Functional Encryption

Allison Lewko, Microsoft Research

This talk will feature work by:

Dan Boneh Shweta Agrawal
Jon Katz Sergey
Gorbunov
Amit Sahai
Vinod
Brent Waters Vaikuntanathan
Hoeteck

Wee

Special guest
appearances by:
Adam O’Neill,
Yael Kalai,

Shafi Goldwasser,
Raluca Ada Popa,
Nickolai Zeldovich

How might we hide the access policy itself?

A= security parameter n = vector length

Setup(A\, n):
generate public parameters PP and master key MSK

KeyGen(v/, MSK):
generate a user key for a given vector of length n

Encrypt(PP, M, X):
encrypt message M under a vector of length n

Decrypt(CT, SK):
decrypt ciphertext using a key: successful iff Z - v

0

IND-CPA game: vectors X;, X, .
< Required that
PP > |vox =viox,

vector v
< 9

SK, Repeat

MO’ Ml | »

<€

Challenger Encrypt(PP, M,, x,) R Nacker
b vector v If v-x, =0 forsomey,
< required that M, = M,

SK, Repeat

We want to compute - ¥ while hiding

Basic idea: compute & - v in the exponent

CT:

add randomness that
e(9,9)" " e(g, 9)***?e(g, g) cancels only when
computation done properly

Some remaining problems: V

Can tell if ; = 0 or not Can permute the computation

1

Encode vectors

- —

X,V

enforce computation
done properly

extra
randomness

GP3 Gp2

Setup (A, n): generate G of order N = p1paps

PP =g, g, gR, {h;V;, k;W;}4

2 parallel systems,
stayed tuned for why
we want this

Encrypt(Z = (z1,22,...,2,)):

choose s, o, 3 € Zin

CT = g°, {(h:Vi)5(gVi)*=iU;. (kiW.)5(gVi)P*i Z; iy

KeyGen(v = (v1,v2,...,0,)):
SK = AB[IiL hy ki, {97 9%, 9" g7}

1=1

CT: g* (h:Vi)2(gVi) o™i U, (ki W) (gV;)P*i Z,

@roduet for 1 = @

SK: ABI[, hy "k " g"ig’v gt

av;

[Lizielg, hi)~"e(g. ki)~ e(g,hi)*e(g, 9% e(g, k;)*te(g, g)Pomiv

\

e(g, g)*0HPoITT

=1lif and only if ¥ - v =0 mod p;

New challenge:

Adversary attempting to distinguish C'T under x from CT under y

requests key for ¥ such that v-Z=v-y=0

Natural approach would be a hybrid
changing T to iy one coordinate at a time:

(wla"'vwn) i ('Cclr"axiay’i—l-la"'vyn) j (yla"'ayn)

may not be orthogonal to v!

Idea: use two parallel systems, change one half at a time

Hybrid structure: CT exponent vectors change as

—

(7,7) = (£,0) = (&,9) = (0,9) = (4,9

@y go throughD

A general definition [BSW11]:

Def. 1.

A functionality F' is a function F': K x X — {0,1}* whose domain
is the product of a key space K and a plaintext space X.
It is required that K include an “empty key” e.

: -

iz

F/ 1y
\rrerneny

S
m y
>

A= security parameter

Setup()):
generate public parameters PP and master key MSK

KeyGen(k, MSK):
generate a user key for a given k € K

Encrypt(PP, x € X):
encrypt message x

Decrypt(CT, SK):
decrypt ciphertext using a key to obtain F(k,x)

IND-CPA game:
PP

ki € K

SK for k;

Mgy, My

Encrypt(PP, m,) Attacker

Required that
F(ki; mo) = F(ki; m1)
V k; requested

ki € K

SK for k. Repeat

It does not capture computational properties of the functionality F':

Example:
Consider K =< {e}, X = {0,1}"

Fle, z) ::@\

Proposed Construction:
Encrypt(x) = x

one-way permutation

F(e,xl) = F(E,sz) & X1 = T2

So this is “secure” under game-based definition!

from [O10]: Tet F = {f1,---, fn} be set of functions associated with keys

Let g be a function so that given fi(x)l||...||f.(2),
it is hard to guess g(x)

And g(z) = g(y) <= [l [Ifalz) = LI [(y)

Let (Setup, Encrypt, Decrypt) be a Public Key Encryption scheme
Let (Setup*, KeyGen*, Encrypt*, Decrypt*) be a FE scheme

New FE scheme:

Setup: run Setup and Setup* to get (pk, sk), (pk*, sk*)

secret share sk as wi,...,wn,
set pk := pk||pk*, sk := w||...||wy||sk*

KeyGen(f;): run KeyGen™*(f;) to get sk;, set sk; := w;||sk;

Encrypt(m): run Encrypt*(m) and Encrypt(g(m)), concat results

Real World:

Challenger PP Attacker

Ideal World:

: PP
Simulator Attacker

Ideal World: [BSW11]
M1, gx- MM — M
PP
—_—

Simulator Attacker

= F(ki,me) Vi, £y o, 7O QTN

—_—
kj needs to encode
D — too much!
iF(kjaml)v"'ﬁF(kj’mN) SKk

—_—

Ideal World: [AGVW12]

: PP
Simulator Attacker

for some F,
needs to encode
too much!

=>{F'(ki,m) Vi}

*Can avoid this by bounding the queries

* Impose bound of g on key queries

* Can build a scheme for general circuit functionalities

* Techniques include:
secret sharing, garbled circuits

Result for general functionalities with succinct CT,
Bounded collusion [GKPVZ13]:

- draws upon ABE and FHE constructions
- canh be instantiated from LWE

- applications to garbled circuits, obfuscation, delegation

