
State of the art techniques

Lindell13:

HKE13:

s circuits + aux comp

2s circuits + aux comp

Rethinking circuit consistency

min

t
max

c

(k�c
t)

(k
t)

Bottleneck is requirement for
majority good circuits.

Avoiding majority

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Different values for the same
output wire imply cheating.

0 0 1

By previous attack, Evaluator
cannot acknowledge cheating!

Key idea

Use the “witness of cheating”
to unlock Garbler’s input.

witness of cheating: 0+1
label for same output bit.

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

0 0 1

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

check(x,o1,ok)

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

o1 o2 o3

x iff o1,ok are “valid” output labels for 0,1

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

check(x,o1,ok)

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

o1 o2 o3

x iff o1,ok are “valid” output labels for 0,1

If outputs
equal, Eval
uses 0 in
check() and
publishes o1

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

check(x,o1,ok)

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

o1 o2 o3

x iff o1,ok are “valid” output labels for 0,1

If outputs
differ, Eval
uses o1,ok in
check(),
learns x, and
outputs f(x,y)

New Analysis
k circuits in total

Garbler picks a subset C* of circuits to corrupt.

Evaluator picks a subset T* of circuits to test.

Choice of T* is uniformly random
over all subsets.

Let G* be the set of good circuits. G*=C*.

Suppose G* = T*

Garbler picks a subset C* of circuits to corrupt.

Choice of T* is uniformly random
over all subsets.

Failure, but Pr[G⇤ = T⇤] = 2�k

k circuits in total

Suppose T*⊄G*

Case 2: T* includes a bad circuit.

Success always!

Case 3: T* contains all good circuits.
Thus, evaluated circuits includes good+bad.

Suppose T*⊂G*

If outputs all the same, success (since ≥1 good)
If outputs differ, witness for check circuit.

success with pr (1-2s)

How to implement?
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

check(x,o1,ok)

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k Select random
labels for output wire i

Select keys, make
commitments to Alice’s
input wires.

1 Preparation

a0
i , a1

i G

check(x,o1,ok)
b0

i , b1
i {0, 1}k

If Bob can supply two
witnesses for an output
wire, Bob gets x.

The output wires bi are
hardcoded into the
circuit by the Gen.

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

b0
i , b1

i {0, 1}k

The inputs for x are
shared with the main
circuit. Use same ai,
different rj.

Cut & choose used to
test both main circuit
and check circuits.

Must ensure that
witness (o1,ok) does not
come from cut-circuit.

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

a0
i , a1

i G

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k Select challenge set J
uniformly.

Run a cut-and-choose
OT with keys for Bob’s
inputs. Special string Xj
sent with OT that are not
cut.2 OT

Oblivious*
Transfer

0 1 yi,tj-,1

{w0
i,j}k

j=1, cj

⇣
{w1

i,j}k
j=1, cj

⌘

⇣
{wb

i,j}j,b

⌘

for each input bit i

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

a0
i , a1

i G

Bob’s 1 inp

Bob’s 0 inp

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

Send commitments to
output table and Gen’s
input wire labels.

3 Commits

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

�
GCj

 k
j=1

�
GCj

 k
j=1

a0
i , a1

i G

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

Disclose challenge,
send Gen’s input keys.

4 Gen’s Keys

challenge set J

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

�
cj

j 62J
{ki,j H(k0i,j)}

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

�
GCj

 k
j=1

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

a0
i , a1

i G

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

Evaluate all eval-circuits.
Record output wires.

5 Eval

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

�
o

i,j

j

{ki,j H(k0i,j)}

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

�
GCj

 k
j=1

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

a0
i , a1

i G

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

6 Cheat check

check(x,o1,ok)

�
GCj

 k
j=1

�
o

i,j

j

{ki,j H(k0i,j)}

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

�
GCj

 k
j=1

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

Use a maliciously secure
protocol for check circuit.
Gen reuses ai for inputs.

b0
i , b1

i {0, 1}k

k̂0
i,j H(ga0

i ·r̂j)

k̂1
i,j H(ga1

i ·r̂j)

a0
i , a1

i G

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

Check these values

7 Consistency of check circuits

{rj}j2J
�

o

i,j

j

{ki,j H(k0i,j)}

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

�
GCj

 k
j=1

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

Generate Eval’s input keys

Use both keys to test GCj

k̂0
i,j H(ga0

i ·r̂j)

k̂1
i,j H(ga1

i ·r̂j)

a0
i , a1

i G

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

Run a SIGMA protocol to
check Gen’s input
consistency.

8 Input consistency

h
(g, ga0

i , grj , k0i,j) 2 DH^ (g, ga0
i , gr̂ĵ , k̂0i, ĵ) 2 DH

i

j 62J, ĵ 62 Ĵ

h
(g, ga1

i , grj , k0i,j) 2 DH^ (g, ga1
i , gr̂ĵ , k̂0i, ĵ) 2 DH

i

j 62J, ĵ 62 Ĵ

OR

�
o

i,j

j

{ki,j H(k0i,j)}

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

�
GCj

 k
j=1

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

k̂0
i,j H(ga0

i ·r̂j)

k̂1
i,j H(ga1

i ·r̂j)

a0
i , a1

i G

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

9 Share output

�
o

i,j

j

{ki,j H(k0i,j)}

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

�
GCj

 k
j=1

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

Use either outputs + tables
or the recovered x to send
f(x,y) back.

k̂0
i,j H(ga0

i ·r̂j)

k̂1
i,j H(ga1

i ·r̂j)

a0
i , a1

i G

Why is it secure?

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k Select challenge set J
uniformly.

When simulating for
Bob*, run SimulatorOT
and get inputs +
challenge2 OT

Oblivious*
Transfer

0 1 yi,tj-,1

{w0
i,j}k

j=1, cj

⇣
{w1

i,j}k
j=1, cj

⌘

⇣
{wb

i,j}j,b

⌘

for each input bit i

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

a0
i , a1

i G

Bob’s 1 inp

Bob’s 0 inp

k0
i,j H(ga0

i ·rj)

k1
i,j H(ga1

i ·rj)

b0
i , b1

i {0, 1}k

Can now program circuits.

5 Eval

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

�
o

i,j

j

{ki,j H(k0i,j)}

n

(i, ga0
i , ga1

i)
o`

i=1

{(j, grj)}k
j=1

n

(H(b0
i), H(b1

i)
om

i=1

⇣
{wb

i,j}j,b

⌘

j2J
⇣
{wyi

i,j}j, cj

⌘

j 62J

�
GCj

 k
j=1

n

k

0
i,j g

a

x

i

i

·r
j

o

j 62J,i

a0
i , a1

i G

2. Privacy: There exists a p.p.t. simulator algorithm S such that for all func-
tions f and all inputs x, the following two distributions are computationally
indistinguishable:

�
(F, e, d) gb(1k, f), X en(e, x) : (F,X, d)

k2N ⇡c

�
S(1k, f, f(x))

k2N
(0)

Intuitively, the collection (F,X, d) should not reveal any more information about
x than f(x).

2.1 Linear Garbling Schemes

The gb and ev methods for all known garbling methods only use linear opera-
tions in addition to queries to the hash function (or random oracle). In addition,
in the case of ev, the linear operations that are applied only depend on the
permutation bits for each wire.

Below we formalize the definition of linear schemes in a general setting in
which the garbling of a circuit is performed in separate small units (typically
gates, but also conglomerates of gates, or even the whole circuit). Our definition
extends the one of linear garbling for AND gates given in [?] 3.

abhi: discuss how with free-xor, there is a designated row in the matrix for
R

Definition 3 (Linear Garbling). Define S = (R1, . . . , Rr, Q1, . . . , Qq)T , where
the Ri are random values to be chosen by the garbler, and the Qi are random
oracle queries. A linear garbling scheme is a garbling scheme with the following
properties:

Linearity of Garbling: for each m-input unit U in the circuit, gb outputs

(L0, L1, O0, O1, G)T = Ma
US

where L0, L1 and G are vectors, Ma
U is a matrix, and a is an m-bit string

chosen by the evaluator, encoding a permutation on the input labels per each
wire.

Linearity of Evaluating: On the same unit U as above, on input x, define
↵ = x+a. The string ↵ is given to the evaluator, as well as L↵ and G. Let
Q0

1, . . . , Q
0
q0 be calls to the random oracle. Define T = (L↵, G,Q0

1, . . . , Q
0
q0)

T

Then, ev outputs E↵
UT , where E↵

U is a matrix.

3
Valerio: Here I explain the change of syntax that we have – doublecheck!!! We use a
slightly di↵erent, but equivalent, syntax from [?]: while they express linear garbling
as a function on the unpermuted input labels (e.g. A0, A1, B0, B1 for an AND gate),
we do so as a function on the permuted labels given to the evaluator (e.g. L1 = Aa

L2 = Bb for a 2-input gate, if a, b are the permutation bits on each input). This has
some minor repercussion on the representation of the output label (e.g. in the syntax
of [?] the output label of an AND gate would be H(A0)+H(B0)+(xy+ab)R, which
translates to (1+a)H(L1)+aH(L1+R)+(1+ b)H(L2)+ bH(L2+R)+(xy+ab)R,
if x, y are the input bits).

Secure Garbling

Protocol uses specific
assumptions.

Open: Remove these
(and have a faster

protocol)

Selective
Failure

Oblivious
Transfer

input bit i {0,1}

0 1 c

Selective Failure

0

MF06,KS06

[LP07]
Encode Evaluator’s input using error correcting code

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Mnxm

y

Matrix M is k-probe resistant if Ham

M

i2L
Mi

!
� k

nonempty L

Pr[Eval aborts | y] - Pr[Eval aborts | y’]  2�k

One implementation

Explicit program to find M s.t.

102 104 1060

1

2

3

4

5

n

m
/n

LP07
This Work

Input
Consistency

Input consistency

Did Alice use the same input
to each copy of the circuit?

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

...

1 copy: 2 3 k

x x x’

LP07 OWF
OT +

K08 DLOG

Input Consistency 2-Outputs
sym pke sym pke

OWFSS13

LP11
SS11,
KSS12 “ “ “

DLOG
DLOG
DLOG

“blackbox”

Fewer Assumptions
Faster Protocol

Result:

Input consistency
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

...

1 2 3 k

x x x

[LP10, SS11]

“WI proof that input ”

Sigma protocols

copy:

Inspiration

Are there better algorithms to
implement this proof?

Recursion?

“WI proof that input ”

Our approach:

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

input
consistency
circuit g(x)

Inspiration

Proof:

For what choices of g will this proof be sound + WI?
g should be hiding
g should be “binding”

“WI proof that input ”

Should
be:

hiding
“binding”

Obvious candidate: Commitment scheme
Problem: could be a large circuit

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Com(x)

Should
be:

hiding
“binding”

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

hM(x)

Next candidate: 2-Universal hash function

2-universal hash function
x|r

y=

Hiding: By left-over hash lemma, (x|r)M will be
hiding for large enough r.

2-universal hash function
x|r

y=

For any pr over random choice of M :Binding:

Idea: Pick the function M after GEN has
committed to inputs.

New input consistency
A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

...

1 copy: 2 3 k

x x x
M.x M.x M.x M.x

“WI proof that input ”

Cost of each evaluation M.x

M.x AND gates

Why restrict ourselves to
Garbled circuits for M.x ?

Note that hM is homomorphic

Pick

challenge
if
else

decommit
decommit

How to implement?

1. Setup
2. Commit to Input Labels
3. Pick H,M
4. Eval Input OT
5. Circuit OT
6. Garbling-Evaluation
7. Input Consistency

garbled circuit:
each wire has a key pair
each gate has a table

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

Use PRF and
seed to
generate all
wires
for circuit j

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

labels for wire i

key locator for wire i

jth copy

r {0, 1}2k+lg(k) y My

pick

x x||e

1 Setup

r {0, 1}2k+lg(k) y My

pick

2 Commit keys

⇥(j) = {com(W (j)

i,0�⇡(j)
i

; ✓(j)i), com(W (j)

i,1�⇡(j)
i

; ✓(j)i)}i2[Gen]

⌦(j) = {com(W (j)
m1+i,0), com(W (j)

m1+i,1)}i2[Eval]

�(j) = {com(W (j)
i,x̄i

; �(j)
i

)}
i2[Gen].

used to commit

independent randomness here!

gen inputs

eval inputs

x x||e

r {0, 1}2k+lg(k) y My

pick

3 Flip

M

pick H

x x||e

⇥(j) = {com(W (j)

i,0�⇡(j)
i

; ✓(j)i), com(W (j)

i,1�⇡(j)
i

; ✓(j)i)}i2[Gen]

⌦(j) = {com(W (j)
m1+i,0), com(W (j)

m1+i,1)}i2[Eval]

�(j) = {com(W (j)
i,x̄i

; �(j)
i

)}
i2[Gen].

r {0, 1}2k+lg(k) y My

pick

4 Input key OT

Oblivious
Transfer

0 1 c

H, M

H, M

yi

n

W(j)
i,yi

o

i2Eval

x x||e

⇥(j) = {com(W (j)

i,0�⇡(j)
i

; ✓(j)i), com(W (j)

i,1�⇡(j)
i

; ✓(j)i)}i2[Gen]

⌦(j) = {com(W (j)
m1+i,0), com(W (j)

m1+i,1)}i2[Eval]

�(j) = {com(W (j)
i,x̄i

; �(j)
i

)}
i2[Gen].

r {0, 1}2k+lg(k) y My

pick

5 Circuit OT

⇥(j) = {com(W (j)

i,0�⇡(j)
i

; ✓(j)i), com(W (j)

i,1�⇡(j)
i

; ✓(j)i)}i2[Gen]

⌦(j) = {com(W (j)
m1+i,0), com(W (j)

m1+i,1)}i2[Eval]

�(j) = {com(W (j)
i,x̄i

; �(j)
i

)}
i2[Gen].

H, M

H, M
n

W(j)
i,yi

o

i2Eval

1: eval + consistency
0: check circuit

Oblivious
Transfer

0 1 c

x x||e

n

r(j)
o

s(j)=1
⇢

n

W(j)
i,xi

, g
(j)
i , W(j)

i,xi
, q

(j)
i

o

i2[m1]
, H(p(j)1|| · · ·)

�

s(j)=0

h(j)
p =

r {0, 1}2k+lg(k) y My

pick

6 Garbling

H, M

H, M
n

W(j)
i,yi

o

i2Eval

x x||e

n

r(j)
o

s(j)=1
⇢

n

W(j)
i,xi

, g
(j)
i , W(j)

i,xi
, q

(j)
i

o

i2[m1]
, H(p(j)1|| · · ·)

�

s(j)=0

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

A
N
D

O
R

N
O
T

A
N
D

A
N
D

O
R

⇥(j) = {com(W (j)

i,0�⇡(j)
i

; ✓(j)i), com(W (j)

i,1�⇡(j)
i

; ✓(j)i)}i2[Gen]

⌦(j) = {com(W (j)
m1+i,0), com(W (j)

m1+i,1)}i2[Eval]

�(j) = {com(W (j)
i,x̄i

; �(j)
i

)}
i2[Gen].

Eval either checks
circuits using { p(j) }sj=1

OR evals circuits
using wire labels.

n

GC(j), Q(j), W(j)
o

h(j)
p

Eval can abort on fail.

r {0, 1}2k+lg(k) y My

pick

7 Input consistency

H, M

H, M
n

W(j)
i,yi

o

i2Eval

x x||e

n

r(j)
o

s(j)=1
⇢

n

W(j)
i,xi

, g
(j)
i , W(j)

i,xi
, q

(j)
i

o

i2[m1]
, H(p(j)1|| · · ·)

�

s(j)=0

⇥(j) = {com(W (j)

i,0�⇡(j)
i

; ✓(j)i), com(W (j)

i,1�⇡(j)
i

; ✓(j)i)}i2[Gen]

⌦(j) = {com(W (j)
m1+i,0), com(W (j)

m1+i,1)}i2[Eval]

�(j) = {com(W (j)
i,x̄i

; �(j)
i

)}
i2[Gen].

For all a,b in check, verify:

Compute

Eval can abort on fail.

W(j)
i = (K(j)

i , d
(j)
i)

h(j)
x̄ = h(j)

p � H · (d(j)
1 ||d(j)

2 || · · · ||d(j)
m1)

h

(a)
x̄

= h

(b)
x̄

For all check (j), let

r {0, 1}2k+lg(k) y My

pick

8 Majority

H, M

H, M
n

W(j)
i,yi

o

i2Eval

x x||e

n

r(j)
o

s(j)=1
⇢

n

W(j)
i,xi

, g
(j)
i , W(j)

i,xi
, q

(j)
i

o

i2[m1]
, H(p(j)1|| · · ·)

�

s(j)=0

⇥(j) = {com(W (j)

i,0�⇡(j)
i

; ✓(j)i), com(W (j)

i,1�⇡(j)
i

; ✓(j)i)}i2[Gen]

⌦(j) = {com(W (j)
m1+i,0), com(W (j)

m1+i,1)}i2[Eval]

�(j) = {com(W (j)
i,x̄i

; �(j)
i

)}
i2[Gen].

Send majority of output if all checks pass.

Performance

102 103 104 1050

20

40

60

80

100

GEN’s Input Size (bits)

W
al

l−
C

lo
ck

 T
im

e
(s

ec
)

KSS12
This Work (a)

102 104 1060

1

2

3

4

5

n

m
/n

LP07
This Work

(b)

Figure 3: Performance comparison with prior works

Gen Eval Comm
(sec) (sec) (MB)

OT
comp 0.4±0.09% –

6
comm 0.1± 1% 0.3±0.6%

cut-& comp – –
9

chk comm – –

Inp. comp 0.8± 1% 0.3±0.2%
2,008

Chk comm 0.3± 1% 0.9± 1%

Evl.
comp 11.4± 0.6% 28.0±0.4%

72,271
comm 9.2± 1% 30.3±0.8%

Total
comp 12.6± 0.3% 28.0±0.2%

74,294
comm 9.6± 1% 31.5±0.4%

Table 3: The 95% two-sided confidence intervals of the com-
putation andcommunication time for each stage in the 1024-
AES128 experiment (x, y) 7! (?, 1024-AES128y(x)).

also observe that for all three circuits that we evaluated,
more than 60% of the execution time is spent on commu-
nicating the huge amount of data, the garbled circuits. If
we consider only the circuit garbling, the rate that our sys-
tem actually achieves could be as high as 1,600,000+ (or
500,000+ non-XOR) gates per second, with the help of var-
ious optimization techniques, including SSE2 and AESNI
instruction sets, and the free-XOR technique.

circuit gates (non-XOR) time (sec) comm.

EDT-4095 5.9B (2.4B) 9,042 18 TB
RSA-256 0.93B (0.33B) 1,437 3 TB
1024-AES128 32M (9.3M) 49 74 GB

Figure 4: The performance of our main protocol with k = 80 and
� = 256. All numbers in “time” column come from an average of
30 data points and have the 95% confidence interval < 1%.

6. ACKNOWLEDGEMENTS
We thank Benny Pinkas and Ben Riva for their gracious-

ness in correcting an earlier draft of this manuscript and the
anonymous reviewers for their insightful comments.
This work is supported by the Defense Advanced Research

Projects Agency (DARPA) and the Air Force Research Lab-
oratory (AFRL) under contract FA8750-11-2-0211. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
o�cial policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US government.

7. REFERENCES

[1] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias.
Multiparty Computation from Somewhat
Homomorphic Encryption. CRYPTO ’12.
http://eprint.iacr.org/2011/535.

[2] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S.
Nordholt, and C. Orlandi. MiniLEGO: E�cient Secure
Two-Party Computation From General Assumptions.
EUROCRYPT ’13.
http://eprint.iacr.org/2013/155.

[3] R. Gennaro, C. Gentry, and B. Parno. Non-Interactive
Verifiable Computing: Outsourcing Computation to
Untrusted Workers. CRYPTO’10, pages 465–482.

[4] O. Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, 2004.

[5] O. Goldreich, S. Micali, and A. Wigderson. How to
Play any Mental Game. STOC ’87, pp. 218–229.

[6] V. Goyal, P. Mohassel, and A. Smith. E�cient
Two-Party and Multiparty Computation against
Covert Adversaries. EUROCRYPT’08, pp. 289–306.

[7] D. Hofheinz. Possibility and Impossibility Results for
Selective Decommitments. J. Cryptol., 24(3):470–516,
2011.

[8] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
Secure Two-Party Computation using Garbled
Circuits. USENIX SEC’11, pp. 35–35.

[9] R. Impagliazzo and D. Zuckerman. How to Recycle
Random Bits. SFCS ’89.

[10] S. Jarecki and V. Shmatikov. E�cient Two-Party
Secure Computation on Committed Inputs.
EUROCRYPT ’07, pp. 97–114.

[11] M. Kiraz. Secure and Fair Two-Party Computation.
PhD thesis, Technische Universiteit Eindhoven, 2008.

[12] M. Kiraz and B. Schoenmakers. A Protocol Issue for
The Malicious Case of Yao’s Garbled Circuit
Construction. In 27th Symposium on Information
Theory in the Benelux, 2006.

[13] V. Kolesnikov and T. Schneider. Improved Garbled
Circuit: Free XOR Gates and Applications. ICALP
’08, pp. 486–498.

[14] B. Kreuter, a. shelat, and C. Shen. Billion-Gate
Secure Computation with Malicious Adversaries.
USENIX SEC’12, 2012.

[15] Y. Lindell and B. Pinkas. An E�cient Protocol for
Secure Two-Party Computation in the Presence of
Malicious Adversaries. EUROCRYPT ’07.

[16] Y. Lindell and B. Pinkas. Secure Two-Party
Computation via Cut-and-Choose Oblivious Transfer.
TCC’11, pp. 329–346.

[17] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay: A Secure Two-Party Computation System.
USENIX SEC’04, volume 13, pp. 287–302.

[18] P. Mohassel and M. Franklin. E�ciency Tradeo↵s for
Malicious Two-Party Computation. PKC’06, pp.
458–473.

[19] P. Mohassel and B. Riva. Garbled Circuits Checking
Garbled Circuits: More E�cient and Secure
Two-Party Computation, 2013.
http://eprint.iacr.org/2013/051.

roughly 650k gates/second total thruput

60% of time spent on network

1.7m g/sec garble rate

Texas Advanced Computing Center. 32 nodes; each node: 2 Xeon E5-2680 2.7Ghz (each has 8 cores), 32GB

Evaluations
[KSS12]

[KSS12]AES 2-80
security

generator will not receive any output, whereas the evalu-
ator will receive the ciphertext AESx(y).

Type Fairplay Ours-A Pinkas et al. Ours-B

non-XOR 15,316 15,300 11,286 9,100
XOR 35,084 34,228 22,594 21,628

Table 6: The components of the AES circuits from dif-
ferent sources. Ours-A comes from the textbook AES
algorithm, and Ours-B uses an optimized S-box circuit
from [3]. (Sizes do not include input or output wires)

First of all, we demonstrate the performance of our
compiler in Table 6. We have shown in Section 5 that
our compiler is capable of large circuit generation. We
also found in our experiments that our compiler produces
smaller AES circuit than Fairplay. Given the same high-
level description of AES encryption (textbook AES), our
compiler produces a circuit with a smaller gate count and
even fewer non-XOR gates. When applying the compact
S-Box description proposed by Boyar and Parelta [3]
to the high-level description as input to our compiler, a
smaller AES circuit than the hand-optimized one from
Pinkas et al. is generated with less effort.

In Table 7, both the computational and communica-
tion costs for each main stage are listed under the tradi-
tional setting, where there is only one process on each
side. These main stages include oblivious transfer, gar-
bled circuit construction, the generator’s input consis-
tency check, and the circuit evaluation. Each row in-
cludes both the computation and communication time
used. Note that network conditions could vary from set-
ting to setting. Our experiments run in a local area net-
work, and the data can only give a rough idea on how fast
the system could be in an ideal environment. However,
the precise amount of data being exchanged is reported.

We notice in Table 7 that the evaluator spends an un-
reasonable amount of time on communication with re-
spect to the amount of data to be transmitted in both
the oblivious transfer and circuit construction stages.
This is because the evaluator spends that time waiting
for the generator to finish computation-intensive tasks.
The same reasoning explains why in the circuit evalu-
ation stage the generator spends more time in commu-
nication than the evaluator. This waiting results from
the fact that both parties need to run the protocol in a
synchronized manner. A generator-evaluator pair can-
not start next communication round while any other pair
has not finished the current one. This synchronization is
crucial since our protocol’s security is guaranteed only
when each communication round is performed sequen-
tially. While the parallelization of the program intro-
duces high performance execution, it does not and should
not change this essential property. A stronger notion

Gen Eval Comm
(sec) (sec) (KB)

OT comp 45.8±0.09% 34.0±0.2% 5,516comm 0.1± 1% 11.9±0.6%

Gen. comp 35.6± 0.5% – 3comm – 35.6±0.5%

Inp. comp – 1.75±0.2% 266Chk comm – –

Evl. comp 14.9± 0.6% 32.4±0.4% 28,781comm 18.2± 1% 3.2±0.8%

Total comp 96.3± 0.3% 68.0±0.2% 44,805comm 18.3± 1% 50.8±0.4%

Table 7: The 95% two-sided confidence intervals of the
computation and communication time for each stage in
the experiment (x,y) 7! (?,AESx(y)).

of security such as universal security will be required if
asynchronous communication is allowed. By using TCP
sockets in “blocking” mode, we enforce this communi-
cation round synchronization.

Note that the low communication during the circuit
construction stage is due to the random seed checking
technique. Also, the fact that the generator spends more
time in the evaluation stage than she traditionally does
comes from the second construction for evaluation cir-
cuits. Recall that only the evaluation circuits need to be
sent to the evaluator. Since only 40% of the garbled cir-
cuits (102 out of 256) are evaluation-circuits, the ratio of
the generator’s computation time in the generation and
evaluation stage is 35.63:14:92 ' 5:2.

We were unfortunately unable to find a cluster of hun-
dreds of nodes that all support AES-NI. Our experimen-
tal results, therefore, do not show the full potential of
all the optimization techniques we have proposed. How-
ever, recall that for certain circuits the running time in
the semi-honest setting is roughly half of that in the
malicious setting. We estimate a 20% improvement in
the performance of garbled circuit generation when the
AES-NI instruction set becomes ubiquitous, based on the
preliminary results presented above in Table 5.

Table 8 shows that the Yao protocol really benefits
from the circuit-level parallelization. Starting from Ta-
ble 7, where each side only has one process, all the way
to when each side has 256 processes, as the degree of par-
allelism is multiplied by four, the total time reduces into
a quarter. Note that the communication costs between the
generator and evaluator remain the same, as shown in Ta-
ble 7. It may seem odd that the communication costs are
reduced as the number of processes increase. The real in-
terpretation of this data is that as the number of processes

13

1 core

Parallel Impl

HEKM11: 1.6s
honest-but-curious

node # 4 16 64 256
Gen Evl Gen Evl Gen Evl Gen Evl

OT 12.56±0.1% 8.41±0.1% 4.06±0.1% 2.13±0.2% 1.96±0.1% 0.58±0.2% 0.64±0.1% 0.19±0.2%
Gen. 8.18±0.4% – 1.92±0.7% – 0.49±0.4% – 0.14± 1% –

Inp. Chk – 0.42± 4% – 0.10± 10% – – – –
Evl. 3.3± 4% 7.08± 1% 0.80± 10% 1.58± 4% 0.23± 17% 0.37± 7% 0.12±0.5% 0.05±0.6%

Inter-com 4± 5% 13.2±0.3% 0.93± 10% 4.08±0.8% 0.31± 20% 1.98± 1% 0.11± 40% 0.72±0.2%
Intra-com 0.17± 30% 0.23± 20% 0.18± 8% 0.25± 6% 0.45± 20% 0.48± 15% 0.34± 30% 0.34± 30%

Total time 28.3±0.3% 29.4±0.3% 7.90±0.5% 8.17±0.4% 3.45± 2% 3.44± 2% 1.4± 10% 1.3± 9%

Table 8: The average and error interval of the times (seconds) running AES circuit. The number of nodes represents
the degree of parallelism on each side. “–” means that the time is smaller than 0.05 seconds. Inter-com refers to the
communication between the two parties, and intra-com refers to communication between nodes for a single party.

increases, the “waiting time” decreases.
Notice that as the number of processes increases, the

ratio of the time the generator spends in the construc-
tion and evaluation stage decreases from 5:2 to 1:1. The
reason is that the number of garbled circuit each process
handles is getting smaller and smaller. Eventually, we
reach the limit of the benefits that the circuit-level paral-
lelism could possibly bring. In this case, each process is
dealing with merely a single copy of the garbled circuit,
and the time spent in both the generation and evaluation
stages is the time to construct a garbled circuit.

To the best of our knowledge, completing an execution
of secure AES in the malicious model within 1.4 seconds
is the best result that has ever been reported. The next
best result from Nielsen et al. [29] is 1.6 seconds, and it
is an amortized result (85 seconds for 54 blocks of AES
encryption in parallel) in the random oracle model. This
is only a crude comparison, however; our experimental
setup uses a cluster computer while Nielsen et al. used
only two desktops. A better comparison would be pos-
sible given a parallel implementation of Nielsen et al.’s
system, and we are interested in seeing how much of an
improvement such an implementation could achieve.

Large Circuits In this experiment, we run the 4095-
bit edit distance circuit, that is, (x,y) 7! (?,EDT(x,y)),
where x,y 2 {0,1}4095. In particular, we use the I +C
approach, where the computation time could be roughly
a half of that of the I +2C approach with the price of not
getting to use the random-seed technique. Recall that in
the I +C approach, the generator and the evaluator con-
duct the cut-and-choose in a way that the generator does
not know the check circuits until she finishes transferring
all the garbled circuits. Next, both the parties run the
circuit generation and evaluation in a pipeline manner,
where one party is generating and giving away garbled
gates on one end, and the other party is evaluating and
checking the received gates at the other end at the same
time. The results are shown in Table 9.

Gen Eval Comm
(sec) (sec) (Byte)

OT 19.63±0.1% 5.2± 1% 1.7⇥108
1.1± 20% 15.48±0.1%

Cut-& 1.10± 7% – 6.5⇥107
Choose – 1.1± 10%

Gen./Evl. 24,000± 10% 15,000± 10% 1.8⇥1013
4,900± 5% 15,000± 5%

Inp. 0.59± 10% – 8.5⇥106
Chk 0.50± 60% 0.60± 10%

Total 29,000± 10% 29,000± 10% 1.8⇥1013

Table 9: The result of (x,y) 7! (?,EDT-4095(x,y)).
Each party is comprised of 256 cores in a cluster. This
table comes from 2 invocations of the system. Simi-
larly, the upper row in each stage is the computation time,
while the lower is the communication time.

This circuit generated by our compiler has 5.9 billion
gates, and 2.4 billion of those are non-XOR. It is worth
mentioning that, without the random-seed technique, the
communication cost shown in Table 9 can also be esti-
mated by 256⇥ 2.4⇥ 109

⇥ 3⇥ 10 = 1.8⇥ 1013, since
256 copies of the garbled circuits need to be transferred,
each copy has 2.4 billion non-free gates, each non-free
gate has three entries, and each entry has k = 80 bits.

In additional to showing that our system is capable of
handling the largest circuits ever reported, we also have
shown a speed in the malicious setting that is comparable
to those in the semi-honest setting. In particular, we were
able to complete an single execution of 4095-bit edit dis-
tance circuit in less than 8.2 hours with a rate of 82,000
(non-XOR) gates per second. Note that Huang et al.’s
system is the only one, to the best of our knowledge, that
is capable of handling such large circuits [13]; they re-
ported a rate of over 96,000 (non-XOR) gates per second

14

102 103 104 1050

20

40

60

80

100

GEN’s Input Size (bits)

W
al

l−
C

lo
ck

 T
im

e
(s

ec
)

KSS12
This Work

Parameterized AES function, f(x, (y1,...,yn) =
AESx(y1),...,AESx(yn)

void AES_128_Key_Expansion (const unsigned char *userkey,
 unsigned char *key)
{
 __m128i temp1, temp2;
 __m128i *Key_Schedule = (__m128i*)key;
 temp1 = _mm_loadu_si128((__m128i*)userkey);
 Key_Schedule[0] = temp1;

 // __builtin_ia32_aeskeygenassist128((temp1), (0x1));

 temp2 = _mm_aeskeygenassist_si128 (temp1 ,0x1);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[1] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x2);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[2] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x4);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[3] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x8);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[4] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x10);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[5] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x20);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[6] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x40);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[7] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x80);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[8] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x1b);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[9] = temp1;
 temp2 = _mm_aeskeygenassist_si128 (temp1,0x36);
 temp1 = AES_128_ASSIST(temp1, temp2);
 Key_Schedule[10] = temp1;

}

// in: pointer to 16 bytes
// out: pointer to 16 bytes
// key: full 10-round keyschedule
void AES_prf(const unsigned char *in, unsigned char *out,
const unsigned char *key)
{
 __m128i tmp;
 tmp = _mm_loadu_si128 (&((__m128i*)in)[0]);
 tmp = _mm_xor_si128 (tmp,((__m128i*)key)[0]);

 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[1]);
 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[2]);
 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[3]);
 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[4]);
 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[5]);

 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[6]);
 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[7]);
 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[8]);
 tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[9]);

 tmp = _mm_aesenclast_si128 (tmp,((__m128i*)key)[10]);
 _mm_storeu_si128 (&((__m128i*)out)[0],tmp);

}

abhis-MacBook-Pro:aes abhi$./aesni
cpu support: 2000000
test clicks: 36
clicks: 2213795401 221.379540

AESNI

AESNI
void KDF128(const uint8_t *in, uint8_t *out, const uint8_t *key)
{
 ALIGN16 uint8_t KEY[16*11];
 ALIGN16 uint8_t PLAINTEXT[64];
 ALIGN16 uint8_t CIPHERTEXT[64];

 AES_128_Key_Expansion(key, KEY);
 _mm_storeu_si128(&((__m128i*)PLAINTEXT)[0],*(__m128i*)in);
 AES_ECB_encrypt(PLAINTEXT, CIPHERTEXT, 64, KEY, 10);
 _mm_storeu_si128((__m128i*)out,((__m128i*)CIPHERTEXT)[0]);
}

void KDF256(const uint8_t *in, uint8_t *out, const uint8_t *key)
{
 ALIGN16 uint8_t KEY[16*15];
 ALIGN16 uint8_t PLAINTEXT[64];
 ALIGN16 uint8_t CIPHERTEXT[64];

 AES_256_Key_Expansion(key, KEY);
 _mm_storeu_si128(&((__m128i*)PLAINTEXT)[0],*(__m128i*)in);
 AES_ECB_encrypt(PLAINTEXT, CIPHERTEXT, 64, KEY, 14);
 _mm_storeu_si128((__m128i*)out,((__m128i*)CIPHERTEXT)[0]);
}

AES-NI

129

non-XOR Baseline RS GRR FX
(%) (MB) (%) (%) (%)

AES 30.81 509 39.97 30.03 9.09
Dot64

4 29.55 4,707 39.86 29.91 8.88
RSA-32 34.44 17,928 39.84 29.88 10.29
EDT-255 41.36 159,129 39.84 29.87 12.36

Table 6.2: The impact of various optimization techniques: The Baseline shows the communica-
tion cost for 256 copies of the original Yao garbled circuit when k = 80; RS shows the remaining
fraction after Random Seed technique is applied; GRR shows when Garbled Row Reduction is
further applied; and FX shows when the previous two techniques and the Free-XOR are applied.
(The communication costs here only include those in the generation and evaluation stages.)

1.0.0g), while it needs only 225 cycles for AES-256 (with AES-NI). To measure the benefits of

AES-NI, we use two instantiations to construct various circuits, listed in Table 6.3, and observe

a consistent 20% saving in circuit construction.1

size AES-NI SHA-256 Ratio
(gate) (sec) (sec) (%)

AES 49,912 0.12± 1% 0.15± 1% 78.04
Dot64

4 460,018 1.11±0.4% 1.41±0.5% 78.58
RSA-32 1,750,787 4.53±0.5% 5.9±0.8% 76.78
EDT-255 15,540,196 42.0±0.5% 57.6± 1% 72.92

Table 6.3: Circuit generation time (for a single copy) with different instantiations (AES-NI vs
SHA-256) of the 2-circular correlation robust function.

6.2.1 Secure 2PC 128-bit AES

We used AES as a benchmark to compare our compiler to the Fairplay compiler, and as a

test circuit for our system. We tested the full AES circuit, as specified in FIPS-197 [FIP01].

In the semi-honest model, it is possible to reduce the number of gates in an AES circuit by

computing the key schedule offline; e.g. this is one of the optimizations employed by Huang

et al. [HEKM11]. In the malicious model, however, such an optimization is not possible; the

1The reason that saving 500+ cycles does not lead to more improvements is that this encryption operation
is merely one of the contributing factors to generating a garbled gate. Other factors, for example, include GNU
hash_map table insertion (⇠1,200 cycles) and erase (⇠600 cycles).

GPU

●

●●●

●●●●

●●

●

●

0 5000000 10000000 15000000 20000000 25000000

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Generation Times Over Gate Count

Circuit Gate Count

G
en

er
at

io
n

Ti
m

e
(s

)

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(a) Gates Gen vs. Time

●

●●●

●●●
●

●● ●

●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Normalized Gate Generation

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(b) Gate Gen Per Core Per Sec vs. Gate Count

Figure 2: Gate Generation Times comparing to Kreuter et al.[14].

current implementation by Frederiksen and Nielsen [5]. Results
are given in Fig. 3.

The advantage that the cut-and-choose protocol entails to parallel
evaluation, especially on the SIMD architecture, makes it difficult
for an HbC or 1BM model protocol to remain competitive. Our
evaluation problems seem to stem from two factors: i) It is difficult
to keep the GPU fully engaged in processing, due to the limited
width of any level of a circuit (recall level i of a circuit must be eval-
uated before level i+ 1); and, ii) The lack of memory coalescence
in our circuit data structure seems to impose harsh time penalties
on our circuit evaluation times, due to poor poor memory read-
/write performance. Memory coalescence occurs on a GPU when
all the cores in a warp access adjacent memory locations. Problem
ii) is one we believe we can partially improve upon in future work,
although we doubt it is possible to achieve the same levels as the
cut-and-choose protocol permits (discussed below). Problem i) is
inherently more problematic for the HbC and 1BM security model
protocols, as one can never have guarantees that there k identical
copies of each gate to evaluate, nor do we have the ability to natu-
rally multiply the width of circuits by a factor of O(k).

●● ● ● ● ●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
0

40
00

0
60

00
0

80
00

0

GPU Evaluation Comparison

Evaluation Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)
Kreuter et al. (CPU)

(a) Comparing our GPU Eval Per Sec Per Core

●● ● ● ● ●

0 5000000 10000000 15000000 20000000 25000000

0
20

40
60

80
10

0
12

0

GPU Evaluation Comparison

Evaluation Circuit Gate count

Ev
al

ua
tio

n
Ti

m
e

(s
)

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)
Kreuter et al. (CPU)

(b) Comparing our GPU Eval Overall

Figure 3: GPU Evaluation Times with comparison to Kreuter et al.
[14], Frederiksen and Nielsen [5] and our GPU implementation.

Recall core utilization rates and memory coalescence are less of
an issue for Fredriksen and Nielsen: not only are they in fact com-
puting many copies of the AES circuit in the malicious model as
we are, but their evaluation algorithm is guaranteed of this fact.
This allows them several advantages when constructing kernels to

evaluate their circuits. In particular, they can solve the two prob-
lems above. First, they can construct a kernel for evaluating each
gate in a circuit, and they can evaluate gates from lowest level to
the highest. As long as these kernels are scheduled in a leveled
order—something easily done— the GPU need never sit with low
usage while waiting on kernels to complete a level. Second, since
the evaluation is guaranteed that it is executing multiple copies of
an identical circuit, it is easier to setup kernels that i) avoid warp
divergence, as warps will never process different gate types, and
ii)coalesce circuit data in the GPU’s global memory, by simply
storing each circuits data adjacent in memory. Note that both of
these solutions depend on the circuit taking advantage of multiple
identical copies of the same circuit executing.

We see that our GPU marginally outperforms Kreuter et al., sug-
gesting that they are paying a heavy price for using MPI on a single
machine (but of course, they are designed to run on large com-
pute clusters, and huge circuits where such performance penalties
should be amortized).

8.4 CPU Evaluation
Due in part to the seemingly structural problems of evaluation

on a SIMD GPU, we implemented a multi-threaded CPU evalua-
tion scheme in OpenMP. Results can be seen in Fig. 4. It is clear
that a MIMD architecture, such as a multi-core CPU will not suffer
from warp divergence or memory coalescing problems given their
advanced memory controllers and internal logic. A lack of warp
divergence removes the fear that large numbers of cores sit idle
while a level is completed is less of a problem. Also, we do not
need to create multiple distinct ‘kernels’ for different gate types,
nor worry that different cores are evaluating different gates. Simi-
larly, the fraction of cores that go unused while waiting for a level
to complete, as a total fraction of compute power will be smaller.

While we continue to underperform Frederiksen and Nielsen, we
improve over Kreuter et al, and show that their system is likely to
benefit from the inclusion of threading within their nodes on the
compute-cluster, as opposed to having all of the parallelism at the
node level.

●

●

●

●

●
●

●

●
●

●●

●
●
●

●

●
●

●
●

●

●●
●

●
● ●

●

●

●

●

● ●

0 2000000 4000000 6000000 8000000 10000000

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Evaluation Times Over Gate Count

Circuit Gate Count

Ev
al

ua
tio

n
Ti

m
e

(s
)

● Tie (CPU)
EC2 (CPU)
Kreuter et al. (CPU)
Frederiksen et al. (GPU)

(a) CPU System Gate Count Eval vs. Time

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

0 2000000 4000000 6000000 8000000 10000000

0
10

00
00

20
00

00
30

00
00

40
00

00

Normalized Gate Evaluation Per Second

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Tie (CPU)
EC2 (CPU)
Kreuter et al. (CPU)
Frederiksen et al. (GPU)

(b) CPU System Gate Eval per sec per core vs. Gate Count

Figure 4: Our Evaluation Times as implemented on the CPU with
comparison to Kreuter et al. [14] and Frederiksen and Nielsen [5] .

9. CONCLUSION, LESSONS LEARNED, AND
FUTURE WORK

Given the ability of the GPU to generate large circuits (or large
numbers of circuits) efficiently, and the CPUs better performance
in evaluation, it seems that an implementation that aims to imple-

●

●●●

●●●●

●●

●

●

0 5000000 10000000 15000000 20000000 25000000

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Generation Times Over Gate Count

Circuit Gate Count

G
en

er
at

io
n

Ti
m

e
(s

)

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(a) Gates Gen vs. Time

●

●●●

●●●
●

●● ●

●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Normalized Gate Generation

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Us − Tie (GPU)
Us − EC2 (GPU)
Kreuter et al. (CPU)

(b) Gate Gen Per Core Per Sec vs. Gate Count

Figure 2: Gate Generation Times comparing to Kreuter et al.[14].

current implementation by Frederiksen and Nielsen [5]. Results
are given in Fig. 3.

The advantage that the cut-and-choose protocol entails to parallel
evaluation, especially on the SIMD architecture, makes it difficult
for an HbC or 1BM model protocol to remain competitive. Our
evaluation problems seem to stem from two factors: i) It is difficult
to keep the GPU fully engaged in processing, due to the limited
width of any level of a circuit (recall level i of a circuit must be eval-
uated before level i+ 1); and, ii) The lack of memory coalescence
in our circuit data structure seems to impose harsh time penalties
on our circuit evaluation times, due to poor poor memory read-
/write performance. Memory coalescence occurs on a GPU when
all the cores in a warp access adjacent memory locations. Problem
ii) is one we believe we can partially improve upon in future work,
although we doubt it is possible to achieve the same levels as the
cut-and-choose protocol permits (discussed below). Problem i) is
inherently more problematic for the HbC and 1BM security model
protocols, as one can never have guarantees that there k identical
copies of each gate to evaluate, nor do we have the ability to natu-
rally multiply the width of circuits by a factor of O(k).

●● ● ● ● ●

0 5000000 10000000 15000000 20000000 25000000

0
20

00
0

40
00

0
60

00
0

80
00

0
GPU Evaluation Comparison

Evaluation Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)
Kreuter et al. (CPU)

(a) Comparing our GPU Eval Per Sec Per Core

●● ● ● ● ●

0 5000000 10000000 15000000 20000000 25000000

0
20

40
60

80
10

0
12

0

GPU Evaluation Comparison

Evaluation Circuit Gate count

Ev
al

ua
tio

n
Ti

m
e

(s
)

● Us (Tie)
Us (EC2)
Frederiksen et al. (Tie)
Frederiksen et al. (EC2)
Kreuter et al. (CPU)

(b) Comparing our GPU Eval Overall

Figure 3: GPU Evaluation Times with comparison to Kreuter et al.
[14], Frederiksen and Nielsen [5] and our GPU implementation.

Recall core utilization rates and memory coalescence are less of
an issue for Fredriksen and Nielsen: not only are they in fact com-
puting many copies of the AES circuit in the malicious model as
we are, but their evaluation algorithm is guaranteed of this fact.
This allows them several advantages when constructing kernels to

evaluate their circuits. In particular, they can solve the two prob-
lems above. First, they can construct a kernel for evaluating each
gate in a circuit, and they can evaluate gates from lowest level to
the highest. As long as these kernels are scheduled in a leveled
order—something easily done— the GPU need never sit with low
usage while waiting on kernels to complete a level. Second, since
the evaluation is guaranteed that it is executing multiple copies of
an identical circuit, it is easier to setup kernels that i) avoid warp
divergence, as warps will never process different gate types, and
ii)coalesce circuit data in the GPU’s global memory, by simply
storing each circuits data adjacent in memory. Note that both of
these solutions depend on the circuit taking advantage of multiple
identical copies of the same circuit executing.

We see that our GPU marginally outperforms Kreuter et al., sug-
gesting that they are paying a heavy price for using MPI on a single
machine (but of course, they are designed to run on large com-
pute clusters, and huge circuits where such performance penalties
should be amortized).

8.4 CPU Evaluation
Due in part to the seemingly structural problems of evaluation

on a SIMD GPU, we implemented a multi-threaded CPU evalua-
tion scheme in OpenMP. Results can be seen in Fig. 4. It is clear
that a MIMD architecture, such as a multi-core CPU will not suffer
from warp divergence or memory coalescing problems given their
advanced memory controllers and internal logic. A lack of warp
divergence removes the fear that large numbers of cores sit idle
while a level is completed is less of a problem. Also, we do not
need to create multiple distinct ‘kernels’ for different gate types,
nor worry that different cores are evaluating different gates. Simi-
larly, the fraction of cores that go unused while waiting for a level
to complete, as a total fraction of compute power will be smaller.

While we continue to underperform Frederiksen and Nielsen, we
improve over Kreuter et al, and show that their system is likely to
benefit from the inclusion of threading within their nodes on the
compute-cluster, as opposed to having all of the parallelism at the
node level.

●

●

●

●

●
●

●

●
●

●●

●
●
●

●

●
●

●
●

●

●●
●

●
● ●

●

●

●

●

● ●

0 2000000 4000000 6000000 8000000 10000000

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Evaluation Times Over Gate Count

Circuit Gate Count

Ev
al

ua
tio

n
Ti

m
e

(s
)

● Tie (CPU)
EC2 (CPU)
Kreuter et al. (CPU)
Frederiksen et al. (GPU)

(a) CPU System Gate Count Eval vs. Time

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

0 2000000 4000000 6000000 8000000 10000000

0
10

00
00

20
00

00
30

00
00

40
00

00

Normalized Gate Evaluation Per Second

Circuit Gate Count

G
at

es
 P

er
 S

ec
on

d
Pe

r C
or

e

● Tie (CPU)
EC2 (CPU)
Kreuter et al. (CPU)
Frederiksen et al. (GPU)

(b) CPU System Gate Eval per sec per core vs. Gate Count

Figure 4: Our Evaluation Times as implemented on the CPU with
comparison to Kreuter et al. [14] and Frederiksen and Nielsen [5] .

9. CONCLUSION, LESSONS LEARNED, AND
FUTURE WORK

Given the ability of the GPU to generate large circuits (or large
numbers of circuits) efficiently, and the CPUs better performance
in evaluation, it seems that an implementation that aims to imple-

Plans

banked''
register'
file'of'
129b'
entries'

XOR'
Unit'

SHA'
(32'stages)'

SHA'
Queue'

Gate'
Queue'

XOR'Alice'
129x3'

132'

129'

129'

operand'
storage' DRAM'

Interface'

Bytecode'
Translator'

Control'
Processor'

Michael Taylor

