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Lecture 1 Outline "

Theory for symmetric encryption:

e Security models

* Modes of operation

 Message Authentication Codes (MACSs)
* (Generic composition



Theory for Symmetric Encryption

« Security models for symmetric encryption are well
established.

e Syntax: SE = (KGen,Enc,Dec)
— Probablistic KGen(1K), outputs key K.
— Probablistic Enc: ¢ € Enc,(m), for m in message space M.
— Deterministic Dec, outputs message m or failure symbol L:
m /L & Decy(m).
— Correctness requirement: for all K €< KGen(1X), for all m in M:

Dec,(Enc,(m)) = m.

— For now, we focus on stateless Enc and Dec algorithms.

— Nonce-based algorithms in place of probablistic ones also
possible [RO4].



Theory for Symmetric Encryption

* IND-CPA security:

— Adversary has repeated access to Left-or-Right (LOR)
encryption oracle.

— In each query, adversary submits pairs of equal length
messages (m,,m;) to the oracle.

— Receives c, an encryption of m,, where b is a random bit.
— Adversary outputs its estimate b’ for bit b.
— Adversary wins if it decides correctly.

e IND = Indistinguishable
e CPA = Chosen Plaintext Attack

 Formalised as a security game between the adversary
and a challenger.



IND-CPA Security Game "

Adversary Challenger
b < {0,1}

K «— KGen(1k

(mg,m,) - (19

c = Enc(m,)

» b’ Adversary winsifb=b"’




IND-CPA Security “

 The adversary’'s advantage Is defined to be:
|Pr(b=b ") - 1/2|.

« A scheme SE is said to be IND-CPA secure If
advantage is “small” for any adversary using
“reasonable” resources.

— Concepts of “small” and “reasonable” can be formalised
using either an asymptotic approach or a concrete
approach.

— In symmetric crypto, the concrete approach is widely
used.

— Quantify adversary’s success probability in terms of
number of encryption queries and/or number of bits
gueried to encryption oracle.



IND-CPA Security “

 Informally, IND-CPA Is a computational version
of perfect security.
— Ciphertext leaks nothing about the plaintext.

— Stronger notion than requiring the adversary to
recover plaintext.

« [BDJR97] developed equivalent notions.
— ROR-CPA, FtG-CPA and SEM-CPA.

— The latter is a symmetric version of semantic
security notion for PKE of Goldwasser-Micali.



IND-CPA Security “

« Easy to achieve IND-CPA security using, for
example, a suitable mode of operation of a
block cipher f, on {0,1}".

— Block cipher in CBC mode with random [Vs.

— Block cipher in CTR mode.

— See [BDJR97] for analysis.

— Requires modelling of block cipher as PRP/PRF.

— Recall definition:
» Adversary has oracle access to f,(.) or Rand(.)
» Adversary outputs guess for which world it is in.
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Initialisation Vector (1V):

* Defines C, for processing first
block.

* |V often taken as random;

* Chained IVs also common in
applications.

CBC mode needs some form
of padding if plaintext lengths
are not multiple of block length.
* (Much) more on padding
later.

[BDJR97] security bound
involves a g4/2" term (quadratic
loss).



CTR Mode

ctr+i

CTR mode uses a block cipher to build a
stream cipher.

Block cipher does not even need to be a
permutation!

In simplest mode, random initial value for ctr is
chosen for each message and transmitted with
ciphertext.

Encrypt blocks
ctr, ctr+1, ctr+2, ...
to create a sequence of ciphertext blocks.

Use this sequence as keystream (truncating
last block as necessary).

IND-CPA secure assuming block cipher is a
PRF.

Quadratic loss in security analysis; can be
converted to linear loss by using stateful
version of the scheme.

10



Motivating Stronger Security “

* In CBC and CTR modes, an active adversary
can manipulate ciphertexts.

— For CTR mode, bit flipping in plaintext is trivial by
performing bit flipping in the ciphertext.

— Modify c to ¢ XOR A to change the underlying
plaintext from p to p XOR A .

— CBC mode: see next slide.

— Or create completely new ciphertexts from scratch?

« A random string of bits of the right length is a valid
ciphertext for some plaintext for both CBC and CTR modes!

11



Bit Flipping in CBC Mode "

* Flipping bits in ciphertext block C; ; leads to
controlled changes in plaintext block P..

» But block P, ; Is randomised.

Flipping bits here

1 Ca C [
% e |
Pi1 P;

And randomised block here Leads to bit flips here 12



Motivating Stronger Security “

 These kinds of attack do not break IND-CPA
security, but are clearly undesirable for building
secure channels.

— Modified plaintext may result in wrong message
being delivered to an application, or unpredictable
behaviour at receiving application.

* We really want some kind of non-malleable
encryption, guaranteeing integrity as well as
confidentiality.

* Two basic security notions:
— Integrity of plaintexts and integrity of ciphertexts.

13



INT-PTXT Security "

. INT-PTXT security:

— Attacker has repeated access to an encryption
oracle and a “Try” oracle.

— Encryption oracle takes any m as input, and outputs
Enc,(m).
— Try oracle takes any c* as input (and has no output).

— Adversary’s task is to submit c* to its Try oracle
such that Dec,(c*) decrypts to message m* # 1 that
IS distinct from all m queried to its encryption oracle.

— Hence adversary wins if it can create a “plaintext
forgery”.

14



INT-PTXT Security

Adversary Challenger
b < {0,1}
Kk
Enc(m) ‘ K «— KGen(1X)
j C c = Enc,(m)
Try(c*) m* = Dec,(c*)

v

Adversary wins if m*# m and m* # L
15



INT-PTXT Security “

. INT-PTXT security:

— An SE scheme is INT-PTXT secure if no such
efficient adversary exists.

— Clearly INT-PTXT security is a desirable property of
an encryption scheme used for building a secure
channel, as it prevents (plaintext) message injection.

— Slightly different strength of security notion
depending on:
« whether adversary has one or many queries to Try; and
« whether Try modified to output ciphertext validity.

16



INT-CTXT Security “

. INT-CTXT security:

— As INT-PTXT, but only requirement is that c* be
valid ciphertext (could be another encryption of
some m gueried to encryption oracle).

— Hence win if adversary creates “ciphertext forgery”.

— (Application to secure channels not immediately
clear.)

* Clearly, INT-CTXT security implies INT-PTXT
security.

* Quiz question: does CTR mode provide INT-
CTXT or INT-PTXT security?

17



IND-CTXT Security

Adversary

Enc(m)

Challenger

A

v

Try(c*)

v

b « {0,1}
K «— KGen(1¥)

c = Enc,(m)

m* = Dec,(c*)

Adversarywins ifc*#cand m*# 1

18



CCA Security

« \We may also want to consider chosen-ciphertext
attacks, in which the adversary can get ciphertexts
of his choice decrypted.

— Lazy reasoning: because this is what we did in the public
key setting.

— In extreme cases an attacker may actually have this
capability in practice!

— Or this capability may be approximated in practice.

« Adversary may be able to observe the reaction of the
decrypting party after processing an adversarially chosen
ciphertext and thereby infer something about the plaintext.

» Adversary may learn when decryption fails, and possibly the

cause of failure, by analysing timing, error messages, or other
behaviour.

* This is particularly so for secure network protocols like IPsec,
SSL/TLS, SSH.

* It provides powerful attack opportunities!

19



IND-CCA Security “

* IND-CCA security:

— Attacker now has repeated access to LoR
encryption oracle and to a decryption oracle.

— LoR encryption oracle as before.

— Decryption oracle takes any ¢ as input, and outputs
Dec,(c), which is either a message m or a failure
symbol L,

— Adversary not permitted to submit output of LOR
encryption oracle to its decryption oracle.

— (To prevent trivial win).

 All basic modes of operation are insecure in
this model!

— Exercise for CTR mode.

20



IND-CCA Security

Adversary Challenger
b < {0,1}
K «— KGen(1¥)
(mg,m,) .
’ C ¢ = Ency(my)
c’ )
- m = Dec,(c )

A

> b’ Adversary winsifb=b’

21



A Fundamental Relation [BNOO] “

* IND-CPA + INT-CTXT - IND-CCA

* Proof intuition:
— Game 0: IND-CCA security game against SE.

— Game 1: replace decryption oracle with “L 7.

— Games 0 and 1 identical unless related adversary wins
INT-CTXT game.

— Game 1 can be simulated perfectly by IND-CPA
adversary (no decryption oracle to simulate any longer).
* NB: proof breaks down if decryption can return
more than one error message.

— See [BDPS13] for development of models and relations

In this setting (which is important for practice). N



Authenticated Encryption Security “

 We define AE := IND-CPA + INT-CTXT

« Often easier to prove IND-CPA and INT-CTXT
separately than to prove IND-CCA directly.

* AE security has become the accepted security
target for SE schemes.

— In part (I think) because of the relation to IND-CCA
security.

— Note that IND-CPA + INT-PTXT does not imply IND-
CCA.

« Example separation: MAC-then-encrypt with redundant
ciphertext bit.

— Note also that IND-CPA + INT-CTXT is strictly stronger
than IND-CCA.

« Example separation: ?
 In fact IND-CCA does not imply either of our integrity notions!

23



All-in-one Security Notion for AE

C &€ Enci(M,)
Ret C

M < Decy(C)
Ret M

_
—

AE

C € Enci(M,)
Ret C

IND-CPA +
INT-CTXT

Ret N




Relations Between SE Security

Notions

IDI

IND-CCA

\ 4

4
/]

IND-CPA

™~

IND-CPA
+ INT-PTXT

/ 4

>l INT-PTXT
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n

« AEAD = “AE with Associated Data’.

* Extension to AE allowing some data to be
encrypted and remainder to be
authenticated/integrity protected.

« Sample applications:

— TLS Record Protocol data: header is integrity

protected, rest of payload is encrypted and integrity
protected.

— IPsec ESPv3 protocol for encrypting IP payload and
Integrity protecting (selected) IP header fields.

* \We omit security definition for AEAD.
— Can define by extension of AE notion.

26



MACS

 Message Authentication Codes (MACS) provide
authenticity/integrity protection for messages.
— Symmetric analogue of a digital signature.
— Important for achieving security for SE beyond IND-CPA.

« Syntax: MAC = (KGen,Tag,Verify).
— KGen takes security parameter is input and outputs key K.

— Tag has as input a key K, a message m of arbitrary length, and
outputs a short MAC tag .

— Verify has as input a key K, a message m, a MAC tag r and
outputs O or 1, indicating correctness of tag r for m under K.

27



MACS

m MAC tag
-— Verify
0/1

Key security requirement is
unforgeability.

Having seen MAC tags for
many chosen messages, an
adversary cannot create the
correct MAC tag for another
chosen message.

Strong and weak forms of
unforgeability:

« New MAC tag on
(possibly) queried
message versus MAC
tag on unqueried
message.

« SUF-CMA and (W)UF-
CMA security

28



PRFs and MACs "

« Unpredictability of PRF output means that a PRF is a
MAC.

* More formally:
— Tag(K,m) = PRF,(m); and
— Verify(K,m,7) outputs 1 if and only if PRF,(m) = 1.

 It's often assumed (implicitly or explicitly) that the
security definition of a MAC is that it acts as a PRF.

29



HMAC

« HMAC is a general purpose method for building a MAC
from a hash function H.

e [llustration for SHA-1:

| i key pad | message |
! SHA1 - 1st pass
] Sl
I T ——
! ~‘§~§"~~
! __--————g- ''''''''' SHA1 -2nd pass
64 Byte
20 Byte

Source: Wikipedia 30



HMAC

« HMAC is fairly efficient: cost of tag
computation/verification is that of hashing message plus
small overhead (3 x H's compression function).

— But slow compared to more modern algorithms based on
universal hashing like UMAC, poly1305.

« HMAC design and security proof in [BCK96].

— PRF security relies (roughly) on H’s compression function being
a PRF and on collision resistance of H.

— Refined analysis in [BO6].

« HMAC standardised in RFC 2104.

— Widely adopted in secure network protocols, e.g. SSL/TLS.
— HMAC is an early triumph for provable security.

31



Generic Composition: EtM “

« [BNOO] considered how to achieve IND-CCA/AE
security by generic composition of IND-CPA
secure encryption schemes and (S)UF-CMA
secure MACs.

* Encrypt-then-MAC (EtM): achieves AE security

— Very easy proof:
— INT-CTXT security follows from MAC on ciphertext;

— IND-CPA security follows from IND-CPA security of base SE
scheme.

— Needs SUF-CMA MAC.
» As provided by PRF-based construction, HMAC, etc.

32



Generic Composition: E&M

* Encrypt-and-MAC (E&M): Not even CPA

secure in general!

— MAC can leak plaintext information but still be SUF-CMA
secure.

— But specific instantiations may be AE/IND-CCA secure, e.g. as
used in SSH [BKNO02,PW10].

— At least need MAC to not leak plaintext information (e.g. PRF
assumption).

33



Generic Composition: MtE

 MAC-then-Encrypt (MtE): Not CCA secure in
general.

Construct separating example (hint: redundant bits again).

But easy to show IND-CPA and INT-PTXT security for this
composition.
« Good enough for secure channel applications?

Extension of [KO1] shows MtE is IND-CCA secure when
encryption scheme is CBC mode or secure stream cipher.

Proof for CBC needs SPRP property for block cipher.
Real instantiations are rarely pure MtE (more later).

34



Some Philosophy

 Models are just models.
* And reality is hard to model.

* General approach is to build conservative models with
strong adversaries.

* Realising assumed adversarial capabilities may be hard
In practice.

« Consequently, it can be hard to convince practitioners that your
chosen plaintext distinguishing attack should be of serious
concern (to them)!

 They tend to need to see plaintext and a working exploit.

« Countering this: attacks only get better (worse!) with time
(examples to follow).

« Every practitioner seems to need to learn this the hard way.

35



IND-CCA Security (recap) "

Adversary Challenger
b~ {0,1}
K «— KGen(1¥)
(mg,m,)
C ¢ = Ency(my)
C ’
m = Dec,(c’)

> b’ Adversary winsifb=b’

36



Discussion "

Now look back at IND-CCA security model.

« What, if anything, is overkill?
« What, if anything, is missing?

37
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Lecture 2 Outline "

 Why integrity protection really matters: IPsec
case study.

* Why detalls really matter: predictable IVs, TLS,
and the BEAST.

39



Introduction to IPsec "

* |Psec provides security at the IP layer.
— |IP packets get encrypted and/or integrity protected.
 Defined in IETF RFCs 2401-2412 (v2) and 4301-4309
(v3).
« Implemented in all major OSes and in networking
hardware.
« Applications:
— Virtual Private Networking.

— Remote Access Solutions.
— Protection of inter-network management data in UMTS.

40



|IPsec Basic Features "

* |Psec provides two basic modes of use: transport and
tunnel.

* |Psec provides authentication/integrity protection and/or
confidentiality services for data.
— AH and ESP protocols.

41



IPsec Tunnel Mode "

* Cryptographic protection for entire |P packet.

* Entire packet plus security fields encapsulated
as payload of new ‘outer’ IP packet.

42



IPsec Tunnel Mode Deployment

Inner IP packet

Inner IP packet /
— Header | Payload

Header | Payload

Network

e.g.
Internet

Security
Gateway

cooa | Security
Gateway

oono |

Inner IP packet

Inner IP packet
Outer P

Header Header | Payload

Outer
‘ > Header Header | Payload
Scope of
cryptographic
protection

43



ESP Protocol “

 ESP = Encapsulating Security Protocol.
—vl, v2,v3in IETF RFCs 1827, 2406, 4303.
— IPsec’s “encryption workhorse”.
 ESP provides one or both of:
— Confidentiality for packet/payload (v1, v2, v3).
— Integrity protection for packet/payload (v2, v3).
 ESP uses symmetric encryption and MACs.

— Usually CBC mode of block cipher for encryption.
« With random, per packet IVs.

— HMAC-SHA1 or HMAC-MDS5 for integrity protection.

44



ESP in Tunnel Mode

Original packet

i Y

« >
' o
B »

MAC scope

Encryption scope

When both MAC and encryption are used,
IPsec employs an EtM construction

45



History of Encryption in IPsec

« ESPv1 (1995) provided no integrity protection.

Reliant on separate AH protocol to provide this.

Bellovin [B97] sketched a series of attacks on ESPv1 without
AH.

Limited plaintext recovery from TCP segments, using 224
chosen plaintexts.

Certainly breaks IPsec in IND-CCA security model.

Theoretically interesting, but no attacks demonstrated to work
In practice.

Sufficiently serious to influence development of v2 RFCs.

46



Integrity protection and ESPv2 “

* IETF response to Bellovin attacks:

— ESPV2 (1998) includes integrity protection as an
option.

— But implementations must still support “encryption-
only” mode.

 ESPV2 represents a compromise between
Improving security and maintaining backwards-
compatibility.
— This Is very common in real-world cryptography!

a7



Integrity protection and ESPv3 “

. ESPv3 (2005):

— Still allows encryption-only ESP.
— But no longer requires support for encryption-only.

— Gives strong warnings about Bellovin-Wagner attack
and refers to theoretical cryptography literature to
motivate need to use integrity protection.

— “ESP allows encryption-only ... because this may
offer considerably better performance and still
provide adequate security, e.g., when higher layer
authentication/integrity protection is offered
iIndependently.”

48



IPsec in Theory and Practice “

« Back in the 2000’s, the theoretical cryptography
community was well aware of the need to carefully
combine integrity protection with encryption.

— To prevent active attacks against encryption.

 Already plenty of high-profile, real-world examples.
— Kerberosv4, WEP, SSHv1, ...

It was also well-known amongst IPsec experts that
encryption-only configurations should be avoided.
— Clear warnings against their use in the RFCs.

* So was there really any problem here?

49



IPsec in Theory and Practice “

 From an historical administration guide from a
well-known vendor:

‘1f you require data confidentiality only in your IPSec
tunnel implementation, you should use ESP without
authentication. By leaving off the authentication
service, you gain some performance speed but lose
the authentication service. ”

http://www.cisco.com/en/US/docs/security/security_ma
nagement/vms/router _mc/1.3.x/user/guide/U13 bldg
html#wp1068306, cicra 2008).

50



Attacking Encryption-only ESP “

 |f we want to demonstrate beyond doubt that
encryption-only ESP Is disastrously weak, we
need to:

— Produce attacks that consume reasonable
resources.

— Implement attacks that are as realistic as possible
» Operating under normal network conditions.
* ldeally, ciphertext-only attacks.
« Hand over plaintext in a demo!

51



Reminder: Bit Flipping in CBC Mode "

* Flipping bits in ciphertext block C; ; leads to
controlled changes in plaintext block P..

» But block P, ; Is randomised.

Flipping bits here

1 Ca C [
% e |
Pi1 P;

And randomised block here Leads to bit flips here 52



Attacking Linux ESP

[PYO6]:
« Three different (but related) attacks on Linux kernel
Implementation of encryption-only ESP in tunnel mode.

« Exploit bit flipping weakness of CBC mode encryption.
— Flipping creates modified headers for inner packets that
produce “unusual” effects when processed
* Resulting in either error messages or in packet re-
direction for inner packets

— Error messages are carried by ICMP protocol and reveal
(some) plaintext data.

— Packet redirection can send inner packet to attacker’s
machine.

53



IP Header Format

0 34 /7 8 15 16 31

5 x 32-bit
words

Y Upto
10
Y words

32 bits



IP Header Format

Protocol field (8 bits):

* Indicates upper layer protocol in IP payload.
* Possible values are dependent on IP implementation and protocols it supports.
* Typical values: 0x01 for ICMP, 0x06 for TCP, 0x17 for UDP.



IP Header Format

Header checksum (16 bits):
« 1’ s complement sum of 16 bit words in header (inc. any options).
* Incorrect checksum leads to datagram being silently dropped.

* Provides error detection for IP headers.



IP Header Format

Source Address (32 bits):

* Contains the IP address of the host originating the datagram.
* Needed so any replies or error messages can be delivered back to
source.



Example Attack on ESP

Outer packet payload = CBC encryption of inner packet

A
v

Flip bits here —— > —

[ —

| | | |
/ dy dy dy

Dest addr

/|-PF Csum Payload Payload
Src addr '\
To change \
protocol field Correction of
and source checksum via further
address here bit flips in IV
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Attack Visualisation

- -
Inner IP packet /'
- 7| _Header | Payload Header | Payload —
Intercept,
bit-flip
and re- :
Security . | inject — | Security
Gateway Gateway
Inner IP packet
Outer

Inner IP packet

Header Header | Payload

Outer
Header Hepder | Payload
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Attack Visualisation

S Security
Gateway
Intercept,
extract
plaintext Part Payload
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The Attack in Words “

» Attacker intercepts packet, does bit flipping
needed to manipulate protocol field and source
address, and to correct checksum.

— Can do better than random bit flipping for checksum.

 Attacker than injects modified datagram into
network.

* Inner packet decrypted by gateway and
forwarded to end-host.

« End-host generates ICMP “protocol
unreachable” message in response to modified
protocol field in header.

61



The Attack in Words “

* |ICMP payload carries inner packet header and
528 bytes of inner packet’s payload.

— Payload now in plaintext form!

— ICMP message Is sent to host indicated in source
address

— And we have modified this address so that ICMP
message does not pass through IPsec tunnel.

 Attacker intercepts ICMP message to get
plaintext bytes.

* These ideas were used in [PY06] to build an
attack client that can efficiently extract all
plaintext from an IPsec encryption-only tunnel.

62



Characteristics of IPsec Attacks

* The attacks recover plaintext (i.e. contents of inner
datagrams), but not encryption keys.
* The attacks are efficient.

— Even against triple DES or AES.
— Can be run in near real-time against an IPsec tunnel.

« Attacks are ciphertext-only.

* The attacks do not require special operating conditions.

— Attacker needs to capture packets from network, inject packets
Into network.

— But they need ability to monitor gateway for ICMP responses.
* All three attacks worked in practice against Linux
Implementation of IPsec.

— Attacks fall if post-processing policy checks specified in RFCs
are properly implemented.

— But Linux did not implement these ©

63



Attacking Encryption-only ESP

« Some reactions to attacks in [PYO06]:

“...the possibility of active attacks on unauthenticated but
encrypted ESP packets is well known, and we advise against
such use in the most recent set of IPsec documents. These
documents have been approved for publication by the IESG
and are in the queue to be published as RFCs. As a result, no
further, substantiative changes will be made.”

“This is all very well understood among the IPSec community,
and is not news.

1 think the spec is clear about the dangers of encryption
without authentication. If anyone built implementations that
negotiate encryption without authentication, then maybe they
weren't paying attention closely enough. ”

« So is there really any problem if the RFCs still allow
use of encryption-only ESP?

64



Why the Attacks Matter(ed) "

e Recall:

‘1f you require data confidentiality only in your IPSec
tunnel implementation, you should use ESP without
authentication. By leaving off the authentication
service, you gain some performance speed but lose
the authentication service. ”

65



Why the Attacks Matter(ed) “

 Also recall:

feg

ESP allows encryption-only ... because this may
offer considerably better performance and still
provide adequate security, e.g., when higher layer
authentication/integrity protection is offered
iIndependently.”

« But these attacks work without any higher layer even
getting to see the data.

e S0 no higher layer integrity protection can stop them!

66



Follow-up Work “

 [DPO7].
— Attacks against any RFC-compliant implementation
of encryption-only ESP.

« [DP10J:
— Extending [DPO7] attacks to the situation where

Integrity protection via AH is applied before
encryption.

— Breaking all MtE configurations of IPsec!

— Rendering AH pretty useless.

» Since ESP offers integrity too, though with different scope of
protection.

67



Lessons “

 Encryption on its own does not provide
confidentiality in the face of active attacks.
— IND-CPA security is not enough.
— AE security would have prevented the attacks.

» Attacks can exploit interaction between crypto
layer and the layer(s) above.

— In this case, the layer above was IP because of
protocol tunnelling.

— Information leakage from IP layer error messages.

 Practical attacks are needed to convince
“experts” of the need for change.

68



Lecture 2 Outline "

* Why integrity protection really matters: IPsec
case study.

 Why details really matter: predictable Vs,
TLS, and the BEAST.

69



TLS Overview “

 SSL = Secure Sockets Layer.
— Developed by Netscape in mid 1990s.
— SSLv1 broken at birth.
— SSLv2 flawed, now IETF-deprecated (RFC 6176).
— SSLv3 still widely supported.

 TLS = Transport Layer Security.
— |[ETF-standardised version of SSL.
— TLS 1.0 in RFC 2246 (1999).
— TLS 1.1 in RFC 4346 (2006).
— TLS 1.2 in RFC 5246 (2008).

70



Importance of TLS “

* Originally designed for secure e-commerce, now
used much more widely.
— Retall customer access to online banking facilities.
— Access to gmail, facebook, Yahoo, etc.
— Mobile applications, including banking apps.
— Payment infrastructures.

e TLS has become the de facto secure channel
protocol of choice.

— Used by hundreds of millions of people and devices
every day.

71



Simplified View of TLS “

Server

8¢

72



TLS Record Protocol “

 TLS Record Protocol provides:

— Data origin authentication and integrity using a
MAC.

— Confidentiality using a symmetric encryption
algorithm.

— Anti-replay service using sequence numbers
protected by the MAC.

— Optional compression.
— Fragmentation of application layer messages.

73



TLS Record Protocol:
MAC-Encode-Encrypt (MEE)

PAYLOAD MAC tag Padding

HDR Ciphertext

IVASEN  HMAC-MD5, HMAC-SHA1, HMAC-SHA256
IEER| CBC-AES128, CBC-AES256, CBC-3DES, RC4-128
Padding “00" or “01 01" or “02 02 02" or .... or “FF FF....FF”
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Operation of TLS Record Protocol

« Data from layer above is received and partitioned into
fragments (max size 24 bytes).

« Optional data compression.
— Default is no compression.

e Calculate MAC on SQN, 5-byte HDR, and PAYLOAD.
* Append MAC to PAYLOAD.
« Pad (if needed by encryption mode), then encrypt.

* Prepend HDR containing:

— Content type (1 byte, indicating content of record, e.g. handshake
message, application message, etc),

— SSL/TLS version (2 bytes),
— Length of fragment (2 bytes).

e Submitto TCP.
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Operation of TLS Record Protocol "

Recelver processing steps reverses these steps:

O gAWNR

. Receive message, of length specified in HDR.
. Decrypt.

Remove padding to recover PAYLOAD and MAC.

. Check MAC on SQN, HDR, PAYLOAD.
. (Decompress PAYLOAD.)
. Pass PAYLOAD to upper layer (no fragment

reassembly).

Errors can arise from any of decryption, padding removal
or MAC checking steps.

All of these are fatal errors, leading to error message
and connection termination.
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TLS Sequence Numbers

SON is 8 bytes in size and is incremented for each new
Record Protocol message.

SON not transmitted as part of message.

— Each end of connection maintains its own view of the current
value of SQN.

— TLS is reliant on TCP to deliver messages in order.

Using wrong SON leads failure of MAC verification
— A fatal error leading to TLS connection termination.

Use of SOQN creates a stateful encryption scheme.

— Intention is to prevent replay, insertion, reordering attacks.

— Order in the TLS secure channel matters.

— We have not yet introduced security notions for this (see later).
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AE In the TLS Record Protocol

« TLS 1.2 additionally supports authenticated encryption modes.
— AES-GCM in RFC 5288
— AES-CCM in RFC 6655

e Support for TLS 1.2 recently added in major browsers.
— Mostly as a consequence of recent attacks.

« However, TLS 1.2 is only now becoming supported in servers.

SSL Pulse: Webserver TLS support Browser TLS support (out-of-the-box, Nov. 2013)
100%

B0% --ooveene . @ TLS V12 O TLS 12
B0% -ovven ..

be

400/0 \ - : RN
20% J Qj TLS v1.2 g TLsvi2 (@ }(” TLS v1.2
0 u | N

SSL SSL TLS TLS TLS
v2.0 v3.0 v1.0 v1.1 vi.2

i
®




TLS Extensions and DTLS

Many extensions to TLS exist.
Allows extended capabillities and security features.

Examples:

— Renegotiation Indicator Extension (RIE), RFC 5746.

— Application layer protocol negotiation (ALPN), draft RFC.
— Authorization Extension, RFC 5878.

— Server Name Indication, Maximum Fragment Length
Negotiation, Truncated HMAC, etc, RFC 6066.

DTLS is effectively “TLS over UDP”
— DTLS 1.0 aligns with TLS 1.1, and DTLS 1.2 with TLS 1.2.

— UDP provides unreliable transport, so DTLS must be error
tolerant, necessitating changes to Handshake Protocol and

error management.
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Reminder: TLS Record Protocol:
MAC-Encode-Encrypt (MEE)

PAYLOAD MAC tag Padding

HDR Ciphertext

IVASEN  HMAC-MD5, HMAC-SHA1, HMAC-SHA256
IEER| CBC-AES128, CBC-AES256, CBC-3DES, RC4-128
Padding “00" or “01 01" or “02 02 02" or .... or “FF FF....FF”
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Theory for TLS Record Protocol? "

 The TLS Record Protocol employs a (stateful) MAC-
then-encrypt composition.
— With associated data (the Record Protocol header).

» This is known to be not generically secure, according to
the results of [BNOOQ].
— Butitis INT-PTXT and IND-CPA secure
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Theory for TLS Record Protocol? “

 Building on results of [KO1], the basic MAC-then-encrypt
construction can be shown to be AE (and so IND-CCA)
secure for the special case of CBC mode encryption.

* This extends to the stateful setting, as formalised in
[BKNO2].

« AE security also holds for RC4 under the assumption
that its output is pseudorandom.

e So are we done?
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Theory for TLS Record Protocol?

Analysis of [KO1] assumes random IVs for CBC mode.
— SSL v3.0 and TLS 1.0 use chained IVs.
— TLS 1.1 and 1.2 recommend use of random V.

TLS is really using MAC-Encode-Encrypt.
— With a specific padding scheme for the Encode step.
— Decryption can fail in more than one way, so potentially multiple
decryption failure symbols 11, 12, L13,...

Padding does not arise anywhere in the analysis in [KO1].
— Data is assumed to be block-aligned, and MAC size = block size.
— And padding is not integrity protected.

RC4 has known statistical weaknesses.

We’'ll show that these gaps between theory and reality do
matter.
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Attacking Chained IVs “

IV chaining in SSLv3 and TLS 1.0 leads to a
chosen-plaintext distinguishing attack against TLS.

First observed for CBC mode in general by Rogaway in
1995.

Application to TLS noted by Dal and Moeller in 2004.

Extended to theoretical plaintext recovery attack by Bard
iIn 2004/2006.

Turned into a practical plaintext recovery attack on
HTTP cookies by Duong and Rizzo in 2011.

— The BEAST.
16-year demonstration that attacks do get better.
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Attacking Chained IVs "

e Suppose attacker wishes to distinguish encryptions of
single blocks P, , P;.

» Attacker makes LoR query for messages P,, P;.

» Attacker receives ciphertext C = C, for message P,
where some known, previous block C, was used as the

V.
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Attacking Chained IVs "

* C, will be used as the IV for the next encrpytion.
 Attacker now makes LoR query on block P, & C, @ C,.
 Attacker receives single block ciphertext C.,.

P, P,®C,®C,
— —®
=% €x
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Attacking Chained IVs "

P, P,®2C,®C,
—® ]/ —
€k €k
|
CO — Cl — C2

« If P, = P,, then inputs to block cipher are the same in
both encryptions.

* Hence, if P, =P, then C,=C..

* Otherwise, if P, = P, then C, # C..

* So looking at C, and C, gives us a test to distinguish
encryptions of P, and P;.
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Attacking Chained IVs “

» Attack extends easily to multi-block messages.
* S0 IV chaining for CBC mode Is broken in theory.

 How can we turn this into a practical attack on
TLS?

* We want plaintext recovery rather than a
distinguishing attack.

* We need to realise the chosen plaintext
requirement.
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The BEAST — Part 1

— —
€k €k
| |
C, — C, — C,

* Assume bytes P, P,,... P, are known, try to recover Pc.
* Use PyP,...P,, as first 14 bytes of P’.

 lterate over 256 possible values in position 15 in P’

« P s=PyifandonlyifC, =C.,.

« So average of 128 trials to extract P, when remaining bytes in block
are known.
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The BEAST — Part 2

 Now assume attacker can control position of unknown bytes in stream with
respect to CBC block boundaries (chosen boundary privilege).

* Repeat previous single-byte recovery attack with sliding bytes.
» Green: initially known bytes.
* Red: unknown (target) bytes.

. . recovered bytes.
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The BEAST — Part 3

Cookie
for 4
remote

TLS tunnel

site

Browser
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The BEAST — Key Features “

 BEAST JavaScript loaded ahead of time into client
browser from compromised or malicious wesbite.

* Provides chosen-plaintext capability.
* Attack target is HTTP secure cookie.

« JavaScript uses HTTP padding to control positions of
unknown bytes (chosen boundary privilege).

 Difficult to get fine control over byte/block positions.

- Need to be able to inject chosen plaintext block at the very start
of Record Protocol messages.

e JavaScript also needs to communicate with MITM
attacker.

Summary: it's complicated, but it can be made to work.
* Techniques useful in later TLS attacks too.
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The BEAST — Impact “

The BEAST was a major headache for TLS vendors.
- Perceived to be a realistic attack.
- Most client implementations were “stuck™ at TLS 1.0.

Best solution: switch to using TLS 1.1 or 1.2.
- Uses random IVs, so attack prevented.
- But needs server-side support too.

For TLS 1.0, various hacks were done:

- Use 1/n-1 record splitting in client.
- Now implemented in most but not all (?) browsers.

- Send 0-length dummy record ahead of each real
record.
- Breaks some implementations.

- Or switch to using RC47?

- As recommended by many expert commentators.
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Lessons “

A theoretical vulnerability pointed out in 1995
became a practical attack in 2011.
- Attacks really do get better (worse!) with time.

- Practitioners really should listen to (some)
theoreticians.

- And, in this case, they did: TLS 1.1 and 1.2 use
random |Vs.

- Problem was that no-one was using these versions.

ldeas from the wider security field were needed
to make the attacks headline news.
- Man-in-the-browser via Javascript.

- Importance of demo/youtube video and showing
people the plaintext.
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Outline "

 Padding oracle attacks on TLS
* Lucky 13
 TLS security proof
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TLS Record Protocol: MAC-Encode-Encrypt

Padding

PAYLOAD MAC tag ‘ Padding )

HDR Ciphertext

HMAC-MD5, HMAC-SHA1, HMAC-SHA256
CBC-AES128, CBC-AES256, CBC-3DES, RC4-128
“00°or“01 017 or“020202”or .... or “FF FF....FF”
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TLS Record Protocol Padding "

 Padding in TLS 1.0 and up has a particular
format:
— Always add at least 1 byte of padding.

— If t bytes are needed, then add t copies of the byte
representation of t-1.

— So possible padding patterns in TLS are:

00;
01 01;
02 02 02;
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TLS Record Protocol Padding "

* Variable length padding is permitted in all versions of
TLS.

* Up to 256 bytes of padding in total, so longest possible
padding pattern is:

FF FF.... FF
e FromTLS 1.0:

Lengths longer than necessary might be desirable to
frustrate attacks on a protocol based on analysis of the
lengths of exchanged messages.

* This “goal” has interesting theoretical implications.

-Recall that, in IND-CPA/IND-CCA models, m, and m, always have
the same length.
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Handling Padding During Decryption "

e TLS 1.0 error alert:

decryption_failed: A TLSCiphertext decrypted In
an invalid way: either it wasn't an even multiple
of the block length or its padding values, when
checked, weren't correct. This message Is
always fatal.

e Suggests padding format should be checked,
but without specifying exactly what checks
should be done.
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Insecurity of Weak Padding Checks “

Recall decryption seguence:
— CBC mode decrypt, remove padding, check MAC.

e [MO2]: failure to check padding format leads to a
simple attack recovering the last byte of plaintext
from any block.

e Assumptions:
— Attacker has a TLS ciphertext containing a complete block
of padding.
— S0 MAC ends on block boundary for this ciphertext.
— Padding removed by inspecting last byte only.
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Moeller Attack for TLS

Blocks from
special ciphertext

Byte value
is “OF” here
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Moeller Attack for TLS

Blocks from
special ciphertext

C*

Target ciphertext
block from stream

Enabling recovery

v

of last byte of
di(C*) here.

Decryption succeeds
if and only if byte
value is “OF” here
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Preventing Weak Padding Checks "

Decryption succeeds if and only if:
(Ci)is @ (de(C*))y5 = "OF

Hence attacker can recover last byte of d (C*) with
probability 1/256.

This enables recovery of last byte of original plaintext P*
corresponding to C* in the CBC stream.

Hence, in TLS 1.1 and up:

Each uint8 in the padding data vector MUST be filled with the
padding length value. The receiver MUST check this
padding....
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Full Padding Check "

 We now assume that TLS does a full padding check.

« So decryption checks that bytes at the end of the
plaintext have one of the following formats:

00;
01, 01;
02, 02, 02;

and outputs an error if none of these formats is found.
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Padding Oracles

« Vaudenay [V02] proposed the concept of a padding
oracle.

Padding
Oracle

Valid/lnvalid)

* Vaudenay showed that, for CBC mode and for certain padding
schemes, a padding oracle can be used to build a decryption oracle!

 We'll focus on TLS, but padding oracle attacks have been widely
deployed, e.g. DTLS, ASP.NET, XML encryption.
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Padding Oracle Attack for TLS Padding

XOR with A here and Target ciphertext
submit to padding oracle block placed as last
l / block of TLS message
o Cia C

:

|

|

| dy dy :

I Recovering true

L----+D > plaintext byte via
P,®A = (....00)

T

Eventually produces
valid pad “00” here
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Padding Oracle Attack for TLS Padding

XOR with A;A, here
and submit to oracle

y

o Cia C

:

: d d

| K K

|

L - *69 >
This byte now set
to “01” by setting

P P, Ay=A ® 01

Recovering last-but-one
plaintext byte via
P,®(.....A,4,) = (....0101)

Eventually produces
valid pattern “01 01" here
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Padding Oracle Attack for TLS Padding “

* An average of 128 trials are needed to extract
the last byte of each plaintext block.

» Attack extends to the entire block, with an
average of 128 trials per byte.

« Can extend to entire ciphertext.

— Because attacker can place any target block as last
block of ciphertext.
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TLS Padding Oracles In Practice? “

 |[nTLS, an error message during decryption
can arise from either a failure of the padding

check or a MAC falilure.

 Vaudenay’'s padding oracle attack will produce
an error of one type or the other.
— Padding failure indicates incorrect padding.
— MAC failure indicates correct padding.

» |f these errors are distinguishable, then a
padding oracle attack should be possible.
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TLS Padding Oracles In Practice? “

Good news (for the attacker):

 The error messages arising in TLS 1.0 are
different:

— bad record mac
— decryption failed

Bad news:

 But the error messages are encrypted, so
cannot be seen by the attacker.

 And an error of either type Is fatal, leading to
Immediate termination of the TLS session.

111



TLS Padding Oracles In Practice? “

Canvel et al. [CHVVO03] :

« With the natural implementation, a MAC failure error
message will appear on the network later than a
padding failure error message.

e Why?
 Recall the sequence of processing steps:
—  Decrypt

—  Check pad (abort if wrong)
—  Check MAC (abort if wrong)

« Hence MAC check only done if padding is good.

 And if padding is bad, processing terminates quickly
(MAC check is relatively slow).
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TLS Padding Oracles In Practice? “

Canvel et al. [CHVVO03] :

SO timing the appearance of error messages can give
us the required padding oracle.
— Even if the error messages are encrypted!

« But the modified ciphertexts always fail the MAC check
(or the padding check).

* And the errors are fatal.

 So the attacker only gets query to padding oracle
before try before connection is lost.

« Attacker can learn one byte of plaintext, with probability
only 1/256.

— Chances of being correct on first query.
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OpenSSL and Padding Oracles

Canvel et al. [CHVVO3]:

» The attacker can still decrypt reliably if a fixed plaintext is
repeated in a fixed location across many TLS sessions.
— e.g. password in login protocol or session cookie.
— A multi-session attack.
— Modern approach: use BEAST-style malware.

 OpenSSL had a detectable timing difference.
— Difference is time taken to compute HMAC on message.
— Roughly 2ms difference for 214 byte messages.

— Enabling recovery of TLS-protected Outlook passwords in about
3 hours.
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DTLS and Padding Oracles “

* Recall that DTLS is basically TLS over UDP.

 UDP is not reliable like TCP, so DTLS has to
tolerate packet drops, replays, etc.

 This means that the connection Is not terminated
INn the event of an error.

* But there are no error messages to time.
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Breaking DTLS in OpenSSL “

« [AP12]: Can we apply padding oracle ideas to
DTLS?

* But surely DTLS implementations would have
learned lessons from old TLS attacks?

— DTLS 1.0 is based on the TLS 1.1 specification.

— So we should not expect a timing-based side channel
to exist...
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Breaking DTLS in OpenSSL “

 OpenSSL implementations of DTLS prior to
versions 0.9.8s/1.0.0f did not check the MAC If
the padding check falls.

* Hence the timing difference observed In
[CHVVO03] should still be present!
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Breaking DTLS in OpenSSL "

 Bad news: no error messages to time.
— Not a major hurdle:

Heartbeat | 5
packet

<« | Heartbeat
response

— Attack packet takes longer to process if padding is
good.

— S0 measure time difference between sending attack
packet + heartbeat and receiving heartbeat response.

— This serves as a proxy for timing error messages
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Breaking DTLS in OpenSSL "

Good news: errors in DTLS are not fatal.

— Actually very good news: allows amplification of timing
difference using packet trains.

Heartbeat | s
packet

<«— | Heartbeat
response

— With care, the timing difference arising from the attack
packets can be made cumulative!

— Repeat over many trains and use statistical techniques
to detect timing difference.
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Experimental Results "

« HMAC-SHA1 + CBC-AES, 10 packets per train, 1456
bytes per packet:
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Experimental Results “

 Example for HMAC-SHA1 + CBC-AES

— 192 byte packets
— 2 packets per train
— 10 trains per byte value

 Statistical processing:
— Get timings for each set of 10 trains; remove outliers
— Keep minimum time for each byte value tried.
— Select as correct byte the one that maximizes the
resulting time.
* Success probabilities:
— Per byte: 0.996
— Per block: 0.94 191



Observation “

 DTLS turns out to be substantially easier to
attack than TLS.

— Because of ablility to amplify timing differences using
packet trains.

— This Is a consequence of the choice of transport
protocol: UDP instead of TCP.

— Detaills in [AP12].

* This distinction does not arise In current formal
security models for encryption.
— But could easily be modelled.
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Countermeasures to Padding “
Oracle Attacks \

 Redesign TLS:
— Pad-MAC-Encrypt or Pad-Encrypt-MAC.
— Too invasive, did not happen.

e Switch to using RC4?
— Seems to have been a widespread reaction.

e Or add a fix to CBC mode to ensure uniform errors?

— If attacker can’t tell difference between MAC and pad
errors, then maybe TLS’s MEE construction is secure?

— S0 how should TLS implementations ensure uniform
errors?
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Ensuring Uniform Errors "

From the TLS 1.1 (2006) and 1.2 (2008) specifications:

...Implementations MUST ensure that record processing
time is essentially the same whether or not the padding is
correct.

In general, the best way to do this is to compute the MAC
even If the padding is incorrect, and only then reject the
packet.

Compute the MAC on what though?
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Ensuring Uniform Errors "

For instance, If the pad appears to be incorrect, the
Implementation might assume a zero-length pad and then
compute the MAC.

*This approach was adopted in many implementations,
Including OpenSSL, NSS (Chrome, Firefox), BouncyCastle,
OpendDK, ...

*One alternative (GnuTLS and others) Is to remove as
many bytes as are indicated by the last byte of plaintext
and compute the MAC on what’s left.
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Ensuring Uniform Errors "

... This leaves a small timing channel, since MAC
performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough to
be exploitable, due to the large block size of existing MACs
and the small size of the timing signal.
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Ensuring Uniform Errors "

... This leaves a small timing channel, since MAC
performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough to
be exploitable, due to the large block size of existing MACs
and the small size of the timing signal.
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Lucky 13 [AP13] “

 Distinguishing attacks and full plaintext recovery
attacks against TLS-CBC implementations
following the advice in the TLS 1.1/1.2 specs.
— And variant attacks against those that do not.

* Applies to all versions of SSL/TLS.
— SSLv3.0, TLS 1.0, 1.1, 1.2.
— And DTLS.

 Demonstrated in the lab against OpenSSL and
GnuTLS.
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Reminder: MAC-Encode-Encrypt in TLS “

|

HDR Ciphertext
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Lucky 13 — Basic Idea

TLS decryption removes padding and MAC tag to extract
PAYLOAD.

HMAC computed on SQN || HDR || PAYLOAD.

HMAC computation involves adding 29 bytes of padding and
iteration of hash compression function, e.g. MD5, SHA-1,
SHA-256.

Running time of HMAC depends on L, the byte length of

SON || HDR || PAYLOAD:

— L <55 bytes: 4 compression functions;
— 56 <L <119: 5 compression functions;
— 120 < L <£183: 6 compression functions;
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Lucky 13 Distinguishing Attack

,
&2

<
< >
K C C’
9% —>

C = Enc (M) M is either R%87|| 00 or R3? || FF2°6

v

* Adversary intercepts ¢, mauls, and forwards on to
recipient.

* Time taken to respond with error message will indicate
whether M = R287 || 00 or M = R3? || FF2°6,

* Ciphertext-only distinguishing attack.
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Lucky 13 Distinguishing Attack — "
Choose

.V !
!

IV
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Maul

Lucky 13 Distinguishing Attack — "

IV

s

IV

e
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Lucky 13 Distinguishing Attack — "

Inject
1-byte valid padding
20-byte MAC
267-byte message
IV C’

e

256-byte valid padding
20-byte MAC
12-byte message

IV C’
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Lucky 13 Distinguishing Attack — "
Decrypt w

\Y; C

e

\Y; C
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Lucky 13 Distinguishing Attack —

Decrypt
\ - y verification
280 bytes

Fast MAC
\ Y, verification
g

25 bytes

Timing difference: 4 SHA-1 compression function evaluations
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Experimental Results for “
Distinguishing Attack ,

0.00006 ~

0.00005 -
0.00004 -
0.00003 -

0.00002 -

Probability

0.00001 -

1.50 %100 1.51 %108 1.52 x10° 1.53 x10° 1.54 x105 1.55 x100 1.56 x 108 1.57 x10°
Hardware Cycles (Calculated by Attacker)

 OpenSSLv1.0.1 on server running at 1.87Ghz.
e 100 Mbit LAN.
« Difference in means is circa 3.2 us.
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Success Probability

Number of Sessions Success Probability
1 0.756
4 0.858
16 0.951
64 0.992
128 1
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Lucky 13 — Plaintext Recovery

XOR 2-byte A here
and submit for decryption

dy dy d d
o) 0 oD D
Pt

Target
ciphertext
block from

stream

Produces valid
patterns “01 01”

or “00”,

(HMAC-SHA-1 + AES-CBC) OR bad pad.
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Case 1: “01 017 (or longer valid pad)

XOR 2-byte A here
and submit for decryption

\ 4

dy dy d dy
»(D >0) - (D
- A J \
e e
13 + 16 + 16 + 10 = 55 bytes 20 bytes | “0101”
. (or longer
4 SHA-1 compression valid pad)

function evaluations
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Case 2: “00”

XOR 2-byte A here
and submit for decryption

\ 4

dy dy d d
ALY AL
D D v/ >

56 bytes 20 bytes “00”

5 SHA-1 compression
function evaluations
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Case 3. Bad padding

XOR 2-byte A here
and submit for decryption

\ 4

dy dy d dy
(D ) - (1
- N J\
N N
57 bytes 20 bytes zerd-length
pad

5 SHA-1 compression
function evaluations
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Lucky 13 — Plaintext Recovery

The injected ciphertext causes bad padding and/or a bad
MAC.

— This leads to a TLS error message, which the attacker times.

There is a timing difference between “01 01" case and the
other 2 cases.

— A single SHA-1 compression function evaluation.

— Roughly 1000 clock cycles, 1us range on typical processor.

— Measurable difference on same host, LAN, or a few hops away.
— Compare with original padding oracle attack: 2ms.

Detecting the “01 01" case allows last 2 plaintext bytes in the
target block C, to be recovered.
— Using the usual CBC algebra.

— Attack then extends easily to all bytes as in a standard padding

oracle attack.
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Lucky 13 — Attack Cost “

* We need 216 attempts to try all 2-byte A values.

« And we need around 27 - 28 trials for each A value to
reliably distinguish the different events.
— Noise level and number of trials depends on experimental set-up.

 Each trial kills the TLS session.

 Hence the headline attack cost is 223 — 224 sessions, all
encrypting the same plaintext.

 Looks rather theoretical?
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Lucky 13 — Improvements “

 If all-but-one byte of plaintext block is known,
then we only need 28 attempts to recover the
missing byte.
— We know how to set bytes of mask A so that valid
padding pattern is hit in all-but-one position.

— Works for any combination of block cipher and hash
function.

 If the plaintext is base64 encoded, then we only
need 2° attempts per byte.
— And 27 trials per attempt to de-noise, for a total of 213.
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Lucky 13 — All-But-One Byte Known

Target
Apply 2-byte mask ciphertext
A =(01®P,,, A;:) block from
stream
vV H| R H| R F C '/
dy dy dy d
-0 d 0 9

Produces
pattern “01 ??”.
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Lucky 13 + BEAST = Practical Attack “

BEAST-style attack targeting HTTP cookies.

» Client-side Javascript makes repeated HTTP GET
requests to target site.

* TLS sessions are automatically generated and HTTP
cookies attached to outgoing GET requests.

e Javascript pads the GET requests so that all-but-one
condition always holds.
— Sliding bytes as in original BEAST attack.

 MITM modifies ciphertext.
— Causing session crash.

e Cost of attack is around 213 TLS handshakes and GET
requests per byte of cookie.

 Now a practical attack!
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Lucky 13 + BEAST = Practical Attack

TLS tunnel

Cookie
for
remote H

site

Browser
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Experimental Results

1292x100 [ = - -
B et e i Ta e
o~ 1291)(106 ;Q..o... we ° .. ..%0.0 o'o‘. .. ‘s’..‘ ~.. %% o °© ..0"...
) L o‘ 0“... .: 00 ¢ o ° Q.
n Yy i ® o - ° L
2 0 r ¢ b o ® ‘o ¢
o 5 1290x106 - .
& :
>,| L
0 9 1.289 %100 -
G o i
) i
T B 1288x100 -
G — L
T 3 -
- 6; AISZOXFE_> L4
o 1287x10° |
0 i
1286 %100
0 50 100 150 200 250
Ars
« Byte 14 of plaintext set to 01; byte 15 set to FF.
«  Modify A,

 OpenSSLvl1.0.1 on server running at 1.87Ghz, 100 Mbit LAN.

* Median times (noise not shown). 149



Experimental Results

b ur sue

OpenSSL: recovering last byte in a block, using percentile test to

extract correct byte value, no assumptions on plaintext.
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Lucky 13 — Further Extensions

« The attack extends to other MAC algorithms.

— Nice interplay between block-size, MAC tag size and 13-byte
field SQN || HDR.

* The attack extends to other methods for dealing with bad
padding.

— e.g. as in GnuTLS, faster but partial plaintext recovery.

« [The attack can be applied to DTLS.
— No error messages, but simulate these via DTLS Heartbeats.
— Errors non-fatal, so can execute attack in a single session.
— Cam amplify timing differences using techniques from [AP12].]
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Lucky 13 — Impact

(Full detalls at: www.isg.rhul.ac.uk/tls/lucky13.html)

*OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released
05/02/2013.

*NSS (Firefox, Chrome) patched in version 3.14.3, released 15/02/2013.
*Opera patched in version 12.13, released 30/01/2013

*Oracle released a special critical patch update of JavaSE, 19/02/2013.
BouncyCastle patched in version 1.48, 10/02/2013

*Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL.

*Microsoft “determined that the issue had been adequately addressed
In previous modifications to their TLS and DTLS implementation”.

*Apple: patched in OS X v10.8.5 (i0S version thd).
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Lucky 13 — Countermeasures

We really need constant-time decryption for TLS-CBC.

Add dummy hash compression function computations when

padding is good to ensure total is the same as when padding
IS bad.

Add dummy padding checks to ensure number of iterations
done is independent of padding length and/or correctness of
padding.

Watch out for length sanity checks too.

— Need to ensure there’s enough space for some plaintext after
removing padding and MAC, but without leaking any information

about amount of padding removed.
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Performance of Countermeasures

Probability

000006 F T T T T
0.00005?—
0.00004;
0.00003;
0.00002?—

0.00001 -

Before

1.50x108 1.51 x10° 1.52 x 108 1.53 x 108 1.54 x 106 1.55 x 106 1.56 x10° 1.57 x 108

Hardware Cycles (Calculated by Attacker)

Better but not perfect.

Probability

0.00006
0.00005
0.00004
0.00003
0.00002

0.00001 F

After

Hardware Cycles

1.54x10° 1.55 108 1.56 x 106 1.57 x10° 1.58 x 106 1.59 x 106 1.60 x10° 1.61 x 108

(Calculated by Attacker)

Adam Langley’s constant-time code in OpenSSL needed 500 lines
of ‘C’, but completely removes difference.
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Security Proofs for TLS Record “
Protocol (CBC mode) \

Implementations of TLS in CBC mode should now have:

« Explicit, random IVs
To prevent Dai-Rogaway-Moeller/BEAST

* Proper padding checks
To prevent Moeller attack.

« Uniform behaviour under padding and MAC failures
To prevent padding oracle and Lucky 13 attacks.
|deally, constant-time, constant memory access code.

« Variable length padding.
To disguise true plaintext lengths.
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Short MAC Attack Against TLS ([PRS11])

- :
N
N ' >
K C C v
4>
C = Ency(M) M is either “Yes” or “No”

* Adversary intercepts C, flips a few bits, and forwards it on to
recipient.

« How recipient responds will indicate whether M = “Yes” or “No”.
* Adistinguishing attack.

 The attack works when MAC size < block size and when sender
uses variable length padding.
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MAC length t = 80, block length n = 128 “

N A 16 Byte 13 is hex
i ‘ 13 13‘ for 19
€k €k
| |

Byte 12 is hex

C,” =C,® 0012104 [Ye| |12° 12% for 18
C’ =C,’C,
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MAC length t = 80, block length n = 128

IEI

No

034

e

4
1316/

Decrypts

fine to “No”
/ S\

C,” =C,® 0012104 |Ye

C’ =c,’C,

Co

123 1216
— —
€k €k
I I
C1 B Cz
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MAC length t = 80, block length n = 128

IEI

e

CO — CO C_D 0012104 ves |

c’ =c,’ C,

Cy,’

\

No 034 \ 1316

— O Aﬁ@/
ek X Decrypts
' A fine to “No”

c, H C,
/ \
22| 023 \\ 1216 //

—— > / MAC will
N X not verify,
| 70\ decryption
c, Pl /c \1\ fails

/
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Where Does the Attack Apply? "

For TLS 1.2:

Block length MAC length

n=64 for3DES t=128 for HMAC-MD5

n =128 for AES t=160 for HMAC-SHA1l
t=256 for HMAC-SHA256

/
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Where Does the Attack Apply? “

For TLS 1.2 with truncated MAC extension (RFC 6066):

Block lenqgth MAC lenqgth
n=64 for3DES t=80 for Truncated HMAC-MD5

n =128 for AES t =80 for Truncated HMAC-SHA1
t =80 for Truncated HMAC-SHA256

Attack applies for AES!
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Consequences of Attack “

* This does not yield an attack against TLS, but
only because no short MAC algorithms are
currently supported in implementations.

« The attack is “only” a distinguishing attack.
— Does not seem to extend to plaintext recovery.

* The attack presents a barrier to obtaining
proofs of security for TLS MEE construction.

— Attack exploits variable length padding to break INT-
CTXT security, leading to IND-CCA attack.
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Combined AE Security Notion

C &€ Enci(M,)
Ret C

M < Decy(C)
Ret M

_
—

AE

C € Enci(M,)
Ret C

IND-CPA +
INT-CTXT

Ret N




Combined AE Security Notion

C &€ Enci(M,) M < Decy(C) C € Enci(M,)
Ret C Ret M Ret C

Authenticated-Encryption security does not protect against
adversary who can select messages of different lengths.

So [PRS11] attack is outside this model.



Length-hiding Authenticated
Encryption (LHAE) Security

C, € Enc(L, M,) M €& Decy(C) C, € Ency(L, M,) 7
Co, € Ency(L, M) Ret M Co, € Ency(L, M) Ret
|fC0:/\ or Cl:/\ |fCO:A or C, = N

Ret C,; Ret C,

LHAE security protects against learning partial information about
messages of (some) different lengths and forging ciphertexts

LHAE __~  LH-IND-CPA + INT-CTXT > AE



Towards LHAE Security "

P D — @
€k ey ex
| | |
C, F C, F c, K C,

—

LHAE _ LH-IND-CPA + INT-CTXT

Showing LH-IND-CPA is easy from IND-CPA of CBC.
INT-PTXT Is straightforward from results of [BNOO].
But we need INT-CTXT, and INT-PTXT does not imply it.



Collision-Resistant Decryption (CRD) "
Security

This is exactly the ‘gap’ between INT-PTXT and INT-CTXT:

INT-CTXT _ INT-PTXT + CRD

Recall in our attack, adversary creates a new ciphertext that
decrypts to a previously encrypted message.

4 16 Byte 13 is hex
N 13 13 for 19
—® —®
€k €k




Collision-Resistant Decryption (CRD) "
Security

This is exactly the ‘gap’ between INT-PTXT and INT-CTXT:

INT-CTXT _ INT-PTXT + CRD

Recall in our attack, adversary creates a new ciphertext that
decrypts to a previously encrypted message.

No 134 1316 %;?913 IS hex
— D — P
€k €k
| |
C, — C, — C,

Achieving CRD security shows that no such attacks exist.



LHAE Security for TLS

Theorem ([PRS11], informal statement)

Suppose E is a block cipher with block size n that is sprp-secure.
Suppose MAC has tag size { and is prf-secure.

Suppose that for all messages M queried by the adversary:

IM|+1 = n.

Then MEE with CBC mode encryption, random IVs, TLS padding, and
uniform errors is (LH)AE secure.
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[PRS11]: Tag size matters!

Practical
att_acks B g
exist .. ..
I I

C, F c, F C,
Secure In
the (LH)AE IS 5 5
model .. .. ..




Other Lucky 13 Countermeasures?

Introduce random delays during decryption.
— Surprisingly ineffective, analysis in [AP13].

Redesign TLS:
— Pad-MAC-Encrypt or Pad-Encrypt-MAC?

— Pad-Encrypt-MAC only now being adopted as a TLS extension for
TLS 1.1 and higher.

— Takes months/years to deploy.

Switchto TLS 1.2
— Has support for AES-GCM and AES-CCM.

— But was not supported by browsers at time Lucky 13 was
announced.

Switch to RC4
— As recommended by many commentators (again!).
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Lessons “

 TLS’'s MAC-Encode-Encrypt construction is hard
to iImplement securely and hard to prove positive
security results about.
— Long history of attacks and fixes.
— Each fix was the “easiest option at the time”.

— Now reached point where a 500 line patch to
OpenSSL was needed to fully eliminate the Lucky 13
attack.

o Attacks show that small details matter.
— Compare with [KO1] security proof.

— The full details of the CBC construction used in TLS
were only analysed in 2011 ([PRS11])).
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Outline

* Yet more TLS attacks

- RC4inTLS

- CRIME/BREACH
Introduction to SSH
Security proof for SSH-CBC
Breaking SSH-CBC
Analysis of SSH-CTR
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TLS Record Protocol: RC4-128

HDR Ciphertext

VRSN  HMAC-MD5, HMAC-SHAL, HMAC-SHA256

BEEP CBC-AES128, CBC-AES256, CBC-3DES(RC4-128
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TLS Record Protocol: RC4-128 “




Use of RC4 In TLS

* In the face of the BEAST and Lucky 13 attacks on CBC-based
ciphersuites in TLS, switching to RC4 was a recommended

mitigation.
(®@ Quaws

« RC4 is also fast when AES hardware not available

» Use of RC4 in the wild:
ICSI Certificate Notary

~ ] ] ™
] Jan. 2013 survey of 16 billion TLS connections:
] ] Approx. 50% protected via RC4 ciphersuites

- ,

* Problem: RC4 is known to have statistical weaknesses.



Single-byte Biases in the RC4 Keystream “

e [Mantin-Shamir 2001]:
Pr(Z, = 0] ~ 535

e [Mironov 2002]:

— Described distribution of Z; (bias away from 0, sine-like distribution)

e [Maitra-Paul-Sen Gupta 2011]: for 3 < r < 255
PriZ, =0] = 5% + 5%  0.242811 < ¢, < 1.337057

e [Sen Gupta-Maitra-Paul-Sarkar 2011]:

Pr[zf — 256 — l"l] 2 Eéﬁ + 251'52 | = keylength




What's going on? “

 Why were we all still using RC4 in half of all TLS
connections when we knew it was broken?

* "Google uses It, so it must be OK for my site”.

* “The biases are only in the first handful of bytes
and they don’t encrypt anything interesting in
TLS”.

* “The biases are not exploitable in any
meaningful scenario”.

e “RC4 s fast.”
e “I'm worried about BEAST on CBC mode.”

179



Complete Keystream Byte
Distributions

* Approach in [ABPPS13]:

— Based on the output from 24° random independent 128-bit RC4
keys, estimate the keystream byte distribution of the first 256 bytes

£ £ £
nnnnnnnnn - ///fl/«/\‘) 0.00390625
000378 0.003878 o.003878
0 16 32 a8 e B0 %6 112 128 144 160 176 192 208 224 240 255 0 18 3w s 4 B0 9 112 120 146 160 176 192 208 224 240 255 0 18 3w 4r 64 B0 % 112 128 144 160 176 192 208 226 240 255
551

Byte value [0...2 Byte value [0..255) Byte value [0..255]

 Revealed many new biases in the RC4 keystream.
— (Some of these were independently discovered by Isobe et al.)



Keystream Distribution at
Position 1

0.003950
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Probability

0.003878 - -
a 16 32 48 &4 BO 95 112 128 144 160 1¥6 182 208 224 340 255

Byte value



Keystream Distribution at
Position 2
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o
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a 16 32 48 &4 BO 95 112 128 144 160 1¥6 182 208 224 340 255

Byte value



Keystream Distribution at
Position 3

0.003950
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0.003878 -

a 16 32 48 &4 BO 95 112 128 144 160 1¥6 182 208 224 340 255
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Keystream Distribution at
Position 4

0.003950

Probability

0.003878 - !
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Keystream Distribution at
Position 5
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Keystream Distribution at
Position 6
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Keystream Distribution at
Position 7
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Keystream Distribution at
Position 8
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Keystream Distribution at
Position 9
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
Position 13
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Keystream Distribution at
Position 14

0.003950

I /
0.003906

Probability

0.003878 - L
a 16 32 48 &4 BO 95 112 128 144 160 1¥6 182 208 224 340 255

Byte value



Keystream Distribution at
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Keystream Distribution at
Position 16
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Keystream Distribution at
Position 17
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at

Position 22
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
Position 27
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
Position 30
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Keystream Distribution at
Position 31
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Keystream Distribution at
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0.003950 |‘

Probability

0.003906 . ‘M

0.003878 - !
a 16 32 48 &4 BO 95 112 128 144 160 1¥6 182 208 224 340 255

Byte value



All the Blases

255

224

192

— 160
in 4 - 03
N
=
v 128
>
T
>
9
> 4 L 0.2
© g6
64
0.1
32
0 0

1 32 64 96 128 160 192 224 256
Position [1...256]
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Plaintext Recovery for TLS-RCA4 “

e S0 what?

« Using the biased keystream byte distributions, we can
construct a plaintext recovery attack against TLS.

* The attack requires the same plaintext to be encrypted

under many different keys.

— Use Javascript in browser as mechanism, cookies as target, as in
BEAST attack.
— There is a meaningful attack scenario!



Plaintext recovery using keystream

biases

C1

Co2

Cs

Chn

Encryptions of fixed plaintext Plaintext candidate

under different keys byte p

r r
e p@l">-
I =

111 pe ]

111 p o[

\_

J

combine with known distribution

wwwwwwwww

Likelihood of p being
correct plaintext byte
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Detalls of Statistical Analysis

Let ¢ be the n-vector of ciphertext bytes in position r.

Let g = (Qgg, doy:---» di) D€ the vector of keystream byte probabilities in
position r.

Bayes theorem:
Pr[P=p | C=c] = Pr[C=c | P=p]. Pr[P=p]/Pr[C=c]
= Pr[Z=c ® p | P=p].Pr[P=p]/Pr[C=c].
Assume Pr[P=p] is constant; Pr[C=c] is independent of the choice of p.

Then to maximise Pr[P=p | C=c] over all choices of p, we simply need
to maximise:

|
n: Noo _Noy Mgt

Ngo!Ng,! ... Nl 7100 01 ff

Pr[Z=c ® p | P=p] =

where n, is the number of occurrences of byte value x in Z=c © p
(which equals the number of occurrences of x @ p in c).
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Limitations of Attack “

« Requires 228 ~ 232 TLS sessions/connections for reliable
recovery.

« Attacker has to force TLS session
renegotiation/resumption.
— No known mechanism from within Javascript.

* Only the first 220 bytes of application data can be
targeted.

Initial 36 bytes of keystream are used to encrypt last message of
Handshake protocol.

 In reality, first 220 bytes of application data usually
contain uninteresting HTTP headers.



A Second Attack

 Fluhrer and McGrew
identified biases for
consecutive keystream
bytes.

— Persistent throughout
keystream.

 Based on these,
[ABPPS13] constructed
an attack which:
— Can target any plaintext byte
positions;

— Does not require session
renegotiation / resumption.




A Second Attack

« Align plaintext with repeating Fluhrer-McGrew biases

RC4 Keystream [ S A —

Plaintext copies

s ciphertexts [ NGNS NGNS ENCN

« Exploit overlapping nature of plaintext byte pairs to obtain
approximate likelihood for plaintext candidates.

: -
A
AANANN




Success Probability

100%

80%

Recovery rate

20%

0 1 2 3 4 5 6 7 8 g 10 11 12 13 14
Plaintext copies times 2730




Countermeasures “

* Possible countermeasures against the attacks
— Discard initial keystream bytes (RC4-DropN).
— Fragment initial records at the application layer.
— Add random amounts of padding to HTTP.

— Limit lifetime of cookies or number of times cookies can
be sent.

— (None of these is really effective.)

— Stop using RC4 in TLS and switch to another stream
cipher.



Vendor Responses “

* Opera has implemented a combination of
countermeasures.

* Google focused on implementing TLS 1.2 and AES-GCM
In Chrome, now deployed.

* Microsoft: RC4 is disabled by default for TLS in Windows
8.1 and latest Windows server code.

* Development of standards for alternative stream ciphers in
TLS underway in IETF.
— Salsa20/ChaCha20.



CRIME

 Duong and Rizzo [DR12] found a way to exploit TLS’s
optional compression feature.

— Similar to idea in 2002 paper by Kelsey [K0Z2].

 Compression algorithms are stateful.

— Replace repeated strings by shorter references to previous
occurrences.

* Degree of compression obtained for chosen plaintext
reveals something about prior plaintexts!

— This small amount of leakage can be boosted to get plaintext
recovery attack for HTTP cookies.

— Using same chosen plaintext vector as for BEAST.

e Countermeasure: disable compression.
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BREACH “

« BREACH: similar ideas to CRIME, now applied
to HTTP compression.

— http://breachattack.com/

* S0 now problem arises in the application layer,
not crypto layer.

« Cannot so easily disable HTTP compression.

* Bottom-line: we do not yet have a good
theoretical handle on how compression
Interacts with symmetric encryption.

— A research opportunity!
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TLS: Where Do We Stand?

Most TLS implementations now patched against BEAST.
Many TLS implementations patched against Lucky 13.
No simple TLS patch for RC4 attack.

Needs application-layer modifications.

Disable TLS compression to prevent CRIME.

Still issues with compression at application layer (BREACH).

We need really TLS 1.2!

Support for AES-GCM, AES-CCM.

Now available in most main browsers; server-side still patchy.
But TLS vulnerable to version rollback attack.

Expect further examination of AES-GCM in TLS implementations.
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TLS — Current Status?

IDI

“This is a dead parrot.”
“He’s not dead. He’s just resting.”
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Lessons “

 RC4 was known to be weak for many years.

— Actual exploitation of weaknesses in a TLS context
went unexplored.

— [ABPPS13] needed multi-session mechanism (BEAST
technology) to make the attack plausible.

* Once a bad cryptographic choice is out there In
Implementations, it's very hard to undo.

— Old versions of TLS hang around for a long time.
— There is no TLS product recall programme!
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Introduction to SSH "

Secure Shell or SSH is a network protocol that allows
data to be exchanged using a secure channel between
two networked devices. Used primarily on Linux and
Unix based systems to access shell accounts, SSH was
designed as a replacement for TELNET and other
Insecure remote shells, which send information, notably
passwords, in plaintext, leaving them open for
Interception. The encryption used by SSH provides
confidentiality and integrity of data over an insecure
network, such as the Internet.

— Wikipedia
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Introduction to SSH

« SSHv1 had several security flaws.
— Worst ones arising from use of CRC algorithm to provide
Integrity.
— Enabling, for example, traffic injection attacks.
« SSHv2 was standardised in 2006 by the IETF in RFCs
4251-4254.

— But basic specification dates from the late 1990s.

« SSHvV2 is widely regarded as providing strong security.

— One minor flaw that in theory allows distinguishing attacks
([D0O2]; [BKNO2]).

— Simple countermeasure adopted in, for example, OpenSSH.
— Dozens of different implementations of SSH.
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The SSH BPP

Sequence
Number

4

Packet
Lenagth

4

Pad
Len 1

Payload Padding 4

we

Ciphertext

MAC tag

* Encode-then-Encrypt&MAC construction, not generically secure.

» Packet length field measures the size of the packet on the wire in bytes
and is encrypted to hide the true length of SSH packets.

« Variable length padding is permissible; padding needed for CBC mode
and carried over to CTR mode.
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CBC Mode in SSH

* RFC 4253 mandates 3DES-

P4 P CBC and recommends
AES-CBC.
P D SY) T g — In fact, all originally specified
: : optional configurations involve
i Ex Sk i CBC mode, and ARCFOUR
| | | | was the only optional stream
! ! cipher.
) Ci, || C. ) P _ _
« SSH uses a chained IV in
CBC mode:
— |V for current packet is the last
-- - - iph t block f th
1| Ci-l C| : cip grtex block from the
| : previous packet.
; | | ! — Effectively creates a single
I dK dK I stream of data from multiple
! ! SSH packets.
'_____,@ R -
I:)i-l PI
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CTR Mode in SSH

ctr+i « CTR mode uses block
| cipher to build a stream
ey cipher.
« CTR mode for SSH
P, standardised in RFC 4344.
C. * Initial value of counter

IS obtained from
handshake protocol.

« Packet format is

Clr+i preserved from CBC
| case.
€ « Recommends use of
C AES-CTR with 128,
i 192 and 256-bit keys,

P. and 3DES-CTR.
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Security of the SSH BPP

« Attack of [D02], [BKNO2] exploits chained IVs in CBC
mode.
— Same attack vector as Rogaway’s 1995 observation.
— Breaks IND-CCA security of SSH BPP.

— Low success probability against SSH implementations because of
specifics of packet format.

— Prevented in OpenSSH by optional use of dummy packets to hide
Vs until it is too late for attacker to make use of them.
 Basic message: SSH BPP using CBC mode with chained
Vs is insecure according to the standard theoretical
notion of security.
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Stateful Security for Symmetric
Encryption

« [BKNOZ2] developed stateful security models for symmetric
encryption.

— Reflecting the desire to protect the order of messages in the secure
channel.

— And wide use of sequence numbers in secure channel protocols.

* IND-sfCCA security:

— Attacker has access to an LoR encryption oracle and a decryption
oracle.

— Both oracles are stateful (e.g. via sequence numbers).

— Model allows adversary to advance states to any chosen value via
gueries to LoR encryption and decryption oracles.

— Adversary wins game if he can guess hidden bit b of encryption
oracle.

« SfAE security can be defined similarly.
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Security of the SSH BPP “

» Using their models, [BKNO2] proved the security
of variants of the SSH BPP under reasonable
assumptions concerning:

— The encryption component.
« Essentially, IND-CPA security.

— The MAC component.
« Strong unforgeability and pseudo-randomness.

— The randomness of the padding scheme.

— Collision properties of the encoding scheme.

* In practice, for SSH BPP, this means not too many packets
can be encrypted.
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Security of the SSH BPP “

 In particular, [BKNO2] established the IND-
SfCCA security of SSH-$NPC and SSH-CTR.

— SSH-$NPC = SSH using a block cipher in CBC mode
with explicit, per-packet, random IV and with random
padding.

* In contrast to chained IVs used in SSH BPP.

— SSH-CTR = SSH using a block cipher in counter
mode, with counter maintained at sender and
receiver.
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Attacking the SSH BPP

 [APWO9]. plaintext recovery attacks against SSH BPP
when using CBC mode.

— Much stronger than distinguishing attack of [D02], [BKNO2]!

« These attacks exploit the interaction of the following
features of the BPP specification:

— The attacker can send data on an SSH connection in small
chunks (TCP).

— A MAC failure is visible on the network.

— The packet length field encodes how much data needs to be
received before the MAC is received and the integrity of the
packet can be checked.
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Attacking the SSH BPP (Theory)

IV C S~ Target ciphertext

| block from stream

* The receiver will treat the first 32 bits of the calculated plaintext
block as the packet length field for the new packet.

* Here:
P, =1V @& dy(C*)
where IV is known from the previous packet.
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Attacking the SSH BPP (Theory)

IV CI* R R ........
| I
dy dy dy
R >0

v
y Vi J
- o o e

The attacker then feeds random blocks to the receiver.

— One block at a time, waiting to see what happens at the server
when each new block is processed.

20/9/2010 252



Attacking the SSH BPP (Theory)

IV CI* R R ........ MAC tag
| I
dy dy dy
R >0

v
y Vi J
- o o e

« Eventually, once enough data has arrived, the receiver will receive
what it thinks is the MAC tag.
* The receiver will then check the MAC.
— This check will fail with overwhelming probability.
— Consequently the connection is terminated (with an error message).
 How much data is “enough” so that the receiver decides to check
the MAC?

20/9/2010 253




Attacking the SSH BPP (Theory) “

* The receiver has to use the packet length field
to decide when the MAC tag has arrived.

 Hence an attacker who counts the number of
nytes needed to cause connection termination
earns the packet length field.

 That is, the attacker learns the first 32 bits of:
P, = IV® d.(C).
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Attacking the SSH BPP (Theory) "

\Y; o Ci o
| |

dy > dy

v

« Knowing IV and 32 bits of P,, the attacker can

now recover 32 bits of the target plaintext
block:

P'=C,/®@d(CH=C[DIV® P,
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Attack Performance (Theory) “

* As described, this simple attack succeeds in
recovering 32 bits of plaintext from an arbitrary
ciphertext block with probability 1.

— But requires the injection of about 23! random bytes
to trigger the MAC check.

— And leads to an SSH connection tear-down.

o Still, the attack breaks the SSH BPP.
 The attack still works if a fresh 1V Is used for
each new SSH packet.

— Breaking SSH-$NPC that was proven secure in
[BKNO2].
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Attacking OpenSSH “

 OpenSSH is the most popular implementation
of the SSH RFCs.
— Open-source, distributed as part of OpenBSD.

— OpenSSH webpages state that OpenSSH accounts
for more than 80% of all deployed SSH servers.

— www.openssh.org/usage/index.html

 [APWO09] worked with OpenSSH 5.1.

— Version 5.2 released 23/02/2009 partly as a
consequence of their work, current version is 6.4.
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Attacking OpenSSH “

* In OpenSSH 5.1, two sanity checks are carried out
on the packet length field after the first block is
decrypted.

— 5 < packet_length < 218
— packet_length + 4 % block length =0

 When either of the checks falls, the SSH

connection Is terminated.

— But in subtly different ways that leaks some plaintext
information.

 If the length checks pass, then OpenSSH 5.1 waits
for more bytes.

* Finally, when the MAC check fails, a third type of
connection termination IS seen.
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Attacking OpenSSH “

 The manner in which OpenSSH 5.1 behaves
on failure allows:

— A first attack verifiably recovering 14 bits of plaintext
with probability 2-14.

— A second attack verifiably recovering 32 bits of

plaintext with probability 2-18 (for a 128-bit block
cipher).

— The attacks require injection of (roughly) 218 bytes.
« Boost success rate in multi-session attack.

* The attacks in [APWO09] worked in practice.

— Implemented in a virtualized environment with
server code patched to boost success rate.
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Possible Countermeasures “

* Use counter mode.
— The attack no longer applies.

— But stateful version of counter mode needed.

* If there’s an explicit counter in packets, then a version of
the attacks still works.

— As standardised in RFC 4344.

 Enforce use of counter mode.

— Not standards compliant with the RFCs as they are
currently written.

— Some implementations do not support counter mode
at all, creating backwards compatibility issue.

— “Only a cryptographer would suggest this...”
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What Went Wrong with the Theory?

* The security model of [BKNO2] does model errors arising
during the BPP decryption process.

— Connection teardown is modeled by disallowing access to
decryption and encryption oracles after any error event.

— Errors can arise from decryption, decoding or MAC checking.

« But only a single type of error message is output.

— The 2-1#4 attack against OpenSSH exploits the fact that different
error events are distinguishable.

* And the model assumes that decoding errors arise
before MAC errors.

— While the OpenSSH implementation only does decoding after
the MAC has been checked.

261



Limitations of [BKNO2]

 The model assumes that plaintexts and ciphertexts are
“atomic”.

— All oracle queries in the model involve complete plaintexts or
ciphertexts.

— But the attacks exploit the ability to deliver ciphertexts one
block (or even one byte!) at a time and observe behaviour.
 The model does not allow for plaintext-dependent
decryption.
— The packet length field never appears in the model.

— But implementations must make use of this field during the
decryption process.

— And, as we've seen, the manner in which this field is treated is
critical for security.

 Models are just models.
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New Security Analysis of SSH “

e [PW1O0]:
— Develops a new security model addressing limitations of
the model used in [BKNO2]

 LOR-BSF-CCA security;

— Builds an accurate description of SSH-CTR as specified
In RFCs and implemented in OpenSSH,;

— Proves the security of this description of SSH-CTR in the
new model.

« [BDPS12]:
— More general security modelling for SSH-like protocols.
— Security against chosen-fragment attacks (IND-CFA).
— Formalisation of boundary-hiding (BH).
— Relationship between IND-CFA, BH and DoS-resistance.
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Lessons “

« SSH attack is trivial.
— Once you see it!
— Troubling that it lurked in specification for years.

 SSH design goals raise interesting new theory
guestions.

— How do IND-CFA, BH and DoS-resistance interact with
each other?
 [PW10] analysis of SSH-CTR is at the limits of
(this) human’s abllity to generate models and
proofs.

— Complexity arises from complexity of protocol we’re trying
to model.

— c.f. recent developments in TLS analysis, introduction of
machine-generated/machine-checkable proofs.
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Final Thoughts “

» Good algorithm design is hard.
* But so Is good protocol design.

» Attacks are usually obvious In retrospect.
— But so is most theory!

* Finding attacks is high-risk, high-reward.
* Value of attacks on paper versus attacks in

practice.

— Implemented attacks needed to convince
practitioners.

— On-paper attack often the harbinger of a practical
attack.
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