
Information Security Group

Lecture 1

Kenny Paterson

Bar-Ilan Winter School on Symmetric Cryptography

1

2

Lecture 1 Outline

Theory for symmetric encryption:

• Security models

• Modes of operation

• Message Authentication Codes (MACs)

• Generic composition

3

Theory for Symmetric Encryption

• Security models for symmetric encryption are well
established.

• Syntax: SE = (KGen,Enc,Dec)
– Probablistic KGen(1k), outputs key K.

– Probablistic Enc: c  EncK(m), for m in message space M.

– Deterministic Dec, outputs message m or failure symbol ┴:

 m / ┴  DecK(m).

– Correctness requirement: for all K  KGen(1k), for all m in M:

 DecK(EncK(m)) = m.

– For now, we focus on stateless Enc and Dec algorithms.

– Nonce-based algorithms in place of probablistic ones also
possible [R04].

4

Theory for Symmetric Encryption

• IND-CPA security:

– Adversary has repeated access to Left-or-Right (LoR)

encryption oracle.

– In each query, adversary submits pairs of equal length

messages (m0,m1) to the oracle.

– Receives c, an encryption of mb, where b is a random bit.

– Adversary outputs its estimate b’ for bit b.

– Adversary wins if it decides correctly.

• IND = Indistinguishable

• CPA = Chosen Plaintext Attack

• Formalised as a security game between the adversary

and a challenger.

5

IND-CPA Security Game

Adversary Challenger

b ← {0,1}

(m0,m1)

c = EncK(mb) c

b’ Adversary wins if b =b’

K ← KGen(1k)

6

IND-CPA Security

• The adversary’s advantage is defined to be:

 |Pr(b=b’) - 1/2|.

• A scheme SE is said to be IND-CPA secure if
advantage is “small” for any adversary using
“reasonable” resources.
– Concepts of “small” and “reasonable” can be formalised

using either an asymptotic approach or a concrete
approach.

– In symmetric crypto, the concrete approach is widely
used.

– Quantify adversary’s success probability in terms of
number of encryption queries and/or number of bits
queried to encryption oracle.

7

IND-CPA Security

• Informally, IND-CPA is a computational version

of perfect security.

– Ciphertext leaks nothing about the plaintext.

– Stronger notion than requiring the adversary to

recover plaintext.

• [BDJR97] developed equivalent notions.

– RoR-CPA, FtG-CPA and SEM-CPA.

– The latter is a symmetric version of semantic

security notion for PKE of Goldwasser-Micali.

8

IND-CPA Security

• Easy to achieve IND-CPA security using, for

example, a suitable mode of operation of a

block cipher fK on {0,1}n.

– Block cipher in CBC mode with random IVs.

– Block cipher in CTR mode.

– See [BDJR97] for analysis.

– Requires modelling of block cipher as PRP/PRF.

– Recall definition:

• Adversary has oracle access to fK(.) or Rand(.)

• Adversary outputs guess for which world it is in.

9

CBC Mode

Ci-1 Ci

Pi-1 Pi

dK dK

Pi-1 Pi

Ci-1 Ci

eK eK

Initialisation Vector (IV):

• Defines C0 for processing first

block.
• IV often taken as random;

• Chained IVs also common in

applications.

CBC mode needs some form

of padding if plaintext lengths

are not multiple of block length.

• (Much) more on padding

later.

[BDJR97] security bound

involves a q2/2n term (quadratic

loss).

10 10

CTR Mode

• CTR mode uses a block cipher to build a

stream cipher.

• Block cipher does not even need to be a

permutation!

• In simplest mode, random initial value for ctr is

chosen for each message and transmitted with

ciphertext.

• Encrypt blocks

 ctr, ctr+1, ctr+2, …

 to create a sequence of ciphertext blocks.

• Use this sequence as keystream (truncating

last block as necessary).

• IND-CPA secure assuming block cipher is a

PRF.

• Quadratic loss in security analysis; can be

converted to linear loss by using stateful

version of the scheme.

Ci

eK

Pi

ctr+i

Pi

eK

Ci

ctr+i

11

Motivating Stronger Security

• In CBC and CTR modes, an active adversary

can manipulate ciphertexts.

– For CTR mode, bit flipping in plaintext is trivial by

performing bit flipping in the ciphertext.

– Modify c to c XOR Δ to change the underlying

plaintext from p to p XOR Δ .

– CBC mode: see next slide.

– Or create completely new ciphertexts from scratch?

• A random string of bits of the right length is a valid

ciphertext for some plaintext for both CBC and CTR modes!

12

Bit Flipping in CBC Mode

• Flipping bits in ciphertext block Ci-1 leads to

controlled changes in plaintext block Pi.

• But block Pi-1 is randomised.

Ci-1 Ci

Pi-1 Pi

dK dK

Flipping bits here

Leads to bit flips here And randomised block here

13

Motivating Stronger Security

• These kinds of attack do not break IND-CPA

security, but are clearly undesirable for building

secure channels.

– Modified plaintext may result in wrong message

being delivered to an application, or unpredictable

behaviour at receiving application.

• We really want some kind of non-malleable

encryption, guaranteeing integrity as well as

confidentiality.

• Two basic security notions:

– integrity of plaintexts and integrity of ciphertexts.

14

INT-PTXT Security

• INT-PTXT security:

– Attacker has repeated access to an encryption

oracle and a “Try” oracle.

– Encryption oracle takes any m as input, and outputs

EncK(m).

– Try oracle takes any c* as input (and has no output).

– Adversary’s task is to submit c* to its Try oracle

such that DecK(c*) decrypts to message m* ≠ ┴ that

is distinct from all m queried to its encryption oracle.

– Hence adversary wins if it can create a “plaintext

forgery”.

15

INT-PTXT Security

Adversary Challenger

b ← {0,1}

Enc(m)

c = EncK(m) c

Adversary wins if m* ≠ m and m* ≠ ┴

K ← KGen(1k)

Try(c*) m* = DecK(c*)

16

INT-PTXT Security

• INT-PTXT security:

– An SE scheme is INT-PTXT secure if no such

efficient adversary exists.

– Clearly INT-PTXT security is a desirable property of

an encryption scheme used for building a secure

channel, as it prevents (plaintext) message injection.

– Slightly different strength of security notion

depending on:

• whether adversary has one or many queries to Try; and

• whether Try modified to output ciphertext validity.

17

INT-CTXT Security

• INT-CTXT security:

– As INT-PTXT, but only requirement is that c* be

valid ciphertext (could be another encryption of

some m queried to encryption oracle).

– Hence win if adversary creates “ciphertext forgery”.

– (Application to secure channels not immediately

clear.)

• Clearly, INT-CTXT security implies INT-PTXT

security.

• Quiz question: does CTR mode provide INT-

CTXT or INT-PTXT security?

18

IND-CTXT Security

Adversary Challenger

b ← {0,1}

Enc(m)

c = EncK(m) c

Adversary wins if c* ≠ c and m* ≠ ┴

Try(c*) m* = DecK(c*)

K ← KGen(1k)

19

CCA Security

• We may also want to consider chosen-ciphertext
attacks, in which the adversary can get ciphertexts
of his choice decrypted.
– Lazy reasoning: because this is what we did in the public

key setting.

– In extreme cases an attacker may actually have this
capability in practice!

– Or this capability may be approximated in practice.
• Adversary may be able to observe the reaction of the

decrypting party after processing an adversarially chosen
ciphertext and thereby infer something about the plaintext.

• Adversary may learn when decryption fails, and possibly the
cause of failure, by analysing timing, error messages, or other
behaviour.

• This is particularly so for secure network protocols like IPsec,
SSL/TLS, SSH.

• It provides powerful attack opportunities!

20

IND-CCA Security

• IND-CCA security:
– Attacker now has repeated access to LoR

encryption oracle and to a decryption oracle.

– LoR encryption oracle as before.

– Decryption oracle takes any c as input, and outputs
DecK(c), which is either a message m or a failure
symbol ┴.

– Adversary not permitted to submit output of LoR
encryption oracle to its decryption oracle.

– (To prevent trivial win).

• All basic modes of operation are insecure in
this model!
– Exercise for CTR mode.

21

IND-CCA Security

Adversary Challenger

b ← {0,1}

(m0,m1)

c = EncK(mb) c

b’ Adversary wins if b =b’

c’

m
m = DecK(c’)

K ← KGen(1k)

22

A Fundamental Relation [BN00]

• IND-CPA + INT-CTXT  IND-CCA

• Proof intuition:

– Game 0: IND-CCA security game against SE.

– Game 1: replace decryption oracle with “┴ ”.

– Games 0 and 1 identical unless related adversary wins

INT-CTXT game.

– Game 1 can be simulated perfectly by IND-CPA

adversary (no decryption oracle to simulate any longer).

• NB: proof breaks down if decryption can return

more than one error message.

– See [BDPS13] for development of models and relations

in this setting (which is important for practice).

23

Authenticated Encryption Security

• We define AE := IND-CPA + INT-CTXT

• Often easier to prove IND-CPA and INT-CTXT
separately than to prove IND-CCA directly.

• AE security has become the accepted security
target for SE schemes.
– In part (I think) because of the relation to IND-CCA

security.

– Note that IND-CPA + INT-PTXT does not imply IND-
CCA.

• Example separation: MAC-then-encrypt with redundant
ciphertext bit.

– Note also that IND-CPA + INT-CTXT is strictly stronger
than IND-CCA.

• Example separation: ?

• In fact IND-CCA does not imply either of our integrity notions!

M  DecK(C)

Ret M

C  EncK(M0)

Ret C
Ret

C  EncK(M1)

Ret C

M0 , M1 M0 , M1 C C

IND-CPA +

INT-CTXT
AE

b b

^

All-in-one Security Notion for AE

25

Relations Between SE Security

Notions

AE:

 IND-CPA+

INT-CTXT

IND-CCA
IND-CPA

+ INT-PTXT

IND-CPA INT-PTXT

26

AEAD

• AEAD = “AE with Associated Data”.

• Extension to AE allowing some data to be
encrypted and remainder to be
authenticated/integrity protected.

• Sample applications:
– TLS Record Protocol data: header is integrity

protected, rest of payload is encrypted and integrity
protected.

– IPsec ESPv3 protocol for encrypting IP payload and
integrity protecting (selected) IP header fields.

• We omit security definition for AEAD.
– Can define by extension of AE notion.

27

MACs

• Message Authentication Codes (MACs) provide

authenticity/integrity protection for messages.

– Symmetric analogue of a digital signature.

– Important for achieving security for SE beyond IND-CPA.

• Syntax: MAC = (KGen,Tag,Verify).

– KGen takes security parameter is input and outputs key K.

– Tag has as input a key K, a message m of arbitrary length, and

outputs a short MAC tag τ.

– Verify has as input a key K, a message m, a MAC tag τ and

outputs 0 or 1, indicating correctness of tag τ for m under K.

28 28

MACs

• Key security requirement is

unforgeability.

• Having seen MAC tags for

many chosen messages, an

adversary cannot create the

correct MAC tag for another

chosen message.

• Strong and weak forms of

unforgeability:

• New MAC tag on

(possibly) queried

message versus MAC

tag on unqueried

message.

• SUF-CMA and (W)UF-

CMA security

MAC tag

Tag

m

K

0/1

Verify

m

K

MAC tag

29

PRFs and MACs

• Unpredictability of PRF output means that a PRF is a

MAC.

• More formally:

– Tag(K,m) = PRFK(m); and

– Verify(K,m,τ) outputs 1 if and only if PRFK(m) = τ.

• It’s often assumed (implicitly or explicitly) that the

security definition of a MAC is that it acts as a PRF.

30

HMAC

• HMAC is a general purpose method for building a MAC

from a hash function H.

• Illustration for SHA-1:

Source: Wikipedia

31

HMAC

• HMAC is fairly efficient: cost of tag

computation/verification is that of hashing message plus

small overhead (3 x H’s compression function).

– But slow compared to more modern algorithms based on

universal hashing like UMAC, poly1305.

• HMAC design and security proof in [BCK96].

– PRF security relies (roughly) on H’s compression function being

a PRF and on collision resistance of H.

– Refined analysis in [B06].

• HMAC standardised in RFC 2104.

– Widely adopted in secure network protocols, e.g. SSL/TLS.

– HMAC is an early triumph for provable security.

32

Generic Composition: EtM

• [BN00] considered how to achieve IND-CCA/AE

security by generic composition of IND-CPA

secure encryption schemes and (S)UF-CMA

secure MACs.

• Encrypt-then-MAC (EtM): achieves AE security
– Very easy proof:

– INT-CTXT security follows from MAC on ciphertext;

– IND-CPA security follows from IND-CPA security of base SE

scheme.

– Needs SUF-CMA MAC.

• As provided by PRF-based construction, HMAC, etc.

33

Generic Composition: E&M

• Encrypt-and-MAC (E&M): Not even CPA

secure in general!
– MAC can leak plaintext information but still be SUF-CMA

secure.

– But specific instantiations may be AE/IND-CCA secure, e.g. as

used in SSH [BKN02,PW10].

– At least need MAC to not leak plaintext information (e.g. PRF

assumption).

34

Generic Composition: MtE

• MAC-then-Encrypt (MtE): Not CCA secure in

general.
– Construct separating example (hint: redundant bits again).

– But easy to show IND-CPA and INT-PTXT security for this

composition.

• Good enough for secure channel applications?

– Extension of [K01] shows MtE is IND-CCA secure when

encryption scheme is CBC mode or secure stream cipher.

– Proof for CBC needs SPRP property for block cipher.

– Real instantiations are rarely pure MtE (more later).

35

Some Philosophy

• Models are just models.

• And reality is hard to model.

• General approach is to build conservative models with

strong adversaries.

• Realising assumed adversarial capabilities may be hard

in practice.

• Consequently, it can be hard to convince practitioners that your

chosen plaintext distinguishing attack should be of serious

concern (to them)!

• They tend to need to see plaintext and a working exploit.

• Countering this: attacks only get better (worse!) with time

(examples to follow).

• Every practitioner seems to need to learn this the hard way.

36

IND-CCA Security (recap)

Adversary Challenger

b ← {0,1}

(m0,m1)

c = EncK(mb) c

b’ Adversary wins if b =b’

c’

m
m = DecK(c’)

K ← KGen(1k)

37

Discussion

Now look back at IND-CCA security model.

• What, if anything, is overkill?

• What, if anything, is missing?

Information Security Group

Lecture 2

Kenny Paterson

Bar-Ilan Winter School on Symmetric Cryptography

38

39

Lecture 2 Outline

• Why integrity protection really matters: IPsec

case study.

• Why details really matter: predictable IVs, TLS,

and the BEAST.

40

Introduction to IPsec

• IPsec provides security at the IP layer.

– IP packets get encrypted and/or integrity protected.

• Defined in IETF RFCs 2401–2412 (v2) and 4301-4309

(v3).

• Implemented in all major OSes and in networking

hardware.

• Applications:

– Virtual Private Networking.

– Remote Access Solutions.

– Protection of inter-network management data in UMTS.

41

IPsec Basic Features

• IPsec provides two basic modes of use: transport and

tunnel.

• IPsec provides authentication/integrity protection and/or

confidentiality services for data.

– AH and ESP protocols.

42

IPsec Tunnel Mode

• Cryptographic protection for entire IP packet.

• Entire packet plus security fields encapsulated
as payload of new ‘outer’ IP packet.

43

IPsec Tunnel Mode Deployment

Header Payload

Header Payload

Inner IP packet

Outer

Header

Network

e.g.

Internet

Header Payload

Inner IP packet

Inner IP packet

Header Payload

Inner IP packet

Security

Gateway
Security

Gateway

Outer

Header

Scope of

cryptographic

protection

44

ESP Protocol

• ESP = Encapsulating Security Protocol.

– v1, v2, v3 in IETF RFCs 1827, 2406, 4303.

– IPsec’s “encryption workhorse”.

• ESP provides one or both of:

– Confidentiality for packet/payload (v1, v2, v3).

– Integrity protection for packet/payload (v2, v3).

• ESP uses symmetric encryption and MACs.

– Usually CBC mode of block cipher for encryption.

• With random, per packet IVs.

– HMAC-SHA1 or HMAC-MD5 for integrity protection.

45

ESP in Tunnel Mode

Inner

IP header

Outer

IP header

Payload

(eg TCP, UDP, ICMP)

ESP

trlr

ESP

auth

ESP hdr

SPI, seqno

MAC scope

Encryption scope

Original packet

When both MAC and encryption are used,

IPsec employs an EtM construction

46

History of Encryption in IPsec

• ESPv1 (1995) provided no integrity protection.

– Reliant on separate AH protocol to provide this.

– Bellovin [B97] sketched a series of attacks on ESPv1 without

AH.

– Limited plaintext recovery from TCP segments, using 224

chosen plaintexts.

– Certainly breaks IPsec in IND-CCA security model.

– Theoretically interesting, but no attacks demonstrated to work

in practice.

– Sufficiently serious to influence development of v2 RFCs.

47

Integrity protection and ESPv2

• IETF response to Bellovin attacks:

– ESPv2 (1998) includes integrity protection as an

option.

– But implementations must still support “encryption-

only” mode.

• ESPv2 represents a compromise between

improving security and maintaining backwards-

compatibility.

– This is very common in real-world cryptography!

48

Integrity protection and ESPv3

• ESPv3 (2005):

– Still allows encryption-only ESP.

– But no longer requires support for encryption-only.

– Gives strong warnings about Bellovin-Wagner attack

and refers to theoretical cryptography literature to

motivate need to use integrity protection.

– “ESP allows encryption-only … because this may

offer considerably better performance and still

provide adequate security, e.g., when higher layer

authentication/integrity protection is offered

independently.”

49

IPsec in Theory and Practice

• Back in the 2000’s, the theoretical cryptography

community was well aware of the need to carefully

combine integrity protection with encryption.

– To prevent active attacks against encryption.

• Already plenty of high-profile, real-world examples.

– Kerberosv4, WEP, SSHv1,…

• It was also well-known amongst IPsec experts that

encryption-only configurations should be avoided.

– Clear warnings against their use in the RFCs.

• So was there really any problem here?

50

IPsec in Theory and Practice

• From an historical administration guide from a

well-known vendor:

 “If you require data confidentiality only in your IPSec

tunnel implementation, you should use ESP without

authentication. By leaving off the authentication

service, you gain some performance speed but lose

the authentication service.”

http://www.cisco.com/en/US/docs/security/security_ma

nagement/vms/router_mc/1.3.x/user/guide/U13_bldg

.html#wp1068306, cicra 2008).

51

Attacking Encryption-only ESP

• If we want to demonstrate beyond doubt that

encryption-only ESP is disastrously weak, we

need to:

– Produce attacks that consume reasonable

resources.

– Implement attacks that are as realistic as possible

• Operating under normal network conditions.

• Ideally, ciphertext-only attacks.

• Hand over plaintext in a demo!

52

Reminder: Bit Flipping in CBC Mode

• Flipping bits in ciphertext block Ci-1 leads to

controlled changes in plaintext block Pi.

• But block Pi-1 is randomised.

Ci-1 Ci

Pi-1 Pi

dK dK

Flipping bits here

Leads to bit flips here And randomised block here

53

Attacking Linux ESP

[PY06]:

• Three different (but related) attacks on Linux kernel

implementation of encryption-only ESP in tunnel mode.

• Exploit bit flipping weakness of CBC mode encryption.

– Flipping creates modified headers for inner packets that

produce “unusual” effects when processed

• Resulting in either error messages or in packet re-

direction for inner packets

– Error messages are carried by ICMP protocol and reveal

(some) plaintext data.

– Packet redirection can send inner packet to attacker’s

machine.

IP Header Format

7 0 16 31 3 4 15 8

Version IHL Type of Service Total Length

Fragmentation Fields

Protocol Header Checksum

Source Address

Destination Address

Time to Live

Options (optional)

32 bits

5 x 32-bit

words

Up to

10

words

IP Header Format

Version IHL Type of Service Total Length

Fragmentation Fields

Protocol Header Checksum

Source Address

Destination Address

Time to Live

Options (optional, up to 10 words)

Protocol field (8 bits):

• Indicates upper layer protocol in IP payload.

• Possible values are dependent on IP implementation and protocols it supports.

• Typical values: 0x01 for ICMP, 0x06 for TCP, 0x17 for UDP.

IP Header Format

Version IHL Type of Service Total Length

Fragmentation Fields

Protocol Header Checksum

Source Address

Destination Address

Time to Live

Options (optional, up to 10 words)

Header checksum (16 bits):
• 1’s complement sum of 16 bit words in header (inc. any options).

• Incorrect checksum leads to datagram being silently dropped.

• Provides error detection for IP headers.

IP Header Format

Version IHL Type of Service Total Length

Fragmentation Fields

Protocol Header Checksum

Source Address

Destination Address

Time to Live

Options (optional, up to 10 words)

Source Address (32 bits):

• Contains the IP address of the host originating the datagram.

• Needed so any replies or error messages can be delivered back to

source.

Csum PF

58

Example Attack on ESP

C1 C2

dK dK

C3

dK

IV

Payload

Dest addr

Src addr

Payload

Flip bits here

To change

protocol field

and source

address here

Correction of

checksum via further

bit flips in IV

Outer packet payload = CBC encryption of inner packet

59

Attack Visualisation

Intercept,

bit-flip

and re-

inject

Header Payload

Inner IP packet

Outer

Header

Header Payload

Inner IP packet

Security

Gateway
Security

Gateway

Header Payload

Inner IP packet

Outer

Header

Header Payload

60

Attack Visualisation

Security

Gateway

Header Payload

Header Part Payload ICMP

Header Part Payload ICMP

Intercept,

extract

plaintext

Protocol field

unsupported, generate

ICMP error message

Destination addr = source addr

from original IP packet

Pass through gateway,

since dest addr outside tunnel

61

The Attack in Words

• Attacker intercepts packet, does bit flipping
needed to manipulate protocol field and source
address, and to correct checksum.
– Can do better than random bit flipping for checksum.

• Attacker than injects modified datagram into
network.

• Inner packet decrypted by gateway and
forwarded to end-host.

• End-host generates ICMP “protocol
unreachable” message in response to modified
protocol field in header.

62

The Attack in Words

• ICMP payload carries inner packet header and
528 bytes of inner packet’s payload.
– Payload now in plaintext form!

– ICMP message is sent to host indicated in source
address

– And we have modified this address so that ICMP
message does not pass through IPsec tunnel.

• Attacker intercepts ICMP message to get
plaintext bytes.

• These ideas were used in [PY06] to build an
attack client that can efficiently extract all
plaintext from an IPsec encryption-only tunnel.

63

Characteristics of IPsec Attacks

• The attacks recover plaintext (i.e. contents of inner
datagrams), but not encryption keys.

• The attacks are efficient.
– Even against triple DES or AES.

– Can be run in near real-time against an IPsec tunnel.

• Attacks are ciphertext-only.

• The attacks do not require special operating conditions.
– Attacker needs to capture packets from network, inject packets

into network.

– But they need ability to monitor gateway for ICMP responses.

• All three attacks worked in practice against Linux
implementation of IPsec.
– Attacks fail if post-processing policy checks specified in RFCs

are properly implemented.

– But Linux did not implement these 

64

Attacking Encryption-only ESP

• Some reactions to attacks in [PY06]:
– “…the possibility of active attacks on unauthenticated but

encrypted ESP packets is well known, and we advise against
such use in the most recent set of IPsec documents. These
documents have been approved for publication by the IESG
and are in the queue to be published as RFCs. As a result, no
further, substantiative changes will be made.”

– “This is all very well understood among the IPSec community,
and is not news.”

– “I think the spec is clear about the dangers of encryption
without authentication. If anyone built implementations that
negotiate encryption without authentication, then maybe they
weren't paying attention closely enough.”

• So is there really any problem if the RFCs still allow
use of encryption-only ESP?

65

Why the Attacks Matter(ed)

• Recall:

 “If you require data confidentiality only in your IPSec

tunnel implementation, you should use ESP without

authentication. By leaving off the authentication

service, you gain some performance speed but lose

the authentication service.”

66

Why the Attacks Matter(ed)

• Also recall:

 ““ESP allows encryption-only … because this may

offer considerably better performance and still

provide adequate security, e.g., when higher layer

authentication/integrity protection is offered

independently.”

• But these attacks work without any higher layer even

getting to see the data.

• So no higher layer integrity protection can stop them!

67

Follow-up Work

• [DP07]:

– Attacks against any RFC-compliant implementation

of encryption-only ESP.

• [DP10]:

– Extending [DP07] attacks to the situation where

integrity protection via AH is applied before

encryption.

– Breaking all MtE configurations of IPsec!

– Rendering AH pretty useless.

• Since ESP offers integrity too, though with different scope of

protection.

68

Lessons

• Encryption on its own does not provide

confidentiality in the face of active attacks.

– IND-CPA security is not enough.

– AE security would have prevented the attacks.

• Attacks can exploit interaction between crypto

layer and the layer(s) above.

– In this case, the layer above was IP because of

protocol tunnelling.

– Information leakage from IP layer error messages.

• Practical attacks are needed to convince

“experts” of the need for change.

69

Lecture 2 Outline

• Why integrity protection really matters: IPsec

case study.

• Why details really matter: predictable IVs,

TLS, and the BEAST.

70

TLS Overview

• SSL = Secure Sockets Layer.

– Developed by Netscape in mid 1990s.

– SSLv1 broken at birth.

– SSLv2 flawed, now IETF-deprecated (RFC 6176).

– SSLv3 still widely supported.

• TLS = Transport Layer Security.

– IETF-standardised version of SSL.

– TLS 1.0 in RFC 2246 (1999).

– TLS 1.1 in RFC 4346 (2006).

– TLS 1.2 in RFC 5246 (2008).

71

Importance of TLS

• Originally designed for secure e-commerce, now

used much more widely.

– Retail customer access to online banking facilities.

– Access to gmail, facebook, Yahoo, etc.

– Mobile applications, including banking apps.

– Payment infrastructures.

• TLS has become the de facto secure channel

protocol of choice.

– Used by hundreds of millions of people and devices

every day.

72

Simplified View of TLS

Client Server

Handshake Protocol

Record Protocol

Used by client and server to

1.Negotiate ciphersuite

2.Authenticate

3.Establish keys used in the Record Protocol

Provides confidentiality and integrity for application

layer data using keys from Handshake Protocol

73

TLS Record Protocol

• TLS Record Protocol provides:
– Data origin authentication and integrity using a

MAC.

– Confidentiality using a symmetric encryption
algorithm.

– Anti-replay service using sequence numbers
protected by the MAC.

– Optional compression.

– Fragmentation of application layer messages.

MAC

SQN || HDR PAYLOAD

Padding

Encrypt

Ciphertext

MAC tag PAYLOAD

HDR

TLS Record Protocol:

MAC-Encode-Encrypt (MEE)

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

74

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

75

Operation of TLS Record Protocol

• Data from layer above is received and partitioned into

fragments (max size 214 bytes).

• Optional data compression.

– Default is no compression.

• Calculate MAC on SQN, 5-byte HDR, and PAYLOAD.

• Append MAC to PAYLOAD.

• Pad (if needed by encryption mode), then encrypt.

• Prepend HDR containing:

– Content type (1 byte, indicating content of record, e.g. handshake

message, application message, etc),

– SSL/TLS version (2 bytes),

– Length of fragment (2 bytes).

• Submit to TCP.

76

Operation of TLS Record Protocol

Receiver processing steps reverses these steps:

1. Receive message, of length specified in HDR.

2. Decrypt.

3. Remove padding to recover PAYLOAD and MAC.

4. Check MAC on SQN, HDR, PAYLOAD.

5. (Decompress PAYLOAD.)

6. Pass PAYLOAD to upper layer (no fragment
reassembly).

 Errors can arise from any of decryption, padding removal
or MAC checking steps.

 All of these are fatal errors, leading to error message
and connection termination.

76

77

TLS Sequence Numbers

• SQN is 8 bytes in size and is incremented for each new

Record Protocol message.

• SQN not transmitted as part of message.

– Each end of connection maintains its own view of the current

value of SQN.

– TLS is reliant on TCP to deliver messages in order.

• Using wrong SQN leads failure of MAC verification

– A fatal error leading to TLS connection termination.

• Use of SQN creates a stateful encryption scheme.

– Intention is to prevent replay, insertion, reordering attacks.

– Order in the TLS secure channel matters.

– We have not yet introduced security notions for this (see later).

AE in the TLS Record Protocol

• TLS 1.2 additionally supports authenticated encryption modes.

– AES-GCM in RFC 5288

– AES-CCM in RFC 6655

• Support for TLS 1.2 recently added in major browsers.

– Mostly as a consequence of recent attacks.

• However, TLS 1.2 is only now becoming supported in servers.

SSL Pulse: Webserver TLS support Browser TLS support (out-of-the-box, Nov. 2013)

TLS v1.2 TLS 1.2

TLS v1.2 TLS v1.2 TLS v1.2

79

TLS Extensions and DTLS

• Many extensions to TLS exist.

• Allows extended capabilities and security features.

• Examples:

– Renegotiation Indicator Extension (RIE), RFC 5746.

– Application layer protocol negotiation (ALPN), draft RFC.

– Authorization Extension, RFC 5878.

– Server Name Indication, Maximum Fragment Length

Negotiation, Truncated HMAC, etc, RFC 6066.

• DTLS is effectively “TLS over UDP”

– DTLS 1.0 aligns with TLS 1.1, and DTLS 1.2 with TLS 1.2.

– UDP provides unreliable transport, so DTLS must be error

tolerant, necessitating changes to Handshake Protocol and

error management.

MAC

SQN || HDR PAYLOAD

Padding

Encrypt

Ciphertext

MAC tag PAYLOAD

HDR

Reminder: TLS Record Protocol:

MAC-Encode-Encrypt (MEE)

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

80

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

81

Theory for TLS Record Protocol?

• The TLS Record Protocol employs a (stateful) MAC-

then-encrypt composition.

– With associated data (the Record Protocol header).

• This is known to be not generically secure, according to

the results of [BN00].

– But it is INT-PTXT and IND-CPA secure

81

82

Theory for TLS Record Protocol?

• Building on results of [K01], the basic MAC-then-encrypt

construction can be shown to be AE (and so IND-CCA)

secure for the special case of CBC mode encryption.

• This extends to the stateful setting, as formalised in

[BKN02].

• AE security also holds for RC4 under the assumption

that its output is pseudorandom.

• So are we done?

82

83

Theory for TLS Record Protocol?

• Analysis of [K01] assumes random IVs for CBC mode.

– SSL v3.0 and TLS 1.0 use chained IVs.

– TLS 1.1 and 1.2 recommend use of random IV.

• TLS is really using MAC-Encode-Encrypt.

– With a specific padding scheme for the Encode step.

– Decryption can fail in more than one way, so potentially multiple

decryption failure symbols ┴1, ┴2, ┴3,…

• Padding does not arise anywhere in the analysis in [K01].

– Data is assumed to be block-aligned, and MAC size = block size.

– And padding is not integrity protected.

• RC4 has known statistical weaknesses.

• We’ll show that these gaps between theory and reality do

matter.

83

84

Attacking Chained IVs

IV chaining in SSLv3 and TLS 1.0 leads to a

chosen-plaintext distinguishing attack against TLS.

• First observed for CBC mode in general by Rogaway in

1995.

• Application to TLS noted by Dai and Moeller in 2004.

• Extended to theoretical plaintext recovery attack by Bard

in 2004/2006.

• Turned into a practical plaintext recovery attack on

HTTP cookies by Duong and Rizzo in 2011.

– The BEAST.

• 16-year demonstration that attacks do get better.

85

Attacking Chained IVs

• Suppose attacker wishes to distinguish encryptions of

single blocks P0 , P1.

• Attacker makes LoR query for messages P0, P1.

• Attacker receives ciphertext C = C1 for message Pb

where some known, previous block C0 was used as the

IV.

Pb

C0 C1

eK

85

86

Attacking Chained IVs

• C1 will be used as the IV for the next encrpytion.

• Attacker now makes LoR query on block P0  C0  C1.

• Attacker receives single block ciphertext C2.

Pb

C0 C1

eK

P0C0C1

C2

eK

86

87

Attacking Chained IVs

Pb

C0 C1

eK

P0C0C1

C2

eK

• If Pb = P0, then inputs to block cipher are the same in
both encryptions.

• Hence, if Pb = P0, then C1 = C2.
• Otherwise, if Pb = P1, then C1 ≠ C2.

• So looking at C1 and C2 gives us a test to distinguish
encryptions of P0 and P1.

87

88

Attacking Chained IVs

• Attack extends easily to multi-block messages.

• So IV chaining for CBC mode is broken in theory.

• How can we turn this into a practical attack on

TLS?

• We want plaintext recovery rather than a

distinguishing attack.

• We need to realise the chosen plaintext

requirement.

89

The BEAST – Part 1

C0 C1

eK

P’C0C1

C2

eK

• Assume bytes P0, P1,… P14 are known, try to recover P15.

• Use P0P1…P14 as first 14 bytes of P’.

• Iterate over 256 possible values in position 15 in P’.

• P’15 = P15 if and only if C1 = C2.

• So average of 128 trials to extract P15 when remaining bytes in block
are known.

89

P0…P14

P15

90

The BEAST – Part 2

• Now assume attacker can control position of unknown bytes in stream with
respect to CBC block boundaries (chosen boundary privilege).

• Repeat previous single-byte recovery attack with sliding bytes.

• Green: initially known bytes.

• Red: unknown (target) bytes.

• Orange: recovered bytes.
90

 P10 P11 T0 P12 P13 P14 T1 T2 T3 T4 T5 P9 P8 P7 P5 P6
…

 P10 P11 T0 P12 P13 P14 T1 T2 T3 T4 T5 P9 P8 P7 P5 P6
…

 P10 P11 T0 P12 P13 P14 T1 T2 T3 T4 T5 P9 P8 P7 P5 P6
…

 P4 P3 P1 P2 P0

 P4 P3 P1 P2 P0

 P4 P3 P1 P2 P0

…

…

…

 P10 P11 T0 P12 P13 P14 T1 T2 T3 T4 T5 P9 P8 P7 P5 P6
…

 P4 P3 P1 P2 P0
…

Browser

TLS tunnel
Cookie

for

remote

site

91

The BEAST – Part 3

91

92

The BEAST – Key Features

• BEAST JavaScript loaded ahead of time into client
browser from compromised or malicious wesbite.

• Provides chosen-plaintext capability.

• Attack target is HTTP secure cookie.

• JavaScript uses HTTP padding to control positions of
unknown bytes (chosen boundary privilege).

• Difficult to get fine control over byte/block positions.
- Need to be able to inject chosen plaintext block at the very start

of Record Protocol messages.

• JavaScript also needs to communicate with MITM
attacker.

Summary: it’s complicated, but it can be made to work.

• Techniques useful in later TLS attacks too.

92

93

The BEAST – Impact

• The BEAST was a major headache for TLS vendors.

- Perceived to be a realistic attack.

- Most client implementations were “stuck” at TLS 1.0.

• Best solution: switch to using TLS 1.1 or 1.2.

- Uses random IVs, so attack prevented.

- But needs server-side support too.

• For TLS 1.0, various hacks were done:

- Use 1/n-1 record splitting in client.
- Now implemented in most but not all (?) browsers.

- Send 0-length dummy record ahead of each real
record.
- Breaks some implementations.

- Or switch to using RC4?
- As recommended by many expert commentators.

93

94

Lessons

• A theoretical vulnerability pointed out in 1995
became a practical attack in 2011.
- Attacks really do get better (worse!) with time.

- Practitioners really should listen to (some)
theoreticians.

- And, in this case, they did: TLS 1.1 and 1.2 use
random IVs.

- Problem was that no-one was using these versions.

• Ideas from the wider security field were needed
to make the attacks headline news.
- Man-in-the-browser via Javascript.

- Importance of demo/youtube video and showing
people the plaintext.

94

Information Security Group

Lecture 3

Kenny Paterson

Bar-Ilan Winter School on Symmetric Cryptography

95

96

Outline

• Padding oracle attacks on TLS

• Lucky 13

• TLS security proof

MAC

SQN || HDR PAYLOAD

Padding

Encrypt

Ciphertext

MAC tag PAYLOAD

HDR

TLS Record Protocol: MAC-Encode-Encrypt

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

97

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

98

TLS Record Protocol Padding

• Padding in TLS 1.0 and up has a particular

format:

– Always add at least 1 byte of padding.

– If t bytes are needed, then add t copies of the byte

representation of t-1.

– So possible padding patterns in TLS are:

 00;

 01 01;

 02 02 02;

98

99

TLS Record Protocol Padding

• Variable length padding is permitted in all versions of

TLS.

• Up to 256 bytes of padding in total, so longest possible

padding pattern is:

 FF FF…. FF

• From TLS 1.0:

Lengths longer than necessary might be desirable to

frustrate attacks on a protocol based on analysis of the

lengths of exchanged messages.

• This “goal” has interesting theoretical implications.

-Recall that, in IND-CPA/IND-CCA models, m0 and m1 always have

the same length.

99

100

Handling Padding During Decryption

• TLS 1.0 error alert:

 decryption_failed: A TLSCiphertext decrypted in

an invalid way: either it wasn`t an even multiple

of the block length or its padding values, when

checked, weren’t correct. This message is

always fatal.

• Suggests padding format should be checked,

but without specifying exactly what checks

should be done.

100

101

Insecurity of Weak Padding Checks

• Recall decryption sequence:
– CBC mode decrypt, remove padding, check MAC.

• [M02]: failure to check padding format leads to a
simple attack recovering the last byte of plaintext
from any block.

• Assumptions:
– Attacker has a TLS ciphertext containing a complete block

of padding.

– So MAC ends on block boundary for this ciphertext.

– Padding removed by inspecting last byte only.

101

102

Moeller Attack for TLS

Ct-1 Ct

dK dK

102

Ct-2

dK

…

…

Blocks from

special ciphertext

Byte value

is “0F” here

103

Moeller Attack for TLS

Ct-1 C*

dK dK

Decryption succeeds

if and only if byte

value is “0F” here

Target ciphertext

block from stream

103

Ct-2

dK

…

…

Enabling recovery

of last byte of

dK(C*) here.

Blocks from

special ciphertext

104

Preventing Weak Padding Checks

• Decryption succeeds if and only if:

 (Ct-1)15  (dK(C*))15 = “0F”

• Hence attacker can recover last byte of dK(C*) with

probability 1/256.

• This enables recovery of last byte of original plaintext P*

corresponding to C* in the CBC stream.

• Hence, in TLS 1.1 and up:

 Each uint8 in the padding data vector MUST be filled with the

padding length value. The receiver MUST check this

padding….

 104

105

Full Padding Check

• We now assume that TLS does a full padding check.

• So decryption checks that bytes at the end of the
plaintext have one of the following formats:

 00;

 01, 01;

 02, 02, 02;

 FF, FF,………..FF

and outputs an error if none of these formats is found.

105

106

Padding Oracles

• Vaudenay [V02] proposed the concept of a padding

oracle.

106

C

Valid/Invalid

• Vaudenay showed that, for CBC mode and for certain padding

schemes, a padding oracle can be used to build a decryption oracle!

• We’ll focus on TLS, but padding oracle attacks have been widely

deployed, e.g. DTLS, ASP.NET, XML encryption.

Padding

Oracle

P=DecK(C)

Check

padding of P

107

Padding Oracle Attack for TLS Padding

Ct-1 Ct

Pt-1 Pt

dK dK

XOR with Δ here and

submit to padding oracle

Eventually produces

valid pad “00” here

Recovering true

plaintext byte via

Pt  Δ = (…. 00)

Target ciphertext

block placed as last

block of TLS message

108

Padding Oracle Attack for TLS Padding

Ct-1 Ct

Pt-1 Pt

dK dK

XOR with Δ1Δ0 here

and submit to oracle

Eventually produces

valid pattern “01 01” here

This byte now set

to “01” by setting

Δ0:=Δ  01

108

Recovering last-but-one

plaintext byte via

Pt  (…..Δ1Δ0) = (….0101)

109

Padding Oracle Attack for TLS Padding

• An average of 128 trials are needed to extract

the last byte of each plaintext block.

• Attack extends to the entire block, with an

average of 128 trials per byte.

• Can extend to entire ciphertext.

– Because attacker can place any target block as last

block of ciphertext.

110

TLS Padding Oracles In Practice?

• In TLS, an error message during decryption

can arise from either a failure of the padding

check or a MAC failure.

• Vaudenay’s padding oracle attack will produce

an error of one type or the other.

– Padding failure indicates incorrect padding.

– MAC failure indicates correct padding.

• If these errors are distinguishable, then a

padding oracle attack should be possible.

111

TLS Padding Oracles In Practice?

Good news (for the attacker):

• The error messages arising in TLS 1.0 are
different:
– bad_record_mac

– decryption_failed

Bad news:

• But the error messages are encrypted, so
cannot be seen by the attacker.

• And an error of either type is fatal, leading to
immediate termination of the TLS session.

111

112

TLS Padding Oracles In Practice?

Canvel et al. [CHVV03] :
• With the natural implementation, a MAC failure error

message will appear on the network later than a
padding failure error message.

• Why?

• Recall the sequence of processing steps:
– Decrypt

– Check pad (abort if wrong)

– Check MAC (abort if wrong)

• Hence MAC check only done if padding is good.

• And if padding is bad, processing terminates quickly
(MAC check is relatively slow).

112

113

TLS Padding Oracles In Practice?

Canvel et al. [CHVV03] :
• So timing the appearance of error messages can give

us the required padding oracle.
– Even if the error messages are encrypted!

• But the modified ciphertexts always fail the MAC check
(or the padding check).

• And the errors are fatal.

• So the attacker only gets query to padding oracle
before try before connection is lost.

• Attacker can learn one byte of plaintext, with probability
only 1/256.

– Chances of being correct on first query.

113

114

OpenSSL and Padding Oracles

Canvel et al. [CHVV03]:

• The attacker can still decrypt reliably if a fixed plaintext is

repeated in a fixed location across many TLS sessions.

– e.g. password in login protocol or session cookie.

– A multi-session attack.

– Modern approach: use BEAST-style malware.

• OpenSSL had a detectable timing difference.

– Difference is time taken to compute HMAC on message.

– Roughly 2ms difference for 214 byte messages.

– Enabling recovery of TLS-protected Outlook passwords in about

3 hours.

115

DTLS and Padding Oracles

• Recall that DTLS is basically TLS over UDP.

• UDP is not reliable like TCP, so DTLS has to

tolerate packet drops, replays, etc.

• This means that the connection is not terminated

in the event of an error.

• But there are no error messages to time.

115

116

Breaking DTLS in OpenSSL

• [AP12]: Can we apply padding oracle ideas to

DTLS?

• But surely DTLS implementations would have

learned lessons from old TLS attacks?

– DTLS 1.0 is based on the TLS 1.1 specification.

– So we should not expect a timing-based side channel

to exist…

117

Breaking DTLS in OpenSSL

• OpenSSL implementations of DTLS prior to

versions 0.9.8s/1.0.0f did not check the MAC if

the padding check fails.

• Hence the timing difference observed in

[CHVV03] should still be present!

118

Breaking DTLS in OpenSSL

• Bad news: no error messages to time.

– Not a major hurdle:

– Attack packet takes longer to process if padding is

good.

– So measure time difference between sending attack

packet + heartbeat and receiving heartbeat response.

– This serves as a proxy for timing error messages

Attack

packet

Heartbeat

packet

Heartbeat

response

Breaking DTLS in OpenSSL

Good news: errors in DTLS are not fatal.

– Actually very good news: allows amplification of timing

difference using packet trains.

– With care, the timing difference arising from the attack

packets can be made cumulative!

– Repeat over many trains and use statistical techniques

to detect timing difference.
119

Attack

packet

Heartbeat

packet

Heartbeat

response

Attack

packet

Attack

packet

119

120

Experimental Results

• HMAC-SHA1 + CBC-AES, 10 packets per train, 1456

bytes per packet:

121

Experimental Results

• Example for HMAC-SHA1 + CBC-AES

– 192 byte packets

– 2 packets per train

– 10 trains per byte value

• Statistical processing:

– Get timings for each set of 10 trains; remove outliers

– Keep minimum time for each byte value tried.

– Select as correct byte the one that maximizes the

resulting time.

• Success probabilities:

– Per byte: 0.996

– Per block: 0.94

122

Observation

• DTLS turns out to be substantially easier to

attack than TLS.

– Because of ability to amplify timing differences using

packet trains.

– This is a consequence of the choice of transport

protocol: UDP instead of TCP.

– Details in [AP12].

• This distinction does not arise in current formal

security models for encryption.

– But could easily be modelled.

123

Countermeasures to Padding

Oracle Attacks

• Redesign TLS:
– Pad-MAC-Encrypt or Pad-Encrypt-MAC.

– Too invasive, did not happen.

• Switch to using RC4?
– Seems to have been a widespread reaction.

• Or add a fix to CBC mode to ensure uniform errors?
– If attacker can’t tell difference between MAC and pad

errors, then maybe TLS’s MEE construction is secure?

– So how should TLS implementations ensure uniform
errors?

124

Ensuring Uniform Errors

From the TLS 1.1 (2006) and 1.2 (2008) specifications:

…implementations MUST ensure that record processing

time is essentially the same whether or not the padding is

correct.

In general, the best way to do this is to compute the MAC

even if the padding is incorrect, and only then reject the

packet.

Compute the MAC on what though?

 124

125

Ensuring Uniform Errors

For instance, if the pad appears to be incorrect, the

implementation might assume a zero-length pad and then

compute the MAC.

•This approach was adopted in many implementations,

including OpenSSL, NSS (Chrome, Firefox), BouncyCastle,

OpenJDK, …

•One alternative (GnuTLS and others) is to remove as

many bytes as are indicated by the last byte of plaintext

and compute the MAC on what’s left.

125

126

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC

performance depends to some extent on the size of the

data fragment, but it is not believed to be large enough to

be exploitable, due to the large block size of existing MACs

and the small size of the timing signal.

126

127

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC

performance depends to some extent on the size of the

data fragment, but it is not believed to be large enough to

be exploitable, due to the large block size of existing MACs

and the small size of the timing signal.

127

128

Lucky 13 [AP13]

• Distinguishing attacks and full plaintext recovery

attacks against TLS-CBC implementations

following the advice in the TLS 1.1/1.2 specs.
– And variant attacks against those that do not.

• Applies to all versions of SSL/TLS.
– SSLv3.0, TLS 1.0, 1.1, 1.2.

– And DTLS.

• Demonstrated in the lab against OpenSSL and
GnuTLS.

MAC

SQN || HDR PAYLOAD

Padding

Encrypt

Ciphertext

MAC tag PAYLOAD

HDR

Reminder: MAC-Encode-Encrypt in TLS

129

130

Lucky 13 – Basic Idea

• TLS decryption removes padding and MAC tag to extract
PAYLOAD.

• HMAC computed on SQN || HDR || PAYLOAD.

• HMAC computation involves adding ≥9 bytes of padding and
iteration of hash compression function, e.g. MD5, SHA-1,
SHA-256.

• Running time of HMAC depends on L, the byte length of

 SQN || HDR || PAYLOAD:

– L ≤ 55 bytes: 4 compression functions;

– 56 ≤ L ≤ 119: 5 compression functions;

– 120 ≤ L ≤ 183: 6 compression functions;

– ….

130

131

Lucky 13 Distinguishing Attack

131

C
K

C’

C = EncK(M) M is either R287 || 00 or R32 || FF256

• Adversary intercepts c, mauls, and forwards on to

recipient.

• Time taken to respond with error message will indicate

whether M = R287 || 00 or M = R32 || FF256.

• Ciphertext-only distinguishing attack.

K

132

Lucky 13 Distinguishing Attack –

Choose

R R …..……….……………R 00

FF FF………………………….FF

R

R

C

C IV

IV

133

Lucky 13 Distinguishing Attack –

Maul

R R …..……….……………R 00

FF FF………………………….FF

R

R

C IV

C IV

134

Lucky 13 Distinguishing Attack –

Inject

R R …..……….……………R 00

FF FF………………………….FF

R

R

C’ IV

C’ IV

1-byte valid padding

20-byte MAC

267-byte message

256-byte valid padding

20-byte MAC

12-byte message

135

Lucky 13 Distinguishing Attack –

Decrypt

R R …..……….……..R R

R

C IV

C IV

136

Lucky 13 Distinguishing Attack –

Decrypt

R R …..……….……..R R

R

Slow MAC

verification

Fast MAC

verification

Timing difference: 4 SHA-1 compression function evaluations

SQN||HDR

SQN||HDR

280 bytes

25 bytes

137

Experimental Results for

Distinguishing Attack

• OpenSSLv1.0.1 on server running at 1.87Ghz.

• 100 Mbit LAN.

• Difference in means is circa 3.2 μs.
137

P
r
o
b
a
b
i
l
i
t
y

1.50 106 1.51 106 1.52 106 1.53 106 1.54 106 1.55 106 1.56 106 1.57 106
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Hardware Cycles Calculated by Attacker

138

Success Probability

138

Number of Sessions Success Probability

1 0.756

4 0.858

16 0.951

64 0.992

128 1

139

Lucky 13 – Plaintext Recovery

XOR 2-byte Δ here

and submit for decryption

Produces valid

patterns “01 01”

or “00”,

OR bad pad.

139

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

(HMAC-SHA-1 + AES-CBC)

Target

ciphertext

block from

stream

140

Case 1: “01 01” (or longer valid pad)

XOR 2-byte Δ here

and submit for decryption

140

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

13 + 16 + 16 + 10 = 55 bytes 20 bytes

4 SHA-1 compression

function evaluations

“01 01”

(or longer

valid pad)

141

Case 2: “00”

XOR 2-byte Δ here

and submit for decryption

141

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

56 bytes 20 bytes

5 SHA-1 compression

function evaluations

“00”

142

Case 3: Bad padding

XOR 2-byte Δ here

and submit for decryption

142

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

57 bytes 20 bytes

5 SHA-1 compression

function evaluations

zero-length

pad

143

Lucky 13 – Plaintext Recovery

• The injected ciphertext causes bad padding and/or a bad
MAC.

– This leads to a TLS error message, which the attacker times.

• There is a timing difference between “01 01” case and the
other 2 cases.

– A single SHA-1 compression function evaluation.

– Roughly 1000 clock cycles, 1μs range on typical processor.

– Measurable difference on same host, LAN, or a few hops away.

– Compare with original padding oracle attack: 2ms.

• Detecting the “01 01” case allows last 2 plaintext bytes in the
target block Ct to be recovered.

– Using the usual CBC algebra.

– Attack then extends easily to all bytes as in a standard padding
oracle attack.

143

144

Lucky 13 – Attack Cost

• We need 216 attempts to try all 2-byte Δ values.

• And we need around 27 - 28 trials for each Δ value to

reliably distinguish the different events.

– Noise level and number of trials depends on experimental set-up.

• Each trial kills the TLS session.

• Hence the headline attack cost is 223 – 224 sessions, all

encrypting the same plaintext.

• Looks rather theoretical?

144

145

Lucky 13 – Improvements

• If all-but-one byte of plaintext block is known,

then we only need 28 attempts to recover the

missing byte.

– We know how to set bytes of mask Δ so that valid

padding pattern is hit in all-but-one position.

– Works for any combination of block cipher and hash

function.

• If the plaintext is base64 encoded, then we only

need 26 attempts per byte.

– And 27 trials per attempt to de-noise, for a total of 213.

145

146

Lucky 13 – All-But-One Byte Known

Apply 2-byte mask

Δ =(01P14, Δ15)

Produces

pattern “01 ??”.

146

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

Target

ciphertext

block from

stream

147

Lucky 13 + BEAST = Practical Attack

BEAST-style attack targeting HTTP cookies.

• Client-side Javascript makes repeated HTTP GET

requests to target site.

• TLS sessions are automatically generated and HTTP

cookies attached to outgoing GET requests.

• Javascript pads the GET requests so that all-but-one

condition always holds.

– Sliding bytes as in original BEAST attack.

• MITM modifies ciphertext.

– Causing session crash.

• Cost of attack is around 213 TLS handshakes and GET

requests per byte of cookie.

• Now a practical attack!

147

Browser

TLS tunnel
Cookie

for

remote

site

148

Lucky 13 + BEAST = Practical Attack

148

HTTPS GET

149

Experimental Results

• Byte 14 of plaintext set to 01; byte 15 set to FF.

• Modify Δ15.

• OpenSSLv1.0.1 on server running at 1.87Ghz, 100 Mbit LAN.

• Median times (noise not shown).

149

150

Experimental Results

OpenSSL: recovering last byte in a block, using percentile test to

extract correct byte value, no assumptions on plaintext.

 150

151

Lucky 13 – Further Extensions

• The attack extends to other MAC algorithms.

– Nice interplay between block-size, MAC tag size and 13-byte

field SQN || HDR.

• The attack extends to other methods for dealing with bad

padding.

– e.g. as in GnuTLS, faster but partial plaintext recovery.

• [The attack can be applied to DTLS.

– No error messages, but simulate these via DTLS Heartbeats.

– Errors non-fatal, so can execute attack in a single session.

– Cam amplify timing differences using techniques from [AP12].]

 151

152

Lucky 13 – Impact

(Full details at: www.isg.rhul.ac.uk/tls/lucky13.html)

•OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released

05/02/2013.

•NSS (Firefox, Chrome) patched in version 3.14.3, released 15/02/2013.

•Opera patched in version 12.13, released 30/01/2013

•Oracle released a special critical patch update of JavaSE, 19/02/2013.

•BouncyCastle patched in version 1.48, 10/02/2013

•Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL.

•Microsoft “determined that the issue had been adequately addressed

in previous modifications to their TLS and DTLS implementation”.

•Apple: patched in OS X v10.8.5 (iOS version tbd).

 152

153

Lucky 13 – Countermeasures

• We really need constant-time decryption for TLS-CBC.

• Add dummy hash compression function computations when

padding is good to ensure total is the same as when padding

is bad.

• Add dummy padding checks to ensure number of iterations

done is independent of padding length and/or correctness of

padding.

• Watch out for length sanity checks too.

– Need to ensure there’s enough space for some plaintext after

removing padding and MAC, but without leaking any information

about amount of padding removed.

153

154

Performance of Countermeasures

154

P
r
o
b
a
b
i
l
i
t
y

1.50 106 1.51 106 1.52 106 1.53 106 1.54 106 1.55 106 1.56 106 1.57 106
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Hardware Cycles Calculated by Attacker

P
r
o
b
a
b
i
l
i
t
y

1.54 106 1.55 106 1.56 106 1.57 106 1.58 106 1.59 106 1.60 106 1.61 106
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Hardware Cycles Calculated by Attacker

Before After

• Better but not perfect.

• Adam Langley’s constant-time code in OpenSSL needed 500 lines

of ‘C’, but completely removes difference.

Implementations of TLS in CBC mode should now have:

• Explicit, random IVs
- To prevent Dai-Rogaway-Moeller/BEAST

• Proper padding checks
- To prevent Moeller attack.

• Uniform behaviour under padding and MAC failures
- To prevent padding oracle and Lucky 13 attacks.

- Ideally, constant-time, constant memory access code.

• Variable length padding.
- To disguise true plaintext lengths.

Security Proofs for TLS Record

Protocol (CBC mode)

155

C
K

C’

C = EncK(M) M is either “Yes” or “No”

Short MAC Attack Against TLS ([PRS11])

• Adversary intercepts C, flips a few bits, and forwards it on to

recipient.

• How recipient responds will indicate whether M = “Yes” or “No”.

• A distinguishing attack.

• The attack works when MAC size < block size and when sender

uses variable length padding.

 156

K

MAC length t = 80, block length n = 128

No 1316

C2

eK

C0 C1

eK

134

 Yes 1216

C2

eK

C0 C1

eK

123 C0’ = C0  0012104

C’ = C0’ C1

Byte 13 is hex

for 19

Byte 12 is hex

for 18

157

No 1316

C2

eK

C0’ C1

eK

034

 Yes 1216

C2

eK

C0 C1

eK

123 C0’ = C0  0012104

C’ = C0’ C1

Decrypts

fine to “No”

MAC length t = 80, block length n = 128

158

No 1316

C2

eK

C0’ C1

eK

034

 Yes ?? 1216

C2

eK

C0’ C1

eK

023 C0’ = C0  0012104

C’ = C0’ C1

Decrypts

fine to “No”

MAC will

not verify,

decryption

fails

MAC length t = 80, block length n = 128

159

Block length

n = 64 for 3DES

n = 128 for AES

MAC length

t = 128 for HMAC-MD5

t = 160 for HMAC-SHA1

t = 256 for HMAC-SHA256

Where Does the Attack Apply?

C2

eK

C0 C1

eK

For TLS 1.2:

160

Block length

n = 64 for 3DES

n = 128 for AES

MAC length

t = 80 for Truncated HMAC-MD5

t = 80 for Truncated HMAC-SHA1

t = 80 for Truncated HMAC-SHA256

C2

eK

C0 C1

eK

For TLS 1.2 with truncated MAC extension (RFC 6066):

Attack applies for AES!

Where Does the Attack Apply?

161

Consequences of Attack

• This does not yield an attack against TLS, but

only because no short MAC algorithms are

currently supported in implementations.

• The attack is “only” a distinguishing attack.

– Does not seem to extend to plaintext recovery.

• The attack presents a barrier to obtaining

proofs of security for TLS MEE construction.

– Attack exploits variable length padding to break INT-

CTXT security, leading to IND-CCA attack.

162

M  DecK(C)

Ret M

C  EncK(M0)

Ret C
Ret

C  EncK(M1)

Ret C

M0 , M1 M0 , M1 C C

IND-CPA +

INT-CTXT
AE

b b

^

Combined AE Security Notion

M  DecK(C)

Ret M

C  EncK(M0)

Ret C
Ret

C  EncK(M1)

Ret C

M0 , M1 M0 , M1 C C

b b

^

Combined AE Security Notion

Authenticated-Encryption security does not protect against

adversary who can select messages of different lengths.

So [PRS11] attack is outside this model.

|M0| = |M1| |M0| = |M1|

Length-hiding Authenticated

Encryption (LHAE) Security

M  DecK(C)

Ret M

C1  EncK(L, M1)

C0  EncK(L, M0)

If C0 = or C1 =

 Ret

Ret C0

Ret
C1  EncK(L, M1)

C0  EncK(L, M0)

If C0 = or C1 =

 Ret

Ret C1

L, M0, M1 L, M0, M1
C C

LHAE security protects against learning partial information about

messages of (some) different lengths and forging ciphertexts

b b

LH-IND-CPA + INT-CTXT LHAE AE

^ ^
^

^
^ ^
^

|M0| = |M1| |M0| = |M1|

Towards LHAE Security

C0 C1

eK

C2

eK

C3

eK

Showing LH-IND-CPA is easy from IND-CPA of CBC.

INT-PTXT is straightforward from results of [BN00].

But we need INT-CTXT, and INT-PTXT does not imply it.

LH-IND-CPA + INT-CTXT LHAE

Collision-Resistant Decryption (CRD)

Security

This is exactly the ‘gap’ between INT-PTXT and INT-CTXT:

No 1316

C2

eK

C0 C1

eK

134
Byte 13 is hex

for 19

INT-PTXT + CRD INT-CTXT

Recall in our attack, adversary creates a new ciphertext that

decrypts to a previously encrypted message.

Collision-Resistant Decryption (CRD)

Security

This is exactly the ‘gap’ between INT-PTXT and INT-CTXT:

No 1316

C2

eK

C0 C1

eK

134
Byte 13 is hex

for 19

INT-PTXT + CRD INT-CTXT

Recall in our attack, adversary creates a new ciphertext that

decrypts to a previously encrypted message.

Achieving CRD security shows that no such attacks exist.

Theorem ([PRS11], informal statement)

Suppose E is a block cipher with block size n that is sprp-secure.

Suppose MAC has tag size t and is prf-secure.

Suppose that for all messages M queried by the adversary:

 |M| + t ≥ n.

Then MEE with CBC mode encryption, random IVs, TLS padding, and

uniform errors is (LH)AE secure.

LHAE Security for TLS

C0 C1

eK

C2

eK

C3

eK

169

Practical

attacks

exist

C2

eK

C0 C1

eK

C0 C1

eK

C2

eK

C3

eK

Secure in

the (LH)AE

model

[PRS11]: Tag size matters!

170

171

Other Lucky 13 Countermeasures?

• Introduce random delays during decryption.
– Surprisingly ineffective, analysis in [AP13].

• Redesign TLS:

– Pad-MAC-Encrypt or Pad-Encrypt-MAC?

– Pad-Encrypt-MAC only now being adopted as a TLS extension for
TLS 1.1 and higher.

– Takes months/years to deploy.

• Switch to TLS 1.2
– Has support for AES-GCM and AES-CCM.

– But was not supported by browsers at time Lucky 13 was
announced.

• Switch to RC4
– As recommended by many commentators (again!).

172

Lessons

• TLS’s MAC-Encode-Encrypt construction is hard

to implement securely and hard to prove positive

security results about.

– Long history of attacks and fixes.

– Each fix was the “easiest option at the time”.

– Now reached point where a 500 line patch to

OpenSSL was needed to fully eliminate the Lucky 13

attack.

• Attacks show that small details matter.

– Compare with [K01] security proof.

– The full details of the CBC construction used in TLS

were only analysed in 2011 ([PRS11]).
172

Information Security Group

Lecture 4

Kenny Paterson

Bar-Ilan Winter School on Symmetric Cryptography

173

174

Outline

• Yet more TLS attacks

- RC4 in TLS

- CRIME/BREACH

• Introduction to SSH

• Security proof for SSH-CBC

• Breaking SSH-CBC

• Analysis of SSH-CTR

MAC

SQN || HDR Payload

Encrypt

Ciphertext

MAC tag Payload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

175

TLS Record Protocol: RC4-128

MAC

SQN || HDR Payload

Encrypt

Ciphertext

MAC tag Payload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

176

TLS Record Protocol: RC4-128

MAC tag

HDR

RC4 Key scheduling RC4 Keystream generation

RC4 State

Byte permutation and indices i and j

• In the face of the BEAST and Lucky 13 attacks on CBC-based

ciphersuites in TLS, switching to RC4 was a recommended

mitigation.

• RC4 is also fast when AES hardware not available

• Use of RC4 in the wild:

• Problem: RC4 is known to have statistical weaknesses.

Use of RC4 in TLS

ICSI Certificate Notary

Jan. 2013 survey of 16 billion TLS connections:

Approx. 50% protected via RC4 ciphersuites

Single-byte Biases in the RC4 Keystream

• [Mantin-Shamir 2001]:

• [Mironov 2002]:

– Described distribution of (bias away from 0, sine-like distribution)

• [Maitra-Paul-Sen Gupta 2011]: for

• [Sen Gupta-Maitra-Paul-Sarkar 2011]:

Zi = value of i-th keystream byte

l = keylength

179

What’s going on?

• Why were we all still using RC4 in half of all TLS

connections when we knew it was broken?

• “Google uses it, so it must be OK for my site”.

• “The biases are only in the first handful of bytes

and they don’t encrypt anything interesting in

TLS”.

• “The biases are not exploitable in any

meaningful scenario”.

• “RC4 is fast.”

• “I’m worried about BEAST on CBC mode.”

179

• Approach in [ABPPS13]:

– Based on the output from 245 random independent 128-bit RC4

keys, estimate the keystream byte distribution of the first 256 bytes

..

• Revealed many new biases in the RC4 keystream.

– (Some of these were independently discovered by Isobe et al.)

Complete Keystream Byte

Distributions

Z1

...

Z2 Z3
...

...

Keystream Distribution at

Position 1
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 2
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 3
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 4
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 5
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 6
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 7
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 8
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 9
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 10
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 11
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 12
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 13
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 14
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 15
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 16
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 17
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 18
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 19
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 20
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 21
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 22
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 23
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 24
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 25
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 26
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 27
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 28
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 29
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 30
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 31
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at

Position 32
P

ro
b

a
b

il
it

y

0.003906

Byte value

0.003950

0.003878

All the Biases

213

• So what?

• Using the biased keystream byte distributions, we can

construct a plaintext recovery attack against TLS.

• The attack requires the same plaintext to be encrypted

under many different keys.

– Use Javascript in browser as mechanism, cookies as target, as in

BEAST attack.

– There is a meaningful attack scenario!

Plaintext Recovery for TLS-RC4

Plaintext recovery using keystream

biases

215

C1

C2

C3

Cn

..
.

r
yields induced

distribution on

keystream byte Z

combine with known distribution

Likelihood of p being

correct plaintext byte
Recovery algorithm:

Compute most likely plaintext byte

Encryptions of fixed plaintext

under different keys

Plaintext candidate

byte p

0.389%'

0.390%'

0.391%'

0.392%'

0.393%'

0.394%'

0.395%'

0' 32' 64' 96' 128' 160' 192' 224' 256'

P
ro
b
a
b
il
it
y*

Byte*value*

p

p

..
.

p

p

Details of Statistical Analysis

Let c be the n-vector of ciphertext bytes in position r.

Let q = (q00, q01,…, qff) be the vector of keystream byte probabilities in

position r.

Bayes theorem:

 Pr[P=p | C=c] = Pr[C=c | P=p]. Pr[P=p]/Pr[C=c]

 = Pr[Z=c  p | P=p].Pr[P=p]/Pr[C=c].

Assume Pr[P=p] is constant; Pr[C=c] is independent of the choice of p.

Then to maximise Pr[P=p | C=c] over all choices of p, we simply need

to maximise:

 Pr[Z=c  p | P=p] =

where nx is the number of occurrences of byte value x in Z=c  p

(which equals the number of occurrences of x  p in c).

216

n!

n00!n01! … nff!
q00

 q01 qff

nff

n01 n00 …

Success Probability

220 Sessions

Success Probability

221 Sessions

Success Probability

222 Sessions

Success Probability

223 Sessions

Success Probability

224 Sessions

Success Probability

225 Sessions

Success Probability

226 Sessions

Success Probability

227 Sessions

Success Probability

228 Sessions

Success Probability

229 Sessions

Success Probability

230 Sessions

Success Probability

231 Sessions

Success Probability

232 Sessions

Limitations of Attack

• Requires 228 ~ 232 TLS sessions/connections for reliable

recovery.

• Attacker has to force TLS session

renegotiation/resumption.

– No known mechanism from within Javascript.

• Only the first 220 bytes of application data can be

targeted.
• Initial 36 bytes of keystream are used to encrypt last message of

Handshake protocol.

• In reality, first 220 bytes of application data usually

contain uninteresting HTTP headers.

A Second Attack

• Fluhrer and McGrew
identified biases for
consecutive keystream
bytes.

– Persistent throughout
keystream.

• Based on these,
[ABPPS13] constructed
an attack which:

– Can target any plaintext byte
positions;

– Does not require session
renegotiation / resumption.

i : keystream byte position mod 256

• Align plaintext with repeating Fluhrer-McGrew biases

• Exploit overlapping nature of plaintext byte pairs to obtain

approximate likelihood for plaintext candidates.

Plaintext copies P P P

A Second Attack

RC4 Keystream

TLS Ciphertexts C1 C2 C3

P3 P4

P2 P3

P1 P2

P1 P2 P3 P4 P5 P6

...

⇒

Approximate

likelihood for

P = P1P2P3P4P5P6

Recovery algorithm:

Viterbi-style algorithm to

determine P with highest

approximate likelihood

Success Probability

Recovery of 16 byte cookie

Recovery of individual bytes

Countermeasures

• Possible countermeasures against the attacks

– Discard initial keystream bytes (RC4-DropN).

– Fragment initial records at the application layer.

– Add random amounts of padding to HTTP.

– Limit lifetime of cookies or number of times cookies can

be sent.

– (None of these is really effective.)

– Stop using RC4 in TLS and switch to another stream

cipher.

Vendor Responses

• Opera has implemented a combination of

countermeasures.

• Google focused on implementing TLS 1.2 and AES-GCM

in Chrome, now deployed.

• Microsoft: RC4 is disabled by default for TLS in Windows

8.1 and latest Windows server code.

• Development of standards for alternative stream ciphers in

TLS underway in IETF.

– Salsa20/ChaCha20.

236

CRIME

• Duong and Rizzo [DR12] found a way to exploit TLS’s
optional compression feature.
– Similar to idea in 2002 paper by Kelsey [K02].

• Compression algorithms are stateful.
– Replace repeated strings by shorter references to previous

occurrences.

• Degree of compression obtained for chosen plaintext
reveals something about prior plaintexts!
– This small amount of leakage can be boosted to get plaintext

recovery attack for HTTP cookies.

– Using same chosen plaintext vector as for BEAST.

• Countermeasure: disable compression.

237

BREACH

• BREACH: similar ideas to CRIME, now applied

to HTTP compression.

– http://breachattack.com/

• So now problem arises in the application layer,

not crypto layer.

• Cannot so easily disable HTTP compression.

• Bottom-line: we do not yet have a good

theoretical handle on how compression

interacts with symmetric encryption.

– A research opportunity!

238

TLS: Where Do We Stand?

• Most TLS implementations now patched against BEAST.

• Many TLS implementations patched against Lucky 13.

• No simple TLS patch for RC4 attack.

– Needs application-layer modifications.

• Disable TLS compression to prevent CRIME.

– Still issues with compression at application layer (BREACH).

• We need really TLS 1.2!

– Support for AES-GCM, AES-CCM.

– Now available in most main browsers; server-side still patchy.

– But TLS vulnerable to version rollback attack.

– Expect further examination of AES-GCM in TLS implementations.

238

239

TLS – Current Status?

239

“This is a dead parrot.”

“He’s not dead. He’s just resting.”

240

Lessons

• RC4 was known to be weak for many years.

– Actual exploitation of weaknesses in a TLS context

went unexplored.

– [ABPPS13] needed multi-session mechanism (BEAST

technology) to make the attack plausible.

• Once a bad cryptographic choice is out there in

implementations, it’s very hard to undo.
– Old versions of TLS hang around for a long time.

– There is no TLS product recall programme!

 240

241

CINS/F1-01

Introduction to SSH

 Secure Shell or SSH is a network protocol that allows

data to be exchanged using a secure channel between

two networked devices. Used primarily on Linux and

Unix based systems to access shell accounts, SSH was

designed as a replacement for TELNET and other

insecure remote shells, which send information, notably

passwords, in plaintext, leaving them open for

interception. The encryption used by SSH provides

confidentiality and integrity of data over an insecure

network, such as the Internet.

 – Wikipedia

242

CINS/F1-01

Introduction to SSH

• SSHv1 had several security flaws.

– Worst ones arising from use of CRC algorithm to provide

integrity.

– Enabling, for example, traffic injection attacks.

• SSHv2 was standardised in 2006 by the IETF in RFCs

4251-4254.

– But basic specification dates from the late 1990s.

• SSHv2 is widely regarded as providing strong security.

– One minor flaw that in theory allows distinguishing attacks

([D02]; [BKN02]).

– Simple countermeasure adopted in, for example, OpenSSH.

– Dozens of different implementations of SSH.

243

CINS/F1-01

The SSH BPP

Encrypt

MAC

Payload

Ciphertext MAC tag

Sequence

Number 4

Packet

Length 4

Pad

Len 1
Padding

 ≥4

• Encode-then-Encrypt&MAC construction, not generically secure.

• Packet length field measures the size of the packet on the wire in bytes

and is encrypted to hide the true length of SSH packets.

• Variable length padding is permissible; padding needed for CBC mode

and carried over to CTR mode.

244

CBC Mode in SSH

• RFC 4253 mandates 3DES-

CBC and recommends

AES-CBC.
– In fact, all originally specified

optional configurations involve

CBC mode, and ARCFOUR

was the only optional stream

cipher.

• SSH uses a chained IV in

CBC mode:
– IV for current packet is the last

ciphertext block from the

previous packet.

– Effectively creates a single

stream of data from multiple

SSH packets.

Ci-1 Ci

Pi-1 Pi

dK dK

Pi-1 Pi

Ci-1 Ci

eK eK

245

CTR Mode in SSH

• CTR mode uses block

cipher to build a stream

cipher.

• CTR mode for SSH

standardised in RFC 4344.

• Initial value of counter

is obtained from

handshake protocol.

• Packet format is

preserved from CBC

case.

• Recommends use of

AES-CTR with 128,

192 and 256-bit keys,

and 3DES-CTR.

Ci

eK

Pi

ctr+i

Pi

eK

Ci

ctr+i

246

Security of the SSH BPP

• Attack of [D02], [BKN02] exploits chained IVs in CBC

mode.

– Same attack vector as Rogaway’s 1995 observation.

– Breaks IND-CCA security of SSH BPP.

– Low success probability against SSH implementations because of

specifics of packet format.

– Prevented in OpenSSH by optional use of dummy packets to hide

IVs until it is too late for attacker to make use of them.

• Basic message: SSH BPP using CBC mode with chained

IVs is insecure according to the standard theoretical

notion of security.

247 247

Stateful Security for Symmetric

Encryption

• [BKN02] developed stateful security models for symmetric
encryption.
– Reflecting the desire to protect the order of messages in the secure

channel.

– And wide use of sequence numbers in secure channel protocols.

• IND-sfCCA security:
– Attacker has access to an LoR encryption oracle and a decryption

oracle.

– Both oracles are stateful (e.g. via sequence numbers).

– Model allows adversary to advance states to any chosen value via
queries to LoR encryption and decryption oracles.

– Adversary wins game if he can guess hidden bit b of encryption
oracle.

• sfAE security can be defined similarly.

248

Security of the SSH BPP

• Using their models, [BKN02] proved the security

of variants of the SSH BPP under reasonable

assumptions concerning:

– The encryption component.

• Essentially, IND-CPA security.

– The MAC component.

• Strong unforgeability and pseudo-randomness.

– The randomness of the padding scheme.

– Collision properties of the encoding scheme.

• In practice, for SSH BPP, this means not too many packets

can be encrypted.

249

Security of the SSH BPP

• In particular, [BKN02] established the IND-

sfCCA security of SSH-$NPC and SSH-CTR.

– SSH-$NPC = SSH using a block cipher in CBC mode

with explicit, per-packet, random IV and with random

padding.

• In contrast to chained IVs used in SSH BPP.

– SSH-CTR = SSH using a block cipher in counter

mode, with counter maintained at sender and

receiver.

250

Attacking the SSH BPP

• [APW09]: plaintext recovery attacks against SSH BPP

when using CBC mode.

– Much stronger than distinguishing attack of [D02], [BKN02]!

• These attacks exploit the interaction of the following

features of the BPP specification:

– The attacker can send data on an SSH connection in small

chunks (TCP).

– A MAC failure is visible on the network.

– The packet length field encodes how much data needs to be

received before the MAC is received and the integrity of the

packet can be checked.

251

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

• The receiver will treat the first 32 bits of the calculated plaintext

block as the packet length field for the new packet.

• Here:

 P0’ = IV  dK(Ci*)

where IV is known from the previous packet.

Target ciphertext

block from stream

252

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

 The attacker then feeds random blocks to the receiver.

– One block at a time, waiting to see what happens at the server

when each new block is processed.

R R

P2’

dK dK

P1’

20/9/2010

253

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

• Eventually, once enough data has arrived, the receiver will receive

what it thinks is the MAC tag.

• The receiver will then check the MAC.

– This check will fail with overwhelming probability.

– Consequently the connection is terminated (with an error message).

• How much data is “enough” so that the receiver decides to check

the MAC?

R R

P2’

dK dK

P1’

MAC tag

20/9/2010

254

Attacking the SSH BPP (Theory)

• The receiver has to use the packet length field

to decide when the MAC tag has arrived.

• Hence an attacker who counts the number of

bytes needed to cause connection termination

learns the packet length field.

• That is, the attacker learns the first 32 bits of:

 P0
’ = IV  dK(Ci

*).

20/9/2010

255

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

• Knowing IV and 32 bits of P0
’, the attacker can

now recover 32 bits of the target plaintext

block:

 Pi
* = Ci-1

*  dK(Ci
*) = Ci-1

*  IV  P0
’

Cj-1
* Ci

*

Pi
*

dK

256

Attack Performance (Theory)

• As described, this simple attack succeeds in

recovering 32 bits of plaintext from an arbitrary

ciphertext block with probability 1.

– But requires the injection of about 231 random bytes

to trigger the MAC check.

– And leads to an SSH connection tear-down.

• Still, the attack breaks the SSH BPP.

• The attack still works if a fresh IV is used for

each new SSH packet.

– Breaking SSH-$NPC that was proven secure in

[BKN02].

257

Attacking OpenSSH

• OpenSSH is the most popular implementation

of the SSH RFCs.

– Open-source, distributed as part of OpenBSD.

– OpenSSH webpages state that OpenSSH accounts

for more than 80% of all deployed SSH servers.

– www.openssh.org/usage/index.html

• [APW09] worked with OpenSSH 5.1.

– Version 5.2 released 23/02/2009 partly as a

consequence of their work, current version is 6.4.

258

Attacking OpenSSH

• In OpenSSH 5.1, two sanity checks are carried out
on the packet length field after the first block is
decrypted.
– 5 ≤ packet_length ≤ 218

– packet_length + 4 % block_length = 0

• When either of the checks fails, the SSH
connection is terminated.
– But in subtly different ways that leaks some plaintext

information.

• If the length checks pass, then OpenSSH 5.1 waits
for more bytes.

• Finally, when the MAC check fails, a third type of
connection termination is seen.

259

Attacking OpenSSH

• The manner in which OpenSSH 5.1 behaves
on failure allows:
– A first attack verifiably recovering 14 bits of plaintext

with probability 2-14.

– A second attack verifiably recovering 32 bits of
plaintext with probability 2-18 (for a 128-bit block
cipher).

– The attacks require injection of (roughly) 218 bytes.

• Boost success rate in multi-session attack.

• The attacks in [APW09] worked in practice.
– Implemented in a virtualized environment with

server code patched to boost success rate.

Possible Countermeasures

• Use counter mode.
– The attack no longer applies.

– But stateful version of counter mode needed.
• If there’s an explicit counter in packets, then a version of

the attacks still works.

– As standardised in RFC 4344.

• Enforce use of counter mode.
– Not standards compliant with the RFCs as they are

currently written.

– Some implementations do not support counter mode
at all, creating backwards compatibility issue.

– “Only a cryptographer would suggest this...”

260

261

What Went Wrong with the Theory?

• The security model of [BKN02] does model errors arising

during the BPP decryption process.

– Connection teardown is modeled by disallowing access to

decryption and encryption oracles after any error event.

– Errors can arise from decryption, decoding or MAC checking.

• But only a single type of error message is output.

– The 2-14 attack against OpenSSH exploits the fact that different

error events are distinguishable.

• And the model assumes that decoding errors arise

before MAC errors.

– While the OpenSSH implementation only does decoding after

the MAC has been checked.

262

Limitations of [BKN02]

• The model assumes that plaintexts and ciphertexts are

“atomic”.

– All oracle queries in the model involve complete plaintexts or

ciphertexts.

– But the attacks exploit the ability to deliver ciphertexts one

block (or even one byte!) at a time and observe behaviour.

• The model does not allow for plaintext-dependent

decryption.

– The packet length field never appears in the model.

– But implementations must make use of this field during the

decryption process.

– And, as we’ve seen, the manner in which this field is treated is

critical for security.

• Models are just models.

263

New Security Analysis of SSH

• [PW10]:
– Develops a new security model addressing limitations of

the model used in [BKN02]

• LOR-BSF-CCA security;

– Builds an accurate description of SSH-CTR as specified
in RFCs and implemented in OpenSSH;

– Proves the security of this description of SSH-CTR in the
new model.

• [BDPS12]:
– More general security modelling for SSH-like protocols.

– Security against chosen-fragment attacks (IND-CFA).

– Formalisation of boundary-hiding (BH).

– Relationship between IND-CFA, BH and DoS-resistance.

264

Lessons

• SSH attack is trivial.
– Once you see it!

– Troubling that it lurked in specification for years.

• SSH design goals raise interesting new theory
questions.
– How do IND-CFA, BH and DoS-resistance interact with

each other?

• [PW10] analysis of SSH-CTR is at the limits of
(this) human’s ability to generate models and
proofs.
– Complexity arises from complexity of protocol we’re trying

to model.

– c.f. recent developments in TLS analysis, introduction of
machine-generated/machine-checkable proofs.

265

Final Thoughts

• Good algorithm design is hard.

• But so is good protocol design.

• Attacks are usually obvious in retrospect.

– But so is most theory!

• Finding attacks is high-risk, high-reward.

• Value of attacks on paper versus attacks in

practice.

– Implemented attacks needed to convince

practitioners.

– On-paper attack often the harbinger of a practical

attack.

266

Literature

266

Basic theory for symmetric encryption (highly selective list):

• [BDJR97] Bellare et al., FOCS 1997.

• [BN00] Bellare and Namprempre, Asiacrypt 2000.

• [K01] Krawczyk, Crypto 2001.

• [BKN02] Bellare et al., ACM-CCS 2001.

• [RS06] Rogaway and Shrimpton, Eurocrypt 2006.

• [PW10] Paterson and Watson, Eurocrypt 2010.

• [PRS11] Paterson et al., Asiacrypt 2011.

• [BDPS12] Boldyreva et al., Eurocrypt 2012.

• [BDPS13] Boldyreva et al., FSE 2013.

267

Literature

267

Attacks on TLS symmetric crypto:

•[V02] Vaudenay, Eurocrypt 2002.

•[M02] Moeller, http://www.openssl.org/~bodo/tls-cbc.txt, 2002.

•[CHVV03] Canvel et al., Crypto 2003.

•[B04] Bard, eprint 2004/111.

•[B06] Bard, SECRYPT 2006.

•[PRS11] Paterson et al., Asiacrypt 2013.

•[DR11] Duong and Rizzo, “Here come the XOR Ninjas”, 2011.

•[DR12] Duong and Rizzo, CRIME, 2012.

•[AP13] N.J. AlFardan and K.G. Paterson, IEEE S&P, 2013.

•[ABPPS13] N.J. AlFardan et al., USENIX Security, 2013.

• [BFKPS13] Bhargavan et al., IEEE S&P, 2013.

268

Literature

268

Attacks on IPsec symmetric crypto:

• [B97] Bellovin, https://www.cs.columbia.edu/~smb/papers/badesp.pdf.

• [PY06] Paterson and Yau, Eurocrypt 2006.

• [DP07] Degabriele and Paterson, IEEE S&P 2007.

• [DP10] Degabriele and Paterson, ACM-CCS 2010.

A selection of other interesting attacks on symmetric crypto:

• [K02] Kelsey, FSE 2002.

• [APW09] Albrecht et al., IEEE S&P 2009.

• [DR11b] Duong and Rizzo, IEEE S&P 2011.

• [JS11] Jager and Somorovsky, ACM-CCS 2011.

• [JPS13] Jager et al., NDSS 2013.

