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Lecture 1 Outline 

Theory for symmetric encryption: 

• Security models 

• Modes of operation 

• Message Authentication Codes (MACs) 

• Generic composition 
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Theory for Symmetric Encryption 

• Security models for symmetric encryption are well 
established. 

 

• Syntax: SE = (KGen,Enc,Dec) 
– Probablistic KGen(1k), outputs key K. 

– Probablistic Enc: c  EncK(m), for m in message space M. 

– Deterministic Dec, outputs message m or failure symbol ┴:  

   m / ┴  DecK(m). 

– Correctness requirement: for all K  KGen(1k), for all m in M: 

          DecK(EncK(m)) = m. 

 

– For now, we focus on stateless Enc and Dec algorithms. 

– Nonce-based algorithms in place of probablistic ones also 
possible [R04].  
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Theory for Symmetric Encryption 

• IND-CPA security: 

– Adversary has repeated access to Left-or-Right (LoR) 

encryption oracle. 

– In each query, adversary submits pairs of equal length 

messages (m0,m1) to the oracle. 

– Receives c, an encryption of mb, where b is a random bit. 

– Adversary outputs its estimate b’ for bit b. 

– Adversary wins if it decides correctly. 

 

• IND = Indistinguishable 

• CPA = Chosen Plaintext Attack 

• Formalised as a security game between the adversary 

and a challenger. 
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IND-CPA Security Game 

Adversary Challenger 

b ← {0,1} 

(m0,m1) 

c = EncK(mb) c 

b’ Adversary wins if b =b’ 

K ← KGen(1k) 
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IND-CPA Security 

• The adversary’s advantage is defined to be: 

    |Pr(b=b’) - 1/2|. 

 

• A scheme SE is said to be IND-CPA secure if 
advantage is “small” for any adversary using 
“reasonable” resources. 
– Concepts of “small” and “reasonable” can be formalised 

using either an asymptotic approach or a concrete 
approach. 

– In symmetric crypto, the concrete approach is widely 
used. 

– Quantify adversary’s success probability in terms of 
number of encryption queries and/or number of bits 
queried to encryption oracle. 
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IND-CPA Security 

• Informally, IND-CPA is a computational version 

of perfect security. 

– Ciphertext leaks nothing about the plaintext. 

– Stronger notion than requiring the adversary to 

recover plaintext. 

 

• [BDJR97] developed equivalent notions. 

– RoR-CPA, FtG-CPA and SEM-CPA. 

– The latter is a symmetric version of semantic 

security notion for PKE of Goldwasser-Micali. 
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IND-CPA Security 

• Easy to achieve IND-CPA security using, for 

example, a suitable mode of operation of a 

block cipher fK on {0,1}n. 

– Block cipher in CBC mode with random IVs. 

– Block cipher in CTR mode. 

– See [BDJR97] for analysis. 

– Requires modelling of block cipher as PRP/PRF. 

– Recall definition: 

• Adversary has oracle access to fK(.) or Rand(.) 

• Adversary outputs guess for which world it is in. 
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CBC Mode 

Ci-1 Ci 

Pi-1 Pi 

dK dK 

Pi-1 Pi 

Ci-1 Ci 

eK eK 

Initialisation Vector (IV): 

• Defines C0 for processing first 

block. 
• IV often taken as random; 

• Chained IVs also common in 

applications. 

 

CBC mode needs some form 

of padding if plaintext lengths 

are not multiple of block length. 

• (Much) more on padding 

later. 

 

[BDJR97] security bound 

involves a q2/2n term (quadratic 

loss). 
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CTR Mode 

• CTR mode uses a block cipher to build a 

stream cipher. 

• Block cipher does not even need to be a 

permutation! 

• In simplest mode, random initial value for ctr is 

chosen for each message and transmitted with 

ciphertext. 

• Encrypt blocks 

  ctr, ctr+1, ctr+2, … 

 to create a sequence of ciphertext blocks. 

• Use this sequence as keystream (truncating 

last block as necessary). 

• IND-CPA secure assuming block cipher is a 

PRF. 

• Quadratic loss in security analysis; can be 

converted to linear loss by using stateful 

version of the scheme. 

 

Ci 

eK 

Pi 

ctr+i 

Pi 

eK 

Ci 

ctr+i 
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Motivating Stronger Security 

• In CBC and CTR modes, an active adversary 

can manipulate ciphertexts. 

– For CTR mode, bit flipping in plaintext is trivial by 

performing bit flipping in the ciphertext. 

– Modify c to c XOR Δ to change the underlying 

plaintext from p to p XOR Δ . 

– CBC mode: see next slide. 

– Or create completely new ciphertexts from scratch? 

• A random string of bits of the right length is a valid 

ciphertext for some plaintext for both CBC and CTR modes! 
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Bit Flipping in CBC Mode 

• Flipping bits in ciphertext block Ci-1 leads to 

controlled changes in plaintext block Pi. 

• But block Pi-1 is randomised. 

 

Ci-1 Ci 

Pi-1 Pi 

dK dK 

Flipping bits here 

Leads to bit flips here And randomised block here 
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Motivating Stronger Security 

• These kinds of attack do not break IND-CPA 

security, but are clearly undesirable for building 

secure channels. 

– Modified plaintext may result in wrong message 

being delivered to an application, or unpredictable 

behaviour at receiving application. 

• We really want some kind of non-malleable 

encryption, guaranteeing integrity as well as 

confidentiality. 

• Two basic security notions:  

– integrity of plaintexts and integrity of ciphertexts. 
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INT-PTXT Security 

• INT-PTXT security: 

– Attacker has repeated access to an encryption 

oracle and a “Try” oracle. 

– Encryption oracle takes any m as input, and outputs 

EncK(m). 

– Try oracle takes any c* as input (and has no output). 

– Adversary’s task is to submit c* to its Try oracle 

such that DecK(c*) decrypts to message m* ≠ ┴ that 

is distinct from all m queried to its encryption oracle. 

– Hence adversary wins if it can create a “plaintext 

forgery”. 
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INT-PTXT Security 

Adversary Challenger 

b ← {0,1} 

Enc(m) 

c = EncK(m) c 

Adversary wins if m* ≠ m and m* ≠ ┴  

K ← KGen(1k) 

Try(c*) m* = DecK(c*) 



16 

INT-PTXT Security 

• INT-PTXT security: 

– An SE scheme is INT-PTXT secure if no such 

efficient adversary exists.  

– Clearly INT-PTXT security is a desirable property of 

an encryption scheme used for building a secure 

channel, as it prevents (plaintext) message injection. 

– Slightly different strength of security notion 

depending on: 

• whether adversary has one or many queries to Try; and  

• whether Try modified to output ciphertext validity. 
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INT-CTXT Security 

• INT-CTXT security: 

– As INT-PTXT, but only requirement is that c* be 

valid ciphertext (could be another encryption of 

some m queried to encryption oracle). 

– Hence win if adversary creates “ciphertext forgery”. 

– (Application to secure channels not immediately 

clear.) 

• Clearly, INT-CTXT security implies INT-PTXT 

security. 

• Quiz question: does CTR mode provide INT-

CTXT or INT-PTXT security? 
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IND-CTXT Security 

Adversary Challenger 

b ← {0,1} 

Enc(m) 

c = EncK(m) c 

Adversary wins if c* ≠ c and m* ≠ ┴  

Try(c*) m* = DecK(c*) 

K ← KGen(1k) 



19 

CCA Security 

• We may also want to consider chosen-ciphertext 
attacks, in which the adversary can get ciphertexts 
of his choice decrypted. 
– Lazy reasoning: because this is what we did in the public 

key setting. 

– In extreme cases an attacker may actually have this 
capability in practice! 

– Or this capability may be approximated in practice. 
• Adversary may be able to observe the reaction of the 

decrypting party after processing an adversarially chosen 
ciphertext and thereby infer something about the plaintext. 

• Adversary may learn when decryption fails, and possibly the 
cause of failure, by analysing timing, error messages, or other 
behaviour. 

• This is particularly so for secure network protocols like IPsec, 
SSL/TLS, SSH. 

• It provides powerful attack opportunities! 
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IND-CCA Security 

• IND-CCA security: 
– Attacker now has repeated access to LoR 

encryption oracle and to a decryption oracle. 

– LoR encryption oracle as before. 

– Decryption oracle takes any c as input, and outputs 
DecK(c), which is either a message m or a failure 
symbol ┴. 

– Adversary not permitted to submit output of LoR 
encryption oracle to its decryption oracle.  

– (To prevent trivial win). 

• All basic modes of operation are insecure in 
this model! 
– Exercise for CTR mode. 
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IND-CCA Security 

Adversary Challenger 

b ← {0,1} 

(m0,m1) 

c = EncK(mb) c 

b’ Adversary wins if b =b’ 

c’ 

m 
m = DecK(c’) 

K ← KGen(1k) 
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A Fundamental Relation [BN00] 

• IND-CPA + INT-CTXT  IND-CCA 

 

• Proof intuition:  

– Game 0: IND-CCA security game against SE. 

– Game 1: replace decryption oracle with “┴ ”. 

– Games 0 and 1 identical unless related adversary wins 

INT-CTXT game. 

– Game 1 can be simulated perfectly by IND-CPA 

adversary (no decryption oracle to simulate any longer). 

• NB: proof breaks down if decryption can return 

more than one error message. 

– See [BDPS13] for development of models and relations 

in this setting (which is important for practice).  
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Authenticated Encryption Security 

• We define AE := IND-CPA + INT-CTXT 

• Often easier to prove IND-CPA and INT-CTXT 
separately than to prove IND-CCA directly. 

• AE security has become the accepted security 
target for SE schemes. 
– In part (I think) because of the relation to IND-CCA 

security. 

– Note that IND-CPA + INT-PTXT does not imply IND-
CCA. 

• Example separation: MAC-then-encrypt with redundant 
ciphertext bit. 

– Note also that IND-CPA + INT-CTXT is strictly stronger 
than IND-CCA. 

• Example separation: ? 

• In fact IND-CCA does not imply either of our integrity notions! 

 



M  DecK(C) 

Ret M 

C  EncK(M0 ) 

Ret C 
Ret    

C   EncK(M1) 

Ret C 

M0 , M1 M0 , M1 C C 

IND-CPA +  

INT-CTXT 
AE  

b b 

^

All-in-one Security Notion for AE 
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Relations Between SE Security 

Notions 

AE:  

 IND-CPA+ 

INT-CTXT 

IND-CCA 
IND-CPA  

+ INT-PTXT 

IND-CPA INT-PTXT 



26 

AEAD 

• AEAD = “AE with Associated Data”. 

• Extension to AE allowing some data to be 
encrypted and remainder to be 
authenticated/integrity protected. 

• Sample applications: 
– TLS Record Protocol data: header is integrity 

protected, rest of payload is encrypted and integrity 
protected. 

– IPsec ESPv3 protocol for encrypting IP payload and 
integrity protecting (selected) IP header fields. 

• We omit security definition for AEAD. 
– Can define by extension of AE notion. 
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MACs 

• Message Authentication Codes (MACs) provide 

authenticity/integrity protection for messages. 

– Symmetric analogue of a digital signature. 

– Important for achieving security for SE beyond IND-CPA. 

 

• Syntax: MAC = (KGen,Tag,Verify). 

– KGen takes security parameter is input and outputs key K. 

– Tag has as input a key K, a message m of arbitrary length, and 

outputs a short MAC tag τ. 

– Verify has as input a key K, a message m, a MAC tag τ and 

outputs 0 or 1, indicating correctness of tag τ for m under K. 
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MACs 

• Key security requirement is 

unforgeability. 

• Having seen MAC tags for 

many chosen messages, an 

adversary cannot create the 

correct MAC tag for another 

chosen message. 

• Strong and weak forms of 

unforgeability: 

• New MAC tag on 

(possibly) queried 

message versus MAC 

tag on unqueried 

message. 

• SUF-CMA and (W)UF-

CMA security 

MAC tag 

Tag 

m 

K 

0/1 

Verify 

m 

K 

MAC tag 
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PRFs and MACs 

• Unpredictability of PRF output means that a PRF is a 

MAC. 

• More formally: 

– Tag(K,m) = PRFK(m); and 

– Verify(K,m,τ) outputs 1 if and only if PRFK(m) =  τ. 

 

• It’s often assumed (implicitly or explicitly) that the 

security definition of a MAC is that it acts as a PRF.  
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HMAC 

• HMAC is a general purpose method for building a MAC 

from a hash function H. 

• Illustration for SHA-1: 

Source: Wikipedia 
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HMAC 

• HMAC is fairly efficient: cost of tag 

computation/verification is that of hashing message plus 

small overhead (3 x H’s compression function). 

– But slow compared to more modern algorithms based on 

universal hashing like UMAC, poly1305. 

• HMAC design and security proof in [BCK96]. 

– PRF security relies (roughly) on H’s compression function being 

a PRF and on collision resistance of H. 

– Refined analysis in [B06]. 

• HMAC standardised in RFC 2104. 

– Widely adopted in secure network protocols, e.g. SSL/TLS. 

– HMAC is an early triumph for provable security. 
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Generic Composition: EtM 

• [BN00] considered how to achieve IND-CCA/AE 

security by generic composition of IND-CPA 

secure encryption schemes and (S)UF-CMA 

secure MACs. 

 

• Encrypt-then-MAC (EtM): achieves AE security  
– Very easy proof: 

– INT-CTXT security follows from MAC on ciphertext;  

– IND-CPA security follows from IND-CPA security of base SE 

scheme. 

– Needs SUF-CMA MAC. 

• As provided by PRF-based construction, HMAC, etc. 
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Generic Composition: E&M 

• Encrypt-and-MAC (E&M): Not even CPA 

secure in general! 
– MAC can leak plaintext information but still be SUF-CMA 

secure. 

– But specific instantiations may be AE/IND-CCA secure, e.g. as 

used in SSH [BKN02,PW10]. 

– At least need MAC to not leak plaintext information (e.g. PRF 

assumption). 
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Generic Composition: MtE 

• MAC-then-Encrypt (MtE): Not CCA secure in 

general. 
– Construct separating example (hint: redundant bits again). 

– But easy to show IND-CPA and INT-PTXT security for this 

composition. 

• Good enough for secure channel applications? 

– Extension of [K01] shows MtE is IND-CCA secure when 

encryption scheme is CBC mode or secure stream cipher. 

– Proof for CBC needs SPRP property for block cipher. 

– Real instantiations are rarely pure MtE (more later). 
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Some Philosophy 

• Models are just models. 

• And reality is hard to model. 

• General approach is to build conservative models with 

strong adversaries. 

• Realising assumed adversarial capabilities may be hard 

in practice. 

• Consequently, it can be hard to convince practitioners that your 

chosen plaintext distinguishing attack should be of serious 

concern (to them)! 

• They tend to need to see plaintext and a working exploit. 

• Countering this: attacks only get better (worse!) with time 

(examples to follow). 

• Every practitioner seems to need to learn this the hard way. 
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IND-CCA Security (recap) 

Adversary Challenger 

b ← {0,1} 

(m0,m1) 

c = EncK(mb) c 

b’ Adversary wins if b =b’ 

c’ 

m 
m = DecK(c’) 

K ← KGen(1k) 
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Discussion 

Now look back at IND-CCA security model. 

 

• What, if anything, is overkill? 

• What, if anything, is missing? 
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Lecture 2 Outline  

• Why integrity protection really matters: IPsec 

case study. 

• Why details really matter: predictable IVs, TLS, 

and the BEAST. 
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Introduction to IPsec 

• IPsec provides security at the IP layer. 

– IP packets get encrypted and/or integrity protected. 

• Defined in IETF RFCs 2401–2412 (v2) and 4301-4309 

(v3). 

• Implemented in all major OSes and in networking 

hardware. 

• Applications: 

– Virtual Private Networking. 

– Remote Access Solutions. 

– Protection of inter-network management data in UMTS. 
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IPsec Basic Features 

• IPsec provides two basic modes of use: transport and 

tunnel. 

 

• IPsec provides authentication/integrity protection and/or 

confidentiality services for data. 

– AH and ESP protocols. 
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IPsec Tunnel Mode 

• Cryptographic protection for entire IP packet. 

 

• Entire packet plus security fields encapsulated 
as payload of new ‘outer’ IP packet. 
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IPsec Tunnel Mode Deployment 

Header Payload 

Header Payload 

Inner IP packet 

Outer 

Header 

Network 

e.g. 

Internet 

Header Payload 

Inner IP packet 

Inner IP packet 

Header Payload 

Inner IP packet 

Security 

Gateway 
Security 

Gateway 

Outer 

Header 

Scope of 

cryptographic 

protection  
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ESP Protocol 

• ESP = Encapsulating Security Protocol. 

– v1, v2, v3 in IETF RFCs 1827, 2406, 4303. 

– IPsec’s “encryption workhorse”. 

• ESP provides one or both of: 

– Confidentiality for packet/payload (v1, v2, v3). 

– Integrity protection for packet/payload (v2, v3). 

• ESP uses symmetric encryption and MACs. 

– Usually CBC mode of block cipher for encryption. 

• With random, per packet IVs. 

– HMAC-SHA1 or HMAC-MD5 for integrity protection. 

 



45 

ESP in Tunnel Mode 

Inner 

IP header 

Outer 

IP header 

Payload  

(eg TCP, UDP, ICMP) 

ESP 

trlr 

ESP 

auth 

ESP hdr 

SPI, seqno 

MAC scope 

Encryption scope 

Original packet 

When both MAC and encryption are used, 

IPsec employs an EtM construction 
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History of Encryption in IPsec  

• ESPv1 (1995) provided no integrity protection. 

– Reliant on separate AH protocol to provide this. 

– Bellovin [B97] sketched a series of attacks on ESPv1 without 

AH. 

– Limited plaintext recovery from TCP segments, using 224 

chosen plaintexts. 

– Certainly breaks IPsec in IND-CCA security model. 

– Theoretically interesting, but no attacks demonstrated to work 

in practice. 

– Sufficiently serious to influence development of v2 RFCs. 
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Integrity protection and ESPv2 

• IETF response to Bellovin attacks: 

– ESPv2 (1998) includes integrity protection as an 

option. 

– But implementations must still support “encryption-

only” mode. 

• ESPv2 represents a compromise between 

improving security and maintaining backwards-

compatibility. 

– This is very common in real-world cryptography! 
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Integrity protection and ESPv3 

• ESPv3 (2005): 

– Still allows encryption-only ESP. 

– But no longer requires support for encryption-only. 

– Gives strong warnings about Bellovin-Wagner attack 

and refers to theoretical cryptography literature to 

motivate need to use integrity protection. 

– “ESP allows encryption-only … because this may 

offer considerably better performance and still 

provide adequate security, e.g., when higher layer 

authentication/integrity protection is offered 

independently.” 
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IPsec in Theory and Practice 

• Back in the 2000’s, the theoretical cryptography 

community was well aware of the need to carefully 

combine integrity protection with encryption. 

– To prevent active attacks against encryption. 

• Already plenty of high-profile, real-world examples. 

– Kerberosv4, WEP, SSHv1,… 

• It was also well-known amongst IPsec experts that 

encryption-only configurations should be avoided. 

– Clear warnings against their use in the RFCs. 

• So was there really any problem here? 
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IPsec in Theory and Practice 

• From an historical administration guide from a 

well-known vendor: 

 

 “If you require data confidentiality only in your IPSec 

tunnel implementation, you should use ESP without 

authentication. By leaving off the authentication 

service, you gain some performance speed but lose 

the authentication service.” 
 

http://www.cisco.com/en/US/docs/security/security_ma

nagement/vms/router_mc/1.3.x/user/guide/U13_bldg

.html#wp1068306, cicra 2008). 
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Attacking Encryption-only ESP 

• If we want to demonstrate beyond doubt that 

encryption-only ESP is disastrously weak, we 

need to: 

– Produce attacks that consume reasonable 

resources. 

– Implement attacks that are as realistic as possible 

• Operating under normal network conditions. 

• Ideally, ciphertext-only attacks. 

• Hand over plaintext in a demo! 
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Reminder: Bit Flipping in CBC Mode 

• Flipping bits in ciphertext block Ci-1 leads to 

controlled changes in plaintext block Pi. 

• But block Pi-1 is randomised. 

 

Ci-1 Ci 

Pi-1 Pi 

dK dK 

Flipping bits here 

Leads to bit flips here And randomised block here 
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Attacking Linux ESP 

[PY06]: 

• Three different (but related) attacks on Linux kernel 

implementation of encryption-only ESP in tunnel mode. 

• Exploit bit flipping weakness of CBC mode encryption. 

– Flipping creates modified headers for inner packets that 

produce “unusual” effects when processed 

• Resulting in either error messages or in packet re-

direction for inner packets 

– Error messages are carried by ICMP protocol and reveal 

(some) plaintext data. 

– Packet redirection can send inner packet to attacker’s 

machine. 

 

 



IP Header Format 

 

 

7 0 16 31 3 4 15 8 

Version IHL Type of Service Total Length 

Fragmentation Fields 

Protocol Header Checksum 

Source Address 

Destination Address 

Time to Live 

Options (optional) 

32 bits 

5 x 32-bit  

words 

Up to 

10 

words 



IP Header Format 

 

 

Version IHL Type of Service Total Length 

Fragmentation Fields 

Protocol Header Checksum 

Source Address 

Destination Address 

Time to Live 

Options (optional, up to 10 words) 

Protocol field (8 bits):  

• Indicates upper layer protocol in IP payload. 

• Possible values are dependent on IP implementation and protocols it supports. 

• Typical values: 0x01 for ICMP, 0x06 for TCP, 0x17 for UDP. 



IP Header Format 

 

 

Version IHL Type of Service Total Length 

Fragmentation Fields 

Protocol Header Checksum 

Source Address 

Destination Address 

Time to Live 

Options (optional, up to 10 words) 

Header checksum (16 bits): 
• 1’s complement sum of 16 bit words in header (inc. any options). 

• Incorrect checksum leads to datagram being silently dropped. 

• Provides error detection for IP headers.  



IP Header Format 

 

 

Version IHL Type of Service Total Length 

Fragmentation Fields 

Protocol Header Checksum 

Source Address 

Destination Address 

Time to Live 

Options (optional, up to 10 words) 

Source Address (32 bits):  

• Contains the IP address of the host originating the datagram. 

• Needed so any replies or error messages can be delivered back to 

source. 



Csum PF 
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Example Attack on ESP 

C1 C2 

dK dK 

C3 

dK 

IV 

Payload 

Dest addr 

Src addr 

Payload 

Flip bits here 

To change 

protocol field 

and source 

address here 

Correction of 

checksum via further 

bit flips in IV 

Outer packet payload = CBC encryption of inner packet 
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Attack Visualisation 

Intercept, 

bit-flip 

and re-

inject 

Header Payload 

Inner IP packet 

Outer 

Header 

Header Payload 

Inner IP packet 

Security 

Gateway 
Security 

Gateway 

Header Payload 

Inner IP packet 

Outer 

Header 

Header Payload 
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Attack Visualisation 

Security 

Gateway 

Header Payload 

Header Part Payload ICMP 

Header Part Payload ICMP 

Intercept, 

extract 

plaintext  

Protocol field  

unsupported, generate  

ICMP error message 

Destination addr = source addr  

from original IP packet 

Pass through gateway,  

since dest addr outside tunnel 



61 

The Attack in Words 

• Attacker intercepts packet, does bit flipping 
needed to manipulate protocol field and source 
address, and to correct checksum. 
– Can do better than random bit flipping for checksum. 

• Attacker than injects modified datagram into 
network. 

• Inner packet decrypted by gateway and 
forwarded to end-host. 

• End-host generates ICMP “protocol 
unreachable” message in response to modified 
protocol field in header. 
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The Attack in Words 

• ICMP payload carries inner packet header and 
528 bytes of inner packet’s payload. 
– Payload now in plaintext form! 

– ICMP message is sent to host indicated in source 
address 

– And we have modified this address so that ICMP 
message does not pass through IPsec tunnel. 

• Attacker intercepts ICMP message to get 
plaintext bytes. 

• These ideas were used in [PY06] to build an 
attack client that can efficiently extract all 
plaintext from an IPsec encryption-only tunnel. 
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Characteristics of IPsec Attacks 

• The attacks recover plaintext (i.e. contents of inner 
datagrams), but not encryption keys. 

• The attacks are efficient. 
– Even against triple DES or AES. 

– Can be run in near real-time against an IPsec tunnel. 

• Attacks are ciphertext-only. 

• The attacks do not require special operating conditions. 
– Attacker needs to capture packets from network, inject packets 

into network. 

– But they need ability to monitor gateway for ICMP responses. 

• All three attacks worked in practice against Linux 
implementation of IPsec. 
– Attacks fail if post-processing policy checks specified in RFCs 

are properly implemented. 

– But Linux did not implement these  
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Attacking Encryption-only ESP 

• Some reactions to attacks in [PY06]: 
– “…the possibility of active attacks on unauthenticated but 

encrypted ESP packets is well known, and we advise against 
such use in the most recent set of IPsec documents.  These 
documents have been approved for publication by the IESG 
and are in the queue to be published as RFCs. As a result, no 
further, substantiative changes will be made.” 

 

– “This is all very well understood among the IPSec community, 
and is not news.” 

 

– “I think the spec is clear about the dangers of encryption 
without authentication. If anyone built implementations that 
negotiate encryption without authentication, then maybe they 
weren't paying attention closely enough.”  
 

• So is there really any problem if the RFCs still allow 
use of encryption-only ESP? 
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Why the Attacks Matter(ed) 

• Recall: 

 

 “If you require data confidentiality only in your IPSec 

tunnel implementation, you should use ESP without 

authentication. By leaving off the authentication 

service, you gain some performance speed but lose 

the authentication service.” 
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Why the Attacks Matter(ed) 

• Also recall: 

 

 ““ESP allows encryption-only … because this may 

offer considerably better performance and still 

provide adequate security, e.g., when higher layer 

authentication/integrity protection is offered 

independently.” 
 

• But these attacks work without any higher layer even 

getting to see the data. 

• So no higher layer integrity protection can stop them! 
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Follow-up Work 

• [DP07]: 

– Attacks against any RFC-compliant implementation 

of encryption-only ESP. 

 

• [DP10]: 

– Extending [DP07] attacks to the situation where 

integrity protection via AH is applied before 

encryption. 

– Breaking all MtE configurations of IPsec! 

– Rendering AH pretty useless. 

• Since ESP offers integrity too, though with different scope of 

protection. 
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Lessons 

• Encryption on its own does not provide 

confidentiality in the face of active attacks. 

– IND-CPA security is not enough. 

– AE security would have prevented the attacks. 

• Attacks can exploit interaction between crypto 

layer and the layer(s) above. 

– In this case, the layer above was IP because of 

protocol tunnelling. 

– Information leakage from IP layer error messages. 

• Practical attacks are needed to convince 

“experts” of the need for change. 
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Lecture 2 Outline  

• Why integrity protection really matters: IPsec 

case study. 

• Why details really matter: predictable IVs, 

TLS, and the BEAST. 
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TLS Overview 

• SSL = Secure Sockets Layer. 

– Developed by Netscape in mid 1990s. 

– SSLv1 broken at birth. 

– SSLv2 flawed, now IETF-deprecated (RFC 6176). 

– SSLv3 still widely supported. 

 

• TLS = Transport Layer Security. 

– IETF-standardised version of SSL. 

– TLS 1.0 in RFC 2246 (1999). 

– TLS 1.1 in RFC 4346 (2006). 

– TLS 1.2 in RFC 5246 (2008). 
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Importance of TLS 

• Originally designed for secure e-commerce, now 

used much more widely. 

– Retail customer access to online banking facilities. 

– Access to gmail, facebook, Yahoo, etc. 

– Mobile applications, including banking apps. 

– Payment infrastructures. 

 

• TLS has become the de facto secure channel 

protocol of choice. 

– Used by hundreds of millions of people and devices 

every day. 
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Simplified View of TLS 

Client Server 

Handshake Protocol 

Record Protocol 

Used by client and server to  

1.Negotiate ciphersuite 

2.Authenticate  

3.Establish keys used in the Record Protocol 

Provides confidentiality and integrity for application 

layer data using keys from Handshake Protocol 



73 

TLS Record Protocol 

• TLS Record Protocol provides: 
– Data origin authentication and integrity using a 

MAC. 

– Confidentiality using a symmetric encryption 
algorithm. 

– Anti-replay service using sequence numbers 
protected by the MAC. 

– Optional compression. 

– Fragmentation of application layer messages. 



MAC 

SQN || HDR PAYLOAD 

Padding 

Encrypt 

Ciphertext 

MAC tag PAYLOAD 

HDR 

TLS Record Protocol:  

MAC-Encode-Encrypt (MEE) 

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256  

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128 
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Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF” 
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Operation of TLS Record Protocol 

• Data from layer above is received and partitioned into 

fragments (max size 214 bytes). 

• Optional data compression. 

– Default is no compression. 

• Calculate MAC on SQN, 5-byte HDR, and PAYLOAD. 

• Append MAC to PAYLOAD. 

• Pad (if needed by encryption mode), then encrypt. 

• Prepend HDR containing: 

– Content type (1 byte, indicating content of record, e.g. handshake 

message, application message, etc),  

– SSL/TLS version (2 bytes),  

– Length of fragment (2 bytes). 

• Submit to TCP. 



76 

Operation of TLS Record Protocol 

Receiver processing steps reverses these steps: 

 

1. Receive message, of length specified in HDR. 

2. Decrypt. 

3. Remove padding to recover PAYLOAD and MAC. 

4. Check MAC on SQN, HDR, PAYLOAD. 

5. (Decompress PAYLOAD.) 

6. Pass PAYLOAD to upper layer (no fragment 
reassembly). 

 

 Errors can arise from any of decryption, padding removal 
or MAC checking steps. 

 All of these are fatal errors, leading to error message 
and connection termination. 
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TLS Sequence Numbers 

• SQN is 8 bytes in size and is incremented for each new 

Record Protocol message. 

• SQN not transmitted as part of message. 

– Each end of connection maintains its own view of the current 

value of SQN. 

– TLS is reliant on TCP to deliver messages in order. 

• Using wrong SQN leads failure of MAC verification 

– A fatal error leading to TLS connection termination. 

• Use of SQN creates a stateful encryption scheme. 

– Intention is to prevent replay, insertion, reordering attacks. 

– Order in the TLS secure channel matters. 

– We have not yet introduced security notions for this (see later). 



AE in the TLS Record Protocol 

• TLS 1.2 additionally supports authenticated encryption modes. 

– AES-GCM in RFC 5288 

– AES-CCM in RFC 6655 
 

• Support for TLS 1.2 recently added in major browsers. 

– Mostly as a consequence of recent attacks.  

• However, TLS 1.2 is only now becoming supported in servers. 

SSL Pulse: Webserver TLS support Browser TLS support (out-of-the-box, Nov. 2013) 

TLS v1.2 TLS 1.2 

TLS v1.2 TLS v1.2 TLS v1.2 
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TLS Extensions and DTLS 

• Many extensions to TLS exist. 

• Allows extended capabilities and security features. 

• Examples: 

– Renegotiation Indicator Extension (RIE), RFC 5746. 

– Application layer protocol negotiation (ALPN), draft RFC. 

– Authorization Extension, RFC 5878. 

– Server Name Indication, Maximum Fragment Length 

Negotiation, Truncated HMAC, etc, RFC 6066. 

 

• DTLS is effectively “TLS over UDP” 

– DTLS 1.0 aligns with TLS 1.1, and DTLS 1.2 with TLS 1.2. 

– UDP provides unreliable transport, so DTLS must be error 

tolerant, necessitating changes to Handshake Protocol and 

error management. 



MAC 

SQN || HDR PAYLOAD 

Padding 

Encrypt 

Ciphertext 

MAC tag PAYLOAD 

HDR 

Reminder: TLS Record Protocol:  

MAC-Encode-Encrypt (MEE) 

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256  

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128 
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Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF” 
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Theory for TLS Record Protocol? 

• The TLS Record Protocol employs a (stateful) MAC-

then-encrypt composition. 

– With associated data (the Record Protocol header). 

 

• This is known to be not generically secure, according to 

the results of [BN00]. 

– But it is INT-PTXT and IND-CPA secure 
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Theory for TLS Record Protocol? 

• Building on results of [K01], the basic MAC-then-encrypt 

construction can be shown to be AE (and so IND-CCA) 

secure for the special case of CBC mode encryption. 

 

• This extends to the stateful setting, as formalised in 

[BKN02]. 

 

• AE security also holds for RC4 under the assumption 

that its output is pseudorandom. 

 

• So are we done? 
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Theory for TLS Record Protocol? 

• Analysis of [K01] assumes random IVs for CBC mode. 

– SSL v3.0 and TLS 1.0 use chained IVs. 

– TLS 1.1 and 1.2 recommend use of random IV. 

• TLS is really using MAC-Encode-Encrypt. 

– With a specific padding scheme for the Encode step. 

– Decryption can fail in more than one way, so potentially multiple 

decryption failure symbols ┴1, ┴2, ┴3,… 

• Padding does not arise anywhere in the analysis in [K01]. 

– Data is assumed to be block-aligned, and MAC size = block size. 

– And padding is not integrity protected. 

• RC4 has known statistical weaknesses. 

• We’ll show that these gaps between theory and reality do 

matter. 
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Attacking Chained IVs 

IV chaining in SSLv3 and TLS 1.0 leads to a 

chosen-plaintext distinguishing attack against TLS. 

• First observed for CBC mode in general by Rogaway in 

1995.  

• Application to TLS noted by Dai and Moeller in 2004. 

• Extended to theoretical plaintext recovery attack by Bard 

in 2004/2006. 

• Turned into a practical plaintext recovery attack on 

HTTP cookies by Duong and Rizzo in 2011. 

– The BEAST. 

• 16-year demonstration that attacks do get better. 
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Attacking Chained IVs 

• Suppose attacker wishes to distinguish encryptions of 

single blocks P0 , P1. 

• Attacker makes LoR query for messages P0, P1. 

• Attacker receives ciphertext C = C1  for message Pb 

where some known, previous block C0 was used as the 

IV. 

Pb 

C0 C1 

eK 
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Attacking Chained IVs 

• C1  will be used as the IV for the next encrpytion. 

• Attacker now makes LoR query on block P0  C0  C1. 

• Attacker receives single block ciphertext C2. 

Pb 

C0 C1 

eK 

P0C0C1 

C2 

eK 
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Attacking Chained IVs 

Pb 

C0 C1 

eK 

P0C0C1 

C2 

eK 

• If Pb = P0, then inputs to block cipher are the same in 
both encryptions. 

• Hence, if Pb = P0, then  C1 = C2. 
• Otherwise, if Pb = P1, then  C1 ≠ C2. 

• So looking at C1  and C2 gives us a test to distinguish 
encryptions of P0 and P1. 
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Attacking Chained IVs 

• Attack extends easily to multi-block messages. 

• So IV chaining for CBC mode is broken in theory. 

• How can we turn this into a practical attack on 

TLS? 

• We want plaintext recovery rather than a 

distinguishing attack. 

• We need to realise the chosen plaintext 

requirement. 
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The BEAST – Part 1 

C0 C1 

eK 

P’C0C1 

C2 

eK 

• Assume bytes P0, P1,… P14 are known, try to recover P15. 

• Use P0P1…P14 as first 14 bytes of P’. 

• Iterate over 256 possible values in position 15 in P’. 

• P’15 = P15 if and only if C1 = C2. 

• So average of 128 trials to extract P15 when remaining bytes in block 
are known.  

89 

P0…P14 
 

P15 
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The BEAST – Part 2 

• Now assume attacker can control position of unknown bytes in stream with 
respect to CBC block boundaries (chosen boundary privilege). 

• Repeat previous single-byte recovery attack with sliding bytes. 

• Green: initially known bytes. 

• Red: unknown (target) bytes. 

• Orange: recovered bytes. 
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 P10  P11  T0  P12  P13  P14  T1  T2  T3  T4  T5  P9  P8  P7  P5  P6 
… 

 P10  P11  T0  P12  P13  P14  T1  T2  T3  T4  T5  P9  P8  P7  P5  P6 
… 

 P10  P11  T0  P12  P13  P14  T1  T2  T3  T4  T5  P9  P8  P7  P5  P6 
… 

 P4  P3  P1  P2  P0 

 P4  P3  P1  P2  P0 

 P4  P3  P1  P2  P0 

… 

… 

… 

 P10  P11  T0  P12  P13  P14  T1  T2  T3  T4  T5  P9  P8  P7  P5  P6 
… 

 P4  P3  P1  P2  P0 
… 



Browser 

TLS tunnel 
Cookie 

for 

remote 

site 
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The BEAST – Part 3 

91 



92 

The BEAST – Key Features 

• BEAST JavaScript loaded ahead of time into client 
browser from compromised or malicious wesbite. 

• Provides chosen-plaintext capability. 

• Attack target is HTTP secure cookie. 

• JavaScript uses HTTP padding to control positions of 
unknown bytes (chosen boundary privilege). 

• Difficult to get fine control over byte/block positions. 
- Need to be able to inject chosen plaintext block at the very start 

of Record Protocol messages.  

• JavaScript also needs to communicate with MITM 
attacker. 

 

Summary: it’s complicated, but it can be made to work. 

• Techniques useful in later TLS attacks too. 
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The BEAST – Impact 

• The BEAST was a major headache for TLS vendors. 

- Perceived to be a realistic attack. 

- Most client implementations were “stuck” at TLS 1.0.  

• Best solution: switch to using TLS 1.1 or 1.2. 

- Uses random IVs, so attack prevented. 

- But needs server-side support too. 

• For TLS 1.0, various hacks were done: 

- Use 1/n-1 record splitting in client. 
- Now implemented in most but not all (?) browsers. 

- Send 0-length dummy record ahead of each real 
record. 
- Breaks some implementations. 

- Or switch to using RC4? 
- As recommended by many expert commentators. 
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Lessons 

• A theoretical vulnerability pointed out in 1995 
became a practical attack in 2011. 
- Attacks really do get better (worse!) with time. 

- Practitioners really should listen to (some) 
theoreticians. 

- And, in this case, they did: TLS 1.1 and 1.2 use 
random IVs. 

- Problem was that no-one was using these versions. 

• Ideas from the wider security field were needed 
to make the attacks headline news. 
- Man-in-the-browser via Javascript. 

- Importance of demo/youtube video and showing 
people the plaintext. 
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Outline  

• Padding oracle attacks on TLS 

• Lucky 13 

• TLS security proof 

 



MAC 

SQN || HDR PAYLOAD 

Padding 

Encrypt 

Ciphertext 

MAC tag PAYLOAD 

HDR 

TLS Record Protocol: MAC-Encode-Encrypt 

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256  

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128 
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Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF” 
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TLS Record Protocol Padding 

• Padding in TLS 1.0 and up has a particular 

format: 

– Always add at least 1 byte of padding. 

– If t bytes are needed, then add t copies of the byte  

representation of t-1.  

– So possible padding patterns in TLS are: 

 

                      00; 

                 01 01; 

                02 02 02;  

           

           
98 



99 

TLS Record Protocol Padding 

• Variable length padding is permitted in all versions of 

TLS. 

• Up to 256 bytes of padding in total, so longest possible 

padding pattern is: 

 FF FF…. FF 

• From TLS 1.0:   

Lengths longer than necessary might be desirable to 

frustrate attacks on a protocol based on analysis of the 

lengths of exchanged messages. 

• This “goal” has interesting theoretical implications. 

-Recall that, in IND-CPA/IND-CCA models, m0 and m1 always have 

the same length.  
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Handling Padding During Decryption 

• TLS 1.0 error alert: 

  

 decryption_failed: A TLSCiphertext decrypted in 

an invalid way: either it wasn`t an even multiple 

of the block length or its padding values, when 

checked, weren’t correct. This message is 

always fatal. 

 

• Suggests padding format should be checked, 

but without specifying exactly what checks 

should be done. 
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Insecurity of Weak Padding Checks 

• Recall decryption sequence: 
– CBC mode decrypt, remove padding, check MAC. 

 

• [M02]: failure to check padding format leads to a 
simple attack recovering the last byte of plaintext 
from any block. 

 

• Assumptions:  
– Attacker has a TLS ciphertext containing a complete block 

of padding. 

– So MAC ends on block boundary for this ciphertext. 

– Padding removed by inspecting last byte only. 
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Moeller Attack for TLS 

Ct-1 Ct 

dK dK 

102 

Ct-2 

dK 

… 

… 

Blocks from  

special ciphertext 

Byte value  

is “0F” here  
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Moeller Attack for TLS 

Ct-1 C* 

dK dK 

Decryption succeeds  

if and only if byte  

value is “0F” here  

Target ciphertext  

block from stream 
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Ct-2 

dK 

… 

… 

Enabling recovery 

of last byte of 

dK(C*) here.  

Blocks from  

special ciphertext 
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Preventing Weak Padding Checks 

• Decryption succeeds if and only if:  

  (Ct-1)15   (dK(C*))15 = “0F” 

• Hence attacker can recover last byte of dK(C*) with 

probability 1/256. 

• This enables recovery of last byte of original plaintext P* 

corresponding to C* in the CBC stream. 

 

• Hence, in TLS 1.1 and up: 

 

 Each uint8 in the padding data vector MUST be filled with the 

padding length value. The receiver MUST check this 

padding…. 
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Full Padding Check 

• We now assume that TLS does a full padding check. 

• So decryption checks that bytes at the end of the 
plaintext have one of the following formats: 

 

                                                   00; 

                      01, 01; 

          02, 02, 02; 

        

 

    FF, FF,………..FF 

 

and outputs an error if none of these formats is found. 
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Padding Oracles 

• Vaudenay [V02] proposed the concept of a padding 

oracle. 

106 

C 

Valid/Invalid 

• Vaudenay showed that, for CBC mode and for certain padding 

schemes, a padding oracle can be used to build a decryption oracle! 

• We’ll focus on TLS, but padding oracle attacks have been widely 

deployed, e.g. DTLS, ASP.NET, XML encryption. 

 

Padding 

Oracle 

P=DecK(C) 

 

Check  

padding of P 
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Padding Oracle Attack for TLS Padding 

Ct-1 Ct 

Pt-1 Pt 

dK dK 

XOR with Δ here and  

submit to padding oracle 

Eventually produces 

valid pad “00” here  

Recovering true  

plaintext byte via  

Pt  Δ  =  (…. 00) 

Target ciphertext 

block placed as last 

block of TLS message 
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Padding Oracle Attack for TLS Padding 

Ct-1 Ct 

Pt-1 Pt 

dK dK 

XOR with Δ1Δ0 here  

and submit to oracle 

Eventually produces 

valid pattern “01 01” here  

This byte now set  

to “01” by setting  

Δ0:=Δ  01   

108 

Recovering last-but-one 

plaintext byte via  

Pt  (…..Δ1Δ0) = (….0101) 
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Padding Oracle Attack for TLS Padding 

• An average of 128 trials are needed to extract 

the last byte of each plaintext block. 

 

• Attack extends to the entire block, with an 

average of 128 trials per byte. 

 

• Can extend to entire ciphertext. 

– Because attacker can place any target block as last 

block of ciphertext. 
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TLS Padding Oracles In Practice? 

• In TLS, an error message during decryption 

can arise from either a failure of the padding 

check or a MAC failure. 

 

• Vaudenay’s padding oracle attack will produce 

an error of one type or the other. 

– Padding failure indicates incorrect padding. 

– MAC failure indicates correct padding. 

 

• If these errors are distinguishable, then a 

padding oracle attack should be possible. 
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TLS Padding Oracles In Practice? 

Good news (for the attacker): 

• The error messages arising in TLS 1.0 are 
different: 
– bad_record_mac  

– decryption_failed  

 

Bad news: 

• But the error messages are encrypted, so 
cannot be seen by the attacker. 

• And an error of either type is fatal, leading to 
immediate termination of the TLS session. 
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TLS Padding Oracles In Practice? 

Canvel et al. [CHVV03] : 
• With the natural implementation, a MAC failure error 

message will appear on the network later than a 
padding failure error message. 

• Why? 

• Recall the sequence of processing steps: 
– Decrypt 

– Check pad (abort if wrong) 

– Check MAC (abort if wrong) 

• Hence MAC check only done if padding is good. 

• And if padding is bad, processing terminates quickly 
(MAC check is relatively slow). 
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TLS Padding Oracles In Practice? 

Canvel et al. [CHVV03] : 
• So timing the appearance of error messages can give 

us the required padding oracle. 
– Even if the error messages are encrypted! 

 

• But the modified ciphertexts always fail the MAC check 
(or the padding check). 

• And the errors are fatal.  

• So the attacker only gets query to padding oracle 
before try before connection is lost. 

• Attacker can learn one byte of plaintext, with probability 
only 1/256. 

– Chances of being correct on first query. 
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OpenSSL and Padding Oracles  

Canvel et al. [CHVV03]: 

• The attacker can still decrypt reliably if a fixed plaintext is 

repeated in a fixed location across many TLS sessions. 

– e.g. password in login protocol or session cookie. 

– A multi-session attack. 

– Modern approach: use BEAST-style malware. 

 

• OpenSSL had a detectable timing difference. 

– Difference is time taken to compute HMAC on message. 

– Roughly 2ms difference for 214 byte messages. 

– Enabling recovery of TLS-protected Outlook passwords in about 

3 hours. 
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DTLS and Padding Oracles 

• Recall that DTLS is basically TLS over UDP. 

• UDP is not reliable like TCP, so DTLS has to 

tolerate packet drops, replays, etc. 

• This means that the connection is not terminated 

in the event of an error. 

• But there are no error messages to time. 
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Breaking DTLS in OpenSSL 

• [AP12]: Can we apply padding oracle ideas to 

DTLS? 

 

• But surely DTLS implementations would have 

learned lessons from old TLS attacks? 

– DTLS 1.0 is based on the TLS 1.1 specification. 

– So we should not expect a timing-based side channel 

to exist… 
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Breaking DTLS in OpenSSL 

• OpenSSL implementations of DTLS prior to 

versions 0.9.8s/1.0.0f did not check the MAC if 

the padding check fails. 

 

• Hence the timing difference observed in 

[CHVV03] should still be present! 
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Breaking DTLS in OpenSSL 

• Bad news: no error messages to time. 

– Not a major hurdle: 

 

 

 

 

 

– Attack packet takes longer to process if padding is 

good. 

– So measure time difference between sending attack 

packet + heartbeat and receiving heartbeat response. 

– This serves as a proxy for timing error messages 

Attack  

packet 

Heartbeat 

packet 

Heartbeat 

response 



Breaking DTLS in OpenSSL 

Good news: errors in DTLS are not fatal. 

– Actually very good news: allows amplification of timing 

difference using packet trains. 

 

 

 

 

 

– With care, the timing difference arising from the attack 

packets can be made cumulative! 

– Repeat over many trains and use statistical techniques 

to detect timing difference. 
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Attack  

packet 

Heartbeat 

packet 

Heartbeat 

response 

Attack  

packet 

Attack  

packet 
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Experimental Results 

• HMAC-SHA1 + CBC-AES, 10 packets per train, 1456 

bytes per packet:  



121 

Experimental Results 

• Example for HMAC-SHA1 + CBC-AES 

– 192 byte packets 

– 2 packets per train 

– 10 trains per byte value  

• Statistical processing: 

– Get timings for each set of 10 trains; remove outliers 

– Keep minimum time for each byte value tried. 

– Select as correct byte the one that maximizes the 

resulting time. 

• Success probabilities: 

– Per byte: 0.996 

– Per block: 0.94 
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Observation 

• DTLS turns out to be substantially easier to 

attack than TLS. 

– Because of ability to amplify timing differences using 

packet trains. 

– This is a consequence of the choice of transport 

protocol: UDP instead of TCP. 

– Details in [AP12]. 

• This distinction does not arise in current formal 

security models for encryption. 

– But could easily be modelled. 
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Countermeasures to Padding 

Oracle Attacks 

• Redesign TLS: 
– Pad-MAC-Encrypt or Pad-Encrypt-MAC. 

– Too invasive, did not happen. 

 

• Switch to using RC4? 
– Seems to have been a widespread reaction. 

 

• Or add a fix to CBC mode to ensure uniform errors? 
– If attacker can’t tell difference between MAC and pad 

errors, then maybe TLS’s MEE construction is secure? 

– So how should TLS implementations ensure uniform 
errors? 
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Ensuring Uniform Errors 

From the TLS 1.1 (2006) and 1.2 (2008) specifications: 

 

…implementations MUST ensure that record processing 

time is essentially the same whether or not the padding is 

correct. 

 

In general, the best way to do this is to compute the MAC 

even if the padding is incorrect, and only then reject the 

packet.  

 

Compute the MAC on what though? 
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Ensuring Uniform Errors 

For instance, if the pad appears to be incorrect, the 

implementation might assume a zero-length pad and then 

compute the MAC. 

 

•This approach was adopted in many implementations, 

including OpenSSL, NSS (Chrome, Firefox), BouncyCastle, 

OpenJDK, …  

 

•One alternative (GnuTLS and others) is to remove as 

many bytes as are indicated by the last byte of plaintext 

and compute the MAC on what’s left. 
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Ensuring Uniform Errors 

 

 

… This leaves a small timing channel, since MAC 

performance depends to some extent on the size of the 

data fragment, but it is not believed to be large enough to 

be exploitable, due to the large block size of existing MACs 

and the small size of the timing signal. 
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Ensuring Uniform Errors 

 

 

… This leaves a small timing channel, since MAC 

performance depends to some extent on the size of the 

data fragment, but it is not believed to be large enough to 

be exploitable, due to the large block size of existing MACs 

and the small size of the timing signal. 
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Lucky 13 [AP13] 

• Distinguishing attacks and full plaintext recovery 

attacks against TLS-CBC implementations 

following the advice in the TLS 1.1/1.2 specs. 
– And variant attacks against those that do not. 

 

• Applies to all versions of SSL/TLS. 
– SSLv3.0, TLS 1.0, 1.1, 1.2. 

– And DTLS. 

 

• Demonstrated in the lab against OpenSSL and 
GnuTLS. 
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Reminder: MAC-Encode-Encrypt in TLS 
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Lucky 13 – Basic Idea 

• TLS decryption removes padding and MAC tag to extract 
PAYLOAD. 

 

• HMAC computed on SQN || HDR || PAYLOAD. 

 

• HMAC computation involves adding ≥9 bytes of padding and  
iteration of hash compression function, e.g. MD5, SHA-1, 
SHA-256. 

 

• Running time of HMAC depends on L, the byte length of  

    SQN || HDR || PAYLOAD: 

– L ≤ 55 bytes: 4 compression functions; 

– 56 ≤ L ≤ 119: 5 compression functions; 

– 120 ≤ L ≤ 183: 6 compression functions; 

– …. 
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Lucky 13 Distinguishing Attack 
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C 
K 

C’ 

C  = EncK(M)  M is either R287 || 00 or R32 || FF256 

• Adversary intercepts c, mauls, and forwards on to 

recipient.  

• Time taken to respond with error message will indicate 

whether M = R287 || 00 or M = R32 || FF256. 

• Ciphertext-only distinguishing attack. 

 

K 
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Lucky 13 Distinguishing Attack – 

Choose 

R R …..……….……………R 00 

FF FF………………………….FF 

R 

R 

C 

C IV 

IV 
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Lucky 13 Distinguishing Attack – 

Maul 

R R …..……….……………R 00 

FF FF………………………….FF 

R 

R 

C IV 

C IV 
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Lucky 13 Distinguishing Attack – 

Inject 

R R …..……….……………R 00 

FF FF………………………….FF 

R 

R 

C’ IV 

C’ IV 

1-byte valid padding    

20-byte MAC 

267-byte message 

256-byte valid padding 

20-byte MAC 

12-byte message 
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Lucky 13 Distinguishing Attack – 

Decrypt 

R R …..……….……..R R 

R 

C IV 

C IV 
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Lucky 13 Distinguishing Attack – 

Decrypt 

R R …..……….……..R R 

R 

Slow MAC  

verification 

Fast MAC  

verification 

Timing difference: 4 SHA-1 compression function evaluations 

SQN||HDR 

SQN||HDR 

280 bytes 

25 bytes 
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Experimental Results for 

Distinguishing Attack 

• OpenSSLv1.0.1 on server running at 1.87Ghz. 

• 100 Mbit LAN. 

• Difference in means is circa 3.2 μs. 
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Success Probability 

138 

Number of Sessions Success Probability 

1 0.756 

4 0.858 

16 0.951 

64 0.992 

128 1 
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Lucky 13 – Plaintext Recovery 

XOR 2-byte Δ here  

and submit for decryption 

Produces valid 

patterns “01 01”  

or  “00”,  

OR bad pad.  

139 

Ct 

Pt 

dK 

Ct-1 

dK 

R2 R1 

dK dK 

IV 

(HMAC-SHA-1 + AES-CBC) 

Target 

ciphertext  

block from 

stream 
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Case 1: “01 01” (or longer valid pad) 

XOR 2-byte Δ here  

and submit for decryption 

140 

Ct 

Pt 

dK 

Ct-1 

dK 

R2 R1 

dK dK 

IV 

SQN||HDR 

13 + 16 + 16 + 10 = 55 bytes 20 bytes 

4 SHA-1 compression 

function evaluations 

“01 01”  

(or longer  

valid pad)  



141 

Case 2: “00” 

XOR 2-byte Δ here  

and submit for decryption 

141 

Ct 

Pt 

dK 

Ct-1 

dK 

R2 R1 

dK dK 

IV 

SQN||HDR 

56 bytes 20 bytes 

5 SHA-1 compression 

function evaluations 

“00”  
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Case 3: Bad padding 

XOR 2-byte Δ here  

and submit for decryption 

142 

Ct 

Pt 

dK 

Ct-1 

dK 

R2 R1 

dK dK 

IV 

SQN||HDR 

57 bytes 20 bytes 

5 SHA-1 compression 

function evaluations 

zero-length  

pad 
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Lucky 13 – Plaintext Recovery 

• The injected ciphertext causes bad padding and/or a bad 
MAC. 

– This leads to a TLS error message, which the attacker times. 

 

• There is a timing difference between “01 01” case and the 
other 2 cases. 

– A single SHA-1 compression function evaluation. 

– Roughly 1000 clock cycles, 1μs range on typical processor. 

– Measurable difference on same host, LAN, or a few hops away. 

– Compare with original padding oracle attack: 2ms. 

 

• Detecting the “01 01” case allows last 2 plaintext bytes in the 
target block Ct to be recovered. 

– Using the usual CBC algebra. 

– Attack then extends easily to all bytes as in a standard padding 
oracle attack. 
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Lucky 13 – Attack Cost 

• We need 216 attempts to try all 2-byte Δ values. 

 

• And we need around 27 - 28 trials for each Δ value to 

reliably distinguish the different events. 

– Noise level and number of trials depends on experimental set-up. 

 

• Each trial kills the TLS session. 

 

• Hence the headline attack cost is 223 – 224 sessions, all 

encrypting the same plaintext. 

 

• Looks rather theoretical? 
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Lucky 13 – Improvements 

• If all-but-one byte of plaintext block is known, 

then we only need 28 attempts to recover the 

missing byte. 

– We know how to set bytes of mask Δ so that valid 

padding pattern is hit in all-but-one position. 

– Works for any combination of block cipher and hash 

function. 

 

• If the plaintext is base64 encoded, then we only 

need 26 attempts per byte. 

– And 27 trials per attempt to de-noise, for a total of 213. 

 
145 



146 

Lucky 13 – All-But-One Byte Known  

Apply 2-byte mask 

Δ =(01P14, Δ15) 

Produces 

pattern “01 ??”.  
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Lucky 13 + BEAST = Practical Attack 

BEAST-style attack targeting HTTP cookies. 

• Client-side Javascript makes repeated HTTP GET 

requests to target site. 

• TLS sessions are automatically generated and HTTP 

cookies attached to outgoing GET requests. 

• Javascript pads the GET requests so that all-but-one 

condition always holds. 

– Sliding bytes as in original BEAST attack. 

• MITM modifies ciphertext. 

– Causing session crash. 

• Cost of attack is around 213 TLS handshakes and GET 

requests per byte of cookie. 

• Now a practical attack! 
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Browser 

TLS tunnel 
Cookie 

for 

remote 

site 
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Lucky 13 + BEAST = Practical Attack 

148 

HTTPS GET 
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Experimental Results 

• Byte 14 of plaintext set to 01; byte 15 set to FF. 

• Modify Δ15. 

• OpenSSLv1.0.1 on server running at 1.87Ghz, 100 Mbit LAN. 

• Median times (noise not shown). 
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Experimental Results 

OpenSSL: recovering last byte in a block, using percentile test to 

extract correct byte value, no assumptions on plaintext. 
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Lucky 13 – Further Extensions 

• The attack extends to other MAC algorithms. 

– Nice interplay between block-size, MAC tag size and 13-byte 

field SQN || HDR. 

 

• The attack extends to other methods for dealing with bad 

padding. 

– e.g. as in GnuTLS, faster but partial plaintext recovery. 

 

• [The attack can be applied to DTLS. 

– No error messages, but simulate these via DTLS Heartbeats. 

– Errors non-fatal, so can execute attack in a single session. 

– Cam amplify timing differences using techniques from [AP12].] 
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Lucky 13 – Impact 

(Full details at: www.isg.rhul.ac.uk/tls/lucky13.html) 

•OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released 

05/02/2013. 

•NSS (Firefox, Chrome) patched in version 3.14.3, released 15/02/2013. 

•Opera patched in version 12.13, released 30/01/2013 

•Oracle released a special critical patch update of JavaSE, 19/02/2013. 

•BouncyCastle patched in version 1.48, 10/02/2013 

•Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL. 

•Microsoft “determined that the issue had been adequately addressed 

in previous modifications to their TLS and DTLS implementation”. 

•Apple: patched in OS X v10.8.5 (iOS version tbd). 
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Lucky 13 – Countermeasures 

• We really need constant-time decryption for TLS-CBC. 

 

• Add dummy hash compression function computations when 

padding is good to ensure total is the same as when padding 

is bad. 

 

• Add dummy padding checks to ensure number of iterations 

done is independent of padding length and/or correctness of 

padding. 

 

• Watch out for length sanity checks too.  

– Need to ensure there’s enough space for some plaintext after 

removing padding and MAC, but without leaking any information 

about amount of padding removed. 

 
153 



154 

Performance of Countermeasures  
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Before After 

• Better but not perfect. 

• Adam Langley’s constant-time code in OpenSSL needed 500 lines 

of ‘C’, but completely removes difference. 

 

 

 



Implementations of TLS in CBC mode should now have: 

 

• Explicit, random IVs  
- To prevent Dai-Rogaway-Moeller/BEAST 

 

• Proper padding checks 
- To prevent Moeller attack. 

 

• Uniform behaviour under padding and MAC failures 
- To prevent padding oracle and Lucky 13 attacks. 

- Ideally, constant-time, constant memory access code. 

 

• Variable length padding. 
- To disguise true plaintext lengths. 

 

Security Proofs for TLS Record 

Protocol (CBC mode) 
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C 
K 

C’ 

C  = EncK(M)  M is either “Yes” or “No” 

Short MAC Attack Against TLS ([PRS11]) 

• Adversary intercepts C, flips a few bits, and forwards it on to 

recipient.  

• How recipient responds will indicate whether  M = “Yes” or “No”. 

• A distinguishing attack. 

• The attack works when MAC size < block size and when sender 

uses variable length padding. 
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MAC length t = 80, block length n = 128 

No         1316 

C2 

eK 

C0 C1 

eK 

134 

 Yes        1216 

C2 

eK 

C0 C1 

eK 

123 C0’  = C0  0012104 

C’  = C0’ C1 

Byte 13 is hex 

for 19 

Byte 12 is hex  

for 18 
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No         1316 

C2 

eK 

C0’ C1 

eK 

034 

 Yes        1216 

C2 

eK 

C0 C1 

eK 

123 C0’  = C0  0012104 

C’  = C0’ C1 

Decrypts 

fine to “No” 

MAC length t = 80, block length n = 128 
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No         1316 

C2 

eK 

C0’ C1 

eK 

034 

 Yes ??        1216 

C2 

eK 

C0’ C1 

eK 

023 C0’  = C0  0012104 

C’  = C0’ C1 

Decrypts 

fine to “No” 

MAC will  

not verify, 

decryption  

fails 

MAC length t = 80, block length n = 128 
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Block length  

n = 64   for 3DES 

n = 128 for AES 

MAC length  

t = 128   for HMAC-MD5 

t = 160   for HMAC-SHA1 

t = 256   for HMAC-SHA256 

Where Does the Attack Apply? 

C2 

eK 

C0 C1 

eK 

For TLS 1.2: 
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Block length  

n = 64   for 3DES 

n = 128 for AES 

MAC length  

t = 80   for Truncated HMAC-MD5 

t = 80   for Truncated HMAC-SHA1 

t = 80   for Truncated HMAC-SHA256 

C2 

eK 

C0 C1 

eK 

For TLS 1.2 with truncated MAC extension (RFC 6066): 

Attack applies for AES! 

Where Does the Attack Apply? 

161 



Consequences of Attack 

• This does not yield an attack against TLS, but 

only because no short MAC algorithms are 

currently supported in implementations. 

 

• The attack is “only” a distinguishing attack. 

– Does not seem to extend to plaintext recovery. 

 

• The attack presents a barrier to obtaining 

proofs of security for TLS MEE construction. 

– Attack exploits variable length padding to break INT-

CTXT security, leading to IND-CCA attack. 
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M  DecK(C) 

Ret M 

C  EncK(M0 ) 

Ret C 
Ret    

C   EncK(M1) 

Ret C 

M0 , M1 M0 , M1 C C 

IND-CPA +  

INT-CTXT 
AE  

b b 

^

Combined AE Security Notion 



M  DecK(C) 

Ret M 

C  EncK(M0 ) 

Ret C 
Ret    

C   EncK(M1) 

Ret C 

M0 , M1 M0 , M1 C C 

b b 

^

Combined AE Security Notion 

Authenticated-Encryption security does not protect against  

adversary who can select messages of different lengths. 

 

So [PRS11] attack is outside this model. 

|M0| = |M1| |M0| = |M1| 



Length-hiding Authenticated  

Encryption (LHAE) Security 

M   DecK(C) 

Ret M 

C1   EncK(L, M1) 

C0   EncK(L, M0) 

If C0 =       or  C1 =    

    Ret  

Ret C0 

Ret    
C1   EncK(L, M1) 

C0   EncK(L, M0) 

If C0 =       or  C1 =      

   Ret  

Ret C1 

L, M0, M1 L, M0, M1 
C C 

LHAE security protects against learning partial information about  

messages of (some) different lengths and forging ciphertexts 

b b 

LH-IND-CPA + INT-CTXT LHAE  AE  

^ ^
^

^
^ ^
^

|M0| = |M1| |M0| = |M1| 



Towards LHAE Security 

C0 C1 

eK 

C2 

eK 

C3 

eK 

Showing LH-IND-CPA is easy from IND-CPA of CBC.  

INT-PTXT is straightforward from results of [BN00].  

But we need INT-CTXT, and INT-PTXT does not imply it.  

LH-IND-CPA + INT-CTXT LHAE  



Collision-Resistant Decryption (CRD) 

Security 

This is exactly the ‘gap’ between INT-PTXT and INT-CTXT: 

No         1316 

C2 

eK 

C0 C1 

eK 

134 
Byte 13 is hex 

for 19 

INT-PTXT + CRD INT-CTXT  

Recall in our attack, adversary creates a new ciphertext that  

decrypts to a previously encrypted message. 



Collision-Resistant Decryption (CRD) 

Security 

This is exactly the ‘gap’ between INT-PTXT and INT-CTXT: 

No         1316 

C2 

eK 

C0 C1 

eK 

134 
Byte 13 is hex 

for 19 

INT-PTXT + CRD INT-CTXT  

Recall in our attack, adversary creates a new ciphertext that  

decrypts to a previously encrypted message. 

Achieving CRD security shows that no such attacks exist. 



Theorem ([PRS11], informal statement) 

Suppose E is a block cipher with block size n that is sprp-secure. 

Suppose MAC has tag size t and is prf-secure.  

Suppose that for all messages M queried by the adversary: 

    

    |M| + t  ≥  n. 

 

Then MEE with CBC mode encryption, random IVs, TLS padding, and 

uniform errors is (LH)AE secure. 

LHAE Security for TLS 

C0 C1 

eK 

C2 

eK 

C3 

eK 
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Practical  

attacks 

exist 

C2 

eK 

C0 C1 

eK 

C0 C1 

eK 

C2 

eK 

C3 

eK 

Secure in 

the (LH)AE  

model 

[PRS11]: Tag size matters! 
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Other Lucky 13 Countermeasures? 

• Introduce random delays during decryption. 
– Surprisingly ineffective, analysis in [AP13]. 

 
• Redesign TLS: 

– Pad-MAC-Encrypt or Pad-Encrypt-MAC? 

– Pad-Encrypt-MAC only now being adopted as a TLS extension for 
TLS 1.1 and higher. 

– Takes months/years to deploy. 

 

• Switch to TLS 1.2 
– Has support for AES-GCM and AES-CCM. 

– But was not supported by browsers at time Lucky 13 was 
announced. 

 

• Switch to RC4 
– As recommended by many commentators (again!). 
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Lessons 

• TLS’s MAC-Encode-Encrypt construction is hard 

to implement securely and hard to prove positive 

security results about. 

– Long history of attacks and fixes. 

– Each fix was the “easiest option at the time”. 

– Now reached point where a 500 line patch to 

OpenSSL was needed to fully eliminate the Lucky 13 

attack. 

• Attacks show that small details matter. 

– Compare with [K01] security proof. 

– The full details of the CBC construction used in TLS 

were only analysed in 2011 ([PRS11]). 
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Outline  

• Yet more TLS attacks 

- RC4 in TLS 

- CRIME/BREACH 

• Introduction to SSH 

• Security proof for SSH-CBC 

• Breaking SSH-CBC 

• Analysis of SSH-CTR 



MAC 

SQN || HDR Payload 

Encrypt 

Ciphertext 

MAC tag Payload 

HDR 

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256  

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128 
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TLS Record Protocol: RC4-128 



MAC 

SQN || HDR Payload 

Encrypt 

Ciphertext 

MAC tag Payload 

HDR 

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256  

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128 
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TLS Record Protocol: RC4-128 

MAC tag 

HDR 

RC4 Key scheduling RC4 Keystream generation 

RC4 State 

Byte permutation    and indices i and j 



• In the face of the BEAST and Lucky 13 attacks on CBC-based 

ciphersuites in TLS, switching to RC4 was a recommended  

mitigation. 

 

• RC4 is also fast when AES hardware not available 

 

• Use of RC4 in the wild: 

 

 

 

 

 

 

• Problem: RC4 is known to have statistical weaknesses. 

Use of RC4 in TLS 

ICSI Certificate Notary 

Jan. 2013 survey of 16 billion TLS connections: 

Approx. 50% protected via RC4 ciphersuites  



Single-byte Biases in the RC4 Keystream 

• [Mantin-Shamir 2001]: 

 

• [Mironov 2002]: 

– Described distribution of      (bias away from 0, sine-like distribution)  

 

• [Maitra-Paul-Sen Gupta 2011]:  for  

 

 

• [Sen Gupta-Maitra-Paul-Sarkar 2011]: 

Zi = value of i-th keystream byte 

l = keylength 
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What’s going on? 

• Why were we all still using RC4 in half of all TLS 

connections when we knew it was broken? 

 

• “Google uses it, so it must be OK for my site”. 

• “The biases are only in the first handful of bytes 

and they don’t encrypt anything interesting in 

TLS”. 

• “The biases are not exploitable in any 

meaningful scenario”. 

• “RC4 is fast.” 

• “I’m worried about BEAST on CBC mode.” 
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• Approach in [ABPPS13]: 

– Based on the output from 245 random independent 128-bit RC4 

keys, estimate the keystream byte distribution of the first 256 bytes 

.. 

 

 

 

 

 

 

 

• Revealed many new biases in the RC4 keystream. 

– (Some of these were independently discovered by Isobe et al.) 

Complete Keystream Byte 

Distributions 
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... 

... 
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• So what? 

 

• Using the biased keystream byte distributions, we can 

construct a plaintext recovery attack against TLS. 

 

• The attack requires the same plaintext to be encrypted 

under many different keys. 

– Use Javascript in browser as mechanism, cookies as target, as in 

BEAST attack. 

– There is a meaningful attack scenario! 

Plaintext Recovery for TLS-RC4 



Plaintext recovery using keystream 

biases 
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Details of Statistical Analysis 

Let c be the n-vector of ciphertext bytes in position r. 

Let q = (q00, q01,…, qff) be the vector of keystream byte probabilities in 

position r. 

Bayes theorem: 

 Pr[P=p | C=c]  =  Pr[C=c | P=p]. Pr[P=p]/Pr[C=c] 

                           =  Pr[Z=c  p | P=p].Pr[P=p]/Pr[C=c]. 

Assume Pr[P=p] is constant; Pr[C=c] is independent of the choice of p. 

Then to maximise Pr[P=p | C=c] over all choices of p, we simply need 

to maximise: 

 

  Pr[Z=c  p | P=p]   =  

 

where nx is the number of occurrences of byte value x in Z=c  p 

(which equals the number of occurrences of x  p in c). 
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Limitations of Attack 

• Requires 228 ~ 232 TLS sessions/connections for reliable 

recovery. 

 

• Attacker has to force TLS session 

renegotiation/resumption. 

– No known mechanism from within Javascript. 

 

• Only the first 220 bytes of application data can be 

targeted. 
• Initial 36 bytes of keystream are used to encrypt last message of 

Handshake protocol. 

 

• In reality, first 220 bytes of application data usually 

contain uninteresting HTTP headers. 



A Second Attack 

• Fluhrer and McGrew 
identified biases for 
consecutive keystream 
bytes. 

– Persistent throughout 
keystream. 

 

• Based on these, 
[ABPPS13] constructed 
an attack which: 

– Can target any plaintext byte 
positions; 

– Does not require session 
renegotiation / resumption. 

i : keystream byte position mod 256 



• Align plaintext with repeating Fluhrer-McGrew biases 

 

 

 

 

 

 

 

• Exploit overlapping nature of plaintext byte pairs to obtain 

approximate likelihood for plaintext candidates. 

Plaintext copies P P P 

A Second Attack 

RC4 Keystream 

TLS Ciphertexts C1 C2 C3 

P3 P4 

P2 P3 

P1 P2 

P1 P2 P3 P4 P5 P6 

... 

⇒ 

Approximate  

likelihood for 

P = P1P2P3P4P5P6 

Recovery algorithm: 

Viterbi-style algorithm to 

determine P with highest 

approximate likelihood 



Success Probability 

Recovery of 16 byte cookie 

Recovery of individual bytes 



Countermeasures 

• Possible countermeasures against the attacks 

– Discard initial keystream bytes (RC4-DropN). 

– Fragment initial records at the application layer. 

– Add random amounts of padding to HTTP. 

– Limit lifetime of cookies or number of times cookies can 

be sent. 

– (None of these is really effective.) 

– Stop using RC4 in TLS and switch to another stream 

cipher. 



Vendor Responses  

• Opera has implemented a combination of 

countermeasures. 

 

• Google focused on implementing TLS 1.2 and AES-GCM 

in Chrome, now deployed.  

 

• Microsoft: RC4 is disabled by default for TLS in Windows 

8.1 and latest Windows server code. 

 

• Development of standards for alternative stream ciphers in 

TLS underway in IETF. 

– Salsa20/ChaCha20. 
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CRIME 

• Duong and Rizzo [DR12] found a way to exploit TLS’s 
optional compression feature. 
– Similar to idea in 2002 paper by Kelsey [K02]. 

 

• Compression algorithms are stateful. 
– Replace repeated strings by shorter references to previous 

occurrences. 

 

• Degree of compression obtained for chosen plaintext 
reveals something about prior plaintexts! 
– This small amount of leakage can be boosted to get plaintext 

recovery attack for HTTP cookies. 

– Using same chosen plaintext vector as for BEAST. 

 

• Countermeasure: disable compression. 
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BREACH 

• BREACH: similar ideas to CRIME, now applied 

to HTTP compression. 

– http://breachattack.com/ 

• So now problem arises in the application layer, 

not crypto layer. 

• Cannot so easily disable HTTP compression. 

 

• Bottom-line: we do not yet have a good 

theoretical handle on how compression 

interacts with symmetric encryption. 

– A research opportunity! 
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TLS: Where Do We Stand? 

• Most TLS implementations now patched against BEAST. 

• Many TLS implementations patched against Lucky 13. 

• No simple TLS patch for RC4 attack. 

– Needs application-layer modifications. 

• Disable TLS compression to prevent CRIME. 

– Still issues with compression at application layer (BREACH). 

 

• We need really TLS 1.2! 

– Support for AES-GCM, AES-CCM. 

– Now available in most main browsers; server-side still patchy. 

– But TLS vulnerable to version rollback attack. 

– Expect further examination of AES-GCM in TLS implementations. 
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TLS – Current Status? 

239 

“This is a dead parrot.” 

“He’s not dead. He’s just resting.” 
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Lessons 

• RC4 was known to be weak for many years. 

– Actual exploitation of weaknesses in a TLS context 

went unexplored. 

– [ABPPS13] needed multi-session mechanism (BEAST 

technology) to make the attack plausible. 

 

• Once a bad cryptographic choice is out there in 

implementations, it’s very hard to undo. 
– Old versions of TLS hang around for a long time. 

– There is no TLS product recall programme! 
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CINS/F1-01 

Introduction to SSH 

 Secure Shell or SSH is a network protocol that allows 

data to be exchanged using a secure channel between 

two networked devices. Used primarily on Linux and 

Unix based systems to access shell accounts, SSH was 

designed as a replacement for TELNET and other 

insecure remote shells, which send information, notably 

passwords, in plaintext, leaving them open for 

interception. The encryption used by SSH provides 

confidentiality and integrity of data over an insecure 

network, such as the Internet.     

       – Wikipedia  
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Introduction to SSH 

• SSHv1 had several security flaws. 

– Worst ones arising from use of CRC algorithm to provide 

integrity. 

– Enabling, for example, traffic injection attacks. 

• SSHv2 was standardised in 2006 by the IETF in RFCs 

4251-4254. 

– But basic specification dates from the late 1990s. 

• SSHv2 is widely regarded as providing strong security. 

– One minor flaw that in theory allows distinguishing attacks 

([D02]; [BKN02]). 

– Simple countermeasure adopted in, for example, OpenSSH. 

– Dozens of different implementations of SSH.  
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The SSH BPP 

Encrypt 

MAC 

Payload 

Ciphertext MAC tag 

Sequence 

Number 4 

Packet 

Length 4 

Pad 

Len 1 
Padding 

 ≥4 

• Encode-then-Encrypt&MAC construction, not generically secure. 

• Packet length field measures the size of the packet on the wire in bytes 

and is encrypted to hide the true length of SSH packets. 

• Variable length padding is permissible; padding needed for CBC mode 

and carried over to CTR mode. 
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CBC Mode in SSH 

• RFC 4253 mandates 3DES-

CBC and recommends 

AES-CBC. 
– In fact, all originally specified 

optional configurations involve 

CBC mode, and ARCFOUR 

was the only optional stream 

cipher. 

• SSH uses a chained IV in 

CBC mode: 
– IV for current packet is the last 

ciphertext block from the 

previous packet. 

– Effectively creates a single 

stream of data from multiple 

SSH packets. 

Ci-1 Ci 

Pi-1 Pi 

dK dK 

Pi-1 Pi 

Ci-1 Ci 

eK eK 
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CTR Mode in SSH 

• CTR mode uses block 

cipher to build a stream 

cipher. 

• CTR mode for SSH 

standardised in RFC 4344. 

• Initial value of counter 

is obtained from 

handshake protocol. 

• Packet format is 

preserved from CBC 

case. 

• Recommends use of 

AES-CTR with 128, 

192 and 256-bit keys, 

and 3DES-CTR. 

 

Ci 

eK 

Pi 

ctr+i 

Pi 

eK 

Ci 

ctr+i 
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Security of the SSH BPP 

• Attack of [D02], [BKN02] exploits chained IVs in CBC 

mode. 

– Same attack vector as Rogaway’s 1995 observation. 

– Breaks IND-CCA security of SSH BPP. 

– Low success probability against SSH implementations because of 

specifics of packet format. 

– Prevented in OpenSSH by optional use of dummy packets to hide 

IVs until it is too late for attacker to make use of them. 

• Basic message: SSH BPP using CBC mode with chained 

IVs is insecure according to the standard theoretical 

notion of security. 
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Stateful Security for Symmetric 

Encryption 

• [BKN02] developed stateful security models for symmetric 
encryption. 
– Reflecting the desire to protect the order of messages in the secure 

channel. 

– And wide use of sequence numbers in secure channel protocols. 

 

• IND-sfCCA security:  
– Attacker has access to an LoR encryption oracle and a decryption 

oracle. 

– Both oracles are stateful (e.g. via sequence numbers). 

– Model allows adversary to advance states to any chosen value via 
queries to LoR encryption and decryption oracles. 

– Adversary wins game if he can guess hidden bit b of encryption 
oracle. 

 

• sfAE security can be defined similarly. 
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Security of the SSH BPP 

• Using their models, [BKN02] proved the security 

of variants of the SSH BPP under reasonable 

assumptions concerning: 

– The encryption component. 

• Essentially, IND-CPA security. 

– The MAC component. 

• Strong unforgeability and pseudo-randomness. 

– The randomness of the padding scheme. 

– Collision properties of the encoding scheme. 

• In practice, for SSH BPP, this means not too many packets 

can be encrypted. 
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Security of the SSH BPP 

• In particular, [BKN02] established the IND-

sfCCA security of SSH-$NPC and SSH-CTR. 

– SSH-$NPC = SSH using a block cipher in CBC mode 

with explicit, per-packet, random IV and with random 

padding. 

• In contrast to chained IVs used in SSH BPP. 

– SSH-CTR = SSH using a block cipher in counter 

mode, with counter maintained at sender and 

receiver. 
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Attacking the SSH BPP 

• [APW09]: plaintext recovery attacks against SSH BPP 

when using CBC mode. 

– Much stronger than distinguishing attack of [D02], [BKN02]! 

 

• These attacks exploit the interaction of the following 

features of the BPP specification: 

– The attacker can send data on an SSH connection in small 

chunks (TCP). 

– A MAC failure is visible on the network. 

– The packet length field encodes how much data needs to be 

received before the MAC is received and the integrity of the 

packet can be checked. 
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Attacking the SSH BPP (Theory) 

IV Ci
* 

P0
’ 

dK 

• The receiver will treat the first 32 bits of the calculated plaintext 

block as the packet length field for the new packet.  

• Here: 

   P0’ = IV    dK(Ci*) 

where IV is known from the previous packet. 

Target ciphertext  

block from stream 
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Attacking the SSH BPP (Theory) 

IV Ci
* 

P0
’ 

dK 

 The attacker then feeds random blocks to the receiver. 

– One block at a time, waiting to see what happens at the server 

when each new block is processed. 

R R 

P2’
 

dK dK 

P1’
 

20/9/2010 
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Attacking the SSH BPP (Theory) 

IV Ci
* 

P0
’ 

dK 

• Eventually, once enough data has arrived, the receiver will receive 

what it thinks is the MAC tag. 

• The receiver will then check the MAC. 

– This check will fail with overwhelming probability. 

– Consequently the connection is terminated (with an error message). 

• How much data is “enough” so that the receiver decides to check 

the MAC? 

R R 

P2’
 

dK dK 

P1’
 

MAC tag 

20/9/2010 
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Attacking the SSH BPP (Theory) 

• The receiver has to use the packet length field 

to decide when the MAC tag has arrived. 

• Hence an attacker who counts the number of 

bytes needed to cause connection termination 

learns the packet length field. 

• That is, the attacker learns the first 32 bits of: 

    P0
’ = IV  dK(Ci

*). 

20/9/2010 
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Attacking the SSH BPP (Theory) 

IV Ci
* 

P0
’ 

dK 

• Knowing IV and 32 bits of P0
’, the attacker can 

now recover 32 bits of the target plaintext 

block: 

   Pi
* = Ci-1

*  dK(Ci
*) = Ci-1

*  IV  P0
’  

Cj-1
* Ci

* 

Pi
* 

dK 
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Attack Performance (Theory) 

• As described, this simple attack succeeds in 

recovering 32 bits of plaintext from an arbitrary 

ciphertext block with probability 1. 

– But requires the injection of about 231 random bytes 

to trigger the MAC check. 

– And leads to an SSH connection tear-down. 

• Still, the attack breaks the SSH BPP. 

• The attack still works if a fresh IV is used for 

each new SSH packet. 

– Breaking SSH-$NPC that was proven secure in 

[BKN02]. 
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Attacking OpenSSH 

• OpenSSH is the most popular implementation 

of the SSH RFCs. 

– Open-source, distributed as part of OpenBSD. 

– OpenSSH webpages state that OpenSSH accounts 

for more than 80% of all deployed SSH servers. 

– www.openssh.org/usage/index.html 

 

• [APW09] worked with OpenSSH 5.1. 

– Version 5.2 released 23/02/2009 partly as a 

consequence of their work, current version is 6.4. 
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Attacking OpenSSH 

• In OpenSSH 5.1, two sanity checks are carried out 
on the packet length field after the first block is 
decrypted. 
– 5 ≤ packet_length ≤ 218 

– packet_length + 4 % block_length = 0 

• When either of the checks fails, the SSH 
connection is terminated. 
– But in subtly different ways that leaks some plaintext 

information.  

• If the length checks pass, then OpenSSH 5.1 waits 
for more bytes. 

• Finally, when the MAC check fails, a third type of 
connection termination is seen. 
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Attacking OpenSSH 

• The manner in which OpenSSH 5.1 behaves 
on failure allows: 
– A first attack verifiably recovering 14 bits of plaintext 

with probability 2-14. 

– A second attack verifiably recovering 32 bits of 
plaintext with probability 2-18 (for a 128-bit block 
cipher). 

– The attacks require injection of (roughly) 218 bytes. 

• Boost success rate in multi-session attack. 

• The attacks in [APW09] worked in practice. 
– Implemented in a virtualized environment with 

server code patched to boost success rate. 



Possible Countermeasures 

• Use counter mode. 
– The attack no longer applies. 

– But stateful version of counter mode needed. 
• If there’s an explicit counter in packets, then a version of 

the attacks still works. 

– As standardised in RFC 4344. 

• Enforce use of counter mode. 
– Not standards compliant with the RFCs as they are 

currently written. 

– Some implementations do not support counter mode 
at all, creating backwards compatibility issue. 

– “Only a cryptographer would suggest this...” 

260 
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What Went Wrong with the Theory? 

• The security model of [BKN02] does model errors arising 

during the BPP decryption process. 

– Connection teardown is modeled by disallowing access to 

decryption and encryption oracles after any error event. 

– Errors can arise from decryption, decoding or MAC checking. 

• But only a single type of error message is output. 

– The 2-14 attack against OpenSSH exploits the fact that different 

error events are distinguishable. 

• And the model assumes that decoding errors arise 

before MAC errors. 

– While the OpenSSH implementation only does decoding after 

the MAC has been checked. 
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Limitations of [BKN02] 

• The model assumes that plaintexts and ciphertexts are 

“atomic”. 

– All oracle queries in the model involve complete plaintexts or 

ciphertexts. 

– But the attacks exploit the ability to deliver ciphertexts one 

block (or even one byte!) at a time and observe behaviour. 

• The model does not allow for plaintext-dependent 

decryption. 

– The packet length field never appears in the model. 

– But implementations must make use of this field during the 

decryption process. 

– And, as we’ve seen, the manner in which this field is treated is 

critical for security. 

• Models are just models. 
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New Security Analysis of SSH 

• [PW10]: 
– Develops a new security model addressing limitations of 

the model used in [BKN02] 

• LOR-BSF-CCA security; 

– Builds an accurate description of SSH-CTR as specified 
in RFCs and implemented in OpenSSH; 

– Proves the security of this description of SSH-CTR in the 
new model. 

• [BDPS12]: 
– More general security modelling for SSH-like protocols. 

– Security against chosen-fragment attacks (IND-CFA). 

– Formalisation of boundary-hiding (BH). 

– Relationship between IND-CFA, BH and DoS-resistance. 
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Lessons 

• SSH attack is trivial. 
– Once you see it! 

– Troubling that it lurked in specification for years. 

• SSH design goals raise interesting new theory 
questions. 
– How do IND-CFA, BH and DoS-resistance interact with 

each other? 

• [PW10] analysis of SSH-CTR is at the limits of 
(this) human’s ability to generate models and 
proofs. 
– Complexity arises from complexity of protocol we’re trying 

to model. 

– c.f. recent developments in TLS analysis, introduction of 
machine-generated/machine-checkable proofs. 
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Final Thoughts 

• Good algorithm design is hard. 

• But so is good protocol design. 

• Attacks are usually obvious in retrospect. 

– But so is most theory! 

• Finding attacks is high-risk, high-reward. 

• Value of attacks on paper versus attacks in 

practice. 

– Implemented attacks needed to convince 

practitioners. 

– On-paper attack often the harbinger of a practical 

attack. 
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