x in L_{PPE}, then by perfect extraction properties of GS NIWI it extracts a new signature contradiction! (Works even if A knows the extraction trapdoor.)

Anonymous Credentials from SPS and SimExt NIZK PoK [BCKL08,...,CKLM13]

- System parameters: CRS for SimExt NIZK PoK for PPEs (what we just saw)
- Issuer's PK: PK for a structure-preserving sig

- where Nym = Commit_{GS}(SK_{JB})
 - Nym and σ consist of group elements.

Anonymous Credentials from SPS and SimExt NIZK PoK [BCKL08,...,CKLM13]

Credential demo (anonymous):

 $C_{\text{Nym}} = \text{Commit}_{\text{GS}}(\text{Nym})$ $C_{\sigma} = \text{Commit}_{\text{GS}}(\sigma)$ Proof π that (1) the value inside C_{σ} is a sig on the value inside C_{Nym} (2) the value inside C_{Nym} is a commitment to the same value as the one inside Nym'

Anonymous Credentials from SPS and SimExt NIZK PoK [BCKL08,...,CKLM13]

- System parameters: CRS for SimExt NIZK PoK for PPEs (what we just saw)
- Issuer's PK: PK for a structure-preserving sig
- Issue: Let Nym = Commit_{GS}(SK_{JB}). Issuer computes $\sigma = \sigma_{PK}(Nym)$ and sends it to James Bond.
 - Recall: Nym and σ consist of group elements.
- Demo: Let Nym' = Commit_{GS}(SK_{JB}) (another pseudonym for James Bond). James Bond wants to prove that the identity inside Nym' has a credential from the Issuer. His proof π consists of the following:
 - $C_{Nym} = Commit_{GS}(Nym), C_{\sigma} = Commit_{GS}(\sigma)$
 - Proof π that (1) the value inside C_{σ} is a sig on the value inside C_{Nym} and (2) the value inside C_{Nym} is a commitment to the same value as the one inside Nym'.

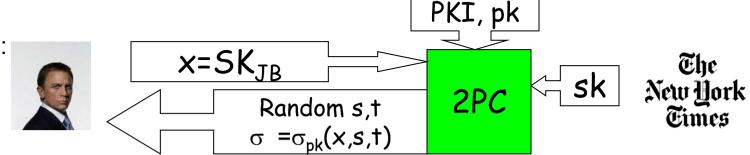
A Whirlwind Tour of Anonymous Credentials and Related Protocols, Part 2

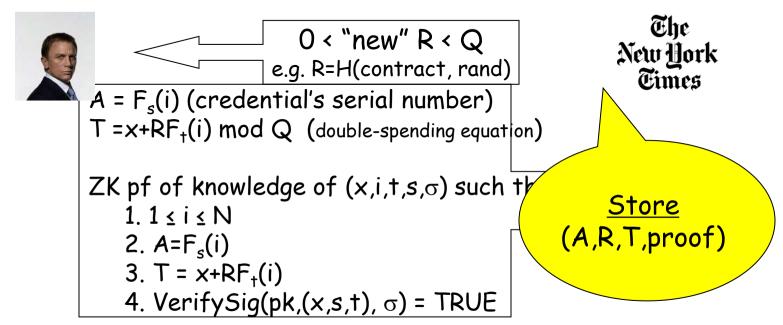
Anna Lysyanskaya Brown University

Roadmap

- Warm-up: commitment, signature, protocols from CL04+BBS04
- Structure-preserving signature (SPS)
- "Robust" NIZK PoK from GS NIWI and SPS [adapted from Groth06]
- Anonymous credentials from SPS and "robust" NIZK
 break
- Ecash from these building blocks [adapted from BCKL09]
- Delegatable anonymous credentials [BCCKLS09,CKLM13]

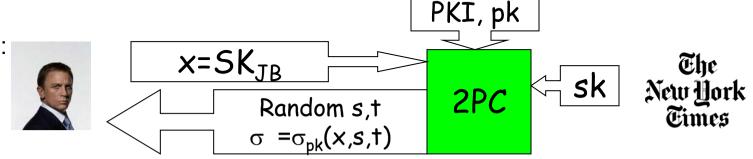
Single-Use Creds (Idea) [CFN88,Brands]

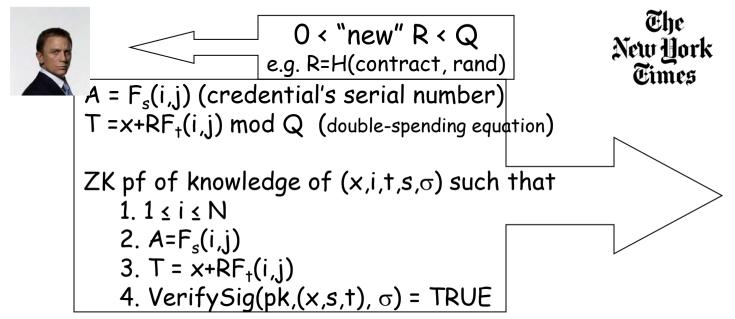

• SETUP: Signature key pair for Issuer (pk,sk). Assume a PKI for all the users.


N-Use Creds/Compact Ecash [CHL05]

SETUP: Signature key pair for Issuer (pk,sk).
 Assume a PKI for all the users.
 Large prime Q.

ISSUE:


SHOW ith time:

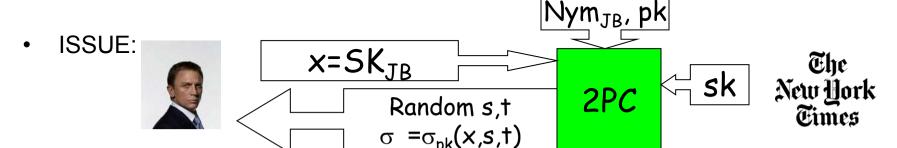

N per Day Creds/Anon. Etokens [CHKLM06]

SETUP: Signature key pair for Issuer (pk,sk).
 Assume a PKI for all the users.
 Large prime Q.

ISSUE:

SHOW ith time on Day j:

Pandora's Box


- Anonymity is an invitation for abuse. Alice will share her credentials with all of her friends.
 - Answer #1: anonymity is not the issue. The fact that credentials are digital is the issue.
 - Answer #2: can have limited-use credentials.
 - Answer #3: can revoke credentials in case of abuse, similarly to non-anonymous case.
 - Answer #4: can escrow Alice's identity, to be revealed in case of emergency.
 - Answer #5: can make Alice's SK too valuable to share.

Before GS Proofs

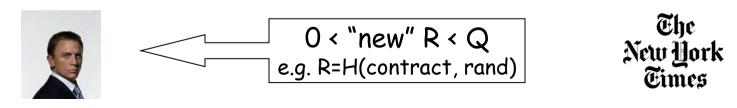
- In theory: could instantiate using general robust NIZK, get provably security
 - inefficient, useless for practical applications 🕾
- In practice:
 - could instantiate under various number-thretic assumptions
 - use the Fiat-Shamir transform to get a NIZK
 - sacrifice provable security 🕾
- With GS proofs:
 - the best of both worlds ©

How to Instantiate Compact Ecash?

SETUP: Signature key pair for Issuer (pk,sk).
 Assume a PKI for all the users.
 Large prime Q.

- [BCKL09]: GS-proof-based instantiation without SPS's
- Adapted from [BCKL09], but with an SPS (easier):
 - Step 1: They agree on commitments C_s, C_t to random s and t using coin-flipping; Bond knows openings s and t

NB1: s and t are integers, not group elements!


Open question: "structure-preserving" PRF

NB2: AFAIK this requires interaction with the Issuer

- Step 2: Bond obtains $\sigma = \sigma_{pk}(Nym_{JB}, C_s, C_t)$

How to Instantiate (continued)?

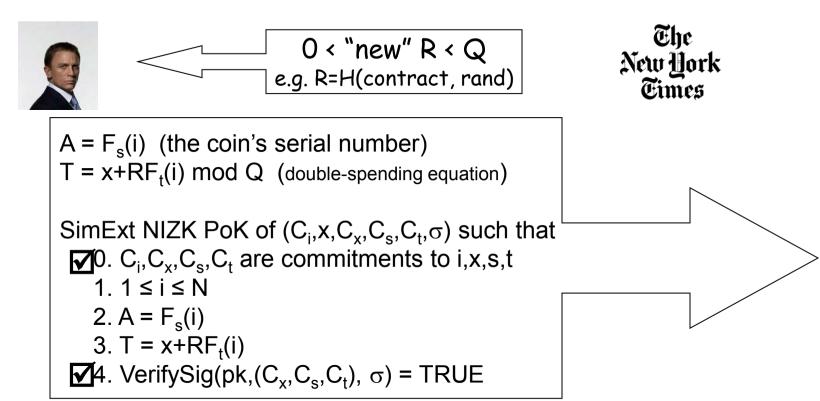
SHOW ith time:


```
A = F_s(i) (credential's serial number)

T = x+RF_t(i) mod Q (double-spending equation)

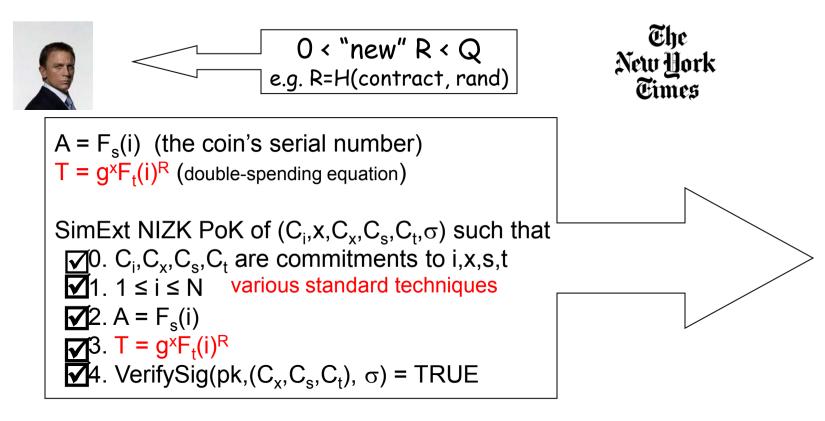
ZK pf of knowledge of (x,i,t,s,\sigma) such that

1. 1 \le i \le N


2. A=F_s(i)

3. T=x+RF_t(i)

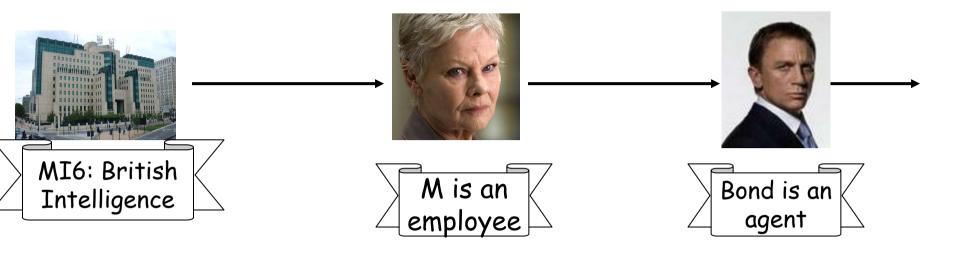
4. VerifySiq(pk,(x,s,t),\sigma) = TRUE
```


How to Instantiate (continued)?

SHOW ith time:

How to Instantiate (continued)?

SHOW ith time:



Use DY05 PRF: $F_s(i) = g^{1/(s+i)}$, can express correctness of A and T as PPEs

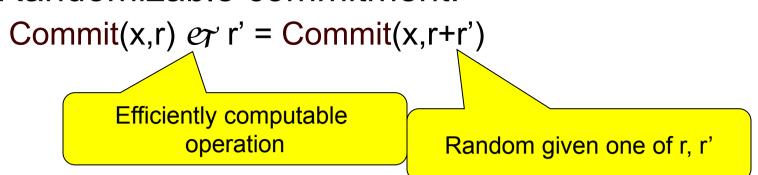
But...


 These credentials are a simplification of what non-anonymous credentials look like in practice!

Credential Chains

- Non-anonymous: trivial from signatures + ID schemes
- Bond's anonymous credential
 - Reveals that he got a credential from a valid employee (who had a credential from MI6)
 - Should reveal no other information
 - Even Bond himself should not know M's real name and her PK!
- (Compare with conventional certification chains...)

Credential Chains

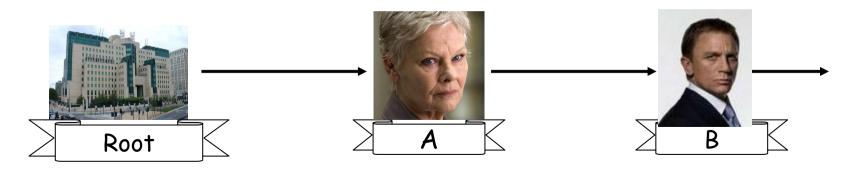


- M's credential: $\sigma = \sigma_{MI6}(PK_M, M's attributes)$
- Bond's credential:
 - M must somehow use the fact that she knows her SK_M and the value σ to "sign" PK_{Bond} .

Efficient Anonymous Delegation via Randomizable NIZK proofs [BCCKLS09,CKLM13]

Randomizable Proofs [BCCKLS09]

Randomizable commitment:

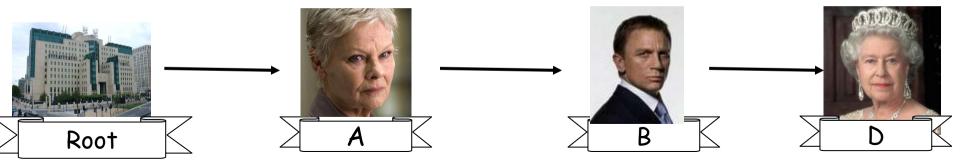


Randomizable Proofs [BCCKLS09]

- Randomizable commitment:
 Commit(x,r) \(\varphi \) r' = Commit(x,r+r')
- NIZK proof system (Setup, Prove, Verify) that committed values satisfy relation R
- Algorithm Rand(C₁,...C_n,π,r'₁,...,r'_n)-> π'

Randomizable if (1) and (2) identical: on input $(x_1...x_n,r_1,...,r_n,r'_1,...,r'_2,R)$ s.t. $x_1...,x_n$ satisfy R (1) compute C'_i =Commit $(x_i,r_i+r'_i)$ and run Prove to get π that values in C'_i satisfy R (2) compute C_i =Commit (x_i,r_i) , run Prove to get π that values in C_i satisfy R, then run Rand

Delegatable Anonymous Credentials


- Each participant has a secret key; PK_{Root} = Commit(SK_{Root})
- Root->A credential:
 - A sends to Root: a pseudonym C_A = Commit(SK_A;r_A)
 - Root sends to A: proof π_A that C_A was signed under PK_{Root}
 - A's output is $(C_A, \pi_A; r_A)$.

Computed using SPS-Sign and Prove

- A->B credential: (B knows A by C'_A = Commit(SK_A;r_A+r'_A)
 - B sends to A: a pseudonym C_B = Commit(SK_B; r_B)
 - A sends to B:
 - (1) $\pi'_A = \text{Rand}(C_A, \pi, r'_A)$ that C'_A was signed under PK_{Root}
 - (2) π_B that C_B was signed under C'_A
 - B outputs (C'_A, π '_A, C_B, π _B; r_B)

Twist on SPS sigs: Commitments as keys

Delegatable Anonymous Credentials

- How does B delegate to D?
 - D knows B by pseudonym C'_B = Commit(SK_B;r_B+r'_B)
 - D sends to B: a pseudonym C₂ = Commit(SK₂:r₂)
 - B sends to D: Computed using Sign a Here can also incorporate attributes and e-token info
 - (1) $C''_A = C'_A = C'_A$
 - (2) $\pi''_A = Rar A, \pi'_A, r''_A$) that C'' signed under PK_{Root}
 - (3) π'_B = π and(C'_A , C_B , π_B , r''_A , r'_A that C'_B was signed under C''_A
 - (2) π_D that C_D was signed under C'_B
 - D outputs (C"_A, π "_A, C'_B, π '_B, C_D, π _D; r_D)

GS NIWI is Randomizable...

- GS NIZK is randomizable too
- Problem: how to make it "robust," so that A can't fake credentials even with access to "simulated" credentials from honest participants?
- Answer: stay tuned for CKLM13!

Conclusion

- NIZK is a practical tool, thanks to GS proofs and bilinear pairings
- Name of the game: express what you want to prove as a PPE
- What we thought was theoretical-only can be practical
- Plus some things (e.g. delegatable credentials) that we didn't even think could be done.