
`

Searchable Encryption Using
ORAM

Benny Pinkas

1

`

Desiderata for Searchable Encryption

• Security

• No leakage about the query or the results

• Functionality

• Variety of queries that are supported

• Performance

2

`

Using Secure Multi-Party Computation

• MPC can be used for securely computing any
function [Yao,GMW]

• In particular, the following function
• Client’s input is a key, and an encrypted query

• Server’s input is a database encrypted with client’s key

• Client learns an output which is the result of the query

• There are known techniques and libraries for
implementing MPC

3

`

Using Secure Multi-Party Computation

• Pros:
• Fully secure, no leakage (except for upper bounds on the

sizes of the inputs and output)

• Full functionality

• Can be made non-interactive using FHE

• Cons:
• Performance: the “cryptographic overhead” is linear in

the size of the database, which could be huge

• Most efficient techniques (e.g., Yao) require using a
fresh construction (circuit) for each query

4

`

Specific Constructions for Search on
Encrypted Data

• Deterministic encryption, order-preserving
encryption, structured-encryption

• Pros:

• Very efficient

• Cons:

• Leak some information

• Partial functionality (targeted for answering
specific types of queries)

5

`

Using Oblivious RAM for Search on
Encrypted Data

• Security: Leak less information than the specific
constructions

• Performance: More efficient than MPC (polylog
rather than linear overhead), but less efficient than
specific constructions. Logarithmic # of rounds.

• Functionality: Less than MPC, more than specific
constructions.

6

`

Oblivious RAM – the setting

• Setting: Client with small secure memory. Untrusted
server with large storage.

clientserver

7

`

Oblivious RAM – the setting

• Setting: Client with small secure memory. Untrusted
server with large storage.

ClientServer farm
Cloud storage

8

`

Oblivious RAM – the setting

• Setting: Client with small secure memory. Untrusted
server with large storage.

ClientServer farm
Cloud storage

9

Capacity:
O(1) data items
log(n) bit counterCapacity:

n data items

`

Oblivious RAM – the setting

• Setting: Client with small secure memory. Untrusted
server with large storage.

 Client can store data with the server

 Can encrypt and MAC data to hide contents and prevent changes

 But the client also desires to hide access pattern to data

10

`

Oblivious RAM – the setting

Hiding access pattern to data: Server does not know whether client
accesses the items numbered (1,2,3,4) or items (1,2,2,1)

11

 Client can store data with the server

 Can encrypt and MAC data to hide contents and prevent changes

 But the client also desires to hide access pattern to data

`

Oblivious RAM - definition

• Client
• Stores n data items, of equal size, of the form

(indexi , data blocki).  i,j indexi indexj

• Performs a sequence y of n read/write ops

• Access pattern A(y) to remote storage contains
• Remote storage indices accessed

• Data read and written

• Secure oblivious RAM: for any two sequences y,y’ of
equal length, access patterns A(y) and A(y’) are
computationally indistinguishable.

12

`

Immediate implications of ORAM Definition

• Client must have a private source of randomness

• Data must be encrypted with a semantically secure encryption
scheme

• Each access to the remote storage must include a read and a
write

• The location in which data item (indexi , datablocki) is stored
must be independent of indexi

• Two accesses to indexi must not necessarily access the same
location of the remote storage

13

`

Oblivious RAM - applications

• Related to Pippenger and Fischer’s 1979 result on oblivious
simulation of Turing machines

• Software protection (Goldreich Ostrovsky)
• CPU = client, RAM = remote storage

• Prevent reverse engineering of programs

• Remote storage (in the “cloud”)

• Preventing cache attacks (Osvik-Shamir-Tromer)

• Secure computation

• Search on encrypted data

14

`

Trivial ORAM solution

• For every R/W operation

• Client reads entire storage, item by item

• Re-encrypts each item after possibly changing it

• Writes the item back to remote storage

• O(n) overhead per each R/W operation

15

`

ORAM - History

• Initial constructions by Goldreich and Ostrovsky
(1987-1996).

• A very hot research topic in recent years
• 807 Google Scholar articles containing “oblivious RAM”

• 695 such articles since 2010

16

`

Tree Based ORAM Constructions

17

`

Tree based ORAM

• A series of results that are very competitive and very
simple to implement, in software and in hardware
• Oblivious RAM with O((log N)3) Worst-Case Cost. E. Shi, T.-H.

Chan, E. Stefanov, M. Li. Asiacrypt 2011.

• Path ORAM: An Extremely Simple Oblivious RAM Protocol. E.
Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, S.
Devadas. ACM CCS 2013.

• We will only describe the simplest scheme

18

`

Server Storage

19

A full binary
tree with logn
levels and n
leaves

Each node
contains a
bucket of logn
data items

`

Client Storage

20

leafitem

30

21

52

73

……

27

For now, assume that
the client stores a
position map,
randomly mapping
data items to leaves.

O(n) storage, but
each item is only logn
bits long.

`

Storing Items

21

leafitem

30

An item is
always stored
somewhere
on the path
from the root
to its leaf

`

Accessing an Item

22

These
operations
are
oblivious

1. Read path (leaf) from
position map.

2. Traverse path from root
to leaf. Look for the
item in each bucket
along the path. Remove
when found.

3. Assign a new random
leaf to the data item.

4. Update position map.
5. Write updated item to

root.

`

Evict to Prevent Overflows

23

These operations
are oblivious, too. In each level choose two

nodes at random

For each node
- Pop an item (if bucket is

non-empty)
- Move item downwards

to next node on its path
- Do a dummy write to

other descendant of
the node

`

Security

• All operations of the client are either
deterministic or uniformly random

• All works well as long as no bucket overflows…
• The evictions ensure this. The analysis uses Markov

chains:

• A buffer in level i receives an item with probability
(2/2i-1)∙(1/2)

• It evicts an item with probability 2/2i

24

`

Using Recursion (I)

• When the client looks for an item in a node,
it can either
• Read all O(logn) items in the bucket

• Or, use ORAM recursively to check if the item it
searches for is in the bucket

25

`

Using Recursion (II)

• In the basic scheme the client stores a
position map of n∙logn bits.
• The client can store the position map on the

server.

• Its size is smaller than that of the original data
by a factor of (data block length) / logn.

• The client can access the position map using a
recursive call to ORAM.

• And so on…

26

`

Overhead

• Basic scheme
• Server storage is O(n∙logn) data items
• Client stores n indexes (n∙logn bits)
• Each access costs O(log2n) r/w operations

• Using ORAM to read from internal nodes
• Using, e.g., n0.5-ORAM reduces cost to O(log1.5n)

• Storing position ORAM at server
• Client storage reduced to O(1)
• Overhead increases to O(log2.5n)

27

`

Followup Work

• Multiple results tweaking the construction

• Different variants
• For small or large client storage (which can store

O(logn) data items)

• For small or large data items (blocks)

• Path ORAM achieves O(logn) overhead, with
O(logn) client storage and large data items
• Implemented even in hardware

28

`

Path ORAM

• Similar to the tree-based ORAM we described

• Eviction strategy is greedy:
• The client maintains a stash of some data items

• After searching for an item in path P, relocate each
data item in P, as well as each item in the stash, as
deep as possible along the path.

• It was shown that this scheme works well even with
buckets of size 4

29

`

Encrypted Search using ORAM

• The (simplest) setting
• The client has n documents X1,…,Xn

• There are m keywords k1,…,km

• Each document is associated with a subset of the
keywords

• The data is stored encrypted at the server. The
client has the encryption key.

• The client wishes to retrieve all items associated
with a specific key word k

30

`

Encrypted Search using ORAM

• Recall, in ORAM the client stores n data items, of equal
size, of the form (indexi , data blocki). i,j indexi indexj

• In our setting the client needs to search for an item
using any of (the multiple) keywords associated with it

• An easy solution is to store tuples of the form
(ki , a document associated with ki),
but this requires storing each document multiple times.

31

`

Encrypted Search using ORAM

• A solution: Use two ORAMs

• The first ORAM stores a data structure that enables
to compute; given a keyword, the documents
associated with it.

(E.g., an inverted index)

• The second ORAM stores the documents
themselves.

32

`

Encrypted Search using ORAM

33

Document 1

Document 2

Document 3

Document 4

mobile android

mobile iphone

android

android iphone

wifi

wifi

`

Encrypted Search using ORAM

34

mobile

wifi

android

iphone

1, 2

1, 3

1, 3, 4

2, 4

Document 1

Document 2

Document 3

Document 4

ORAM 1 ORAM 2

`

Encrypted Search using ORAM

35

mobile

wifi

android

iphone

1, 2

1, 3

1, 3, 4

2, 4

Document 1

Document 2

Document 3

Document 4

Searching for “wifi”

access
using
ORAM

`

Generality

• The inverted index data structure can be replaced
by any data structure supporting more complex
queries (e.g., B-trees)

36

`

Security

• Client uses ORAM to read data stored at the
server

• Therefore the server cannot identify which item
(keyword or document) is read…

• The server cannot also identify if the same item
is read twice…

• Or so it seems…

37

`

Efficiency Problems

• ORAM increases the communication and work
overhead by a factor of at least log(n)

• Each ORAM access requires log(n) communication
rounds (round-trip latency is often the bottleneck)

• Each ORAM read is for a block, which is wasteful
since a block is often much larger than keyword
data or than documents
• Moreover, efficient ORAM schemes use larger blocks

38

`

Efficiency Problems

• ORAM increases the communication and work
overhead by a factor of at least log(n)

• Each ORAM access requires log(n) communication
rounds (round-trip latency is often the bottleneck)

• Each ORAM read is for a block, which is wasteful
since a block is often much larger than keyword
data or than documents
• Moreover, efficient ORAM schemes use larger blocks

39

`

Efficiency Problems

• Documents often have a Zipf distribution (power law)

• Simulations show that searching for any of the 5000 most
frequent words in the Enron email database (of about
517,000 emails and 629,000 words) requires more
communication than sending the database to the
client.(1)

• Similar results hold for searching Wikipedia

(1) Muhammad Naveed, “The Fallacy of Composition of Oblivious RAM and
Searchable Encryption, 2015.

40

`

Security Problems

• ORAM hides the access pattern to data

• But ORAM does not hide the size of the documents
that are read

• ORAM-based encrypted search reveals
• The size of the documents containing the query word

• The number of documents containing the query word

• The size of the inverted index and of the document set

• And since documents and keywords have a Zipf law
distribution, this helps identify them.

41

`

Lower Bound

• Suppose we need an ORAM SSE that hides the total
size of the documents containing the query word
• Let Q1 be the query with the largest answer

• Then for any other query, the answer must be as long as
the answer for Q1

• In the extreme, suppose Q1 is included in all documents.

• Then for each query, the answer must be as big as the
entire data set. (The server could just as well send all
documents to the receiver).

42

`

ORAM SSE with only 2 rounds
• Garg, Mohassel, Papamantou, “TWORAM: Round-

Optimal Oblivious RAM with Applications to
Searchable Encryption”, 2015.

43

`

TWORAM: Recall basic ORAM

• In the basic tree ORAM scheme, the client stores n
pointers to leaves

44

ORAM
tree

ServerClient

p
o

si
ti

o
n

 m
ap

`

TWORAM: Recursive ORAM

In the recursive scheme, the server stores L = logn
ORAM trees, storing smaller and smaller position maps

45

ORAM
tree

ServerClient

position map

ORAM
tree

…

`

TWORAM: Recursive ORAM

The client adaptively accesses these trees

=> log N communication rounds

46

ORAM
tree

ServerClient

position map

ORAM
tree

…

`

TWORAM: The New Construction

• Receives as input an item x that is looked for in the tree

• Has all values in this bucket hardcoded in the circuit

• If x is found in the bucket, outputs the path leading to x
in the next tree

47

Replace each
bucket in each
tree with a
garbled circuit

The circuit:

`

TWORAM: The New Construction

The server can evaluate the garbled circuit itself (using
Yao’s MPC protocol).

The server learns the output of the circuit, and uses it as
its input to the next tree.

 The server can search all trees without any interaction

48

`

TWORAM: Technical issues

Problem: Once a garbled circuit is used it cannot be used again

Solution: At the end of the search the client sends new garbled
circuits, replacing the circuits that were used in the search.

49

Problem: must hide the exact bucket in
which item was found

Solution: The output of bucket j is
garbled, and is input to bucket j+1. Only
the leaf bucket outputs the location of X
in the next tree.

`

Search using TWORAM (naïve)

• Store the reverse index and the database in two
separate TWORAMs

• Search:
• Search the reverse index. Find out the locations of

(say, S) relevant documents. (O(1) rounds)

• Search the database for each of these documents
(O(S) rounds)

50

`

Better Search using TWORAM

• Assume database contains a total of N documents of
the form (ki, doci,j)
• Each keyword can be associated with many documents

(ki, doci,1), (ki, doci,2), …
• But total number of pairs is N

• The path associated with (ki, doci,j) is a pseudo-
random function of
• The keyword ki

• The index j of doci,j

• The number of times ki was searched for

51

`

Better Search using TWORAM

Storing documents

• Store the pairs (ki,doci,j) in a single-level path-ORAM

• There is no need for a position map since the
position is a function of (ki, j, #times ki searched)

Storing the index

• Store in a TWORAM the tuples (ki, #associated docs,
#times ki searched)

52

`

Better Search using TWORAM

Search

• Look for ki in the TWORAM

• Retrieve (ki, #associated docs, #times ki searched)

• Compute all positions of (ki, doci,j) using this
information

• Look in parallel for all these documents in path-ORAM

O(1) rounds !

53

`

References

• Seny Kamara, How to Search on Encrypted Data: Oblivious
RAMs (Part 4).

• Muhammad Naveed, “The Fallacy of Composition of
Oblivious RAM and Searchable Encryption”, 2015.

• Garg, Mohassel, Papamantou, “TWORAM: Round-Optimal
Oblivious RAM with Applications to Searchable Encryption”,
2015.

54

