State of the art techniques

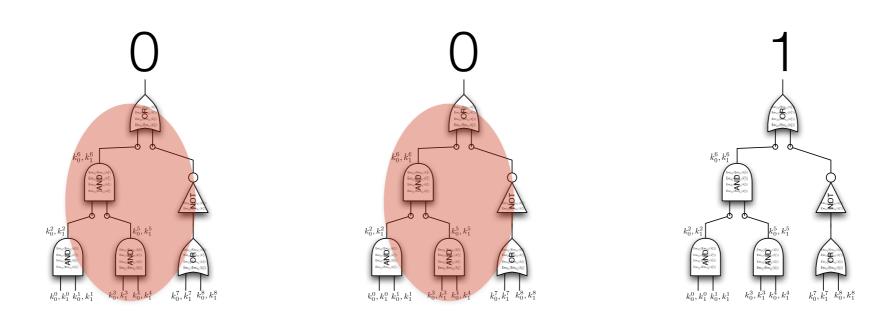
Lindell13: s circuits + aux comp

HKE13: 2s circuits + aux comp

Rethinking circuit consistency

Bottleneck is requirement for majority good circuits.

Avoiding majority



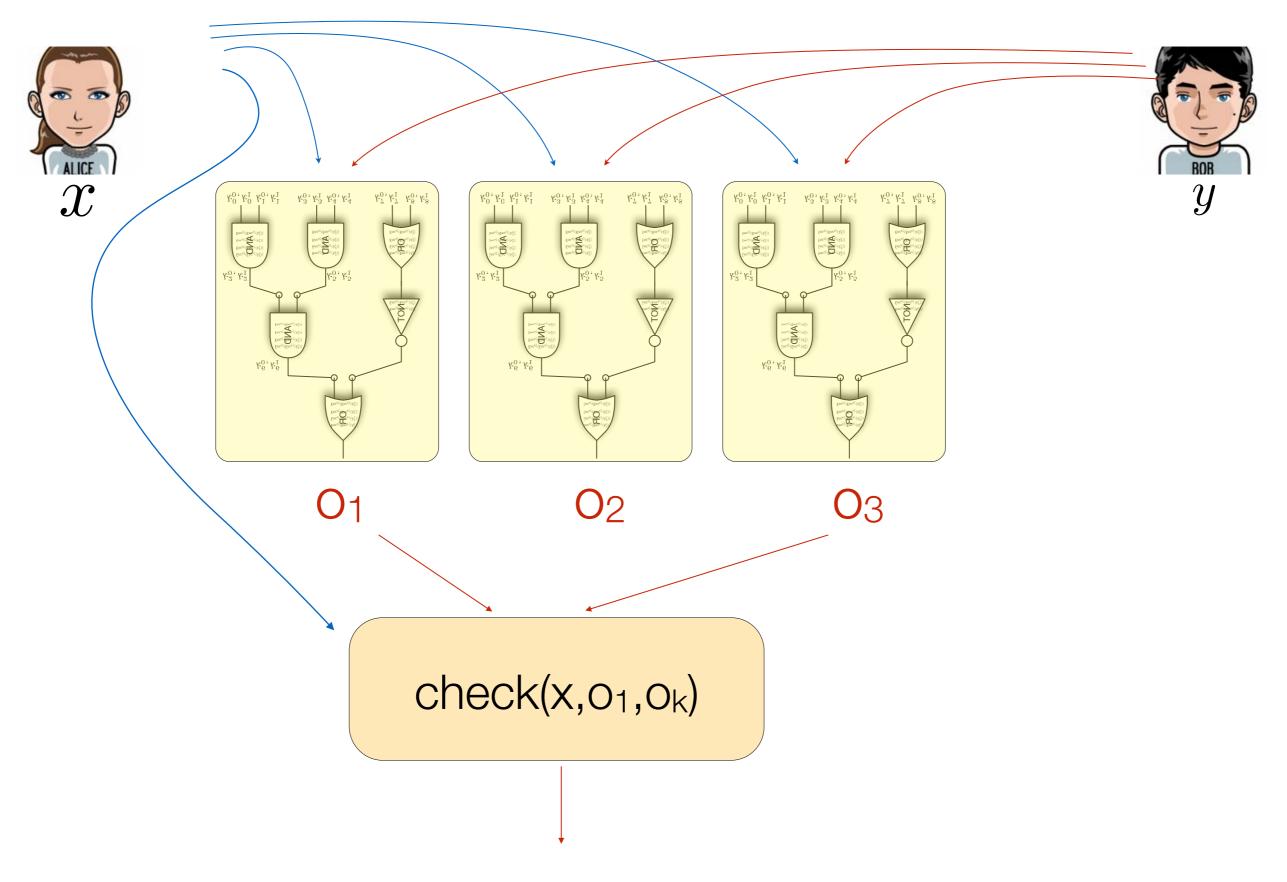
Different values for the same output wire imply cheating.

By previous attack, Evaluator cannot acknowledge cheating!

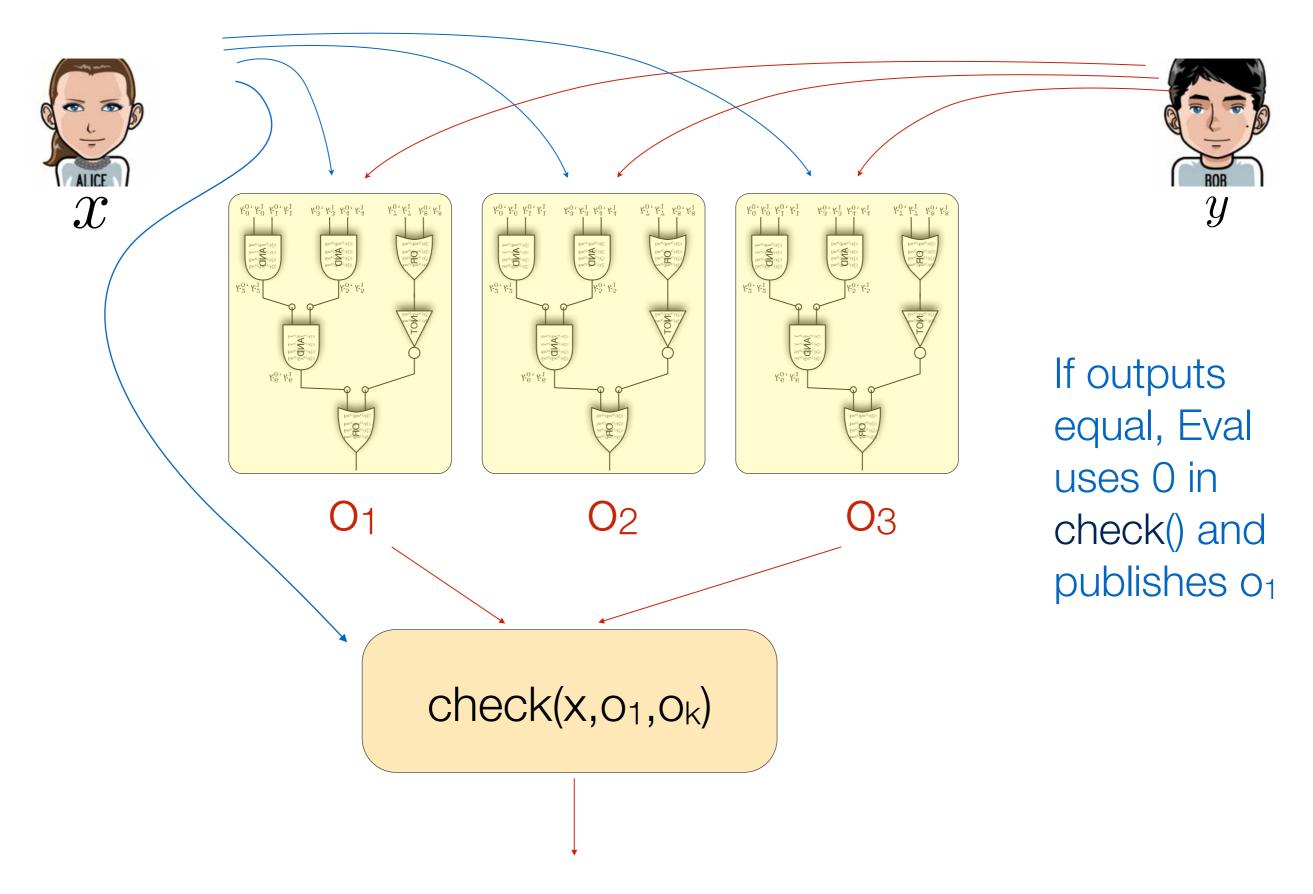
Key idea

witness of cheating: 0+1
label for same output bit.

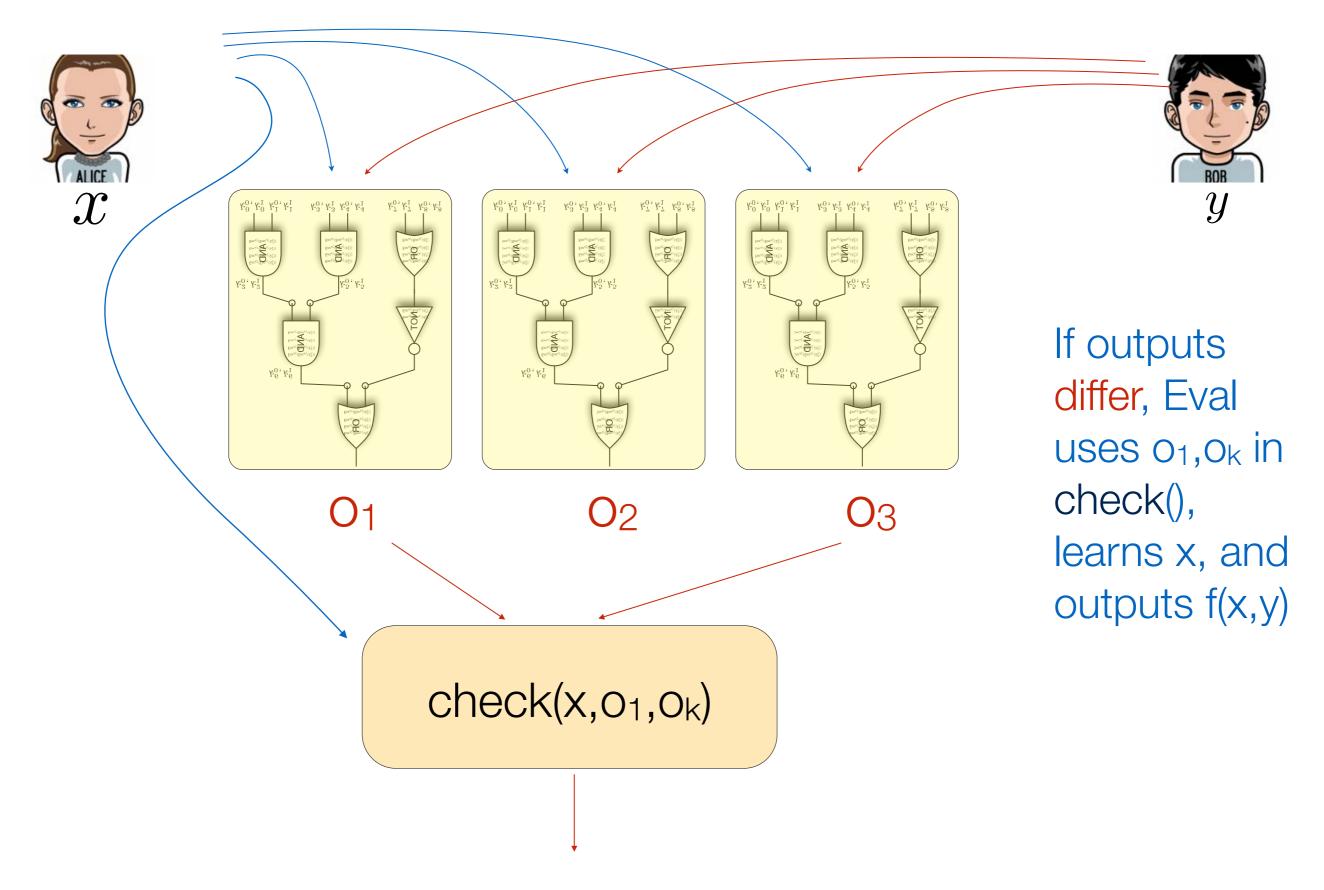
Use the "witness of cheating" to unlock Garbler's input.



x iff o₁,o_k are "valid" output labels for 0,1



x iff o₁,o_k are "valid" output labels for 0,1



x iff o₁,o_k are "valid" output labels for 0,1

New Analysis

k circuits in total

Garbler picks a subset C* of circuits to corrupt.

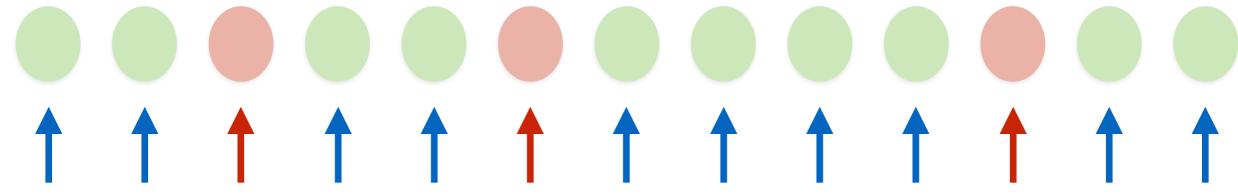
Evaluator picks a subset T* of circuits to test.

Choice of T* is uniformly random over all subsets.

Let G^* be the set of good circuits. $G^* = \overline{C}^*$.

Suppose $G^* = T^*$

k circuits in total

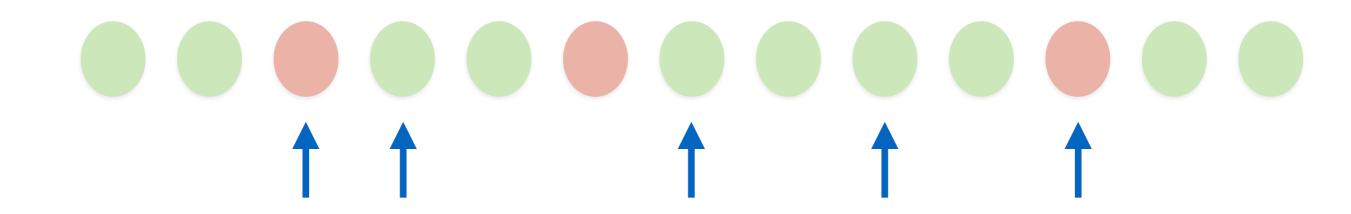


Garbler picks a subset C* of circuits to corrupt.

Choice of T* is uniformly random over all subsets.

Failure, but
$$\Pr[G^* = T^*] = 2^{-k}$$

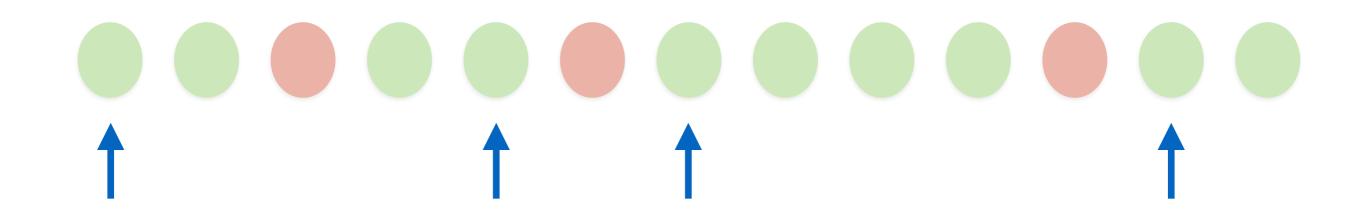
Suppose T*¢G*



Case 2: T* includes a bad circuit.

Success always!

Suppose T*cG*



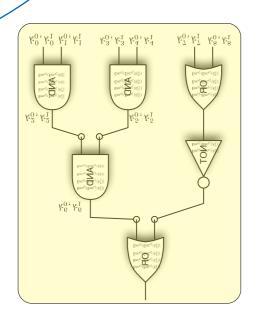
Case 3: T* contains all good circuits.
Thus, evaluated circuits includes good+bad.

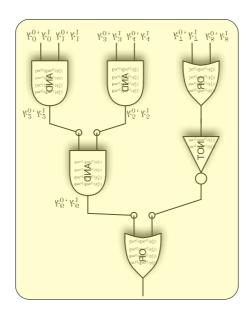
If outputs all the same, success (since ≥1 good)

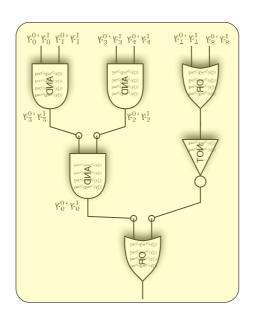
If outputs differ, witness for check circuit.

success with pr (1-2s)

How to implement?







check(x,o₁,o_k)

$$b_i^0, b_i^1 \leftarrow \{0, 1\}^k$$

$$k_0^6, k_1^6$$

$$k_0^6, k_1^6, k_1^6$$

$$k_0^6, k_1^6, k_1^6$$

$$k_0^6, k_1^6, k_1^6$$

$$k_0^6, k_1^6, k_1^6, k_1^6$$

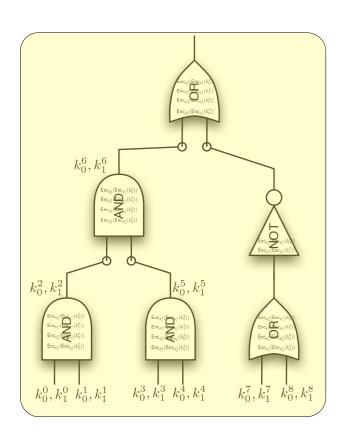
$$a_i^0, a_i^1 \leftarrow G$$

$$k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$$

$$k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$$

Select keys, make commitments to Alice's input wires.

$$b_i^0, b_i^1 \leftarrow \{0, 1\}^k$$



$$a_i^0, a_i^1 \leftarrow G$$

$$k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$$

$$k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$$

check(x,O₁,O_k) $b_i^0, b_i^1 \leftarrow \{0,1\}^k$

The output wires b_i are hardcoded into the circuit by the Gen.

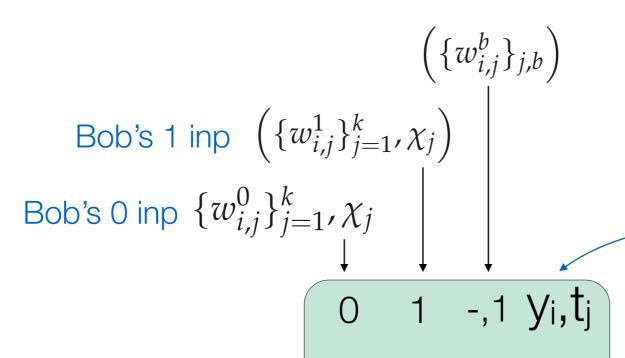
The inputs for x are shared with the main circuit. Use same a_i, different r_i.

If Bob can supply two witnesses for an output wire, Bob gets x.

Cut & choose used to test both main circuit and check circuits.

Must ensure that witness (o₁,o_k) does not come from cut-circuit.

 \mathcal{X} $a_i^0, a_i^1 \leftarrow G$ $b_i^0, b_i^1 \leftarrow \{0, 1\}^k$ $k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$ $k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$



Oblivious*
Transfer
for each input bit i

Select challenge set J uniformly.

$$\begin{pmatrix} \{w_{i,j}^b\}_{j,b} \end{pmatrix}_{j \in J} \\ \left(\{w_{i,j}^{y_i}\}_{j}, \chi_j \right)_{j \notin J}$$

Run a cut-and-choose OT with keys for Bob's inputs. Special string Xj sent with OT that are not cut.

x $a_i^0, a_i^1 \leftarrow G$ $b_i^0, b_i^1 \leftarrow \{0, 1\}^k$ $k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$ $k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$

$$\begin{cases}
(H(b_i^0), H(b_i^1) \\
i=1
\end{cases} \\
\{(i, g^{a_i^0}, g^{a_i^1}) \\
i=1
\end{cases} \\
\{(j, g^{r_j}) \\
j=1
\end{cases} \\
\{GC_j \\
i=1
\end{cases}$$

Send commitments to output table and Gen's input wire labels.

$$\left(\{w_{i,j}^b\}_{j,b} \right)_{j \in J}$$

$$\left(\{w_{i,j}^{y_i}\}_{j}, \chi_j \right)_{j \notin J}$$

$$\left\{ (H(b_i^0), H(b_i^1) \right\}_{i=1}^m$$

$$\left\{ (i, g^{a_i^0}, g^{a_i^1}) \right\}_{i=1}^\ell$$

$$\left\{ (j, g^{r_j}) \right\}_{j=1}^k$$

$$\left\{ \mathsf{GC}_j \right\}_{j=1}^k$$

$$\mathcal{X}$$

$$a_i^0, a_i^1 \leftarrow G$$

$$b_i^0, b_i^1 \leftarrow \{0, 1\}^k$$

$$k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$$

$$k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$$

challenge set J $\{\chi_j\}_{j\notin J}$

$$\left\{k'_{i,j} \leftarrow g^{a_i^{x_i} \cdot r_j}\right\}_{j \notin J,i}$$

Disclose challenge, send Gen's input keys.

$$\{k_{i,j} \leftarrow H(k'_{i,j})\}$$

$$\{k'_{i,j} \leftarrow g^{a_i^{x_i} \cdot r_j}\}_{j \notin J, i}$$

$$\{w_{i,j}^b\}_{j,b}\}_{j \in J}$$

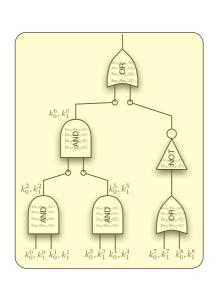
$$\{w_{i,j}^{y_i}\}_{j}, \chi_j\}_{j \notin J}$$

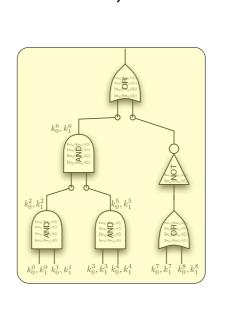
$$\{(H(b_i^0), H(b_i^1)\}_{i=1}^m$$

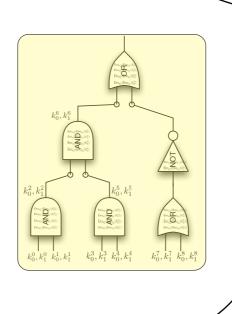
$$\{(j, g^{a_i^0}, g^{a_i^1})\}_{i=1}^k$$

$$\{GC_j\}_{j=1}^k$$

 \mathcal{X} $a_i^0, a_i^1 \leftarrow G$ $b_i^0, b_i^1 \leftarrow \{0, 1\}^k$ $k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$ $k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$







 $\{o_{i,j}\}_{j}$ $\{k_{i,j} \leftarrow H(k'_{i,j})\}$ $\left\{k'_{i,j} \leftarrow g^{a_i^{x_i} \cdot r_j}\right\}_{j \notin J,i}$ $\left(\{w_{i,j}^b\}_{j,b}\right)_{j\in J}$ $\left(\{w_{i,j}^{y_i}\}_j,\chi_j\right)_{j\notin J}$ $\left\{ (H(b_i^0), H(b_i^1) \right\}_{i=1}^m$ $\left\{ (i, g^{a_i^0}, g^{a_i^1}) \right\}_{i=1}^{\ell}$ $\{(j,g^{r_j})\}_{j=1}^k$ $\left\{\mathsf{GC}_{j}\right\}_{j=1}^{k}$

Evaluate all eval-circuits. Record output wires.

$$\mathcal{X}_{a_{i}^{0}, a_{i}^{1}} \leftarrow G$$

$$b_{i}^{0}, b_{i}^{1} \leftarrow \{0, 1\}^{k}$$

$$k_{i,j}^{0} \leftarrow H(g^{a_{i}^{0} \cdot r_{j}})$$

$$k_{i,j}^{1} \leftarrow H(g^{a_{i}^{1} \cdot r_{j}}) \setminus \hat{k}_{i,j}^{0} \leftarrow H(g^{a_{i}^{0} \cdot \hat{r}_{j}})$$

$$\hat{k}_{i,j}^{1} \leftarrow H(g^{a_{i}^{1} \cdot \hat{r}_{j}})$$

check(x,o₁,o_k)

$$b_i^0, b_i^1 \leftarrow \{0, 1\}^k$$

Use a maliciously secure protocol for check circuit. Gen reuses ai for inputs.

$$\{k_{i,j} \leftarrow H(k'_{i,j})\}$$

$$\{k'_{i,j} \leftarrow g^{a_i^{x_i} \cdot r_j}\}_{j \notin J, i}$$

$$\{w_{i,j}^b\}_{j,b}\}_{j \in J}$$

$$\{w_{i,j}^y\}_{j,b}\}_{j \in J}$$

$$\{(w_{i,j}^y)_{j,b}\}_{j \in J}^m$$

$$\{(h_i^0)_{i,j}, h_i(b_i^1)_{i=1}^m$$

$$\mathcal{X}_{a_i^0, a_i^1 \leftarrow G}$$

$$a_i^0, a_i^1 \leftarrow G$$

$$b_i^0, b_i^1 \leftarrow \{0, 1\}^k$$

$$k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$$

$$k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$$

$$\hat{k}_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot \hat{r}_j})$$

$$\hat{k}_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot \hat{r}_j})$$

$$\left\{ \boldsymbol{\mathcal{T}_{j}} \right\}_{j \in J}$$

$$\left\{ \left\{ \boldsymbol{\mathcal{C}_{i,j}} \right\}_{j} \right\}_{j \in J}$$
 Use both keys to test $GC_{j} \rightarrow \left(\left\{ \boldsymbol{w}_{i,j}^{b} \right\}_{j,b} \right)_{j \in J}$
$$\left(\left\{ \boldsymbol{w}_{i,j}^{y_{i}} \right\}_{j}, \chi_{j} \right)_{j \notin J}$$

$$\left(\left\{ \boldsymbol{w}_{i,j}^{y_{i}} \right\}_{j}, \chi_{j} \right)_{j \notin J}$$

$$\left\{ \left(\boldsymbol{H}(b_{i}^{0}), \boldsymbol{H}(b_{i}^{1}) \right\}_{i=1}^{m} \right.$$

$$\left\{ \left(\boldsymbol{H}(b_{i}^{0}), \boldsymbol{H}(b_{i}^{1}) \right\}_{i=1}^{m} \right.$$
 Check these values $\rightarrow \left\{ \left(\boldsymbol{j}, \boldsymbol{g}^{r_{j}}, \boldsymbol{g}^{a_{i}^{1}} \right) \right\}_{j=1}^{k}$
$$\left\{ \left(\boldsymbol{G} \boldsymbol{C}_{j} \right\}_{i=1}^{k} \right.$$

ROR Y

$$\mathcal{X}$$

$$a_i^0, a_i^1 \leftarrow G$$

$$b_i^0, b_i^1 \leftarrow \{0, 1\}^k$$

$$k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$$

$$k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$$

$$\hat{k}_{i,j}^0 \leftarrow H(g^{a_i^1 \cdot r_j})$$

$$\hat{k}_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot \hat{r}_j})$$

$$\left[(g, g^{a_i^0}, g^{r_j}, k'_{i,j}) \in \mathsf{DH} \land (g, g^{a_i^0}, g^{\hat{r}_{\hat{j}}}, \hat{k}'_{i,\hat{j}}) \in \mathsf{DH} \right]_{j \notin J, \hat{j} \notin \hat{J}}$$

$$\mathsf{OR}$$

$$\left[(g, g^{a_i^1}, g^{r_j}, k'_{i,j}) \in \mathsf{DH} \land (g, g^{a_i^1}, g^{\hat{r}_{\hat{j}}}, \hat{k}'_{i,\hat{j}}) \in \mathsf{DH} \right]_{j \notin J, \hat{j} \notin \hat{J}}$$

Run a SIGMA protocol to check Gen's input consistency.

$$\begin{cases} o_{i,j} \rbrace_{j} \\ \{k_{i,j} \leftarrow H(k'_{i,j})\} \\ \{k'_{i,j} \leftarrow g^{a_{i}^{x_{i}} \cdot r_{j}} \}_{j \notin J, i} \\ (\{w_{i,j}^{b}\}_{j,b})_{j \in J} \\ (\{w_{i,j}^{y_{i}}\}_{j}, \chi_{j})_{j \notin J} \\ \{(H(b_{i}^{0}), H(b_{i}^{1})\}_{i=1}^{m} \\ \{(i, g^{a_{i}^{0}}, g^{a_{i}^{1}})\}_{i=1}^{\ell} \\ \{(j, g^{r_{j}})\}_{j=1}^{k} \\ \{GC_{j}\}_{j=1}^{k} \end{cases}$$

x $a_i^0, a_i^1 \leftarrow G$

 $b_i^0, b_i^1 \leftarrow \{0, 1\}^k$

 $k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$

 $k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$

 $\hat{k}_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot \hat{r}_j})$

 $\hat{k}_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot \hat{r}_j})$

 $\longrightarrow \{o_{i,j}\}_{j}$

 $\{k_{i,j} \leftarrow H(k'_{i,j})\}$

 $\left\{k'_{i,j} \leftarrow g^{a_i^{x_i} \cdot r_j}\right\}_{j \notin J,i}$

 $\left(\{w_{i,j}^b\}_{j,b}\right)_{j\in I}$

 $\left(\{w_{i,j}^{y_i}\}_j,\chi_j\right)_{j\notin I}$

 $\longrightarrow \left\{ (H(b_i^0), H(b_i^1) \right\}_{i=1}^m$

 $\left\{ (i, g^{a_i^0}, g^{a_i^1}) \right\}_{i=1}^{\ell}$

 $\{(j, g^{r_j})\}_{j=1}^k$

 $\left\{\mathsf{GC}_{j}\right\}_{j=1}^{k}$

Use either outputs + tables or the recovered x to send f(x,y) back.

Share output

Why is it secure?

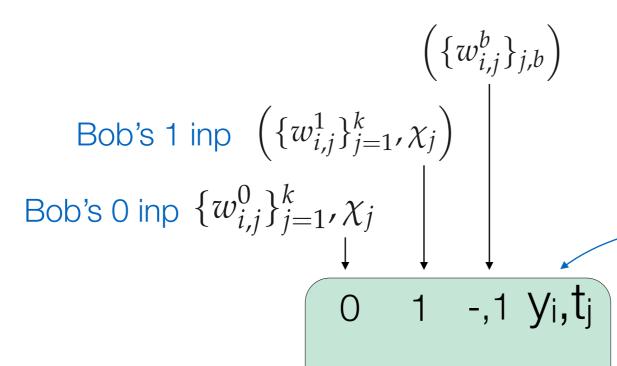
$$\mathcal{X}$$

$$a_i^0, a_i^1 \leftarrow G$$

$$b_i^0, b_i^1 \leftarrow \{0, 1\}^k$$

$$k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$$

$$k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$$



Oblivious*
Transfer
for each input bit i

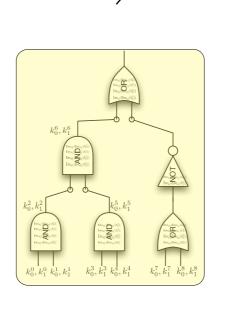
Select challenge set J uniformly.

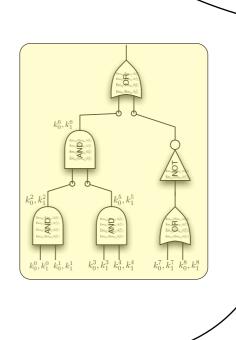
$$\begin{pmatrix} \{w_{i,j}^b\}_{j,b} \end{pmatrix}_{j \in J} \\ \begin{pmatrix} \{w_{i,j}^{y_i}\}_{j}, \chi_j \end{pmatrix}_{j \notin J}$$

When simulating for Bob*, run Simulatorot and get inputs + challenge

 \mathcal{X} $a_i^0, a_i^1 \leftarrow G$ $b_i^0, b_i^1 \leftarrow \{0, 1\}^k$ $k_{i,j}^0 \leftarrow H(g^{a_i^0 \cdot r_j})$ $k_{i,j}^1 \leftarrow H(g^{a_i^1 \cdot r_j})$







$$\left\{ o_{i,j} \right\}_{j} \\ \left\{ k_{i,j} \leftarrow H(k'_{i,j}) \right\} \\ \left\{ k'_{i,j} \leftarrow g^{a_{i}^{x_{i}} \cdot r_{j}} \right\}_{j \notin J, i} \\ \left(\left\{ w_{i,j}^{b} \right\}_{j, b} \right)_{j \in J} \\ \left(\left\{ w_{i,j}^{y_{i}} \right\}_{j}, \chi_{j} \right)_{j \notin J} \\ \left\{ (H(b_{i}^{0}), H(b_{i}^{1}) \right\}_{i=1}^{m} \\ \left\{ (i, g^{a_{i}^{0}}, g^{a_{i}^{1}}) \right\}_{i=1}^{\ell} \\ \left\{ (GC_{j})_{j=1}^{k} \right\}_{i=1}^{\ell}$$

Can now program circuits.

Secure Garbling

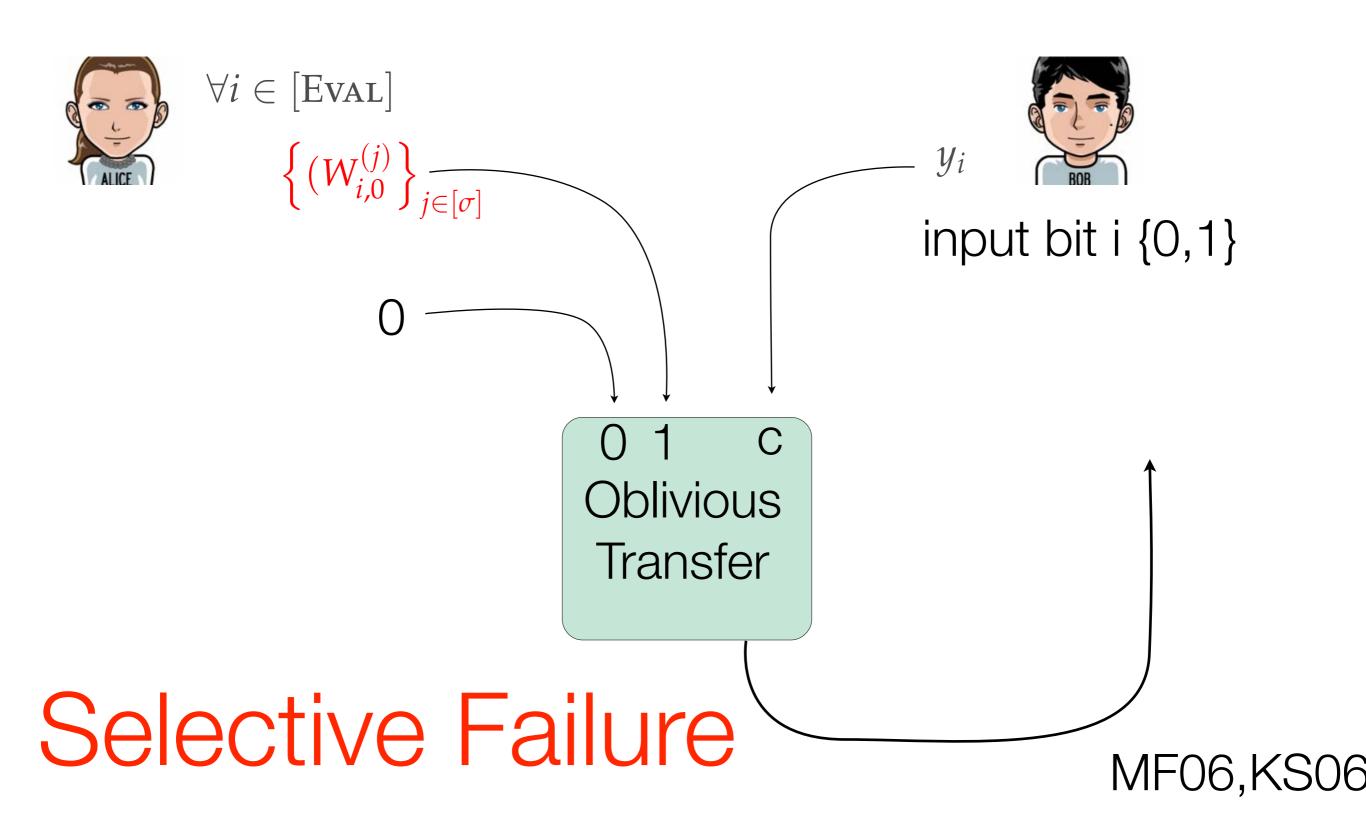
2. Privacy: There exists a p.p.t. simulator algorithm S such that for all functions f and all inputs x, the following two distributions are computationally indistinguishable:

$$\left\{ (F, e, d) \leftarrow \text{GB}(1^k, f), X \leftarrow \text{EN}(e, x) : (F, X, d) \right\}_{k \in \mathbb{N}} \approx_c \left\{ S(1^k, f, f(x)) \right\}_{k \in \mathbb{N}}$$

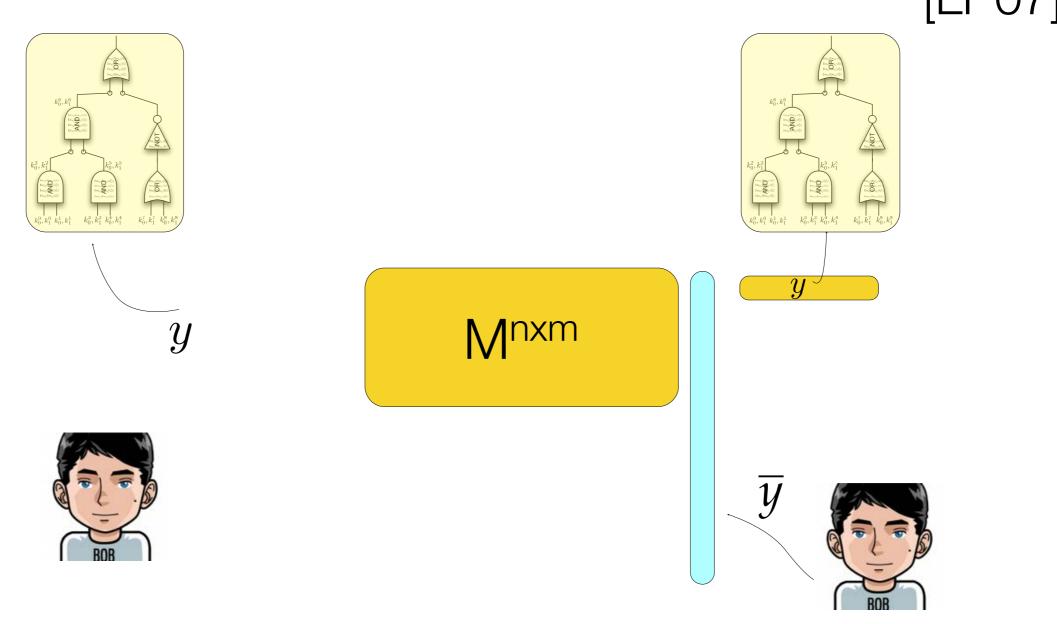
Protocol uses specific assumptions.

Open: Remove these (and have a faster protocol)

Selective Failure



Encode Evaluator's input using error correcting code



$\max(4n,8k)$

 $M \cdot y$

Matrix M is k-probe resistant if $\operatorname{Ham}\left(\bigoplus_{i\in L}M_i\right)\geq k$

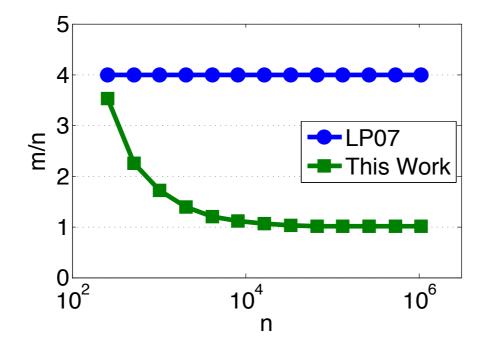
Pr[Eval aborts | y] - Pr[Eval aborts | y'] $\leq 2^{-k}$

One implementation

$$M \in \{0,1\}^{n \times m}$$

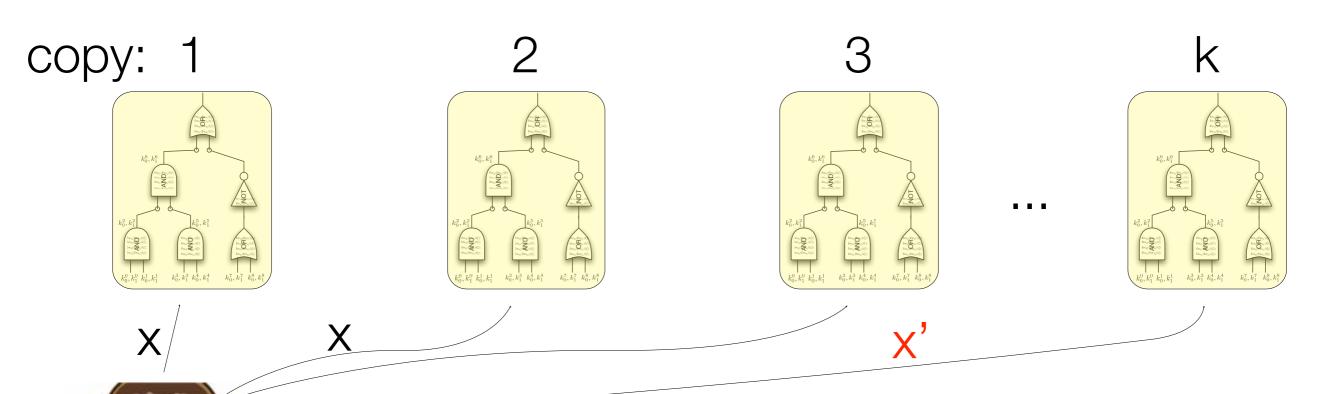
Explicit program to find M s.t.

$$m \le \lg(n) + n + k + k \cdot \max(\lg(4n), \lg(4k))$$



Input Consistency

Input consistency



Did Alice use the same input to each copy of the circuit?

OT + **Input Consistency** 2-Outputs pke pke $\Theta(k^2n)$ $\Theta(k^2n)$ **OWF** $\Theta(k^2n)$ K08 $\Theta(kn)$ $\Theta(k)$ **DLOG** $\Theta(kn)$ $\Theta(kn)$ I P11 $\Theta(kn)$ $\Theta(k)$ SS11, $\Theta(kn)$ $\Theta(kn)$ $\Theta(kn)$ KSS12

 $\Theta(kn)$

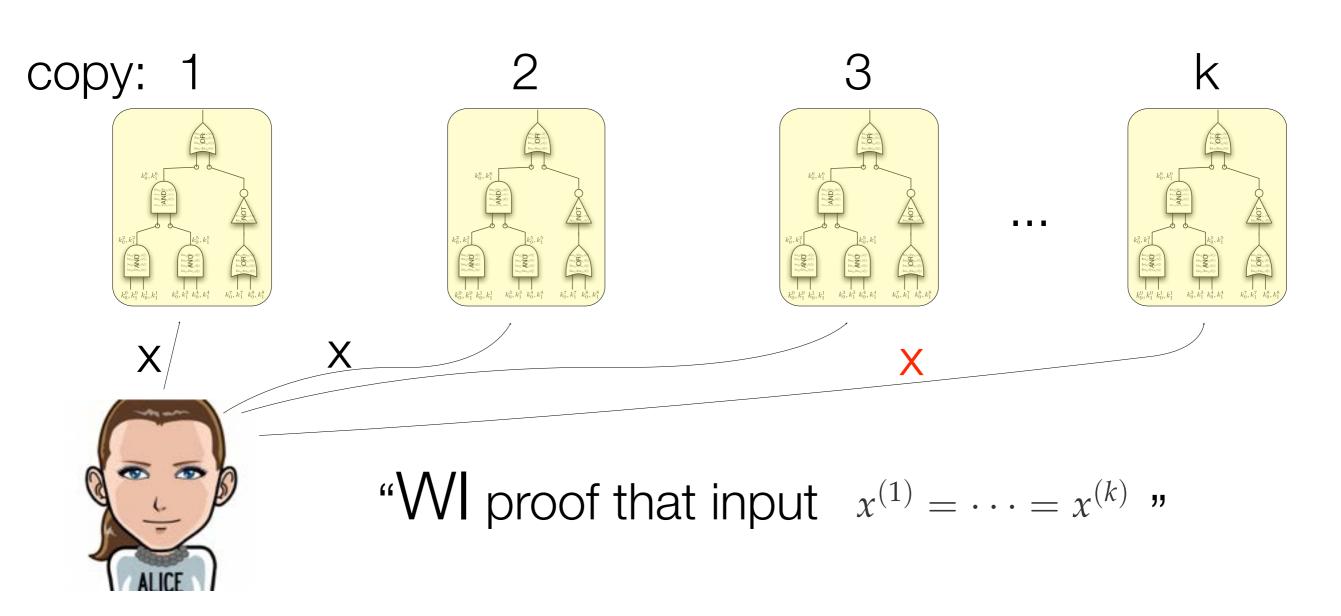
 $\Theta(kn)$

SS13

Resulti

Fevver Assumptions
Faster Protocol

Input consistency



[LP10, SS11] Sigma protocols

Inspiration

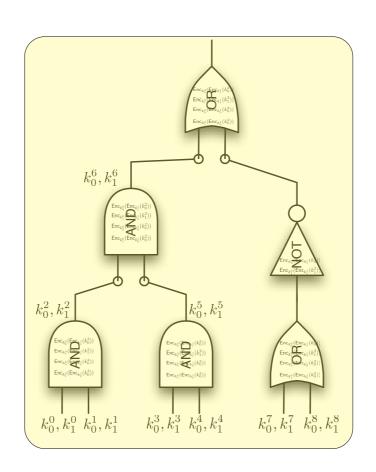
"WI proof that input $x^{(1)} = \cdots = x^{(k)}$ "

Are there better algorithms to implement this proof?

Recursion?

Our approach:

input consistency circuit g(x)



 \mathcal{Y}

Inspiration

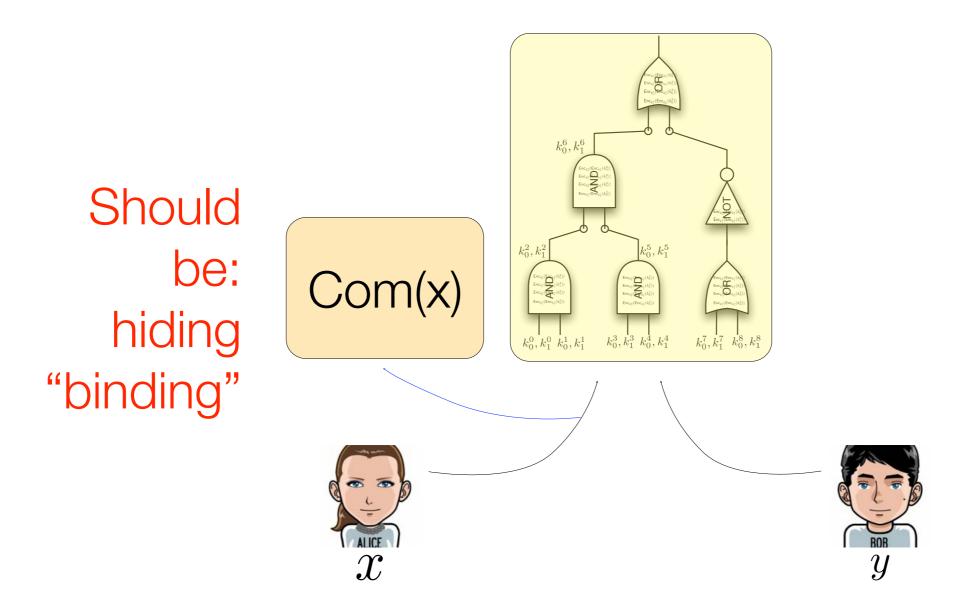
"WI proof that input $x^{(1)} = \cdots = x^{(k)}$ "

Proof:
$$g(x^{(1)}), ..., g(x^{(k)})$$

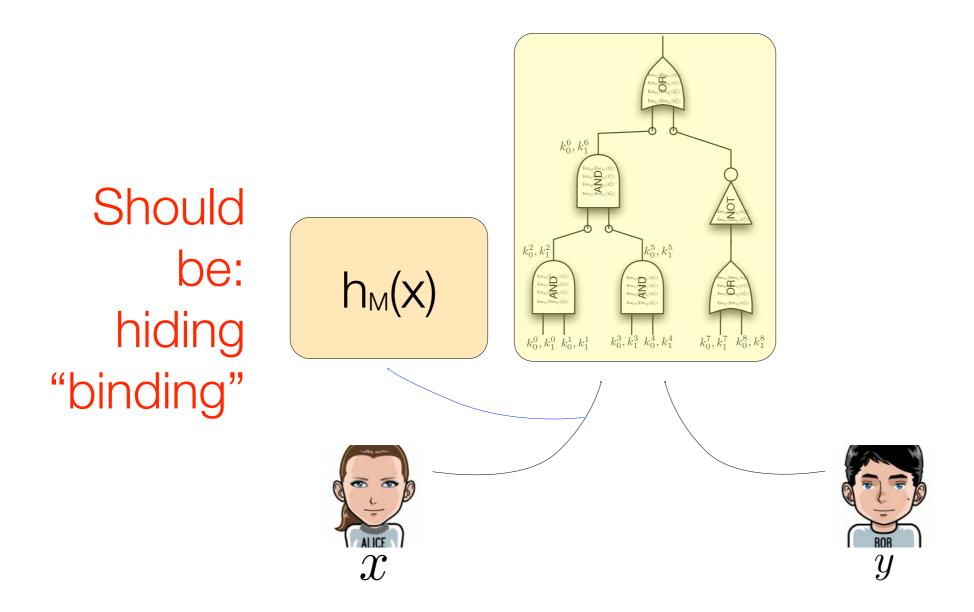
For what choices of g will this proof be sound + WI?

g should be hiding

g should be "binding"



Obvious candidate: Commitment scheme Problem: could be a large circuit



Next candidate: 2-Universal hash function

2-universal hash function

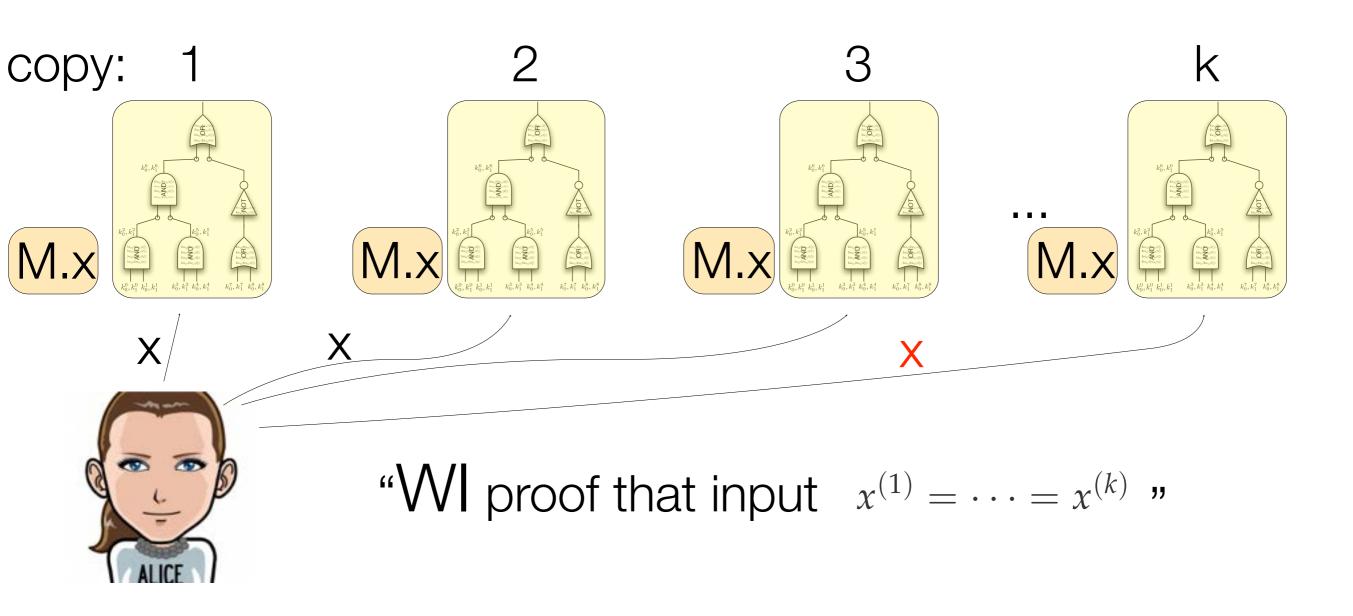
Hiding: By left-over hash lemma, (x|r)M will be hiding for large enough r.

2-universal hash function

Binding: For any $x \neq x'$ prover random choice of M: $\Pr[M(x) = M(x')] < B^{-1}$

Idea: Pick the function M after GEN has committed to inputs.

New input consistency



Cost of each evaluation M.x.

M.x

n² AND gates

Why restrict ourselves to Garbled circuits for M.x?

Note that h_M is homomorphic

$$h_M(\pi) + h_M(x) = h_M(x + \pi)$$

$$x^{(1)}, \dots, x^{(k)} \in \{0, 1\}^m$$

$$\pi^{(1)},\ldots,\pi^{(k)}$$

$$\mathsf{com}(x^{(1)}), \dots, \mathsf{com}(x^{(k)})$$

 $\mathsf{com}(x^{(1)} + \pi^{(1)}), \dots, \mathsf{com}(x^{(k)} + \pi^{(k)})$

$$h_M(\pi^{(1)}), \ldots, h_M(\pi^{(k)})$$

challenge
$$s^{(1)}, \ldots, s^{(k)}$$

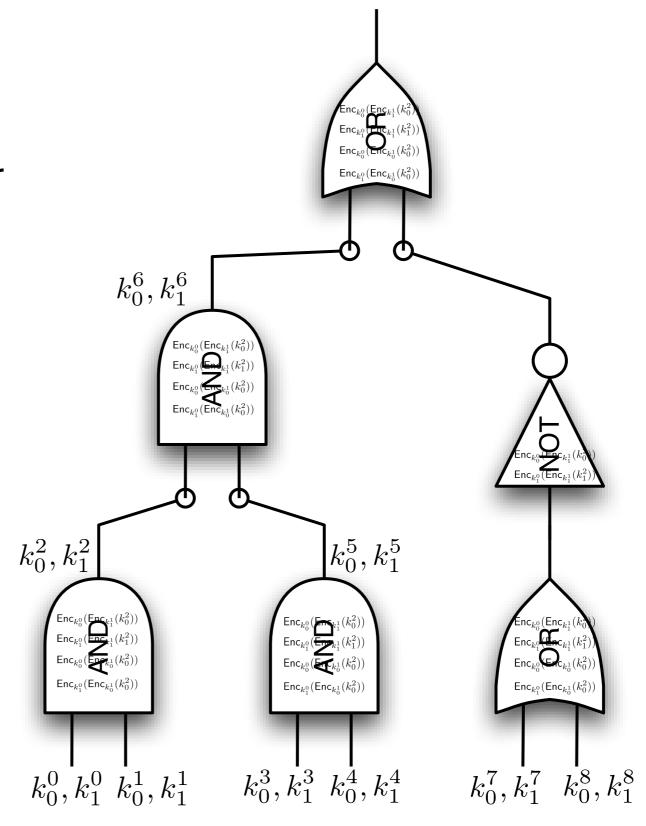
$$\mbox{decommit} \ \mbox{com}(\pi^{(j)}) \qquad \mbox{if} \ s^{(j)} = 0 \\ \mbox{decommit} \ \mbox{com}(x^{(j)} + \pi^{(j)}) \qquad \mbox{else}$$

How to implement?

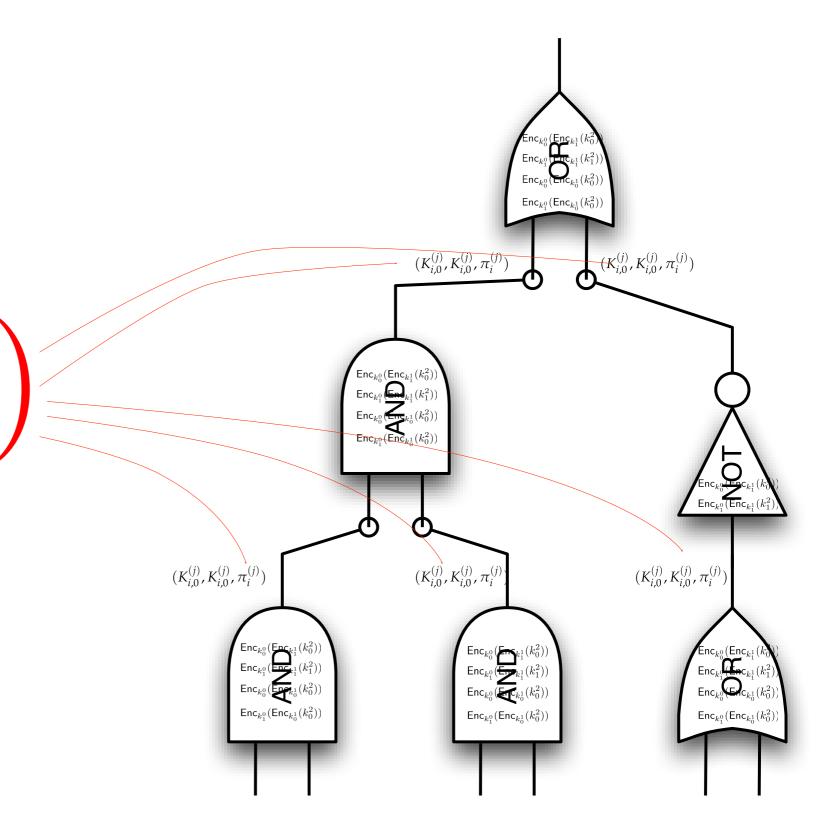
- 1. Setup
- 2. Commit to Input Labels
- 3. Pick H,M
- 4. Eval Input OT
- 5. Circuit OT
- 6. Garbling-Evaluation
- 7. Input Consistency

garbled circuit:

each wire has a key pair each gate has a table



Use PRF and seed to generate all wires for circuit j



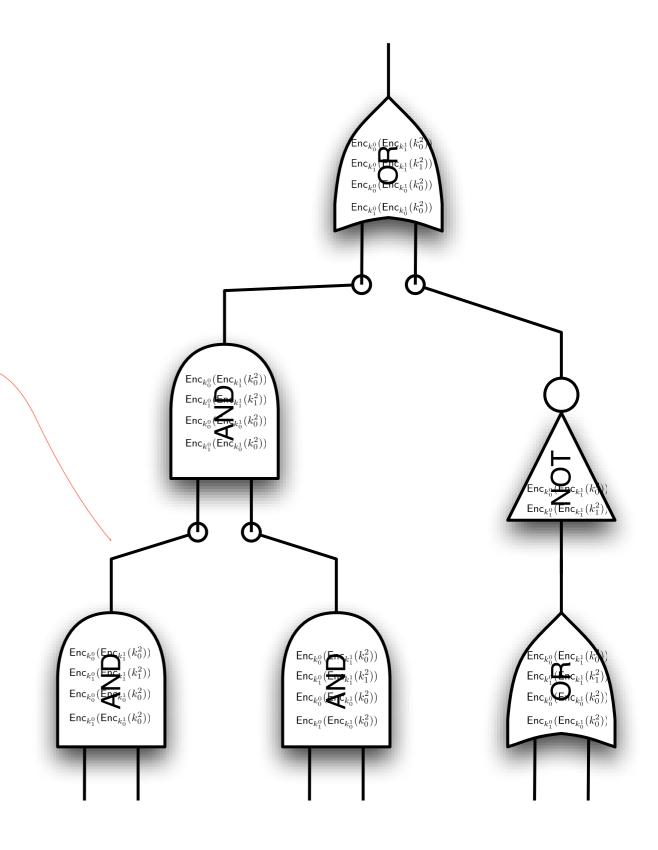
jth copy

$$(K_{i,0}^{(j)}, K_{i,0}^{(j)}, \pi_i^{(j)})$$

labels for wire i

$$W_{i,b}^{(j)} = (K_{i,b}^{(j)}, b + \pi_i^{(j)})$$

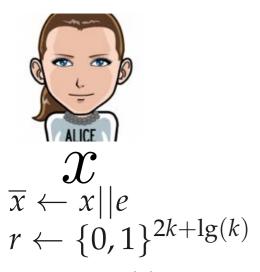
key locator for wire i

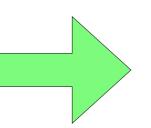


 $\frac{\mathcal{X}}{\overline{x} \leftarrow x||e} \\
r \leftarrow \{0,1\}^{2k+\lg(k)}$

pick $ho^{(j)}$

 $\overline{y} \leftarrow My$





$$\Theta^{(j)} = \{ \text{com}(W_{i,0 \oplus \pi_i^{(j)}}^{(j)}; \theta_i^{(j)}), \text{com}(W_{i,1 \oplus \pi_i^{(j)}}^{(j)}; \theta_i^{(j)}) \}_{i \in [\text{GEN}]}$$
 gen inputs

$$\Omega^{(j)} = \{ \mathrm{com}(W_{m_1+i,0}^{(j)}), \mathrm{com}(W_{m_1+i,1}^{(j)}) \}_{i \in [\mathrm{EVAL}]}$$
 eval inputs eval inputs

$$\Gamma^{(j)} = \{ \text{com}(W_{i,\bar{x}_i}^{(j)}; \gamma_i^{(j)}) \}_{i \in [\text{GEN}]}.$$
 independent randomness here!

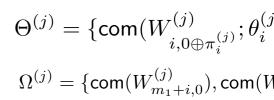
2 Commit keys

 $x \leftarrow x|e$ $r \leftarrow \{0,1\}^{2k+\lg(k)}$ pick $\rho^{(j)}$

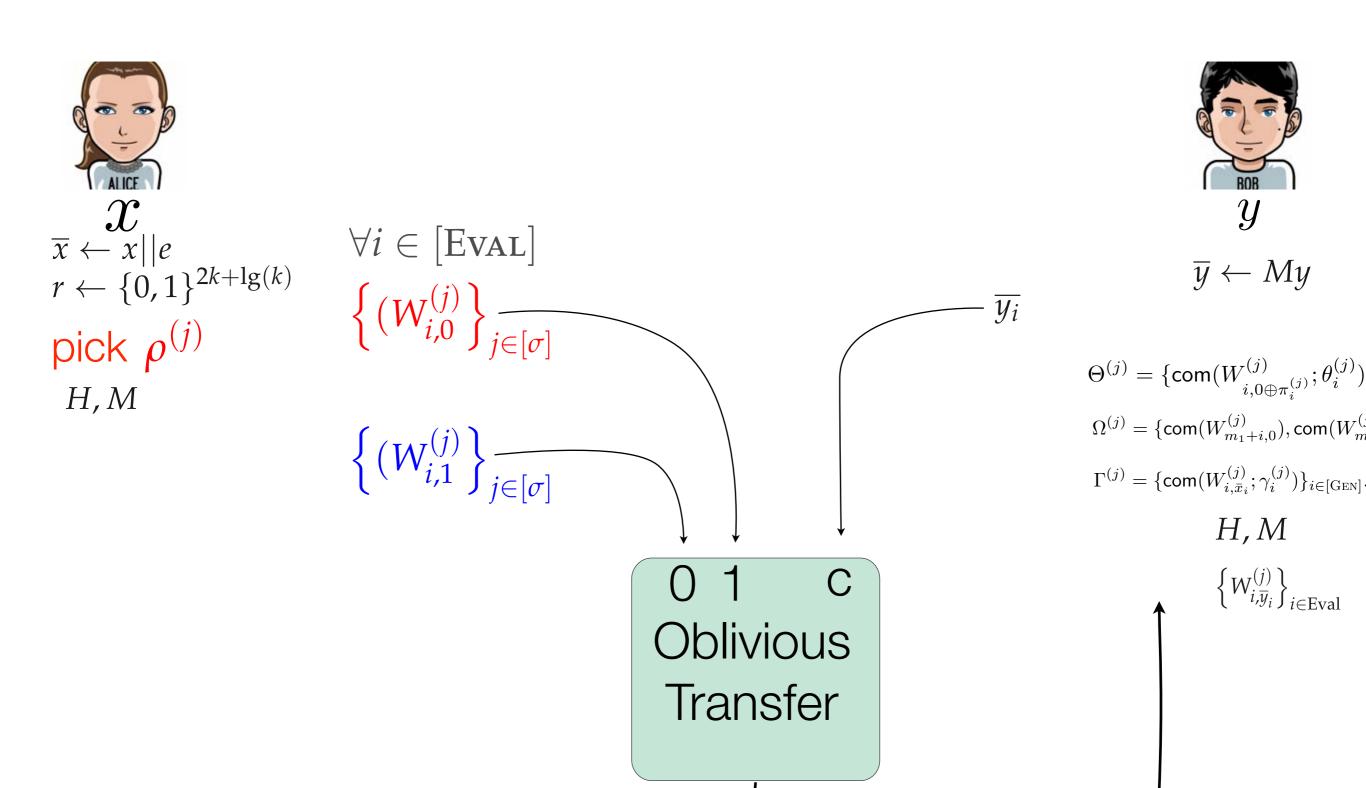
 $\overline{y} \leftarrow My$

pick H

M



$$\Gamma^{(j)} = \{\operatorname{com}(W_{i,\bar{x}_i}^{(j)};\gamma_i^{(j)})\}_{i \in [\operatorname{GE}]}$$



$$\begin{aligned} & \mathcal{X} \\ & \overline{x} \leftarrow x || e \\ & r \leftarrow \{0, 1\}^{2k + \lg(k)} \end{aligned}$$

pick $\rho^{(j)}$

H, M

$$\left\{ (W_{i,\bar{x}_i}^{(j)}, \gamma_i^{(j)}) \right\}_{i \in [m_1]} \\
\left\{ (W_{i,\bar{x}_i}^{(j)}, \theta_i^{(j)}) \right\}_{i \in [m_1]}$$

$$h_{\pi}^{(j)} = H \cdot (\pi_1^{(j)} || \pi_2^{(j)} || \cdots || \pi_{m_1}^{(j)})$$

0: check circuit

Oblivious

Transfer

1: eval + consistency $s^{(j)}$

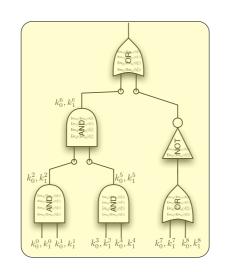
$$\overline{y} \leftarrow My$$

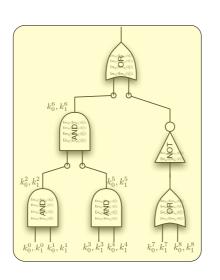
$$\begin{split} \Theta^{(j)} &= \{ \mathsf{com}(W_{i,0 \oplus \pi_i^{(j)}}^{(j)}; \theta_i^{(j)}) \\ \Omega^{(j)} &= \{ \mathsf{com}(W_{m_1+i,0}^{(j)}), \mathsf{com}(W_m^{(j)}) \\ \Gamma^{(j)} &= \{ \mathsf{com}(W_{i,\bar{x}_i}^{(j)}; \gamma_i^{(j)}) \}_{i \in [\text{GEN}]} \\ &\qquad \qquad H, M \\ &\qquad \qquad \left\{ W_{i,\bar{y}_i}^{(j)} \right\}_{i \in \text{Eval}} \end{split}$$

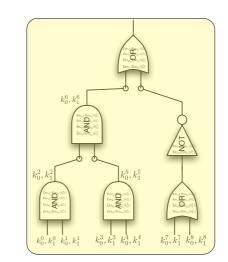
$$\left\{ \rho^{(j)} \right\}_{s^{(j)}=1}$$

$$\left\{ \left\{ W_{i,\overline{x}_{i}}^{(j)}, \gamma_{i}^{(j)}, W_{i,\overline{x}_{i}}^{(j)}, \theta_{i}^{(j)} \right\}_{i \in [m_{1}]}, H(\pi^{(j)})_{1} || \cdots \right\}_{s^{(j)}}$$

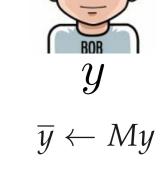
$$\begin{array}{c}
\mathcal{X} \\
\overline{x} \leftarrow x||e \\
r \leftarrow \{0,1\}^{2k+\lg(k)}
\end{array}$$







Eval either checks circuits using
$$\{p^{(j)}\}_{sj=1}$$
 $\{GC^{(j)}, \Theta^{(j)}, \Omega^{(j)}\}$ $h_{\pi}^{(j)}$



$$\Theta^{(j)} = \{ \operatorname{com}(W_{i,0 \oplus \pi_i^{(j)}}^{(j)}; \theta_i^{(j)}) \}$$

$$\Omega^{(j)} = \{ \operatorname{com}(W_{m_1+i,0}^{(j)}), \operatorname{com}(W_m^{(j)}) \}_{i \in [\text{GEN}]}$$

$$H, M$$

$$\{ W_{i,\overline{y}_i}^{(j)} \}_{i \in \text{Eval}}$$

$$\left\{ \rho^{(j)} \right\}_{s^{(j)} = 1}$$

$$\left\{ \left\{ W_{i,\overline{x}_{i}}^{(j)}, \gamma_{i}^{(j)}, W_{i,\overline{x}_{i}}^{(j)}, \theta_{i}^{(j)} \right\}_{i \in [m_{1}]}, H(\pi^{(j)})_{1} || \cdots \right\}_{s^{(j)} = 1}$$

Eval can abort on fail.

$$\frac{\mathcal{X}}{\overline{x} \leftarrow x||e} \\
r \leftarrow \{0,1\}^{2k + \lg(k)}$$

For all check (j), let $W_i^{(j)} = (K_i^{(j)}, \delta_i^{(j)})$

Compute

$$h_{\bar{x}}^{(j)} = h_{\pi}^{(j)} \oplus H \cdot (\delta_1^{(j)} || \delta_2^{(j)} || \cdots || \delta_{m_1}^{(j)})$$

For all a,b in check, verify:

$$h_{\bar{x}}^{(a)} = h_{\bar{x}}^{(b)}$$

Eval can abort on fail.

$$\begin{split} \Theta^{(j)} &= \{ \text{com}(W_{i,0 \oplus \pi_i^{(j)}}^{(j)}; \theta_i^{(j)}) \\ \Omega^{(j)} &= \{ \text{com}(W_{m_1+i,0}^{(j)}), \text{com}(W_m^{(j)}) \\ \Gamma^{(j)} &= \{ \text{com}(W_{i,\bar{x}_i}^{(j)}; \gamma_i^{(j)}) \}_{i \in [\text{GEN}]} \\ &\qquad \qquad H, M \\ &\qquad \left\{ W_{i,\bar{y}_i}^{(j)} \right\}_{i \in \text{Eval}} \\ &\qquad \qquad \left\{ \rho^{(j)} \right\}_{s^{(j)} = 1} \\ &\qquad \left\{ \left\{ W_{i,\bar{x}_i}^{(j)}, \gamma_i^{(j)}, W_{i,\bar{x}_i}^{(j)}, \theta_i^{(j)} \right\}_{i \in [m_1]}, H(\pi^{(j)}_1 || \cdots) \right\}_{s^{(j)}} \end{split}$$

$$\frac{\mathcal{X}}{\overline{x} \leftarrow x||e} \\
r \leftarrow \{0,1\}^{2k + \lg(k)}$$

$$\text{pick } \rho^{(j)}$$

$$H, M$$

Send majority of output if all checks pass.

 $\overline{y} \leftarrow My$

$$\begin{split} \Theta^{(j)} &= \{ \mathrm{com}(W_{i,0 \oplus \pi_i^{(j)}}^{(j)}; \theta_i^{(j)}) \\ \Omega^{(j)} &= \{ \mathrm{com}(W_{m_1+i,0}^{(j)}), \mathrm{com}(W_m^{(j)}) \\ \Gamma^{(j)} &= \{ \mathrm{com}(W_{i,\bar{x}_i}^{(j)}; \gamma_i^{(j)}) \}_{i \in [\mathrm{GEN}]} \end{split}$$

$$H$$
 , M $\left\{W_{i,\overline{y}_{i}}^{(j)}
ight\}_{i\in \mathrm{Eval}}$

$$\left\{ \rho^{(j)} \right\}_{s^{(j)} = 1}$$

$$\left\{ \left\{ W_{i, \bar{x}_i}^{(j)}, \gamma_i^{(j)}, W_{i, \bar{x}_i}^{(j)}, \theta_i^{(j)} \right\}_{i \in [m_1]}, H(\pi^{(j)}_1 || \cdots) \right\}_{s^{(j)}}$$

Performance

Evaluations

[KSS12]

circuit	gates	(non-XOR)	time (sec)	comm.
EDT-4095	5.9B	(2.4B)	$ \begin{vmatrix} 9,042 \\ 1,437 \\ 49 \end{vmatrix} $	18 TB
RSA-256	0.93B	(0.33B)		3 TB
1024-AES128	32M	(9.3M)		74 GB

roughly 650k gates/second total thruput

1.7m g/sec garble rate

60% of time spent on network

Texas Advanced Computing Center. 32 nodes; each node: 2 Xeon E5-2680 2.7Ghz (each has 8 cores), 32GB

[KSS12]

AES 2-80 security

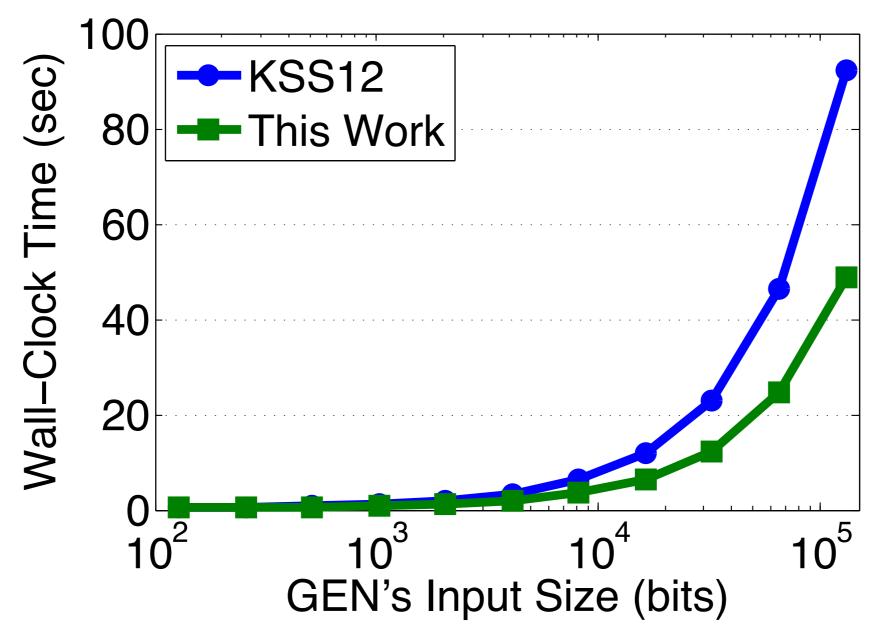
		~		~
		Gen	Eval	Comm
		(sec)	(sec)	(KB)
ОТ	comp	45.8±0.09% 0.1± 1%	34.0±0.2% 11.9±0.6%	5,516
Gen.	comp comm	35.6± 0.5% -	- 35.6±0.5%	3
Inp.	comp	_	$1.75\pm0.2\%$	
Chk	comm	_	_	266
Evl.	comp	14.9± 0.6%	32.4±0.4%	20.701
	comm	18.2± 1%	$3.2 {\pm} 0.8\%$	28,781
Total	comp	96.3± 0.3%	68.0±0.2%	44.007
	comm	18.3± 1%	50.8±0.4%	44,805

1 core

Parallel Impl

node #	4		16		64		256	
	Gen	Evl	Gen	Evl	Gen	Evl	Gen	Evl
OT	12.56±0.1%	8.41±0.1%	4.06±0.1%	2.13±0.2%	$1.96 \pm 0.1\%$	$0.58 {\pm} 0.2\%$	0.64±0.1%	$0.19 \pm 0.2\%$
Gen.	$8.18 \pm 0.4\%$	_	$1.92\pm0.7\%$	_	$0.49 {\pm} 0.4\%$	_	$0.14\pm 1\%$	_
Inp. Chk	_	$0.42\pm4\%$	_	$0.10 \pm~10\%$	_	_	_	_
Evl.	$3.3\pm\ 4\%$	$7.08 \pm 1\%$	$0.80 \pm 10\%$	1.58± 4%	$0.23 \pm 17\%$	$0.37\pm7\%$	0.12±0.5%	$0.05 \pm 0.6\%$
Inter-com	4± 5%	13.2±0.3%	0.93± 10%	$4.08{\pm}0.8\%$	$0.31 \pm 20\%$	1.98± 1%	0.11± 40%	$0.72 \pm 0.2\%$
Intra-com	$0.17 \pm 30\%$	$0.23 \pm 20\%$	0.18± 8%	0.25± 6%	$0.45 \pm 20\%$	$0.48 \pm 15\%$	$0.34 \pm 30\%$	$0.34 \pm 30\%$
Total time	28.3±0.3%	29.4±0.3%	7.90±0.5%	$8.17 \pm 0.4\%$	3.45± 2%	3.44± 2%	1.4± 10%	1.3± 9%

HEKM11: 1.6s honest-but-curious



Parameterized AES function, $f(x, (y_1,...,y_n) = AES_x(y_1),...,AES_x(y_n)$

```
void AES_128_Key_Expansion (const unsigned char *userkey,
                            unsigned char *key)
    __m128i temp1, temp2;
    __m128i *Key_Schedule = (__m128i*)key;
    temp1 = _mm_loadu_si128((__m128i*)userkey);
    Key Schedule[0] = temp1;
    // __builtin_ia32_aeskeygenassist128((temp1), (0x1));
    temp2 = _mm_aeskeygenassist_si128 (temp1 ,0x1);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key Schedule[1] = temp1;
    temp2 = _mm_aeskeygenassist_si128 (temp1,0x2);
    temp1 = AES 128 ASSIST(temp1, temp2);
    Key_Schedule[2] = temp1;
    temp2 = _mm_aeskeygenassist_si128 (temp1,0x4);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key Schedule[3] = temp1;
    temp2 = _mm_aeskeygenassist_si128 (temp1,0x8);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key Schedule[4] = temp1;
    temp2 = _mm_aeskeygenassist_si128 (temp1,0x10);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key_Schedule[5] = temp1;
    temp2 = mm aeskeygenassist si128 (temp1,0x20);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key_Schedule[6] = temp1;
    temp2 = _mm_aeskeygenassist_si128 (temp1,0x40);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key Schedule[7] = temp1;
    temp2 = _mm_aeskeygenassist_si128 (temp1,0x80);
    temp1 = AES 128 ASSIST(temp1, temp2);
    Key Schedule[8] = temp1;
    temp2 = mm aeskeygenassist si128 (temp1,0x1b);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key_Schedule[9] = temp1;
    temp2 = _mm_aeskeygenassist_si128 (temp1,0x36);
    temp1 = AES_128_ASSIST(temp1, temp2);
    Key Schedule[10] = temp1;
```

}

AESNI

```
// in: pointer to 16 bytes
// out: pointer to 16 bytes
// key: full 10-round keyschedule
void AES_prf(const unsigned char *in, unsigned char *out,
const unsigned char *key)
    m128i tmp;
    tmp = _mm_loadu_si128 (&((_m128i*)in)[0]);
    tmp = _mm_xor_si128 (tmp,((_m128i*)key)[0]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[1]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[2]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[3]);
    tmp = mm aesenc si128 (tmp,(( m128i*)key)[4]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[5]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[6]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[7]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[8]);
    tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[9]);
    tmp = _mm_aesenclast_si128 (tmp,((__m128i*)key)[10]);
    mm storeu si128 (&(( m128i*)out)[0],tmp);
abhis-MacBook-Pro:aes abhi$ ./aesni
cpu support: 2000000
test clicks: 36
clicks: 2213795401 221.379540
```

AESNI

```
void KDF128(const uint8_t *in, uint8_t *out, const uint8_t *key)
   ALIGN16 uint8_t KEY[16*11];
   ALIGN16 uint8_t PLAINTEXT[64];
   ALIGN16 uint8_t CIPHERTEXT[64];
   AES_128_Key_Expansion(key, KEY);
    _mm_storeu_si128(&((__m128i*)PLAINTEXT)[0],*(__m128i*)in);
   AES_ECB_encrypt(PLAINTEXT, CIPHERTEXT, 64, KEY, 10);
   _mm_storeu_si128((__m128i*)out,((__m128i*)CIPHERTEXT)[0]);
void KDF256(const uint8_t *in, uint8_t *out, const uint8_t *key)
   ALIGN16 uint8_t KEY[16*15];
   ALIGN16 uint8_t PLAINTEXT[64];
   ALIGN16 uint8_t CIPHERTEXT[64];
   AES_256_Key_Expansion(key, KEY);
    _mm_storeu_si128(&((__m128i*)PLAINTEXT)[0],*(__m128i*)in);
   AES_ECB_encrypt(PLAINTEXT, CIPHERTEXT, 64, KEY, 14);
    _mm_storeu_si128((__m128i*)out,((__m128i*)CIPHERTEXT)[0]);
```

AES-NI

	size	AES-NI	SHA-256	Ratio
	(gate)	(sec)	(sec)	(%)
AES	49,912	0.12± 1%	0.15± 1%	78.04
Dot_4^{64}	460,018	$1.11 \pm 0.4\%$	$1.41 \pm 0.5\%$	78.58
RSA-32	1,750,787	$4.53 \pm 0.5\%$	$5.9 \pm 0.8\%$	76.78
EDT-255	15,540,196	$42.0 \pm 0.5\%$	$57.6 \pm 1\%$	72.92

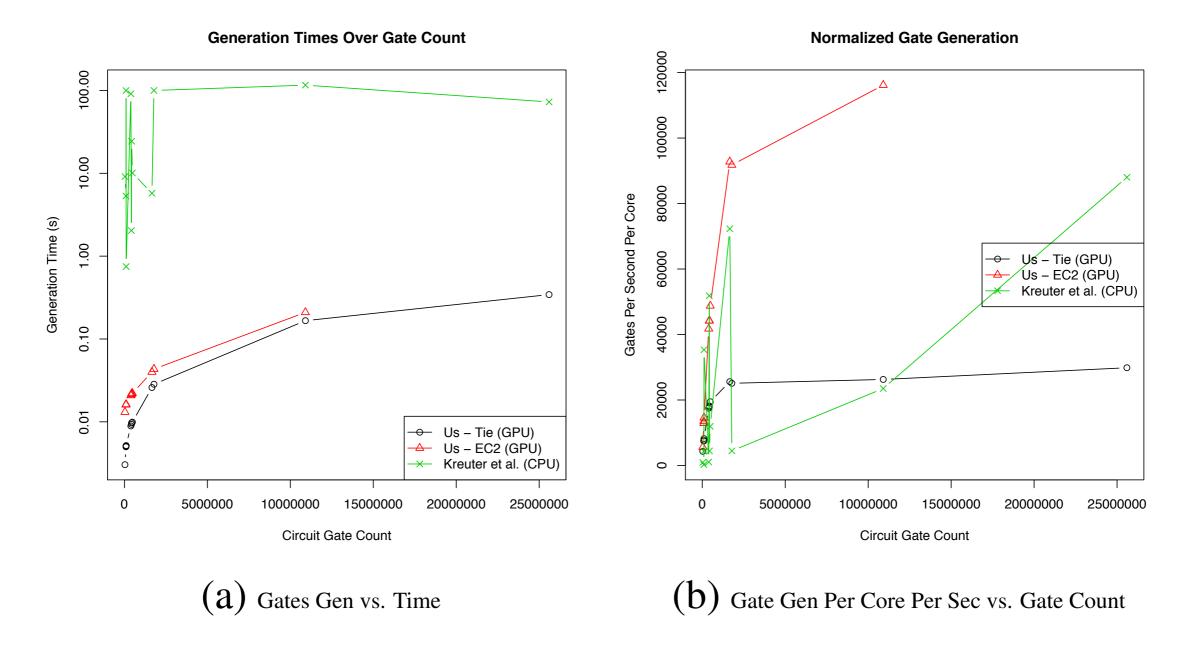


Figure 2: Gate Generation Times comparing to Kreuter et al.[14].

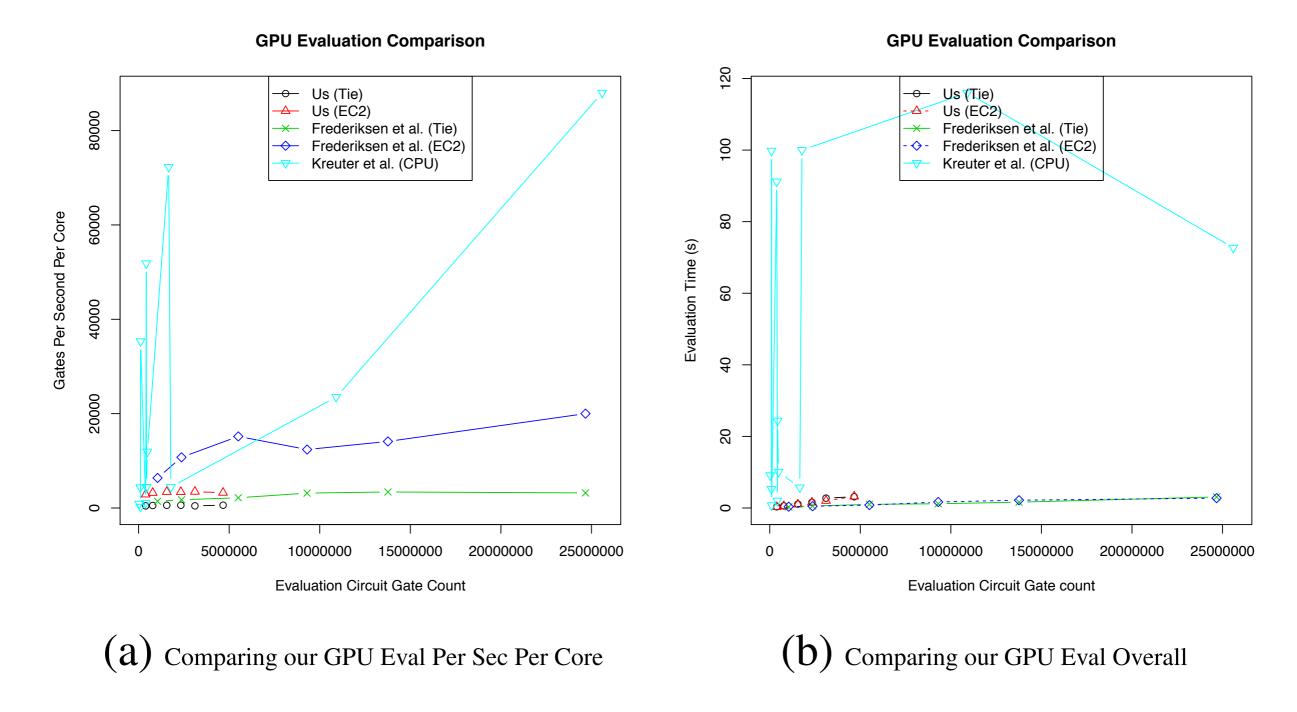


Figure 3: GPU Evaluation Times with comparison to Kreuter et al. [14], Frederiksen and Nielsen [5] and our GPU implementation.

Plans

