Attribute-Based Encryption

Allison Lewko, Microsoft Research

This talk will feature work by:

Brent Waters

Amit Sahai

Vipul Goyal
Omkant Pandey
Tatsuaki Okamoto

Katsuyuki Takashima

With special guest appearances by:
Melissa Chase, Dan Boneh,
Matt Franklin, Ran Canetti,
Shai Halevi, Jon Katz, Xavier Boyen,
Sanjam Garg, Craig Gentry,

.
(4°)
o+
©
©
2
-
)
)]
%)
Q
o
o
q0)
O
-
@
-
)]
@
S

Describe authorized users with “attributes”:

oy
s []]
oy oy g o s, ——

J/ sxrenrny

T

.
ot
Lh
=
-
-
~l

{

A= security parameter U = attribute universe

Setup()\, U):
generate public parameters PP and master key MSK

KeyGen(Policy, MSK):
generate a user key for a given policy

Encrypt(PP, M, S C U):
encrypt message M under attribute set S

Decrypt(CT, SK):
decrypt ciphertext using a key

Example: encrypt a job posting:

ul

Security Threat:

@

Masters Degree

> 2 years experience

IND-CPA game:
PP

Policy f

Encrypt(PP, M,, S)

>

Policy f

SK, Repeat

Linear Secret Sharing:

secret «

Only authorized set of shares
allows reconstruction of «

Canceling with independent randomness on two sides:

example: Independent
K — ar

1=9 @/ randomness
Ci =g °, =g

e(Ch, K1)e(Cy, K2) = e(g,9) *""e(g,9)™" =1

C=3=)

links computations together

Setup:
bilinear group G of prime order p, generator g

random exponent « € Z,
random elements H; € G for each ¢ € U

PP:={g,e(g9,9)* HiVicU} MSK:=qa

KeyGen(f): J personalized

split « into shares {\;} following f randomness

choose random r; € Z,,
SK = {gVH]*, g"}

Encrypt(M,S CU):

choose random s € Zp

CT = Me(g,9)*%, ¢°, {H}}ies

Goal: recover M

We have: Me(g, g)** |:> Subgoal: compute e(g, g)**

CT: g° H?
SK: G HT divide e
e(g,9)" (g, H;)"** e(g, H;)"*

If enough shares,
reconstruct « in the exponent

Chain
Reaction

blinding factor

Conceptual Checklist:

1. How are we encoding the access formula?

with a linear secret sharing scheme
2. How are we tying shares to attributes?

multiplying by the H; elements raised to random exponents

3. How are we enforcing presence of attributes in the ciphertext?

the need to cancel the H, contributions

4. How are we preventing collusion?

injecting personalized randomness during sharing

Hard
Problem

—

Simulator Attacker

Simulator must balance two competing goals:

|
answer /K\ leverage
attacker A\ attacker
S =

qgueries success

Space of formulas for keys:

@ - key simulator can make

. = key simulator can’t make

Two Approaches:

1. Make Attacker Commit

- [T
(weaker) selective security

Too costly for ABE ' '

Assumption (BDH):
Given ¢, ¢%, ¢*, ¢¢ € Gand T € G,
it is hard to distinguish 7' = e(g, ¢)**° from random

Proof Schematic:

g,9% g%, g, T

guess for T’

<

Simulator

Set S CU

<

PP, CT, SK’s

%

guess for M

Attacker

Input: g,g%, g%, 9%, T = e(g, g)**?

Start with: MT, 7, 7 (requires as = abc)

set s = c¢

need to produce g° \/

set @ = ab

need to produce e(g,g)” \/

need to produce g™ for keys? ?

Goal: simulator must produce unsatisfied keys
without knowing g®

SK components: shares of «
é’f Logn

Two observations:

1. Simulator can “place” « in a subset of shares

2. H]" term attached provides cancelation opportunity

Route o “away from” the challenge set:

'8 Shares for challenge
attributes known
to simulator

L

Challenge set

Recall a« = ab, suppose \; = a — 2

We must produce: gMH*, g"
Goal: cancel ¢g?° contribution from ¢
Consider if H; = g%, r; = —b
Then gM H]* = g%g=%g= 9% = g—=!

(Note that we can compute H; = g% and g = (¢g°)~1)

Idea: embed ¢g* in H; for all ¢ not in the challenge set S
This is enough for canceling «, and we can still produce H; = HS for j € S

Input: g, g% ¢°, g%, T = e(g, g)**?
Attacker declares S C U

Simulator sets o = ab, picks random y; € Z, for each i € U

Defines H; = g% fori e S, H; = ¢g°"¥i fori ¢ S

PP := {g, e(g,9)* = e(g*. ¢%), H; = g¥' Vi € S, H; = g°g¥% Vi ¢ S}

To create ciphertext, simulator sets s = c:

CT := MT, ¢° = g°, {H] = (9°)" hies
possible because
To create key for unsatisfied formula f: f is unsatisfied

Simulator routes « into shares for i ¢ S, =—

uses r; = —b + z; to cancel gab with H ,Lr ¢ for these 7

shares for 7 € S are known

Simulator should not know ¢g¢ (if it did, it could decrypt for itself!)

But it needs to make shares of o and cancel out unknown parts

Solution: use some H; parameters for canceling

But those that are used for canceling can’t appear in the ciphertext!

(recall: we set s = ¢ in the ciphertext,
we used ¢ inside H; to cancel, and we do not know ¢g%¢)

Solution: use some H;’s for canceling, and some for ciphertext

This only works if we know which ones we’ll need for the ciphertext,
hence selective security!

What we’ve shown:

* Selectively secure Key-Policy ABE for formulas

What else might we want?

* Full security

Ciphertext-Policy ABE for formulas
ABE for circuits

Hiding policies

Decentralized authorities

A= security parameter U = attribute universe

Setup()\, U):
generate public parameters PP and master key MSK

KeyGen(S C U, MSK):
generate a user key for an attribute set S

Encrypt(PP, M, Policy):
encrypt message M under the given policy

Decrypt(CT, SK):
decrypt ciphertext using a key

Intuition: switch SK and CT from KP-ABE construction

Before:

CT: Me(g, g)**, 9°, {H;}°

SK: g)\i H:” , g o~
doesn’t make sense yet

PP: 1, 9, €(9,9)", {Hiticv

shares of s
. 3)\i i T
CT: Me(g,qg)**, g%, H', qri
SK: g g, H!

t = personalized randomness

Selective
security

Size(PP) > size(S)

Set S PP encodes S
for KP-ABE:
PP
Simulator :
Selective
security formula f How car:c?PP
for CP-ABE: < | SLe

To fit a big formula into small PP:

Use a big assumption!

Example:
assumption includes terms g%, g% ,g% ,...,g

2 3

a af

: 2
single element gﬁla+ﬁ2a 4 4By al
now encodes a sequence 1, B2, ..., By

¥

Dual System Encryption [W09,LW10]

Main goal:
Simulator prepared to make any key, use any ciphertext

How can this be possible?

Consider joint distribution of key and ciphertext

Maybe simulator can sample from alternate distribution
and fool attacker on subset of allowable pairs

2 distributions of keys, 2 distributions of ciphertexts:

Used in real system Normal Semi-Functional

Normal

Semi-Functional Q5 (with high

probability)

y
7

RdgbSet Argy@Gante:
Hardest step!

Regardless of
Compability!

V

Incompatiblity of key/CT —> High probability decryption failure

Decryption failure —> Message independent CT

Instance

>

T?

>

Hard Problem Simulator

Simulator cannot know nature of key!

Correlation!

1% Decryption always succeeds

Simulator

V|PP - random variable

- has some entropy

Attacker

A Decompose:

Semi-functional
Space

Separated from PP

Normal Space

Let G be a bilinear group of order N = p1pap3

Let g € Gp,, g € Gy, g € &, generate its prime order subgroups
An element of G can be written as ¢g*¢Y¢g~

These subgroups are orthogonal under the bilinear map e:

e(9°9%97,9%9"g") = e(g,9)""elg,9)" elg,9)""

a For us,
p1 (G, = normal space
P11 P 3

Gp, = S.F. space,

Gpg = extra randomness
G G
/ D2

Subgroup Decision Problems

Example:

Gps G, G,,

3

Hard to distinguish random € G,,,, from random € G,

unless given element € G,

Bilinear group G of order N = p1psps
prime order orthogonal subgroups G,,, G,,, G,

PP ={g,e(g,9)*, H; Vi € U}

(same as before, just now inside G,)

Note that g # g,

Normal Ciphertext: choose s € Zy H, £ H,

Me(g,9)**, g°, {H; }ies
S.F. Ciphertext: pfe(g, g)s, g5 qg° {Hfo’}V

Normal Key: {g*H[*V;, g"tW;} (random elements in (7,, appended)

S.F. Key {g"iH{ig@\Hf Vi g Wi

Shares of random

CT: 9°g° H: o

SK:) divide

e(gag)kisfe(g,g)A%’Se(g,g)‘”%'S’; e(g, H;)"+* B(QaHz‘)mSe(QaHi)r;S

N

If enough shares,
reconstruct « in the exponent

/

*random secret in (G, will ruin result,
unless it happens to be 0!

Step 1: Change CT from normal to S.F.

Subgroup Decision Problem:
Given g, g, distinguish 7" € G, from T' € G,

Simulator chooses o € Zp, chooses y; € Zn Vi € U,
sets PP = {g,e(g,9)*, H; = gV Vi € U}
Simulator can easily produce normal keys:
{gMH]V;, "W}

For CT, simulator uses T" for role of g*:
CT ={Me(g, T T, {TY}
If T'= ¢®, this is Me(g,9)**,¢°,{H?} (normal CT)
If T = g%, this is Me(g,¢)**, ¢°¢° . {H?H?} (S.F. CT)

Step 2: Change a key from normal to S.F.

Subgroup Decision Problem:

Given g, g, g%, @ used to make S.F. keys
distinguish 7' € Gp577trom T' € Gy, s

Simulator chooses o € Zn, chooses y; € Zn Vi € U,
sets PP = {g,e(g,9)%, H; = g¥" Vi € U}

To make S.F. ciphertext, simulator uses s = x:

CT = Me(g,9%9")%, g"g%, (g%g)¥V" Vi €S

well-distributed b/c
y; mod p; and y; mod ps
are uncorrelated

To make key of uncertain type:
w; = shares of 0, A\; = shares of «

SK = {ghTwiTVmiV, TriW,;}
(*note that \; + Sw; = shares of «)

But Wait!!!

We were supposed to be sharing something random in S.F. space, not 0!

Suppose 1" does have ¢” component:
S.F. exponents on key appear as

If attribute doesn’t appear elsewhere,
this is random modulo ps!

If enough shares are hidden, the shared value s hidden

Step 3: Change S.F. CT to encrypt random message

Subgroup Decision Problem:

Given g, g, 9, 9"9%, 9°9",
distinguish T' = e(g, g)*° from random in G

Simulator chooses y; € Zy Vi € U

PP = {g,e(9,9)" = e(g,9%¢Y), H; = g¥* Vi}
To make S.F. keys:

make « shares in exponent with g“¢Y,
fully randomize with ¢, ¢ raised to random exponents

To make S.F. ciphertext:

MT, g°g". {(g°¢")¥}

,y

How do make lere the shared value
in the S.F. space is hidden?
)\ /L

* We rely on attributes not appearing in the CT

* We use the third subgroup for a hybrid over keys
(skipping details)

 We impose limit on reuses of attributes per key

* Semi-functional space “shadows” normal space

* Entropy from unpublished S.F. parameters can hide correlation

e Subgroup decision assumptions can move objects in and out
of S.F. space

Use vectors in the exponent:

geG, veZ§

U

g’ = (g

U1

7gU27"‘7gUd)

e(g”,9") =11, e(g”,g") = e(g,9)""

orthogonality:

v-w=0modulop = e(g”,g") =1

 Multiple authorities [C07, LW11a, OT12a]

Enables decentralizing functionality and trust

* Large universe constructions [GPSWO06, LW11b,0T12b]

Attribute universe size is exponential

* Full security without restricting reuse of parameters [LW12]

New understanding of relationship between
selective security techniques and dual system

Viewing the security game in S.F. space:

Public Params

Simulator gets some info
before setting params:
opportunity to adapt
prior selective techniques!

Mg, My, attributes

Challenger <

Enc(M,, PP, attribytes)

Attacker

Brought to you by lattice-based cryptographers:

1. Lattice-based KP-ABE scheme for formulas from LWE [B13|

2. Lattice-based scheme for circuits from LWE [GVW13|

3. Multilinear maps [GGH12]

4. ABE for circuits from multi-linear maps |[SW12]

Main idea:

Consider groups G1,...,Gr and maps
€ij G; X Gj —>G7;_|_j for1 <4,75,14+7 <k

We fix generators g1, go, ..., gk

We require:
a by _ ab
€i,j (955 97) = 9345

Key fact: map can only move forward!

intuition: use forward map to move up through circuit one gate a time

