Searchable Encryption Using
ORAM

Benny Pinkas

rch in Ald
ypgphydyb rity

Desiderata for Searchable Encryption

* Security
* No leakage about the query or the results

* Functionality
* Variety of queries that are supported

* Performance

Using Secure Multi-Party Computation

* MPC can be used for securely computing any
function [Yao,GMW]

* In particular, the following function
e Client’s input is a key, and an encrypted query
e Server’s input is a database encrypted with client’s key
* Client learns an output which is the result of the query

* There are known techniques and libraries for
implementing MPC

Using Secure Multi-Party Computation

* Pros:
* Fully secure, no leakage (except for upper bounds on the
sizes of the inputs and output)
* Full functionality
e Can be made non-interactive using FHE

* Cons:
e Performance: the “cryptographic overhead” is linear in
the size of the database, which could be huge

* Most efficient techniques (e.g., Yao) require using a
fresh construction (circuit) for each query

Specific Constructions for Search on
Encrypted Data

* Deterministic encryption, order-preserving
encryption, structured-encryption
* Pros:
* Very efficient

* Cons:
e Leak some information

 Partial functionality (targeted for answering
specific types of queries)

Using Oblivious RAM for Search on
Encrypted Data

* Security: Leak less information than the specific
constructions

* Performance: More efficient than MPC (polylog
rather than linear overhead), but less efficient than
specific constructions. Logarithmic # of rounds.

* Functionality: Less than MPC, more than specific
constructions.

Oblivious RAM — the setting

 Setting: Client with small secure memory. Untrusted
server with large storage.

——

=l

server client

Oblivious RAM — the setting

 Setting: Client with small secure memory. Untrusted
server with large storage.

=l

Client

Server farm
Cloud storage

Oblivious RAM — the setting

 Setting: Client with small secure memory. Untrusted
server with large storage.

=l

Capacity:
O(1) data items
Capacity: log(n) bit counter
Server farm n data items Client

Cloud storage

Oblivious RAM — the setting

 Setting: Client with small secure memory. Untrusted
server with large storage.

0T /E\
——\O

Client can store data with the server

m Can encrypt and MAC data to hide contents and prevent changes
m But the client also desires to hide access pattern to data

.)Blu Center for Researc h in Applied
Cryptography and Cyber Security 10

Oblivious RAM — the setting

Hiding access pattern to data: Server does not know whether client
accesses the items numbered (1,2,3,4) or items (1,2,2,1)

Client can store data with the server
m Can encrypt and MAC data to hide contents and prevent changes
m But the client also desires to hide access pattern to data

.) Blu Center for Research in Applied
Cryptography and Cyber Security 11

Oblivious RAM - definition

e Client

e Stores n data items, of equal size, of the form
(index;, data block;). V'i,j index;# index;
* Performs a sequence y of n read/write ops

* Access pattern A(y) to remote storage contains

 Remote storage indices accessed
e Data read and written

e Secure oblivious RAM: for any two sequences y,y’ of
equal length, access patterns A(y) and A(y’) are
computationally indistinguishable.

.) Blu Center for Research in Appl ied
Cryptography and Cyber Security 12

Immediate implications of ORAM Definition

* Client must have a private source of randomness

* Data must be encrypted with a semantically secure encryption
scheme

* Each access to the remote storage must include a read and a
write

* The location in which data item (index;, datablock;) is stored
must be independent of index;

* Two accesses to index; must not necessarily access the same
location of the remote storage

.) Blu Center for Research in Applied
Cryptography and Cyber Security 13

Oblivious RAM - applications

* Related to Pippenger and Fischer’s 1979 result on oblivious
simulation of Turing machines

e Software protection (Goldreich Ostrovsky)
 CPU =client, RAM = remote storage
* Prevent reverse engineering of programs

 Remote storage (in the “cloud”)

* Preventing cache attacks (Osvik-Shamir-Tromer)
* Secure computation

e Search on encrypted data

Trivial ORAM solution

* For every R/W operation
* Client reads entire storage, item by item
e Re-encrypts each item after possibly changing it
* Writes the item back to remote storage

* O(n) overhead per each R/W operation

ORAM - History

* |nitial constructions by Goldreich and Ostrovsky
(1987-1996).

* A very hot research topic in recent years

e 807 Google Scholar articles containing “oblivious RAM”
* 695 such articles since 2010

.) Blu Center for Research in Applied
Cryptography and Cyber Security 16

Tree Based ORAM Constructions

17

Tree based ORAM

* A series of results that are very competitive and very
simple to implement, in software and in hardware

* Oblivious RAM with O((log N)?) Worst-Case Cost. E. Shi, T.-H.
Chan, E. Stefanov, M. Li. Asiacrypt 2011.

* Path ORAM: An Extremely Simple Oblivious RAM Protocol. E.
Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, S.
Devadas. ACM CCS 2013.

* We will only describe the simplest scheme

Server Storage

~

A full binary

tree with logn

/[]\ levels and n
1 [
B

leaves

J
\ Each node
[
/

contains a
\ bucket of logn
data items /

“hem | leat

3

w N = O

Client Storage

2
5
7

ﬂ)r now, assume that
the client stores a
position map,
randomly mapping
data items to leaves.

O(n) storage, but
each item is only logn

bits long. /

Center for Research in Applied
Cryptography and Cyber Security

20

Storing Iltems

An item is

on the path

|

/ \ to its leaf

always stored
somewhere

] from the root

£/

(1 0D gremmes
J[/J[\] [/][\J —

21

Accessing an |ltem
 These ﬁ Read path (leaf) from
operations position map.

are 2. Traverse path from root

oblivious to leaf. Look for the

item in each bucket

- along the path. Remove
when found.

3. Assign a new random

. - leaf to the data item.

4. Update position map.

5. Write updated item to
root. /

Center for Research in Applied
Cryptography and Cyber Security 22

Evict to Prevent Overflows

These operations
e [ious. too. ﬁeach level choose two
nodes at random

For each node

- Pop an item (if bucket is
non-empty)

- Move item downwards
to next node on its path

- Do adummy write to

other descendant of
the node J

Center for Research in Applied
Cryptography and Cyber Security 23

Security

* All operations of the client are either
deterministic or uniformly random

* All works well as long as no bucket overflows...

* The evictions ensure this. The analysis uses Markov
chains:

* A buffer in level i receives an item with probability
(2/271)-(1/2)
* |t evicts an item with probability 2/2'

Using Recursion (l)

* When the client looks for an item in a node,
it can either
* Read all O(logn) items in the bucket

* Or, use ORAM recursively to check if the item it
searches for is in the bucket

Using Recursion (I1)

* In the basic scheme the client stores a
position map of n-logn bits.

* The client can store the position map on the
server.

* Its size is smaller than that of the original data
by a factor of (data block length) / logn.

* The client can access the position map using a
recursive call to ORAM.

* And so on...

Overhead

* Basic scheme
 Server storage is O(n-logn) data items
* Client stores n indexes (n-logn bits)
* Each access costs O(log?n) r/w operations

e Using ORAM to read from internal nodes
e Using, e.g., n®>-ORAM reduces cost to O(log~n)

* Storing position ORAM at server
* Client storage reduced to O(1)
e Overhead increases to O(log?~n)

Followup Work

* Multiple results tweaking the construction

e Different variants

* For small or large client storage (which can store
O(logn) data items)
* For small or large data items (blocks)

* Path ORAM achieves O(logn) overhead, with
O(logn) client storage and /arge data items

* Implemented even in hardware

Path ORAM

e Similar to the tree-based ORAM we described

* Eviction strategy is greedy:
* The client maintains a stash of some data items

» After searching for an item in path P, relocate each
data item in P, as well as each item in the stash, as
deep as possible along the path.

* |t was shown that this scheme works well even with
buckets of size 4

Encrypted Search using ORAM

* The (simplest) setting
* The client has n documents X,,..., X,
* There are m keywords k,,...,.k,,

e Each document is associated with a subset of the
keywords

* The data is stored encrypted at the server. The
client has the encryption key.

 The client wishes to retrieve all items associated
with a specific key word k

Encrypted Search using ORAM

e Recall, in ORAM the client stores n data items, of equal
size, of the form (index;, data block,). Vi,j index; #index;

* |n our setting the client needs to search for an item
using any of (the multiple) keywords associated with it

e An easy solution is to store tuples of the form
(k:;, a document associated with k),
but this requires storing each document multiple times.

.) Blu Center for Research in Appl ied
Cryptography and Cyber Security 31

Encrypted Search using ORAM

e A solution: Use two ORAMs

 The first ORAM stores a data structure that enables
to compute; given a keyword, the documents
associated with it.

(E.g., an inverted index)

* The second ORAM stores the documents
themselves.

.) Blu Center for Research in Appl ied
Cryptography and Cyber Security 32

Encrypted Search using ORAM

Document 1
Document 2

Document 3
Document 4

o
¢
Center for Research in Applied
Cryptography and Cyber Security

33

Encrypted Search using ORAM

ORAM 1

ORAM 2

o
¢
Center for Research in Applied
Cryptography and Cyber Security

34

Encrypted Search using ORAM

Searching for “wifi”

=0)

[— /
oioa I R [Oocument s [

usin
YR Occument
' ORAM

Center for Research in Applied
Cryptography and Cyber Security 35

Generality

* The inverted index data structure can be replaced
by any data structure supporting more complex
queries (e.g., B-trees)

36

Security

e Client uses ORAM to read data stored at the
server

* Therefore the server cannot identify which item
(keyword or document) is read...

* The server cannot also identify if the same item
is read twice...

e Or so it seems...

Efficiency Problems

e ORAM increases the communication and work
overhead by a factor of at least log(n)

 Each ORAM access requires log(n) communication
rounds (round-trip latency is often the bottleneck)

 Each ORAM read is for a block, which is wasteful
since a block is often much larger than keyword
data or than documents

* Moreover, efficient ORAM schemes use larger blocks

Efficiency Problems

\0%\“\
e ORAM increases the communication and work

overhead by a factor of at least log(n) 35

N
74\0%\ ™ ©

 Each ORAM access requires log(n) communication
rounds (round-trip latency is often the bottleneck)

* Each ORAM read is for a block, which is wasteful
since a block is often much Iarger than keyword \‘o\oc\k\ \
data or than documents ‘a\te‘“

* Moreover, efficient ORAM schemes use larger block\s

Efficiency Problems

 Documents often have a Zipf distribution (power law)

* Simulations show that searching for any of the 5000 most
frequent words in the Enron email database (of about
517,000 emails and 629,000 words) requires more
communication than sending the database to the
client.(?)

 Similar results hold for searching Wikipedia

(1) Muhammad Naveed, “The Fallacy of Composition of Oblivious RAM and
Searchable Encryption, 2015.

Security Problems

* ORAM hides the access pattern to data

e But ORAM does not hide the size of the documents
that are read

* ORAM-based encrypted search reveals
* The size of the documents containing the query word
* The number of documents containing the query word
* The size of the inverted index and of the document set

* And since documents and keywords have a Zipf law
distribution, this helps identify them.

Lower Bound

e Suppose we need an ORAM SSE that hides the total
size of the documents containing the query word
* Let Q1 be the query with the largest answer

* Then for any other query, the answer must be as long as
the answer for Q1

* In the extreme, suppose Q1 is included in all documents.

* Then for each query, the answer must be as big as the
entire data set. (The server could just as well send all
documents to the receiver).

ORAM SSE with only 2 rounds

e Garg, Mohassel, Papamantou, “TWORAM: Round-
Optimal Oblivious RAM with Applications to
Searchable Encryption”, 2015.

.) Blu Center for Research in Appl ied
Cryptography and Cyber Security 43

TWORAM: Recall basic ORAM

Client Server

position map

* |In the basic tree ORAM scheme, the client stores n
pointers to leaves

¢
Center for Research in Applied
Cryptography and Cyber Security 44

TWORAM: Recursive ORAM

Client Server

In the recursive scheme, the server stores L = logn
ORAM trees, storing smaller and smaller position maps

Center for Research in Applied
Cryptography and Cyber Security 45

TWORAM: Recursive ORAM

Client Server

The client adaptively accesses these trees
=> log N communication rounds

¢
Center for Research in Applied
Cryptography and Cyber Security 46

TWORAM: The New Construction

Replace each
bucket in each
tree with a
garbled circuit

The circuit:
* Receives as input an item x that is looked for in the tree
 Has all values in this bucket hardcoded in the circuit

* |f x is found in the bucket, outputs the path leading to x
in the next tree

.) Blu Center for Research in Applied
rrrrrrrrrrrrrrrrrrrrrrrrr ity 47

TWORAM: The New Construction

The server can evaluate the garbled circuit itself (using
Yao’s MPC protocol).

The server learns the output of the circuit, and uses it as
its input to the next tree.

—=> The server can search all trees without any interaction

48

TWORAM: Technical issues

Problem: must hide the exact bucket in
which item was found

Solution: The output of bucket j is
garbled, and is input to bucket j+1. Only
the leaf bucket outputs the location of X
in the next tree.

Problem: Once a garbled circuit is used it cannot be used again

Solution: At the end of the search the client sends new garbled
circuits, replacing the circuits that were used in the search.

.) Blu Center for Research in Applied
rrrrrrrrrrrrrrrrrrrrrrrrr ity 49

Search using TWORAM (naive)

e Store the reverse index and the database in two
separate TWORAMSs

e Search:

e Search the reverse index. Find out the locations of
(say, S) relevant documents. (O(1) rounds)

e Search the database for each of these documents
(O(S) rounds) ®

.) Blu Center for Research in Appl ied
Cryptography and Cyber Security 50

Better Search using TWORAM

* Assume database contains a total of N documents of
the form (k;, doc; ;)
* Each keyword can be associated with many documents

(k;, doc; ,), (k;, doc;), ...
e But total number of pairsis N

* The path associated with (k;, doc; ;) is a pseudo-
random function of

* The keyword k.
* The index j of dog; ;
* The number of times k. was searched for

Better Search using TWORAM

Storing documents
* Store the pairs (k;,doc; ;) in a single-level path-ORAM

* There is no need for a position map since the
position is a function of (k, j, #times k. searched)

Storing the index

* Store in a TWORAM the tuples (k, #associated docs,
#times k. searched)

.) Blu Center for Research in Appl ied
Cryptography and Cyber Security 52

Better Search using TWORAM

Search
* Look for k; in the TWORAM
* Retrieve (k, #associated docs, #times k; searched)

* Compute all positions of (k;, doc; ;) using this
information

* Look in parallel for all these documents in path-ORAM

O(1) rounds !
.) Blu Center fFor Research in Appl ied
Cryptography and Cyber Security 53

References

e Seny Kamara, How to Search on Encrypted Data: Oblivious
RAMs (Part 4).

* Muhammad Naveed, “The Fallacy of Composition of
Oblivious RAM and Searchable Encryption”, 2015.

e Garg, Mohassel, Papamantou, “TWORAM: Round-Optimal
Oblivious RAM with Applications to Searchable Encryption”,

2015.

